2021年广东省新高考数学总复习:立体几何中探索性问题的研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年广东省新高考数学总复习:立体几何中探索性问题的
研究
[追根溯源]
高考中的立体几何探索性试题,我们一般可以采用综合推理的方法、分析法、特殊化法和向量法来解决.
探索性问题主要是对平行、垂直关系的探究,这类试题的一般设问方式是“是否存在?存在给出证明,不存在说明理由”.解决这类试题,一般根据探索性问题的设问,首先假设其存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾就否定假设.
例题 如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,P A =AC =a ,PB =PD =2a ,点E 在PD 上,且PE ∶ED =2∶1.
(1)证明:P A ⊥平面ABCD ;
(2)求以AC 为棱,EAC 与DAC 为面的二面角的大小;
(3)问:在棱PC 上是否存在一点F ,使BF ∥平面AEC .证明你的结论.
审题方法 F 是线段PC 上的点,一般可设PF →=λPC →,求出λ的值,点P 是已知的,即可求
出点F .
解题思路 (1)证明的是线面垂直,只要努力去找直线与平面内的两条相交直线垂直即可;(2)按找二面角的方法进行;(3)通过建立恰当的直角坐标系,给出相应点的坐标,利用坐标关系和向量的相等就可以解决了.
(1)证明 因为底面ABCD 是菱形,∠ABC =60°,所以AB =AD =AC =a ,在△P AB 中,由
P A 2+AB 2=2a 2=PB 2,知P A ⊥AB ,同理P A ⊥AD ,所以P A ⊥平面ABCD .
(2)解 如图1所示,作EG ∥P A 交AD 于G ,由P A ⊥平面ABCD ,知EG ⊥平面ABCD ,作 GH ⊥AC 于H ,连接EH ,则EH ⊥AC ,则∠EHG 为所求二面角的平面角,设为θ.又PE ∶ED =2∶1,
图1
则EG =13a ,AG =23a ,GH =AG sin 60°=33
a , 从而tan θ=EG GH =33
,所以θ=30°. (3)解 以A 为坐标原点,直线AD ,AP 分别为y 轴,z 轴,过A 点垂直平面P AD 的直线为x 轴,建立空间直角坐标系,如图2所示.由题设条件,相关各点的坐标分别为A (0, 0, 0),B ⎝⎛⎭⎫32a ,-12a ,0,C ⎝⎛⎭⎫32a ,12a ,0,D (0,a , 0),P (0, 0,a ),E ⎝⎛⎭⎫0,23a ,13a .