极坐标的几种常见题型p
高考极坐标与参数方程大题题型汇总(附详细答案)
高考极坐标与参数方程大题题型汇总1.在直角坐标系xoy 中,圆C 的参数方程1cos (sinx y 为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是(sin 3cos )33,射线:3OM 与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)圆C 的普通方程是22(1)1x y,又cos ,sinx y ;所以圆C 的极坐标方程是2cos. ---5分(2)设11(,)为点P 的极坐标,则有1112cos 3解得1113.设22(,)为点Q 的极坐标,则有2222(sin 3cos )333解得2233由于12,所以122PQ,所以线段PQ 的长为 2.2.已知直线l 的参数方程为431x t ayt (t 为参数),在直角坐标系xOy 中,以O 点为极点,x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为26sin8.(1)求圆M 的直角坐标方程;(2)若直线l 截圆M 所得弦长为3,求实数a 的值.解:(1)∵2222268(36si )n81xyy xy ,∴圆M 的直角坐标方程为22(3)1xy ;(5分)(2)把直线l 的参数方程431x t ayt (t 为参数)化为普通方程得:34340x y a ,∵直线l 截圆M 所得弦长为3,且圆M 的圆心(0,3)M 到直线l 的距离22|163|3191()5222a da或376a,∴376a或92a.(10分)3.已知曲线C 的参数方程为sin51cos 52yx(为参数),以直角坐标系原点为极点,Ox 轴正半轴为极轴建立极坐标系。
(1)求曲线c 的极坐标方程(2)若直线l 的极坐标方程为(sin θ+cos θ)=1,求直线l 被曲线c 截得的弦长。
解:(1)∵曲线c 的参数方程为sin51cos 52yx(α为参数)∴曲线c 的普通方程为(x-2)2+(y-1)2=5将sincos yx代入并化简得:=4cos θ+2sin θ即曲线c 的极坐标方程为=4cos θ+2sin θ(2)∵l 的直角坐标方程为x+y-1=0∴圆心c 到直线l 的距离为d=22=2∴弦长为225=234.已知曲线C :2219xy,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()24.(1)写出曲线C 的参数方程,直线l 的直角坐标方程;(2)设P 是曲线C 上任一点,求P 到直线l 的距离的最大值.解:(1)曲线C 的参数方程为3cos sinxy(为参数),直线l 的直角坐标方程为2x y(2)设(3cos,sin)P ,P 到直线l 的距离10cos()23cossin 222d(其中为锐角,且1tan3)当cos()1时,P 到直线l 的距离的最大值max52d 5.设经过点(1,0)P 的直线l 交曲线C :2cos 3sinxy(为参数)于A 、B 两点.(1)写出曲线C 的普通方程;(2)当直线l 的倾斜角60时,求||||PA PB 与||||PA PB 的值.解:(1)C :22143xy.(2)设l :11232x tyt(t 为参数)联立得:254120tt 212121216||||||45PA PB t t t t t t ,1212||||||5PA PB t t 6.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,)2,若直线l 过点P ,且倾斜角为6,圆C 以M 为圆心,3为半径.(1)求直线l 的参数方程和圆C 的极坐标方程;(2)设直线l 与圆C 相交于,A B 两点,求PA PB.解:(1)直线l 的参数方程为31,212,2x t yt 为参数)t (,(答案不唯一,可酌情给分)圆的极坐标方程为sin6.(2)把31,212,2x t yt 代入22(3)9xy ,得2(31)70tt ,127t t ,设点,A B 对应的参数分别为12,t t ,则12,PAt PBt ,7.PAPB7.在平面直角坐标系xOy 中,直线l 的参数方程是22222x tyt (t 为参数),以原点O 为极点,以x 轴的非负半轴为极轴建立极坐标系,已知圆C 的极坐标方程为42cos()4.(1)将圆C 的极坐标方程化为直角坐标方程;(2)若直线l 与圆C 交于A ,B 两点,点P 的坐标为(2,0),试求11PA PB的值.解:(1)由42cos()4,展开化为2242(cos sin )4(cos sin )2,将代入,得22440xyx y ,所以,圆C 的直角坐标方程是22440xyxy.cos sinxy(2)把直线l 的参数方程22222x tyt(t 为参数)代入圆的方程并整理,可得:22240tt.设A ,B 两点对应的参数分别为12,t t ,则121222,40t t t t ,所以2121212()426t t t t t t .∴121212111126642t t PAPBt t t t .8.已知曲线C 的极坐标方程为2sin cos10,曲线13cos :2sin x C y(为参数).(1)求曲线1C 的标准方程;(2)若点M 在曲线1C 上运动,试求出M 到曲线C 的距离的最小值.解:(1)曲线1C 的标准方程是:22194xy(2)曲线C 的标准方程是:210xy 设点(3cos ,2sin)M ,由点到直线的距离公式得:3cos 4sin 1015cos()1055d其中34cos,sin550时,min5d ,此时98(,)55M 9.在平面直角坐标系xOy 中,直线l 的参数方程为122322x t yt(t 为参数),直线l 与曲线C :22(2)1yx交于A ,B 两点.(1)求AB 的长;(2)在以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,设点P 的极坐标为322,4,求点P 到线段AB 中点M 的距离.解:(1)直线l 的参数方程为122322x t yt ,,(t 为参数),代入曲线C 的方程得24100tt .设点A ,B 对应的参数分别为12t t ,,则124t t ,1210t t ,所以12||||214AB t t .(2)由极坐标与直角坐标互化公式得点P 的直角坐标为(22),,所以点P 在直线l 上,中点M 对应参数为1222t t ,由参数t 的几何意义,所以点P 到线段AB 中点M 的距离||2PM .10.已知直线l 经过点(1,1)P ,倾斜角6,(1)写出直线l 的参数方程。
极坐标与参数方程题型和方式归纳
极坐标与参数方程题型和方式归纳题型一:极坐标(方程)与直角坐标(方程)的彼此转化,参数方程与一般方程彼此转化,极坐标方程与参数方程彼此转化。
方式如下:{222cos sin tan (0x y x y yx x ραραρρθ==⎧=+⎪⎨=≠+⎪⎩或(1)极坐标方程直角坐标方程221θθ=−−−−−−−−−−−−→←−−−−−−−−−−−−消参(代入法、加减法、sin +cos 等)圆、椭圆、直线的参数方程(2)参数方程直角坐标方程−−→−−→←−−←−−(3)参数方程直角坐标方程(普通方程)极坐标方程一、已知直线l的参数方程为112x t y ⎧=+⎪⎨⎪=⎩(t 为参数)以坐标原点O 为极点,以x 轴正半轴为极轴,成立极坐标系,曲线C的方程为2sin cos 0θθ=.(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)写出直线l 与曲线C 交点的一个极坐标.题型二:三个经常使用的参数方程及其应用(1)圆222()()x a y b r -+-=的参数方程是: cos sin ()x a r y b r θθθ=+⎧⎨=+⎩为参数(2)椭圆22221(0,0,)x y a b a b a b +=>>≠的参数方程是:cos ,()sin x a y b θθθ=⎧⎨=⎩为参数(3)过定点00(,)P x y 倾斜角为α的直线l 的标准参数方程为:00cos ,()sin x x t t y y t αα=+⎧⎨=+⎩为参数对(3)注意: P 点所对应的参数为00t =,记直线l 上任意两点,A B 所对应的参数别离为12,t t ,那么①12AB t t =-,②1212121212,0,0t t t t PA PA t t t t t t ⎧+⋅>⎪+=+=⎨-⋅<⎪⎩,③1212PA PA t t t t ⋅=⋅=⋅二、在直角坐标系xoy 中,曲线C 的参数方程为cos 2sin x a ty t=⎧⎨=⎩ (t 为参数,0a > )以坐标原点O 为极点,以x轴正半轴为极轴,成立极坐标系,已知直线l的极坐标方程为cos 4πρθ⎛⎫+=- ⎪⎝⎭(Ⅰ)设P 是曲线C 上的一个动点,当2a =时,求点P 到直线l 的距离的最小值; (Ⅱ)假设曲线C 上的所有点均在直线l 的右下方,求a 的取值范围.3、已知曲线1C :12cos 4sin x y θθ=⎧⎨=⎩(参数R θ∈),以坐标原点O 为极点,x 轴的非负半轴为极轴,成立极坐标系,曲线2C 的极坐标方程为3cos()3ρπθ=+,点Q的极坐标为)4π.(1)将曲线2C 的极坐标方程化为直角坐标方程,并求出点Q 的直角坐标; (2)设P 为曲线1C 上的点,求PQ 中点M 到曲线2C 上的点的距离的最小值.4、已知直线l:112x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线1C :cos sin x y θθ=⎧⎨=⎩(θ为参数).(1)设l 与1C 相交于两点,A B ,求||AB ; (2)假设把曲线1C 上各点的横坐标紧缩为原先的122C ,设点P 是曲线2C 上的一个动点,求它到直线l 的距离的最小值.5、在平面直角坐标系xOy中,已知曲线:sin x C y αα⎧=⎪⎨=⎪⎩(α为参数),在以坐标原点O 为极点,以x 轴正半轴为极轴成立的极坐标系中,直线l的极坐标方程为cos()124πρθ+=-.(1)求曲线C 的一般方程和直线l 的直角坐标方程;(2)过点(1,0)M -且与直线l 平行的直线1l 交C 于,A B 两点,求弦AB 的长.6、面直角坐标系中,曲线C 的参数方程为⎩⎨⎧x =5 cos α,y =sin α(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴成立极坐标系,直线l 的极坐标方程为ρcos (θ+π4)=2.l 与C 交于A 、B 两点. (Ⅰ)求曲线C 的一般方程及直线l 的直角坐标方程;(Ⅱ)设点P (0,-2),求:① |PA |+|PB |,②PA PB⋅,③11PA PB+,④AB题型三:过极点射线极坐标方程的应用 显现形如:(1)射线OP :6πθ=(0ρ≥);(1)直线OP :6πθ=(R ρ∈) 7、在直角坐标系xOy 中,圆C的方程为22((1)9x y ++=,以O 为极点,x 轴的非负半轴为极轴成立极坐标系.(1)求圆C 的极坐标方程; (2)直线OP :6πθ=(R ρ∈)与圆C 交于点M 、N ,求线段MN 的长.八、在直角坐标系xOy 中,圆C 的参数方程为5cos (65sin x y ααα=⎧⎨=-+⎩为参数), 以坐标原点为极点,x 轴正半轴为极轴成立极坐标系. (1)求圆C 的极坐标方程;(2)直线l 的极坐标方程为0θα=,其中0α知足0tan l α=与C 交于,A B 两点,求AB 的值.九、在直角坐标系xOy 中,直线l 通过点(1,0)P -,其倾斜角为α,以原点O 为极点,以x轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,成立极坐标系,设曲线C 的 极坐标方程为26cos 50ρρθ-+=.(Ⅰ)假设直线l 与曲线C 有公共点,求α的取值范围; (Ⅱ)设(,)M x y 为曲线C 上任意一点,求x y +的取值范围.10、在直角坐标系中xOy 中,已知曲线E通过点P ⎛ ⎝⎭,其参数方程为cos x a y αα=⎧⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴成立极坐标系. (1)求曲线E 的极坐标方程;(2)假设直线l 交E 于点A B 、,且OA OB ⊥,求证:2211OAOB+为定值,并求出那个定值.1一、在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程别离是244x t y t⎧=⎨=⎩(t 是参数)和cos ,1sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数).以原点O 为极点,x 轴的正半轴为极轴成立极坐标系. (1)求曲线1C 的一般方程和曲线2C 的极坐标方程; (2)射线:OM ([,])64ππθαα=∈与曲线1C 的交点为O ,P ,与曲线2C 的交点为O ,Q ,求||||OP OQ ⋅的最大值.。
极坐标参数方程题型归纳7种
极坐标参数方程题型归纳7种标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-极坐标与参数方程(高考真题)题型归纳一、极坐标方程与直角坐标方程的互化1.(2015·广东理,14)已知直线l的极坐标方程为2ρsin⎝⎛⎭⎫θ-π4=2,点A的极坐标为A⎝⎛⎭⎫22,7π4,则点A到直线l的距离为________.[立意与点拨]本题考查极坐标与平面直角坐标的互化、点到直线的距离,属于容易题.解答本题先进行极直互化,再求距离.二、参数方程与直角坐标方程的互化【解析】椭圆方程为:14622=+yx,因为1cossin22=+xx,令⎩⎨⎧==ααcos2sin6yx,则有X+2y=αsin6+αcos4=()ϕα++sin166,最大值22,最小值22-三、根据条件求直线和圆的极坐标方程四、求曲线的交点及交点距离4.(2015·湖北高考)在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C的参数方程为⎩⎨⎧x=t-1t,y=t+1t(t为参数),l与C相交于A,B 两点,则|AB|=________.【解析】直线l的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x-y=0,曲线C的参数方程⎩⎨⎧x=t-1t,y=t+1t两式经过平方相减,化为普通方程为y2-x2=4,联立⎩⎪⎨⎪⎧3x-y=0,y2-x2=4解得⎩⎪⎨⎪⎧x=-22,y=-322或⎩⎪⎨⎪⎧x=22,y=322.所以点A⎝⎛⎭⎪⎫-22,-322,B⎝⎛⎭⎪⎫22,322.所以|AB|=⎝⎛⎭⎪⎫-22-222+⎝⎛⎭⎪⎫-322-3222=2 5.5.在平面直角坐标xOy 中,已知直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t ,(t 为参数),直线l 与抛物线y 2=4x 相交于A 、B 两点,求线段AB 的长.[解析] 解法1:将l 的方程化为普通方程得l :x +y =3,∴y =-x +3,代入抛物线方程y 2=4x 并整理得x 2-10x +9=0,∴x 1=1,x 2=9. ∴交点A (1,2),B (9,-6),故|AB |=82+82=8 2.解法2:将l 的参数方程代入y 2=4x 中得,(2+22t )2=4(1-22t ), 解之得t 1=0,t 2=-82,∴|AB |=|t 1-t 2|=8 2.6.(2015·陕西理,23)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.[立意与点拨] 考查极坐标与参数方程、转化与化归思想和函数思想;解答本题(1)需熟记极直互化公式;(2)用参数坐标将距离表达为t 的函数,转化为函数最值求解.[解析](1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P (3+12t ,32t ),又C (0,3),则|PC |=3+12t 2+32t -32=t 2+12,故当t =0时,|PC |取得最小值,此时,P 点的直角坐标为(3,0).五、利用参数方程求最值( 转化与化归思想和函数思想 )[立意与点拨](用三角函数作为参数,转化成求三角函数最值问题,着重理解转化思维,用参数法实现转化的技巧)8.(2015·新课标Ⅱ高考)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.【解】(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π.(此题C 1代表的是一条过原点的直线) 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3.当α=5π6时,|AB |取得最大值,最大值为4.9.(2015·商丘市二模)已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:ρsin ⎝⎛⎭⎫θ-π6=12,曲线C 的参数方程为:⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α.(1)写出直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.[解析] (1)∵ρsin ⎝⎛⎭⎫θ-π6=12,∴ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ=12,∴32y -12x =12,即l :x -3y +1=0.(2)解法一:由已知可得,曲线上的点的坐标为(2+2cos α,2sin α), 所以,曲线C 上的点到直线l 的距离d =|2+2cos α-23sin α+1|2=⎪⎪⎪⎪4cos ⎝⎛⎭⎫α+π3+32≤72. 所以最大距离为72.解法二:曲线C 为以(2,0)为圆心,2为半径的圆.圆心到直线的距离为32,所以,最大距离为32+2=72.10.(文)(2014·新课标Ⅰ理,23)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.[解析](1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ,(θ为参数)直线l 的普通方程为:2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.(将d=|AB|sin30利用三角关系进行转化,转化化归思想,高考考点考察学生思维能力)当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255. 当sin(θ+α)=1时,|PA |取得最小值,最小值为255.六、直线参数方程中的参数的几何意义方法一:方法二:根据直线参数方程中t 的几何意义,可知,弦长=|t 1-t 2|.得:053154153154122=⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+t t t t ,方程化简,然后用韦达定理求 弦长=|t 1-t 2|=()212214t t t t -+=.....13.(理)在直角坐标系xOy 中,过点P (32,32)作倾斜角为α的直线l 与曲线C :x 2+y 2=1相交于不同的两点M 、N .(1)写出直线l 的参数方程;(2)求1|PM |+1|PN |的取值范围.(根据直线参数方程中t 的几何意义,用参数t 表示所求量1|PM |+1|PN |,然后用t 的二次方程的韦达定理,转化成三角函数进而求范围,此题较难)[解析] (1)⎩⎪⎨⎪⎧x =32+t cos α,y =32+t sin α,(t 为参数).(2)将⎩⎪⎨⎪⎧x =32+t cos α,y =32+t sin α.(t 为参数)代入x 2+y 2=1中,消去x ,y 得,t 2+(3cos α+3sin α)t +2=0,由Δ=(3cos α+3sin α)2-8=12sin 2(α+π6)-8>0⇒sin(α+π6)>63, 1|PM |+1|PN |=1-t 1+1-t 2=-t 1+t 2t 1t 2=3cos α+3sin α2=3sin(α+π6)∈(2,3].七、求动点坐标、求变量的值14.(2015·陕西理,23)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.[立意与点拨] 考查极坐标与参数方程、转化与化归思想和函数思想;解答本题(1)需熟记极直互化公式;(2)用参数坐标将距离表达为t 的函数,转化为函数最值求解.[解析] (1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P (3+12t ,32t ),又C (0,3),则|PC |=3+12t 2+32t -32=t 2+12,故当t =0时,|PC |取得最小值,此时,P 点的直角坐标为(3,0).(此处用参数t 来表示所求距离,然后当作变量为t 的二次函数,求最值)15.(2016全国卷I)在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C . (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程; (Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【解析】:⑴ cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数),∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=, 224x y x ∴+=,即()2224x y -+= ②,3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ,①—②得:24210x y a -+-=,即为3C∴210a -=,∴1a =(圆与圆交点所在直线的求法,联立圆方程,两方程相减,可得变量的方程)16.(文)(2015·唐山市二模)在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝⎛⎭⎫θ-π3=32,C 与l 有且仅有一个公共点.(1)求a ; (2)O 为极点,A ,B 为C 上的两点,且∠AOB =π3,求|OA |+|OB |的最大值.[解析] (1)曲线C 是以(a,0)为圆心,以a 为半径的圆; l 的直角坐标方程为x +3y -3=0.由直线l 与圆C 相切可得|a -3|2=a ,解得a =1. (求符合条件的变量值,建立等量关系,解方程)(2)不妨设A 的极角为θ,B 的极角为θ+π3,则|OA |+|OB |=2cos θ+2cos ⎝⎛⎭⎫θ+π3=3cos θ-3sin θ=23cos ⎝⎛⎭⎫θ+π6, 当θ=-π6时,|OA |+|OB |取得最大值2 3.(用三角函数作为参数,转化成求三角函数最值问题,着重理解转化思维,用参数法实现转化的技巧)。
极坐标高考题的几种常见题型[1]
极坐标高考题的几种常见题型[1]高考链接极坐标高考题的几种常见题型和直角坐标系一样,极坐标系是常用的一种坐标系,极坐标是历年理工类高考必考的内容,随着新课程改革的深入,在2007年4个省市新课标高考试题中有3个省市考查了极坐标.涉及较多的是极坐标与直角坐标的互化及简单应用.多以选择题、填空题形式出现,以考查基本概念,基本知识,基本运算为主,一般属于容易题.一、极坐标方程与直角坐标方程的互化互化条件:极点与原点重合,极轴与x 轴正半轴重合,长度单位相同.互化公式:⎩⎨⎧==θρθρsin cos y x 或 ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ θ的象限由点(x,y)所在的象限确定.例1(2007海南宁夏)⊙O 1和⊙O 2的极坐标方程分别为θρcos 4=,θρsin 4-=.(I)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程;(II)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(I)θρcos =x ,θρsin =y ,由θρcos 4=得θρρcos 42=.所以x y x 422=+.即0422=-+x y x 为⊙O 1的直角坐标方程.同理0422=++y y x 为⊙O 2的直角坐标方程.(II)解法一:由⎩⎨⎧=++=-+04042222y y x x y x 解得⎩⎨⎧==0011y x ,⎩⎨⎧-==2222y x 即⊙O 1,⊙O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x .解法二: 由⎩⎨⎧=++=-+04042222y y x x y x ,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x .评述:本题主要考查曲线的极坐标方程化为直角坐标方程的方法及两圆公共弦所在直线方程的求法.例2(2003全国)圆锥曲线θθρ2cos sin 8=的准线方程是 (A)2cos -=θρ (B)2cos =θρ (C) 2sin -=θρ (D) 2sin =θρ解: 由θθρ2cos sin 8=去分母后两边同时乘以ρ得:θρθρsin 8cos 22=,所以x 2=8y ,其准线方程为y=2-,在极坐标系中方程为2sin -=θρ,故选C.例3(1998年上海)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若椭圆两焦点的极坐标分别是(1,2π),(1,23π),长轴长是4,则此 椭圆的直角坐标方程是_______________.解:由已知条件知椭圆两焦点的直角坐标为(0,1),(0,-1).c=1,a=2,b 2=a 2-c 2=3,故所求椭圆的直角坐标方程为4322y x +=1 评述:点的直角坐标与极坐标的互化、曲线的极坐标方程与直角坐标方程的 互化要熟练掌握.类题:1(1995年上海)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并且在两种坐标系中取相同的长度单位.若曲线的极坐标方程是1cos 4122-=θρ,则它的直角坐标方程是___________. (答案:3x 2-y 2=1)2(1998年全国)曲线的极坐标方程ρ=4sin θ化成直角坐标方程为(A) x 2+(y+2)2=4 (B) x 2+(y-2)2=4(C) (x-2)2+y 2=4 (D) (x+2)2+y 2=4 (答案:B)3(2002北京)已知某曲线的参数方程是⎩⎨⎧==ϕϕtan sec y x (ϕ为参数)若以原点为极点,x 轴的正半轴为极轴,长度单位不变,建立极坐标系,则该曲线的极坐标方程是(A)1=ρ (B)12cos =θρ (C)12sin 2=θρ (D) 12cos 2=θρ (答案:D)二、已知曲线的极坐标方程,判断曲线类型常见的直线和圆的极坐标方程及极坐标系中的旋转不变性:1、直线的极坐标方程(a>0)(1)过极点,并且与极轴成α角的直线的极坐标方程:θ=α;(2)垂直于极轴和极点间的距离为a 的直线的极坐标方程:ρcos θ=a;(3)平行于极轴和极轴间的距离为a 的直线的极坐标方程:ρsin θ=a;(4)不过极点,和极轴成α角,到极点距离为a 的直线的极坐标方程:ρsin(α-θ)=a.2、圆的极坐标方程(a>0)(1)圆心在极点,半径为a 的圆的极坐标方程: ρ=a;(2)圆心在(a,0),半径为a 的圆的极坐标方程: ρ=2acos θ;(3)圆心在(a,π),半径为a 的圆的极坐标方程: ρ=θcos 2a -;(4)圆心在(a,2π),半径为a 的圆的极坐标方程: ρ=2asin θ; (5)圆心在(a,23π),半径为a 的圆的极坐标方程: ρ=θsin 2a -; (6)圆心在(a, θ0),半径为a 的圆的极坐标方程: ρ=2acos(θ-θ0).3、极坐标系中的旋转不变性:曲线f(ρ,θ+α)=0是将曲线f(ρ,θ)=0绕极点旋转|α|角(0>α时,按顺时针方向旋转,0<α时,按逆时针方向旋转)而得到.例4(1990年全国)极坐标方程4ρsin 22θ=5所表示的曲线是 (A)圆 (B)椭圆 (C)双曲线的一支 (D)抛物线解:由已知极坐标方程及三角公式得:2ρ(1-cos θ)=5,∴2ρ=2ρcos θ+5,由互化公式得222y x +=2x+5,平方整理得y 2=5(x+45),方程表示的曲线是抛物线,故选D. 评述:对于给出的极坐标方程相对于极坐标系而言不是标准的,一般将其等价转 化为直角坐标方程来判断其曲线类型.类题:1(1991年三南)极坐标方程4sin 2θ=3表示的曲线是(A)二条射线 (B)二条相交直线 (C) 圆 (D) 抛物线 (答案:B)2(1987年全国)极坐标方程ρ=sin θ+2cos θ所表示的曲线是(A)直线 (B)圆 (C)双曲线 (D) 抛物线 (答案:B)3(2001年广东、河南)极坐标方程ρ2cos2θ=1所表示的曲线是(A)两条相交直线 (B)圆 (C)椭圆 (D)双曲线 (答案:D)4(2003北京)极坐标方程1cos 22cos 2=-θρθρ表示的曲线是(A)圆 (B)椭圆 (C)抛物线 (D)双曲线 (答案:D)例5(1994年全国)极坐标方程ρ=cos(4π-θ)所表示的曲线是 (A) 双曲线 (B)椭圆 (C)抛物线 (D)圆解:曲线ρ=cos(4π-θ)=cos(θ-4π)是把圆ρ=cos θ绕极点按逆时针方向旋 转4π而得,曲线的形状仍然是一个圆,故选D 评述:把曲线的极坐标方程化为直角坐标方程较为麻烦,利用旋转不变性则更容易得出答案.方程ρcos(θ-θ0)=0表示一条直线,方程ρ=acos(θ-θ0)表示半径为2||a , 圆心为(2||a ,θ0)的圆,要注意两者的区别. 例6(2001年全国)极坐标方程ρ=2sin(θ+4π)的图形是(A) (D)解:圆ρ=2sin(θ+4π)是把圆ρ=2sin θ绕极点按顺时针方向旋转4π而得,圆心的极1 x 0 1 x 0 1 x 00 x 0 x0 x x坐标为(1,4π),故选C.类题:1(2002江苏)极坐标方程θρcos =与θρcos =21的图形是21 21 21 21 (A) (B) (C) (D)(答案:B)2(2004北京春)在极坐标系中,圆心在(),2π且过极点的圆的方程为(A) θρcos 22= (B)θρcos 22-= (C)θρsin 22= (D)θρsin 22-=(答案:B)三、判断曲线位置关系例7(2000年京皖春)直线θ=α和直线ρsin(θ-α)=1的位置关系(A) 垂直 (B) 平行 (C) 相交但不垂直 (D) 重合解:直线ρsin(θ-α)=1是把直线ρsin θ=1绕极点按逆时针方向旋转α角 而得, 从而两直线平行,故选B.评注:对直线ρsin(θ-α)=1与直线ρsin θ=1的关系要十分熟悉.四、根据条件求直线和圆的极坐标方程例8(2002北京春)在极坐标系中,如果一个圆的方程是ρ=4cos θ+6sin θ,那么过圆心且与极轴平行的直线方程是(A) ρsin θ=3 (B) ρsin θ = –3 (C) ρcos θ =2 (D) ρcos θ = –2解:将圆的极坐标方程化为直角坐标方程得:x 2+y 2=4x+6y,即(x-2)2+(y-3)2=13.圆心为(2,3),所求直线方程为y=3,即ρsin θ=3,故选A.评述:注意直线的直角坐标方程极易求出.类题:1(1992年上海)在极坐标方程中,与圆ρ=4sin θ相切的一条直线的方程是(A) ρsin θ=2 (B)ρcos θ=2 (C)ρcos θ= 4 (D) ρcos θ=- 4(答案:B)2(1993年上海)在极坐标方程中,过点M(2,2π)且平行于极轴的直线的极坐标方程是_______. (答案: ρsin θ=2)3(1994年上海)已知点P 的极坐标为(1,π),那么过点P 且垂直于极轴的直线的极坐标方程为(A)ρ=1 (B)ρ=cos θ (C)ρ=θcos 1- (D)ρ=θcos 1 (答案:C) 4(2000年全国)以极坐标系中点(1,1)为圆心,1为半径的圆的方程是(A)ρ=2cos(θ-4π) (B)ρ=2sin(θ-4π) (C)ρ=2cos(θ-1) (D)ρ=2sin(θ-1) (答案:C)五、求曲线中点的极坐标例9(2003上海)在极坐标系中,定点A(1,2π),点B 在直线0sin cos =+θρθρ上运动,当线段AB 最短时,点B 的极坐标是_________.解:在直角坐标系中,A 点坐标为(0,1),B 在直线x+y=0上, AB 最短,则B 为)21,21(-,化为极坐标为)43,22(π. 例10(1999年上海)极坐标方程5ρ2cos2θ+ρ2-24=0所表示的曲线焦点的极坐标为__________.解:由5ρ2cos2θ+ρ2-24=0得5ρ2(cos 2θ-sin 2θ)+ρ2-24=0化为直角坐标方程得16422=-y x ,该双曲线的焦点的直角坐标为(10,0)与(-10,0),故所求 焦点的极坐标为(10,0)、(10,π).评述:本题考查圆锥曲线极坐标方程的基础知识,掌握点的直角坐标与极坐标 的对应关系极为有用.例11(2001年京皖蒙春)极坐标系中,圆ρ=4cos θ+3sin θ的圆心的坐标是(A) (25,arcsin 53) (B)(5,arcsin 54) (C)(5,arcsin 53) (D)(25,arcsin 54) 解:由ρ= 4cos θ+3sin θ=5(54cos θ+53sin θ)=5cos(θ-φ)(其中sin φ=53) 所以所求圆心坐标为(25,arcsin 53),故选A. 类题:(2002上海)若A 、B 两点的极坐标为A(4,3π),B(6,0),则AB 中点的极坐标是_________.(极角用反三角函数值表示). 答案.(43arctan,19) 六、求距离例12(2007广东文)在极坐标系中,直线 的方程为ρsin θ=3,则点(2,6π)到直线 的距离为___________.解: 将直线 的极坐标方程ρsin θ=3化为直角坐标系方程得:y=3,点(2,6π)在直角坐标系中为(3,1),故点(2,6π) 到直线 的距离为2. 评注:本题主要考查极坐标系与直角坐标系之间的互化.例13(1992年全国、1996年上海)极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是(A) 2 (B) 2 (C) 1 (D) 22解法一:两圆的圆心坐标分别为(21,0)与(21,2π),由此求得圆心距为22,选D. 解法二:将极坐标方程化成直角坐标方程得(x-21)2+y 2=41与x 2+(y-21)2=41, 由此求得圆心距为22,选D. 评述:本题考查对极坐标的理解,理解深刻者可在极坐标系上画出简图直接求解,一般理解者,化极坐标方程为直角坐标方程也能顺利得到正确答案.例14(1997年全国)已知直线的极坐标方程为ρsin(θ+4π)=22,则极点到该直线的距离是_______.解法一:化直线方程为ρ=)4sin(22πθ+,根据极坐标的概念极点到该直线 的距离等于这个函数ρ的最小值,当sin(θ+4π)=1时, ρ取最小值22即为所求. 解法二:对极坐标欠熟悉时,可把直线的极坐标方程化为直角坐标方程x+y=1,应用点到直线的距离公式得原点到此直线的距离为22. 类题:1(2000年上海)在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A 、B 两点,则|AB|=______. (答案:23)2(2004上海)在极坐标系中,点M(4,3π)到直线 :4)sin cos 2(=+θθρ的距离d=__________________. (答案:5152) 七、判定曲线的对称性例15(1999年全国)在极坐标系中,曲线ρ= 4sin(θ-3π)关于 (A) 直线θ=3π轴对称 (B)直线θ=65π轴对称 (C) 点(2, 3π)中心对称 (D)极点中心对称 解:把圆ρ= 4sin θ绕极点按逆时针方向旋转3π便得到曲线 ρ= 4sin(θ-3π)=)65cos(4)65cos(4)]3(2cos[4πθθππθπ-=-=--, 知其圆心坐标为(2,65π),故圆的对称轴为θ=65π,应选B. 评述:方程表示的曲线是圆,为弄清轴对称或中心对称的问题,关键是求出其 圆心的坐标.八、求三角形面积例16(2006上海)在极坐标系中,O 是极点,设点A(4,3π),B(5,65π-),则△OAB 的面积是 .解:如图所示,在△OAB 中,656532,5||,4||ππππ=--=∠==AOB OB OA 5sin 21=∠=⇒∆AOB OB OA S AOB 评述:本题考查极坐标及三角形面积公式.。
【高中数学】参数方程和极坐标方程常考题型及解题方法归纳
参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。
高考极坐标与参数方程常见题型
极坐标与参数方程一、基础知识点梳理(一)极坐标 极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3、极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y 极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩ 222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4、常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或(2)(0)(0)θαρθπαρ=≥=+≥和。
高考数学极坐标与参数方程题型归纳
高考数学极坐标与参数方程题型归纳在高考数学试题中,关于极坐标与参数方程的题型占据着重要的位置。
理解和掌握这部分知识点,不仅有助于应对考试,也对于深入理解数学的概念和应用有着重要意义。
下面我们来归纳总结一些常见的高考数学极坐标与参数方程题型。
极坐标题型1.求一点在极坐标系中的坐标给定一点在极坐标系中的表示形式,要求将其转换为直角坐标系中的坐标表示。
2.求极坐标下的函数表达式已知一函数在直角坐标系中的表达式,要求将其转换为极坐标下的函数表达式。
3.求曲线在极坐标系中的方程已知函数在极坐标系中的表达式,要求确定其对应的曲线在极坐标系下的方程式。
4.求曲线与极轴、极径的交点给定曲线在极坐标系下的方程,要求求解其与极轴或者极径的交点。
参数方程题型1.极坐标与参数方程的互相转化给定一个曲线的参数方程,要求将其转换为极坐标系的方程表示,或者反之。
2.参数方程求切线斜率已知曲线的参数方程,要求求解某点处的切线的斜率。
3.参数方程求曲线间的距离给定两条曲线的参数方程,要求确定其之间的距离。
4.参数方程求曲线的长度已知曲线的参数方程,要求确定其在一定区间内的弧长。
解题技巧1.理解极坐标与参数方程的基本概念在解题时,首先要对极坐标、参数方程的定义及基本性质有清晰的理解。
2.熟练运用坐标转换公式对于极坐标与直角坐标系之间的转换,可以根据公式进行相应的转化,这是解题的基本技巧。
3.掌握参数方程的运算方法参数方程的运算方法在解题时非常重要,要善于利用参数方程的特点进行计算。
4.多练习,熟悉题型通过多练习不同类型的题目,熟悉题型变形和解题技巧,提高解题效率。
高考数学中的极坐标与参数方程题型涵盖了数学的多个重要概念,需要认真理解和掌握。
通过不断的练习和积累,相信在高考数学中能够取得优异的成绩。
极坐标题型归纳总结
坐标系1. 平面直角坐标系中的坐标伸缩变换设点P(x , y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x , y)对应到点P ' (x ', y '),称0为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2. 极坐标系的概念 (1)极坐标系如图所示,在平面取一个定'—0,叫做极点;自极点 0引一条射线Ox ,叫做极轴;再选定一个长 度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标① 极径:设 M 是平面一点,极点 0与点M 的距离|0M|叫做点M 的极径,记为 px '= • Z>0 , y '=叮 >0②极角:以极轴Ox为始边,射线0M为终边的角xOM叫做点M的极角,记为ft③极坐标:有序数对(p B)叫做点M的极坐标,记为M( p氛一般不作特殊说明时,我们认为p> 0, B可取任意实数.3. 极坐标与直角坐标的互化设M是平面任意一点,它的直角坐标是(x, y),极坐标是(p 9,则它们之间的关系为:p= x2+ y2,x= p cos 0,yy= psin 0; tan 0= :X M 0 .1若点P的直角坐标为(3,—Q3),则点P的极坐标为 _____________ .2. 圆p= 5cos 0—5』3sin 0的圆心的极坐标为________ .n 2 n3. 在极坐标系中A 2,—3 , B 4,—两点间的距离为______________n4. 在极坐标系中,圆___________________________________ p= 4sin 0的圆心到直线0= ^( 0€ R)的距离是考点一平面直角坐标系下图形的伸缩变换基础送分型考点一一自主练透[考什么怎么考]21.求椭圆4 + y2= 1经过伸缩变换,1x = 2x,y'= y后的曲线方程.x 2 y 2X = ax a>0 ,3.将圆x 2 + y 2= 1变换为椭圆—+ y= 1的一个伸缩变换公式为0 求a , b 的值. 94Y = by b>0 ,考点二极坐标与直角坐标的互化 重点保分型考点一一师生共研 [典题领悟]在极坐标系下,已知圆 O : p= cos 0+ sin B 和直线l : p in —才=¥( P > 0,0 < 0< 2 n .) (1) 求圆O 和直线l 的直角坐标方程;(2) 当0€ (0, n 时,求直线l 与圆O 的公共点的极坐标.[冲关演练]1、将下列直角坐标方程与极坐标方程进行互化.① y 2= 4x ;n 1② e= 3( p€ R);③尸 2—cos e-2、在平面直角坐标系中,以坐标原点为极点, x 轴的非负半轴为极轴建立极坐标系•已知点 A 的极坐标为.2,扌,直线的极坐标方程为 eos 0-n = a ,且点A 在直线上,求a 的值及直线的直角坐 标方程.n3、圆心C 的极坐标为 2, 4,且圆C 经过极点.(1)求圆C 的极坐标方程;⑵ 求过圆心C 和圆与极轴交点(不是极点)的直线的极坐标方程.y 2.求双曲线C : x 2— 64 = 1经过0:x '= 3x ,2y '= y ,变换后所得曲线c '的焦点坐标.n4、已知圆O i 和圆02的极坐标方程分别为p= 2, p — 2 2 pc os 9— 4 = 2.(1) 把圆O i 和圆02的极坐标方程化为直角坐标方程; (2) 求经过两圆交点的直线的极坐标方程.(I )求C 2的方程;(II )在以0为极点,x 轴的正半轴为极轴的极坐标系中,射线A ,与C 2的异于极点的交点为B ,求|AB| .2、(20i7全国卷n )在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C i 的极坐标方程为 pcos 9= 4.(i)M 为曲线C i 上的动点,点P 在线段OM 上,且满足|OM||OP|= i6,求点P 的轨迹C 2的直角坐 标方程; n _⑵设点A 的极坐标为2, 3,点B 在曲线C 2上,求△ OAB 面积的最大值.[冲关演练]考点三 曲线的极坐标方程的应用 重点保分型考点 [典题领悟]师生共研1、在直角坐标系xOy 中,曲线C i 的参数方程为x 2cos y 2 2sin(为参数),M 为C i 上的动点,P 点满足3与C i 的异于极点的交点为2O M ,点P 的轨迹为曲线C 2.x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin , C 3: 2 3cos(1) 求C 2与C 3交点的直角坐标;(2) 若C i 与C 2相交于点A ,C i 与C 3相交于点B ,求|AB|的最大值。
极坐标与参数方程题型及解题方法
极坐标与参数方程题型及解题方法极坐标与参数方程题型及解题方法高考数学中,极坐标与参数方程主要考查简单图形的极坐标方程,极坐标与直角坐标的互化,直线、圆和圆锥曲线的参数方程,参数方程化为直角坐标方程等。
这些题目通常属于中等难度,要求掌握基本概念、基本知识和基本运算。
这类题目常以选考题的形式出现,也有可能出现在高考数学的选择题和填空题中。
极坐标与直角坐标的互化1.曲线的极坐标方程化成直角坐标方程:对于简单的曲线,我们可以直接代入公式ρcosθ=x,ρsinθ=y,ρ²=x²+y²,但有时需要作适当的变化,如将式子的两边同时平方,或两边同时乘以ρ等。
2.直角坐标(x,y)化为极坐标(ρ,θ)的步骤:1) 运用ρ²=x²+y²,tanθ=y/x;2) 在[0,2π)内,由tanθ=y/x求θ时,由直角坐标的符号特征判断点所在的象限(即θ的终边位置)。
解题时必须注意:①确定极坐标方程,极点、极轴、长度单位、角度单位及其正方向,四者缺一不可。
②平面上点的直角坐标的表示形式是唯一的,但点的极坐标的表示形式不唯一。
当规定ρ≥0,0≤θ<2π,使得平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点。
③进行极坐标方程与直角坐标方程互化时,应注意两点:Ⅰ注意ρ、θ的取值范围及其影响。
Ⅱ重视方程的变形及公式的正用、逆用、变形使用。
例1:在直角坐标系xOy中,直线I) 求C1,C2的极坐标方程;II) 若直线C3的极坐标方程为θ=π/4,设C2与C3的交点为M和N,求C2MN的面积。
解:(I) 因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ²-2ρcosθ-4ρsinθ+4=0.II) 将θ=π/4代入ρ²-2ρcosθ-4ρsinθ+4=0,得ρ1=2√2,ρ2=2/√2.故MN=ρ1-ρ2=2.由于C2的半径为1,所以C2MN的面积为2π/8-1/2=π/8-1/2.参数方程是一种表示曲线的方式,其中x和y都是关于一个参数t的函数。
极坐标的几种常见题型有答案
极坐标的几种常见题型一、极坐标方程与直角坐标方程的互化互化条件:极点与原点重合,极轴与x 轴正半轴重合,长度单位相同.互化公式:⎩⎨⎧==θρθρsin cos y x 或 ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x yy x θρ θ的象限由点(x,y)所在的象限确定.例1(2007海南宁夏)⊙O 1和⊙O 2的极坐标方程分别为θρcos 4=,θρsin 4-=.(I)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (II)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(I)θρcos =x ,θρsin =y ,由θρcos 4=得θρρcos 42=.所以x y x 422=+.即0422=-+x y x 为⊙O 1的直角坐标方程. 同理0422=++y y x 为⊙O 2的直角坐标方程.(II)解法一:由⎩⎨⎧=++=-+04042222y y x x y x 解得⎩⎨⎧==0011y x ,⎩⎨⎧-==2222y x 即⊙O 1,⊙O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x .解法二: 由⎩⎨⎧=++=-+04042222y y x x y x ,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x . 评述:本题主要考查曲线的极坐标方程化为直角坐标方程的方法及两圆公共弦所在直线方程的求法.例3(1998年上海)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若椭圆两焦点的极坐标分别是(1,2π),(1,23π),长轴长是4,则此椭圆的直角坐标方程是_______________.解:由已知条件知椭圆两焦点的直角坐标为(0,1),(0,-1).c=1,a=2,b 2=a 2-c 2=3,故所求椭圆的直角坐标方程为4322y x +=1 类题:1(1995年上海)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并且在两种坐标系中取相同的长度单位.若曲线的极坐标方程是1cos 4122-=θρ,则它的直角坐标方程是___________.(答案:3x 2-y 2=1)2(1998年全国)曲线的极坐标方程ρ=4sin θ化成直角坐标方程为 (A) x 2+(y+2)2=4 (B) x 2+(y-2)2=4(C) (x-2)2+y 2=4 (D) (x+2)2+y 2=4 (答案:B) 3(2002北京)已知某曲线的参数方程是⎩⎨⎧==ϕϕtan sec y x (ϕ为参数)若以原点为极点,x 轴的正半轴为极轴,长度单位不变,建立极坐标系,则该曲线的极坐标方程是(A)1=ρ (B)12cos =θρ (C)12sin 2=θρ (D) 12cos 2=θρ (答案:D)二、已知曲线的极坐标方程,判断曲线类型常见的直线和圆的极坐标方程及极坐标系中的旋转不变性: 1、直线的极坐标方程(a>0)(1)过极点,并且与极轴成α角的直线的极坐标方程:θ=α;(2)垂直于极轴和极点间的距离为a 的直线的极坐标方程:ρcos θ=a;(3)平行于极轴和极轴间的距离为a 的直线的极坐标方程:ρsin θ=a;(4)不过极点,和极轴成α角,到极点距离为a 的直线的极坐标方程: ρsin(α-θ)=a. 2、圆的极坐标方程(a>0)(1)圆心在极点,半径为a 的圆的极坐标方程:ρ=a;(2)圆心在(a,0),半径为a 的圆的极坐标方程: ρ=2acos θ;(3)圆心在(a,π),半径为a 的圆的极坐标方程: ρ=θcos 2a -;(4)圆心在(a,2π),半径为a 的圆的极坐标方程: ρ=2asin θ;(5)圆心在(a,23π),半径为a 的圆的极坐标方程: ρ=θsin 2a -;(6)圆心在(a, θ0),半径为a 的圆的极坐标方程: ρ=2acos(θ-θ0). 3、极坐标系中的旋转不变性:曲线f(ρ,θ+α)=0是将曲线f(ρ,θ)=0绕极点旋转|α|角(0>α时,按顺 时针方向旋转,0<α时,按逆时针方向旋转)而得到. 例4(1990年全国)极坐标方程4ρsin 22θ=5所表示的曲线是 (A)圆 (B)椭圆 (C)双曲线的一支 (D)抛物线 解:由已知极坐标方程及三角公式得:2ρ(1-cos θ)=5,∴2ρ=2ρcos θ+5,由互化公式得222y x +=2x+5,平方整理得y 2=5(x+45),方程表示抛物线,选D. 评述:对于给出的极坐标方程相对于极坐标系而言不是标准的,一般将其等价转化为直角坐标方程来判断其曲线类型.类题:1(1991年三南)极坐标方程4sin 2θ=3表示的曲线是(A)二条射线 (B)二条相交直线 (C) 圆 (D) 抛物线 (答案:B) 2(1987年全国)极坐标方程ρ=sin θ+2cos θ所表示的曲线是(A)直线 (B)圆 (C)双曲线 (D) 抛物线 (答案:B) 3(2001年广东、河南)极坐标方程ρ2cos2θ=1所表示的曲线是(A)两条相交直线 (B)圆 (C)椭圆 (D)双曲线 (答案:D)4(2003北京)极坐标方程1cos 22cos 2=-θρθρ表示的曲线是(A)圆 (B)椭圆 (C)抛物线 (D)双曲线 (答案:D) 例5(1994年全国)极坐标方程ρ=cos(4π-θ)所表示的曲线是 (A) 双曲线 (B)椭圆 (C)抛物线 (D)圆 解:曲线ρ=cos(4π-θ)=cos(θ-4π)是把圆ρ=cos θ绕极点按逆时针方向旋 转4π而得,曲线的形状仍然是一个圆,故选D 评述:把曲线的极坐标方程化为直角坐标方程较为麻烦,利用旋转不变性则更容易得出答案.方程ρcos(θ-θ0)=0表示一条直线,方程ρ=acos(θ-θ0)表示半径为2||a ,圆心为(2||a ,θ0)的圆,要注意两者的区别. 例6(2001年全国)极坐标方程ρ=2sin(θ+π)的图形是解:圆ρ=2sin(θ+4π)是把圆ρ=2sin θ绕极点按顺时针方向旋转4π而得,圆心的极坐标为(1,4π),故选C. 类题:1(2002江苏)极坐标方程θρcos =与θρcos =21的图形是2(2004北京春))π(A) θρcos22=(B)θρcos22-=(C)θρsin22=(D)θρsin22-=(答案:B)三、判断曲线位置关系例7(2000年京皖春)直线θ=α和直线ρsin(θ-α)=1的位置关系(A) 垂直(B) 平行(C) 相交但不垂直(D) 重合解:直线ρsin(θ-α)=1是把直线ρsinθ=1绕极点按逆时针方向旋转α角而得, 从而两直线平行,故选B.评注:对直线ρsin(θ-α)=1与直线ρsinθ=1的关系要十分熟悉.四、根据条件求直线和圆的极坐标方程例8(2002北京春)在极坐标系中,如果一个圆的方程是ρ=4cosθ+6sinθ,那么过圆心且与极轴平行的直线方程是(A) ρsinθ=3 (B) ρsinθ = –3 (C) ρcosθ =2 (D) ρcosθ = –2解:将圆的极坐标方程化为直角坐标方程得:x2+y2=4x+6y,即(x-2)2+(y-3)2=13.圆心为(2,3),所求直线方程为y=3,即ρsinθ=3,故选A.评述:注意直线的直角坐标方程极易求出.类题:1(1992年上海)在极坐标方程中,与圆ρ=4sinθ相切的一条直线的方程是(A) ρsinθ=2 (B)ρcosθ=2 (C)ρcosθ= 4 (D) ρcosθ=- 4(答案:B)2(1993年上海)在极坐标方程中,过点M(2,2π)且平行于极轴的直线的极坐标方程是_______.(答案: ρsinθ=2)3(1994年上海)已知点P的极坐标为(1,π),那么过点P且垂直于极轴的直线的极坐标方程为(A)ρ=1 (B)ρ=cosθ(C)ρ=θcos1-(D)ρ=θcos1(答案:C)4(2000年全国)以极坐标系中点(1,1)为圆心,1为半径的圆的方程是(A)ρ=2cos(θ-4π) (B)ρ=2sin(θ-4π) (C)ρ=2cos(θ-1) (D)ρ=2sin(θ-1)(答案:C)五、求曲线中点的极坐标例9(2003上海)在极坐标系中,定点A(1,2π),点B在直线0sincos=+θρθρ上运动,当线段AB最短时,点B的极坐标是_________.解:在直角坐标系中,A点坐标为(0,1),B在直线x+y=0上, AB最短,则B为)21,21(-,化为极坐标为)43,22(π.例10(1999年上海)极坐标方程5ρ2cos2θ+ρ2-24=0所表示的曲线焦点的极坐标为__________.解:由5ρ2cos2θ+ρ2-24=0得5ρ2(cos2θ-sin2θ)+ρ2-24=0化为直角坐标方程得16422=-yx,该双曲线的焦点的直角坐标为(10,0)与(-10,0),故所求焦点的极坐标为(10,0)、(10,π).评述:本题考查圆锥曲线极坐标方程的基础知识,掌握点的直角坐标与极坐标的对应关系极为有用.例11(2001年京皖蒙春)极坐标系中,圆ρ=4cos θ+3sin θ的圆心的坐标是(A) (25,arcsin 53) (B)(5,arcsin 54) (C)(5,arcsin 53) (D)(25,arcsin 54) 解:由ρ= 4cos θ+3sin θ=5(54cos θ+53sin θ)=5cos(θ-φ)(其中sinφ=53)所以所求圆心坐标为(25,arcsin 53),故选A.类题:(2002上海)若A 、B 两点的极坐标为A(4,3π),B(6,0),则AB 中点的极坐标是_________.(极角用反三角函数值表示). 答案.(43arctan ,19) 六、求距离例12(2007广东文)在极坐标系中,直线 的方程为ρsinθ=3,则点(2,6π)到直线 的距离为___________.解: 将直线 的极坐标方程ρsinθ=3化为直角坐标系方程得:y=3,点(2,6π)在直角坐标系中为(3,1),故点(2,6π) 到直线 的距离为2. 评注:本题主要考查极坐标系与直角坐标系之间的互化.例13(1992年全国、1996年上海)极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是 (A) 2 (B) 2 (C) 1 (D)22 解法一:两圆的圆心坐标分别为(21,0)与(21,2π),由此求得圆心距为22,选D.解法二:将极坐标方程化成直角坐标方程得(x-21)2+y 2=41与x 2+(y-21)2=41,由此求得圆心距为22,选D.评述:本题考查对极坐标的理解,理解深刻者可在极坐标系上画出简图直接求解,一般理解者,化极坐标方程为直角坐标方程也能顺利得到正确答案. 例14(1997年全国)已知直线的极坐标方程为ρsin(θ+4π)=22,则极点到该直线的距离是_______.解法一:化直线方程为ρ=)4sin(22πθ+,根据极坐标的概念极点到该直线的距离等于这个函数ρ的最小值,当sin(θ+4π)=1时, ρ取最小值22即为所求.解法二:对极坐标欠熟悉时,可把直线的极坐标方程化为直角坐标方程x+y=1, 应用点到直线的距离公式得原点到此直线的距离为22. 类题:1(2000年上海)在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线ρ= 4cos θ于A 、B 两点,则|AB|=______. (答案:23) 2(2004上海)在极坐标系中,点M(4,3π)到直线 :4)sin cos 2(=+θθρ的距离d=__________________. (答案:5152) 七、判定曲线的对称性例15(1999年全国)在极坐标系中,曲线ρ= 4sin(θ-3π)关于 (A) 直线θ=3π轴对称 (B)直线θ=65π轴对称 (C) 点(2, 3π)中心对称 (D)极点中心对称解:把圆ρ= 4sin θ绕极点按逆时针方向旋转3π便得到曲线ρ= 4sin(θ-3π)=)65cos(4)65cos(4)]3(2cos[4πθθππθπ-=-=--,知其圆心坐标为(2,65π),故圆的对称轴为θ=65π,应选B.评述:方程表示的曲线是圆,为弄清轴对称或中心对称的问题,关键是求出其圆心的坐标. 八、求三角形面积例16(2006上海)在极坐标系中,O 是极点,设点A(4,3π),B(5,65π-),则△OAB 的面积是 .解:如图所示,在△OAB 中,656532,5||,4||ππππ=--=∠==AOB OB OA 5sin 21=∠=⇒∆AOB OB OA S AO B评述:本题考查极坐标及三角形面积公式.。
高中数学极坐标系题型
高中数学极坐标系题型
极坐标系是高中数学中常用的一种坐标系,它将圆形平面坐标系中的点通过改变坐标参数,把平面上的点映射成空间中的球面曲线。
在极坐标系中,角度θ是以原点为中心旋转到x轴正方向为α所转过的角度,半径R代表原点到各点的距离,从而将圆形坐标系中的点转换成极坐标系中的点可以使得某些方程变得更加清晰、简单,更容易解决。
针对高中数学中的极坐标系题型,大致可以分为以下几类:
一、求极坐标下的极或者直角坐标。
这类问题主要是将极坐标中点的位置表示成直角坐标或者极坐标,比如当已知某一点的直角坐标时,从而求出该点的极坐标,或者当已知某一点的极坐标时,从而求出该点的直角坐标。
二、求两极坐标点之间的距离。
这类问题常考查椭圆参数方程和极坐标的相关知识,求两点之间的距离,比如给出两极坐标点的极轴和极角,从而求出两点之间的距离。
三、求极坐标系内函数的值。
这类问题是需要考生掌握极坐标系内函数的特殊性,从而求出极坐标系内函数的值,比如已经给出函数的极坐标形式,从而求出函数的值。
四、求极坐标系内曲线的方程。
这类问题需要考生掌握曲线方程的极坐标形式,比如给出曲线的性质,从而求出曲线的极坐标方程,也可以给出曲线未知的极坐标形式,从而求出曲线的方程。
总之,高中数学中极坐标系题型包括求极坐标下的极或者直角坐标、求两极坐标点之间的距离、求极坐标系内函数的值以及求极坐标系内曲线的方程,考生需要熟悉各种极坐标的特性和特殊的极坐标函数,根据不同的题型采用不同的解法,来解决相应的题目。
极坐标与参数方程高考常见题型及解题策略
极坐标与参数方程高考常有题型及解题策略【考大纲求】(1)坐标系①认识坐标系的作用,认识在平面直角坐标系伸缩变换作用下平面图形的变化状况。
②认识极坐标的基本观点,会在极坐标系顶用极坐标刻画点的地点,能进行极坐标和直角坐标的互化。
表示点的地点,理解在极坐标系和平面直角坐标系中表示点的地点的差别,能进行极坐标和直角坐标的互化。
③能在极坐标系中给出简单图形表示的极坐标方程。
④认识参数方程,认识参数的意义。
能在极坐标系中给出简单图形的方程,经过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适合坐标系的意义。
⑤能选择适合的参数写出直线,圆和椭圆的参数方程。
认识柱坐标系、球坐标系中表示空间中点的地点的方法,并与空间直角坐标系中表示点的地点的方法对比较,认识他们的差别。
(2)参数方程①认识参数方程,认识参数的意义②能选择适合的参数写出直线、圆和圆锥曲线的参数方程。
③认识平摆线、渐开线的生成过程,并能推导出他们的参数方程。
④认识其余摆线的生成过程,认识摆线在实质中的应用,认识摆线在表示行星运动轨迹中的作用。
【热点考点】高考题中这一部分主要考察简单图形的极坐标方程,极坐标与直角坐标的互化,直线、圆和圆锥曲线的参数方程,参数方程化为直角坐标方程等。
热点是极坐标与直角坐标的互化、参数方程化为直角坐标方程。
冷点是推导简单图形的极坐标方程、直角坐标方程化为参数方程。
盲点是柱坐标系、球坐标系中表示空间中点的地点的方法,摆线在实质中的应用,摆线在表示行星运动轨道中的作用。
波及许多的是极坐标与直角坐标的互化及简单应用。
多以选做题形式出现,以考察基本观点,基本知识,基本运算为主,一般属于中档题。
【常有题型】知识块能力层次知识点11 年12 年13 年14 年备注十八、 理解 54.坐标系 23 23 23 23 坐标系 理解55.参数方程23232323与参数方程一.极坐标方程与直角坐标方程的互化例 1. ( 2011 新课标 1,第23 题)在直角坐标系xoy 中,曲线 C 1 的参数方程为x 2cos aM 是 C 1 上的动点,uuur uuuury 2 (为参数)P 点知足 OP 2OM , P 点的轨迹2sin a为曲线 C 2 。
极坐标与参数方程常见题型
1.已知直线L 经过点P(21,1),倾斜角6πα=,圆C 的极坐标方程为)4cos(2πθρ-=. (1) 写出直线L 的参数方程,并把圆C 的方程化为直角坐标方程.(2) 设L 与圆C 相交于两点A,B,求P 到A,B 两点的距离之积.2.已知直线的参数方程为⎩⎨⎧+=+=t y tx 231(t 为参数),圆的极坐标方程为θθρsin 4cos 2+=.(1) 求直线的普通方程和圆的直角坐标方程.(2) 求直线被圆截得的弦长.3.直线L:⎩⎨⎧--=+=ty t a x 214 (t 为参数),圆C:)4cos(22πθρ+=(1) 求圆心C 到直线L 的距离; (2) 若直线L 被圆C 截得的弦长为556,求a 的值.4.过点M(3,4),倾斜角为6π的直线L 与圆C:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数),相交于A,B 两点,是确定MB MA 的值.5.已知曲线C 的极坐标方程为θθρ222sin 4cos 312+=,点F1,F2为其左右焦点,直线L的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 22222(t 为参数)(1) 求直线L的普通方程和曲线C的直角坐标方程.(2) 求曲线C上动点P到直线L的最大距离.6.两条曲线的极坐标方程为1=ρ和)3cos(2πθρ+=,它们相交于A,B两点,求线段AB的长.7.在极坐标系中,和极轴垂直相交的直线L与圆4=ρ相交于A,B两点,且4=AB . (1)求圆心到直线L的距离. (2)求直线L的极坐标方程.8.已知曲线C的及坐标方程是θρsin 2=,设直线L的参数方程是⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 54253(t 为参数).(1)将曲线C的及坐标方程转化为直角坐标方程;(2)设直线L与x轴的交点是M,N为曲线C上一动点,求MN 的最大值.9.已知直线L的参数方程为⎩⎨⎧-=-=224t y t x (t 为参数),P是椭圆1422=+y x 上任意一点,求点P到直线L距离的最大值.10.已知直线L经过点P(1,1),设L的一个方向向量为)1,3(=v(1)写出直线L的参数方程.(2)设L与圆2=ρ相交于A,B两点,求点P到A,B两点的距离之积.11.曲线C参数方程为⎩⎨⎧==θθsin 3cos 2y x (θ为参数),直线L过点(-1,0),且倾斜角为3π.P为曲线C上任意一点.(1)求直线L的极坐标方程.(2)设直线L与曲线C相交于A,B两点,求弦AB长. (3)求点Q(2,2)到点P距离的最大值. .12..已知曲线C 1:122=+y x ,将C 1上的所有点的横坐标,纵坐标分别伸长为原来的2,3倍后得到曲线C 2 . 求C 2的参数方程.。
高中数学极坐标常见题型解法分析
高中数学极坐标常见题型解法分析ʏ谭 潇极坐标系是建立在以前学习数轴㊁平面直角坐标系,以及空间直角坐标系的基础上进一步学习的内容㊂极坐标是高中数学的选修内容,整体难度不大,是学生可以拿满分的考点㊂本文首先介绍常见题型极坐标的基本公式,而后分别举例介绍其常见题型的解法㊂希望能对同学们梳理有关极坐标的知识和常见题型解法有所帮助㊂一㊁极坐标基本公式要想求解极坐标的相关题型,我们就要熟记其基本公式,主要有三种:极坐标与直角坐标系的互化公式㊁常见圆的极坐标方程㊁常见直线的极坐标方程㊂(一)极坐标与直角坐标系的互化公式设点P 的直角坐标为(x ,y ),极坐标为(ρ,θ),则有(ρ,θ)ң(x ,y )时,x =ρc o s θ,y =ρs i n θ;(x ,y )ң(ρ,θ)时,ρ2=x 2+y 2,t a n θ=y x(x ʂ0)㊂(二)常见圆的极坐标方程圆心在极点,半径为r 的圆,ρ=r ;圆心为M (a ,0),半径为ɑ的圆,ρ=2ɑc o s θ;圆心为M a ,π2(),半径为ɑ的圆,ρ=2ɑs i n θ㊂(三)常见直线的极坐标方程直线过极点,直线的倾斜角为α,θ=α(ρɪR );直线过点M (a ,0),且垂直于极轴,ρc o s θ=a ;直线过点M a ,π2(),且平行于极轴,ρs i n θ=a ㊂二㊁常见题型解法分析(一)极坐标系的求解1.在点与点的位置关系中,(ρ,θ)关于极点的对称点为(ρ,θ+π),关于直线ɑ=π2的对称点为(ρ,π-θ),关于极轴的对称点为(ρ,-θ)㊂例1 已知Q 2,1915π(),求满足下列条件的点的极坐标㊂(1)P 1是点Q 关于极点O 的对称点㊂(2)P 3是点Q 关于极轴的对称点㊂参考答案:(1)P 12,1915π()㊂(2)P 32,æèç-1415π)㊂(解题过程略)2.求解极坐标下两点A (ρ1,θ1),B (ρ2,θ2)的距离时可以利用公式:|A B |=ρ21+ρ22-2ρ1ρ2θ1-θ2()㊂例2 在极坐标系中,若A 3,π3(),B 4,76π(),求әA B O 的面积㊂解析:由题意可知,在әA O B 中,O A =3,O B =4,øA O B =76π-π3=56π,所以әA B O 的面积为S әA O B =12|O A |ˑ|O B |ˑs i n øA O B =12ˑ3ˑ4ˑs i n 56π=3㊂故әA O B 的面积为3㊂(二)曲线的极坐标方程与直角坐标方程的互化例3 在极坐标系中,圆ρ=8s i n θ上的点到直线θ=π3(ρɪR )距离的最大值是㊂解析:将圆ρ=8s i n θ化为直角坐标方程,为x 2+y 2-8y =0,即x 2+(y -4)2=16㊂将直线θ=π3(ρɪR )化为直角坐标方程,为y =3x ㊂结合图形可知圆上的点到直线的最大距离可转化为圆心到直线的距离再加上半径㊂圆心(0,4)到直线y =3x 的距离为4(3)2+12=2,又圆的半径r =4,所以圆上的点到直线的最大距离为6㊂作者单位:广西南宁市第三十四中学83 基础数学 障碍分析 自主招生 2020年7 8月。
高考数学极坐标与参数方程题型归纳
高考数学极坐标与参数方程题型归纳一、极坐标题型1.圆的极坐标方程圆的极坐标方程为r=a,其中a为常数。
题目中常常给出一个圆的直角坐标方程,要求将其转化为极坐标方程。
2.同一直线与圆的极坐标方程给定一条直线的极坐标方程,如$r=k\\theta$,同时给出一个与该直线相交于两点的圆的极坐标方程,求该圆的半径和圆心的极坐标。
3.圆内切于另一圆与直线的极坐标方程给定一个圆的极坐标方程,要求找出与该圆相切的另一个圆和直线的极坐标方程。
4.线段与圆的极坐标方程给定一段线段的两个端点的极坐标和长度,要求求出与该线段相切的圆的极坐标方程。
二、参数方程题型1.直线的参数方程给定一条直线的直角坐标方程,要求将其转化为参数方程形式。
2.圆的参数方程给定一个圆的直角坐标方程,要求将其转化为参数方程形式。
3.曲线方程的参数化表示给定一个曲线的直角坐标方程,要求将其转化为参数方程形式。
三、极坐标与参数方程的转换题型1.极坐标转换为参数方程给定一个极坐标方程,要求将其转化为参数方程形式。
2.参数方程转换为极坐标给定一个参数方程,要求将其转化为极坐标方程形式。
四、解析法求参数方程的题型1.螺线的参数方程给定一个螺线的解析方程,要求求出其对应的参数方程。
2.抛物线的参数方程给定一个抛物线的解析方程,要求求出其对应的参数方程。
3.椭圆的参数方程给定一个椭圆的解析方程,要求求出其对应的参数方程。
五、参数方程与直角坐标系之间的关系1.参数方程的直角坐标系方程给定一个参数方程,要求将其转化为直角坐标系方程。
2.直角坐标系方程的参数方程给定一个直角坐标系方程,要求将其转化为参数方程。
以上是高考数学中关于极坐标与参数方程的常见题型归纳。
掌握了这些题型的解题方法和转换技巧,就能够更好地应对高考数学中的相关题目。
在解题时,可以根据题目给出的信息选择合适的坐标系,利用相应的公式和性质进行计算,从而得出准确的答案。
希望同学们通过对这些题型的学习和练习,能够在高考中取得优异的成绩!。
极坐标知识点和题型总结大全
以下是关于极坐标的基本知识点和一些常见的题型总结:
1. 极坐标定义:极坐标是一种在平面上表示点位置的坐标系,使用极径(r)和极角(θ)来确定点的位置。
2. 极坐标转换:可以通过以下公式将直角坐标系中的点的坐标转换为极坐标:
r = √(x² + y²)
θ = arctan(y/x)
3. 极坐标转化为直角坐标:可以通过以下公式将极坐标转换为直角坐标系中的点的坐标:
x = r * cos(θ)
y = r * sin(θ)
4. 极坐标系下的图形方程:在极坐标系下,常见的图形方程有:
a) 直线:θ = k,其中k 为常数。
b) 圆:r = a,其中a 为常数。
c) 线段:a ≤ r ≤ b,其中a, b 为常数。
5. 极坐标系下的曲线方程:极坐标下的曲线方程可以通过变化极角或极径的方式得到,常见的曲线方程有:
a) 线:r = k,其中k 为常数。
b) 弧线:θ = k*θ0,其中k 为常数,θ0为起始角度。
c) 雅可比螺线:r = a * θ,其中a 为常数。
d) 心形线:r = a * (1 + cos(θ)),其中a 为常数。
在解题时,根据题目给出的条件和要求,可以灵活运用极坐标的转换公式和图形方程,进行坐标转换、方程建立和问题求解等操作。
请注意理解题目中给出的具体要求,如求极值、图形方程、面积等,并将其转化为极坐标下的形式进行求解。
以上是一些极坐标的基本知识点和一些常见的题型总结,希望对您有帮助。
如果有更具体的题目需要解答,可以提供相关题目,我将尽力帮助您解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极坐标的几种常见题型一、极坐标方程与直角坐标方程的互化互化条件:极点与原点重合,极轴与x 轴正半轴重合,长度单位相同.互化公式:⎩⎨⎧==θρθρsin cos y x 或 ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x yy x θρ θ的象限由点(x,y)所在的象限确定.例1(2007海南宁夏)⊙O 1和⊙O 2的极坐标方程分别为θρcos 4=,θρsin 4-=.(I)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程;(II)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(I)θρcos =x ,θρsin =y ,由θρcos 4=得θρρcos 42=.所以x y x 422=+.即0422=-+x y x 为⊙O 1的直角坐标方程. 同理0422=++y y x 为⊙O 2的直角坐标方程.(II)解法一:由⎩⎨⎧=++=-+04042222y y x x y x 解得⎩⎨⎧==0011y x ,⎩⎨⎧-==2222y x 即⊙O 1,⊙O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x .解法二: 由⎩⎨⎧=++=-+04042222y y x x y x ,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x . 评述:本题主要考查曲线的极坐标方程化为直角坐标方程的方法及两圆公共弦所在直线方程的求法. 例2(2003全国)圆锥曲线θθρ2cos sin 8=的准线方程是(A)2cos -=θρ (B)2cos =θρ (C) 2sin -=θρ (D) 2sin =θρ 解: 由θθρ2cos sin 8=去分母后两边同时乘以ρ得:θρθρsin 8cos 22=,所以x 2=8y ,其准线方程为y=2-,在极坐标系中方程为2sin -=θρ,故选C.例3(1998年上海)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若椭圆两焦点的极坐标分别是(1,2π),(1,23π),长轴长是4,则此椭圆的直角坐标方程是_______________.解:由已知条件知椭圆两焦点的直角坐标为(0,1),(0,-1).c=1,a=2,b 2=a 2-c 2=3,故所求椭圆的直角坐标方程为4322y x +=1 类题:1(1995年上海)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并且在两种坐标系中取相同的长度单位.若曲线的极坐标方程是1cos 4122-=θρ,则它的直角坐标方程是___________.(答案:3x 2-y 2=1)2(1998年全国)曲线的极坐标方程ρ=4sin θ化成直角坐标方程为 (A) x 2+(y+2)2=4 (B) x 2+(y-2)2=4(C) (x-2)2+y 2=4 (D) (x+2)2+y 2=4 (答案:B) 3(2002北京)已知某曲线的参数方程是⎩⎨⎧==ϕϕtan sec y x (ϕ为参数)若以原点为极点,x 轴的正半轴为极轴,长度单位不变,建立极坐标系,则该曲线的极坐标方程是(A)1=ρ (B)12cos =θρ (C)12sin 2=θρ (D)12cos 2=θρ (答案:D)二、已知曲线的极坐标方程,判断曲线类型常见的直线和圆的极坐标方程及极坐标系中的旋转不变性: 1、直线的极坐标方程(a>0)(1)过极点,并且与极轴成α角的直线的极坐标方程:θ=α;(2)垂直于极轴和极点间的距离为a 的直线的极坐标方程:ρcos θ=a;(3)平行于极轴和极轴间的距离为a 的直线的极坐标方程:ρsin θ=a;(4)不过极点,和极轴成α角,到极点距离为a 的直线的极坐标方程: ρsin(α-θ)=a. 2、圆的极坐标方程(a>0)(1)圆心在极点,半径为a 的圆的极坐标方程: ρ=a;(2)圆心在(a,0),半径为a 的圆的极坐标方程: ρ=2acos θ; (3)圆心在(a,π),半径为a 的圆的极坐标方程: ρ=θcos 2a -;(4)圆心在(a,2π),半径为a 的圆的极坐标方程: ρ=2asin θ; (5)圆心在(a,23π),半径为a 的圆的极坐标方程: ρ=θsin 2a -;(6)圆心在(a, θ0),半径为a 的圆的极坐标方程: ρ=2acos(θ-θ0).3、极坐标系中的旋转不变性:曲线f(ρ,θ+α)=0是将曲线f(ρ,θ)=0绕极点旋转|α|角(0>α时,按顺 时针方向旋转,0<α时,按逆时针方向旋转)而得到. 例4(1990年全国)极坐标方程4ρsin 22θ=5所表示的曲线是 (A)圆 (B)椭圆 (C)双曲线的一支 (D)抛物线 解:由已知极坐标方程及三角公式得:2ρ(1-cos θ)=5,∴2ρ=2ρcos θ+5,由互化公式得222y x +=2x+5,平方整理得y 2=5(x+45),方程表示抛物线,选D. 评述:对于给出的极坐标方程相对于极坐标系而言不是标准的,一般将其等价转化为直角坐标方程来判断其曲线类型.类题:1(1991年三南)极坐标方程4sin 2θ=3表示的曲线是(A)二条射线 (B)二条相交直线 (C) 圆 (D) 抛物线 (答案:B) 2(1987年全国)极坐标方程ρ=sin θ+2cos θ所表示的曲线是(A)直线 (B)圆 (C)双曲线 (D) 抛物线 (答案:B) 3(2001年广东、河南)极坐标方程ρ2cos2θ=1所表示的曲线是(A)两条相交直线 (B)圆 (C)椭圆 (D)双曲线 (答案:D)4(2003北京)极坐标方程1cos 22cos 2=-θρθρ表示的曲线是(A)圆 (B)椭圆 (C)抛物线 (D)双曲线 (答案:D)例5(1994年全国)极坐标方程ρ=cos(4π-θ)所表示的曲线是 (A) 双曲线 (B)椭圆 (C)抛物线 (D)圆解:曲线ρ=cos(4π-θ)=cos(θ-4π)是把圆ρ=cosθ绕极点按逆时针方向旋转4π而得,曲线的形状仍然是一个圆,故选D评述:把曲线的极坐标方程化为直角坐标方程较为麻烦,利用旋转不变性则更容易得出答案.方程ρcos(θ-θ0)=0表示一条直线,方程ρ=acos(θ-θ0)表示半径为2||a,圆心为(2||a,θ0)的圆,要注意两者的区别.例6(2001年全国)极坐标方程ρ=2sin(θ+π)的图形是解:圆ρ=2sin(θ+4π)是把圆ρ=2sinθ绕极点按顺时针方向旋转4π而得,圆心的极坐标为(1,4π),故选C.类题:1(2002江苏)极坐标方程θρcos=与θρcos=21的图形是(答案:B)2(2004北京春)在极坐标系中,圆心在(),2π且过极点的圆的方程为(A) θρcos22=(B)θρcos22-=(C)θρsin22=(D)θρsin22-=(答案:B)三、判断曲线位置关系例7(2000年京皖春)直线θ=α和直线ρsin(θ-α)=1的位置关系(A) 垂直(B) 平行(C) 相交但不垂直(D) 重合解:直线ρsin(θ-α)=1是把直线ρsinθ=1绕极点按逆时针方向旋转α角而得, 从而两直线平行,故选B.评注:对直线ρsin(θ-α)=1与直线ρsinθ=1的关系要十分熟悉.四、根据条件求直线和圆的极坐标方程例8(2002北京春)在极坐标系中,如果一个圆的方程是ρ=4cosθ+6sinθ,那么过圆心且与极轴平行的直线方程是(A) ρsinθ=3 (B) ρsinθ = –3 (C) ρcosθ =2 (D) ρcosθ = –2解:将圆的极坐标方程化为直角坐标方程得:x2+y2=4x+6y,即(x-2)2+(y-3)2=13.圆心为(2,3),所求直线方程为y=3,即ρsinθ=3,故选A.评述:注意直线的直角坐标方程极易求出.类题:1(1992年上海)在极坐标方程中,与圆ρ=4sinθ相切的一条直线的方程是(A) ρsinθ=2 (B)ρcosθ=2 (C)ρcosθ= 4 (D) ρcosθ=- 4(答案:B)2(1993年上海)在极坐标方程中,过点M(2,2π)且平行于极轴的直线的极坐标方程是_______.(答案: ρsin θ=2)3(1994年上海)已知点P 的极坐标为(1,π),那么过点P 且垂直于极轴的 直线的极坐标方程为(A)ρ=1 (B)ρ=cos θ (C)ρ=θcos 1-(D)ρ=θcos 1(答案:C) 4(2000年全国)以极坐标系中点(1,1)为圆心,1为半径的圆的方程是 (A)ρ=2cos(θ-4π) (B)ρ=2sin(θ-4π) (C)ρ=2cos(θ-1) (D)ρ=2sin(θ-1) (答案:C)五、求曲线中点的极坐标例9(2003上海)在极坐标系中,定点A(1,2π),点B 在直线0sin cos =+θρθρ上运动,当线段AB 最短时,点B 的极坐标是_________.解:在直角坐标系中,A 点坐标为(0,1),B 在直线x+y=0上, AB 最短,则B 为)21,21(-,化为极坐标为)43,22(π. 例10(1999年上海)极坐标方程5ρ2cos2θ+ρ2-24=0所表示的曲线焦点的极坐标为__________.解:由5ρ2cos2θ+ρ2-24=0得5ρ2(cos 2θ-sin 2θ)+ρ2-24=0化为直角坐标方程得16422=-y x ,该双曲线的焦点的直角坐标为(10,0)与(-10,0),故所求 焦点的极坐标为(10,0)、(10,π).评述:本题考查圆锥曲线极坐标方程的基础知识,掌握点的直角坐标与极坐标的对应关系极为有用. 例11(2001年京皖蒙春)极坐标系中,圆ρ=4cos θ+3sin θ的圆心的坐标是(A) (25,arcsin 53) (B)(5,arcsin 54) (C)(5,arcsin 53) (D)(25,arcsin 54) 解:由ρ= 4cos θ+3sin θ=5(54cos θ+53sin θ)=5cos(θ-φ)(其中sin φ=53)所以所求圆心坐标为(25,arcsin 53),故选A.类题:(2002上海)若A 、B 两点的极坐标为A(4,3π),B(6,0),则AB 中点的极坐标是_________.(极角用反三角函数值表示). 答案.(43arctan ,19)六、求距离例12(2007广东文)在极坐标系中,直线 的方程为ρsin θ=3,则点(2,6π)到直线 的距离为___________. 解: 将直线 的极坐标方程ρsin θ=3化为直角坐标系方程得:y=3, 点(2,6π)在直角坐标系中为(3,1),故点(2,6π) 到直线 的距离为2. 评注:本题主要考查极坐标系与直角坐标系之间的互化.例13(1992年全国、1996年上海)极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是 (A) 2 (B) 2 (C) 1 (D)22 解法一:两圆的圆心坐标分别为(21,0)与(21,2π),由此求得圆心距为22,选D. 解法二:将极坐标方程化成直角坐标方程得(x-21)2+y 2=41与x 2+(y-21)2=41,由此求得圆心距为22,选D.评述:本题考查对极坐标的理解,理解深刻者可在极坐标系上画出简图直接求解,一般理解者,化极坐标方程为直角坐标方程也能顺利得到正确答案. 例14(1997年全国)已知直线的极坐标方程为ρsin(θ+4π)=22,则极点到该直线的距离是_______. 解法一:化直线方程为ρ=)4sin(22πθ+,根据极坐标的概念极点到该直线的距离等于这个函数ρ的最小值,当sin(θ+4π)=1时, ρ取最小值22即为所求. 解法二:对极坐标欠熟悉时,可把直线的极坐标方程化为直角坐标方程x+y=1, 应用点到直线的距离公式得原点到此直线的距离为22. 类题:1(2000年上海)在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线ρ= 4cos θ于A 、B 两点,则|AB|=______. (答案:23) 2(2004上海)在极坐标系中,点M(4,3π)到直线 :4)sin cos 2(=+θθρ的距离d=__________________. (答案:5152) 七、判定曲线的对称性例15(1999年全国)在极坐标系中,曲线ρ= 4sin(θ-3π)关于 (A) 直线θ=3π轴对称 (B)直线θ=65π轴对称 (C) 点(2, 3π)中心对称 (D)极点中心对称解:把圆ρ= 4sin θ绕极点按逆时针方向旋转3π便得到曲线ρ= 4sin(θ-3π)=)65cos(4)65cos(4)]3(2cos[4πθθππθπ-=-=--,知其圆心坐标为(2,65π),故圆的对称轴为θ=65π,应选B.评述:方程表示的曲线是圆,为弄清轴对称或中心对称的问题,关键是求出其圆心的坐标. 八、求三角形面积例16(2006上海)在极坐标系中,O 是极点,设点A(4,3π),B(5,65π-),则△OAB 的面积是 . 解:如图所示,在△OAB 中,656532,5||,4||ππππ=--=∠==AOB OB OA5sin 21=∠=⇒∆AOB OB OA S AOB评述:本题考查极坐标及三角形面积公式.。