简明数论答案备注
全国4月高等教育自学考试数论初步试题及答案解析历年试卷及答案解析
全国2018年4月高等教育自学考试数论初步试题课程代码:00418第一部分选择题一、单项选择题(本大题共30小题,每小题1分,共30分。
在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)1.m,n为整数,下列式子一定不可能成立的是( )A.m-n=3B.m+2n=5C.2m+n=12D.m+n=02.若a,b,c均为整数,且a+b被c整除,则下列一定成立的是( )A.c|aB.c|bC.c|a-bD.c|a2-b23.相邻两个整数之和与相邻两个整数之积分别是( )A.奇数奇数B.奇数偶数C.偶数奇数D.偶数偶数4.m为奇数时,模m的绝对最小完全剩余系是( )A.1,2,3,…,m-1,mB.-m,-(m-1),…,-2,-1C.--m12,…,-1,0,1,…m-12D.-m2,…,-1,0,1,…m21-5.下列不属于二元二次不定方程的是( )A.xy=5B.x2+y2=16C.2x2+y=8D.13442 xy+=6.已知a=-81,b=16,a被b除的带余除法表达式为a=bq+r,则( )A.q=-6 r=15B.q=-5 r=-1C.q=-4 r=-17D.q=-7 r=317.11与-10以下列( )数为模时同余?A.2B.7C.10D.58.已知(a,b,c)=1,则一定有( )A.(a,b)=1B.(b,c)=1C.(a,c)=1D.((a,b),c)=19.所有不超过152的自然数中,5的倍数有( )个。
A.28B.29C.30D.3110.18的正约数个数是( )A.4B.5C.6D.711.若x为自然数,y为正实数,且x≤y,则下列结论不一定成立的是( )A.〔x+y〕=x+〔y〕B.〔-(x+y)〕=-〔x+y〕C.x≤〔y〕D.〔xy〕≥x〔y〕12.下列关于质数、合数的说法,正确的是( )A.两个质数之和一定是质数B.质数一定是奇数C.两个合数之和一定是合数D.两个质数之积一定是合数13.已知(a,c)=1,(b,c)=1,则下列结论不一定正确的是( )A.(ab,c)=1B.(a+b,c)=1C.(ac,a+c)=1D.(c,b+c)=114.对于自然数n,下列结论不一定正确的是( )A.(n,n+1)=1B.(n,2n+1)=1C.(n-1,n+1)=1D.若p为大于n的质数,则(n,p)=115.以下四个分数不能化为纯循环小数的是( )A.1537B.139875C.913D.11716.两个非零整数a,b,满足ab=a+b,则2a-b=( )A.4B.6C.2D.-217.下列既约分数能化成有限小数的是( )A.4790B.2235C.815D.373625018.设p为质数,则形如( )的数是梅森数。
数论基础答案
数论基础答案【篇一:现代密码学(谷利泽)课后题答案】>第一章判断题选择题1、1949年,( a )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。
a、shannonb、diffiec、hellmand、shamir2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由( d)决定的。
a、加密算法b、解密算法c、加解密算法d、密钥3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是( b )。
a无条件安全b计算安全c可证明安全d实际安全4、根据密码分析者所掌握的分析资料的不通,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是( d )。
a、唯密文攻击b、已知明文攻击c、选择明文攻击d、选择密文攻击填空题:5、1976年,w.diffie和m.hellman在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。
6、密码学的发展过程中,两个质的飞跃分别指1949年香农发表的保密系统的通信理论和公钥密码思想。
7、密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分析学。
8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法5部分组成的。
9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。
10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。
第二章选择题:1、字母频率分析法对(b )算法最有效。
a、置换密码b、单表代换密码c、多表代换密码d、序列密码2、(d)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。
a仿射密码b维吉利亚密码c轮转密码d希尔密码3、重合指数法对(c)算法的破解最有效。
数论讲义答案
数论选讲一、整除1.整数是离散的,每两个整数之间的距离至少为1.即1a b a b <⇔-≤,,a b Z ∈2.带余除法.设0b >,对于任一整数a ,总可以找到一对唯一确定的q ,r 满足 a qb r =+,0r b ≤<.我们称r 为a 除以b 的余数.当0r =时,我们说a 被b 整除或b 整除a ,记为|b a .并称a 是b 的倍数或b 是a 的约数(因数),此时b a ≤.当0r ≠时,我们说a 不被b 整除或b 不整除a ,记为|b a /.3.如果正整数a 除了1及a 以外没有其他的约数,则称a 为质数,否则称a 为合数. 100以内的质数如下: 2,3,5,7,11,13,17,19, 23,19,31,37,41,43,47,53,59,61,67,71,73,79,83,89,914.唯一分解定理.每一个大于1的自然数n 都可写成质数的连乘积,即表示成12121ki k k i i n p p p p αααα===∏的形式,其中12k p p p <<<为质数,*i N α∈,且这种表示是唯一的.5.利用唯一分解定理,我们可以得到关于n 的正约数的两个性质:n 的正约数个数为 121()(1)(1)(1)(1)kk i i d n αααα==+++=+∏. n 的所有正约数之和为 01()ik j i j i n p ασ===∑∏.6.若|x a 且|x b ,则称x 为a 、b 的公约数.设d 为所有x 中的最大者,则称d 为a 、b 的最大公约数,记作(,)d a b =.7.若|a y ,|b y ,则称y 为a 、b 的公倍数.设m 为所有y 中大于零的最小者,则称m 为a 、b 的最小公倍数,记作[,]m a b =.8.对于任意正整数a 、b ,都有(,)[,]ab a b a b =.9.贝佐特(1730~1783)定理.设(,)d a b =,则存在整数u 、v ,使得ua vb d +=.10.如果|a c ,|b c ,(,)1a b =,则|ab c .【例题选讲】1、证明两个连续正整数的积不可能是完全平方数,也不可能是完全立方数.反设存在正整数x ,y ,使x (x +1)=y 2,由于x ,x +1互质,故x ,y 都是完全平方数. 两个完全平方数相差1,只有0与1满足要求,此时x =0,y =0,与x 为正整数矛盾. 又反设存在正整数x ,y ,使x (x +1)=y 3,由于x ,x +1互质,故x ,y 都是完全立方数. 设x =u 3,x +1=v 3(u ,v ∈N *,v >u ),v 3-u 3=(v -u )(v 2+vu +u 3)=1,由于v -u ≥1,v 2+vu +u 2≥7,故v 3-u 3=1不成立,故证.2、设m >n ≥1,(m ,n )=d ,证明:d mC n m 为整数. 证明:由于C n m 为整数,又n m C n m =n m ×m !n !(m -n )!=C n -1m -1为整数. 存在x ,y ∈Z ,使xm +yn =d ,所以,d m C n m =xm +yn m C n m =x C n m +y n m C n m=x C n m +y C n -1m -1∈Z .3、证明:若(m ,n)=1,则m|C n m +n -1. C n m +n -1=m m +n C m m +n ⇒mC n m +n -1+nC n m +n -1=mC m m +n ⇒ nC n m +n -1=m(C m m +n -C n m +n -1), ∴ m|n C n m +n -1,但(m ,n)=1,故m|C n m +n -1. 4、在n 2与(n +1)2之间任取若干个互不相同的整数,则这些整数两两的乘积都互不相等. 证明:若只取3个整数a ,b ,c ,满足n 2<a <b <c <(n +1)2,则ab <ac <bc .故只有取的数至少有4个时才有可能使两两的积相等.设n 2<a <b <c <d <(n +1)2,且有ad =bc .于是b a =d c ,令b a =d c =u v(u ,v ∈N *, (u ,v )=1). 于是,必有b =up ,d =uq ,a =vp ,c =vq .由c >b >a ,知u >v ,q >p .所以,u ≥v +1,q ≥p +1.d =uq ≥(v +1)(p +1)=vp +p +v +1=a +(p +v )+1≥n 2+2pv +1≥n 2+2a +1>n 2+2n +1=(n +1)2.与d <(n +1)2矛盾.5、已知a 、b 为正整数,并且ab 2|(a 3+b 3),求证a =b .设(a ,b )=d ,且a =a 1d ,b =b 1d (a 1,b 1为自然数),则(a 1,b 1)=1.由ab 2|(a 3+b 3),可设a 3+b 3=kab 2 (k ∈N *),∴ a 3=b 2(ka -b ).即a 31=b 21(ka 1-b 1).于是,b 1|a 1,故(a 1,b 1)=b 1=1. a 31|(ka 1-1),于是a 1|(ka 1-1),∴ a 1|1,于是a 1=1. ∴ a =b =d .注:由于ab 2与a 3、b 3均为3次式,故可同时约去d 3而不影响问题的结论.故可设(a ,b )=1来做.又证:设a 3+b 3ab 2=k (k ∈N *),即(a b )2+b a =k .记x =a b,则x 为有理数,且x 3-kx +1=0. 此方程的有理根只能为x =±1,但a ,b 均为自然数,故x =1,∴a =b .6、存在1000个连续正整数,其中恰有20个素数.证明:取1001!+2,1001!+3,…,1001!+1000,1001!+1001,这1000个数都是合数. 记1001!+2=a .则a ,a +1,a +2,…,a +999均为合数.去掉a +999,添上a -1,又得1000个数:a -1,a ,a +1,…,a +998.由于去掉一个合数而添了一个整数,故所得1000个数中至多有1个素数.再去掉a +998而添上a -2,此时,这1000个数中素数的个数比刚才的1000个数多1个或相同或减少1个.这一过程可以一起进行到得到1,2,…999,1000这1000个数为止.此时,这1000个数中的素数个数多于20个(2至100中就有25个素数)由于每次置换1个数时,所得的1000个与与原1000个数相比较,素数的个数只能增加1个或相同或减少1个.于是这一过程中每次所得素数个数至多变化1个,于是必有某个时刻,恰有20个素数.说明:《离散的零点定理》设f (n )是定义在整数上的函数,取值也是整数.且|f (n +1)-f (n )|≤1,且存在不同两个整数a ,b (a <b ),使f (a )f (b )<0,则必存在整数c ,满足a <c <b ,使f (c )=0.7、求出具有下述性质的正整数n :它被≤n 的所有正整数整除.解:设q 2≤n <(q +1)2,(q ∈N *),则[n]=q .令n =q 2+r(0≤r ≤2q).由于q|n ,q|q 2,故q|r ⇒r =0,q ,2q .即所有满足n =q 2,q 2+q ,q 2+2q 的正整数均为本题的解.解:显然,n =1,2,3,4满足题意.现设n ≥5.由此题知,n =q 2,q 2+q ,q 2+2q .且q ≥2.又n 能被q -1整除.当n =q 2=q(q -1)+q ,于是q -1|q ⇒q -1=1⇒q =2时,此时,n =4;当n =q 2+q =(q -1)(q +2)+2,有q -1|2⇒q =2,3,此时,n =6,12;当n =q 2+2q =(q -1)(q +3)+3,有q -1|3⇒q =2,4,此时,n =8,24.∴ n =1,2,3,4,6,8,12,24.8、证明:有无穷多个n ,满足:n|2n +1.分析:证明满足某要求的整数有无穷多个,通常有:⑴ 给出一个公式,可以由此公式得出无穷多满足要求的数;⑵ 给出一个递推式,可以由其中任一个满足要求的数得出只一个满足要求的数;且这些数都互不相同;⑶ 用数学归纳法证明之.解法一:n =1时,1|21+1;n =3时,3|23+1;n =9时,9|29+1.即n =30,31,32时均满足要求.故推测3k |23k+1对于一切正整数k 成立.下用数学归纳法证明:设3k |23k +1.则存在正整数t ,使23k =3k t -1.故23k +1+1=(3k t -1)3+1=33k t 3-32k +1t 2+3k +1t =3k +1t(32k -1t 2-3k t +1).即3k +1|23k +1+1. ∴ 由数学归纳原理知,对于一切正整数k ,都3k |23k+1.从而有无穷多的整数n =3k 使n|2n +1,解法二:前已有n =1时,3|21+1=3,又有23|23+1=9,9|29+1=513.故推测:若m k |2m k +1,记m k +1=2m k +1,则m k +1|2m k +1+1.下用数学归纳法证明之:由于2m k +1为奇数,故m k 为奇数,令2m k +1=m k u ,u 为奇数.即m k +1=m k u .于是,2m k +1+1=(2m k )u +1=(2m k +1)((2m k )u -1-(2m k )u -2+…+1)=m k +1((2m k )u -1-(2m k )u -2+…+1).即m k +1|2m k +1+1成立.由数学归纳法知推测成立. 说明:解法一即给出一个解的公式,解法二给出了一个递推.均用数学归纳法证明.9、证明:任意正整数n 可以表示成a -b 的形式,其中a ,b 是正整数,且a 与b 不同的素因子个数相同.证明:n =pn -(p -1)n .若n 为偶数,取p =2,a =pn ,b =n .此时,a ,b 的不同素因子个数都与n 相同. 若n 为奇数,取不能整除n 的最小素数p ,p ≥3.此时,p -1的素因子或者只有2(p -1=2k ),或者除2外都是n 的因子(因小于p 的素数都能整除n),此时a ,b 的素因子都比n 多1个.故证.二、同余11.设*m N ∈,如果整数a 、b 除以m 的余数相同,则其差a b -必被m 整除,即存在q Z ∈使得a b qm -=.则称a 、b 模m 同余,或简称同余.记为()mod a b m ≡.12.同余的基本性质.①()mod a a m ≡.②若()mod a b m ≡,则()mod b a m ≡.③若a b ≡,()mod b c m ≡,则()mod a c m ≡.④若a b ≡,()mod c d m ≡,则 ()mod xa yc xb yd m +≡+,x 、y Z ∈.()mod ac bd m ≡. ()mod n n a b m ≡,n N ∈.⑤若()mod ac bc m ≡,则mod(,)m a b c m ⎛⎫≡ ⎪⎝⎭.⑥若()mod a b m ≡,|n m ,则()mod a b n ≡. ⑦若()mod i a b m ≡,则()12mod[,,,]k a b m m m ≡.13.同余是一种等价关系,整数集Z 可以根据模m 来分类:如果a 、b 模m 同余,则a 、b 属于同一类,否则不属于同一类.这样可以得到模m 的m 个剩余类(同余类),即: {}i M i km k Z =+∈,0,1,2,,1i m =-.从每一类中各取一个数作为代表得到的m 个数称为模m 的一个完全剩余类,简称完系, 当m 为奇数时,其由绝对值最小的数组成的完系为: 10,1,2,,2m -⎧⎫±±±⎨⎬⎩⎭. 当m 为偶数时,其由绝对值最小的数组成的完系为:0,1,2,,(1),22m m ⎧⎫±±±-⎨⎬⎩⎭. 14.在模m 的m 个剩余类{}i M i km k Z =+∈(0,1,2,,1i m =-)中,如果i 与m 互质,那么i M 中每一个数均与m 互质.这样的剩余类共有()m ϕ个,()m ϕ是1、2、…、m 中与m 互质的个数,称为欧拉函数.15.在()m ϕ个剩余类中各取一个代表,称为模m 的缩剩余系,简称缩系.质数p 的缩系由1p -个数组成,即 {}1,2,,1p -,或11,2,,2p -⎧⎫±±±⎨⎬⎩⎭. 16.设正整数m 、n 互质,则()()()mn m n ϕϕϕ=. 事实上,如果{}12,,,t a a a ,{}12,,,s b b b 分别是模m 与模n 的缩系, 那么{}1,1i j mb na i s j t +≤≤≤≤是模mn 的缩系.17.设1i k i i n p α==∏,i p 为不同的质数,*i N α∈.则1111()(1)(1)i kk i i i i i n n p p p αϕ-===-=-∏∏. 18.欧拉定理:设(),1a m =,则()()1mod m a m ϕ≡.19.费马小定理:设p 为质数,则()mod p a a p ≡.当(),1a p =时,()11mod p a p -≡.20.中国剩余定理(孙子定理):设正整数1m 、2m 、…、k m 两两互质,则对于任意给定的整数1a 、2a 、…、k a ,同余方程组()()()1122mod mod mod k k x a m x a m x a m ≡⎧⎪≡⎪⎨⎪⎪≡⎩一定有解.令1k i i M m ==∏,则其解为 1k i i i iM x a b m =≡⋅∑. 其中i b 满足()1mod i i iM b m m ⋅≡. 【例题选讲】10、证明:若整数a ,b ,c 满足a +b +c =0,记d =a 1999+b 1999+c 1999.则|d|不是素数.证明:首先,u n ≡u(mod 2),故d =a 1999+b 1999+c 1999≡a +b +c ≡0(mod 2),即2|d .又由Fermat 定理,u 3≡u(mod 3)⇒u 3k ≡u(mod 3),从而u 1999=u 33·74+1≡u 74+1=u 75≡u 25=u 24+1≡u 8+1≡u(mod 3),故d =a 1999+b 1999+c 1999≡a +b +c ≡0(mod 3),∴ 6|d ,即|d|不是素数.11、用1,2,3,4,5,6,7这7个数码组成7位数,每个数码恰用一次,证明:这些七位数中没有一个是另一个的倍数.设有两个这样的七位数a ,b ,(a >b),满足a =bc ,其中c 为大于1的整数.由于1+2+3+4+5+6+7=28≡1(mod 9),故a ≡b ≡1(mod 9).若a =bc ,则bc ≡1(mod 9),于是,c ≡1(mod 9).但c >1,从而c ≥10.此时bc 不是七位数,与a 是七位数矛盾.12、设p 为素数,a ≥2,m ≥1,a m ≡1(mod p),a p -1≡1(mod p 2).求证:a m ≡1(mod p 2).证明:a m ≡1(mod p)⇒a m =1+px ,故a pm =(1+px)p =1+p 2(……).所以,a pm ≡1(mod p 2).∵a p-1≡1(mod p2)⇒a(p-1)m≡1(mod p2).同乘以a m:a pm≡a m(mod p2)∴a m≡a pm≡1(mod p2)13、设p为给定正整数,m,n为任意正整数,试确定(2p)2m-(2p-1)n的最小正值.解:(2p)2m≡1(mod 2p-1),故(2p)2m-(2p-1)n≡1(mod 2p-1).若存在m,n,使(2p)2m-(2p-1)n=1,则有(2p)2m-1=(2p-1)n⇒((2p)m+1)((2p)m-1)=(2p-1)n.由于(2p)m+1,(2p)m-1)=1,故(2p)m+1=a n,(2p)m-1=b n,且(a,b)=1.即a n-b n =2.只有n=1,a=b+2时成立,此时,解(2p)2m-(2p-1)=1⇒2p((2p)2m-1-1)=1这是不可能的.故所求最小值≠1.再若存在m,n使(2p)2m-(2p-1)n=(2p-1)+1=2p,此时,(2p)2m-(2p-1)n≡-(-1)n≠0(mod 2p),故不可能.于是,所求最小值≥4p-2+1=4p-1.取m=1,n=2,得(2p)2-(2p-1)2=4p-1.∴所求最小值为4p-1,当m=1,n=2时取得此最小值.14、数列{x n}:1,3,5,11,…,满足x n+1=x n+2x n-1(n≥2),数列{y n}:7,17,55,161,…,满足y n+1=2y n+3y n-1(n≥2),证明:这两个数列没有相同的项.分析:证明这两个数列mod 8后都是周期数列.证明:mod 8:数列x n(mod 8):1,3,5,3,5,….若x2k-2≡3,x2k-1≡5(mod 8)成立,则x2k+1≡5+2×3=11≡3(mod 8),x2k≡3+2×5=13≡5(mod 8).即x2n≡3,x2n+1≡5(mod 8)对于一切n∈N*成立.而数列y n(mod 8):7,1,7,1,….若y2k-1≡7,y2k≡1(mod 8)成立,则y2k+1≡1×2+7×3=23≡7(mod 8),y2k+2≡7×2+1×3=17≡1(mod 8).即y2n≡1,y2n+1≡7(mod 8)对于一切n∈N*成立.在{x n}中,x1=1≡1(mod 8),但y n是单调增的,且y1>1,故y n>1,于是不可能y n =1,故证.说明:利用抽屉原理可以证明:若数列{x n}满足递推关系:x n+k=f(x n+k-1,x n+k-2,…x n),其中f为k元整系数多项式.初始值x1,x2,…,x k为给定整数.于是{x n}为一整数数列.则{x n}模m(m>1,m∈N*)后终将成为周期数列(可能除去开始的若干项).15、设m是给定正整数,证明:由x1=x2=1,x n+2=x n+1+x n(k=1,2,…)定义的数列{x n}的前m2个项中,必有一个能被m整除.证明:记x i≡y i(mod m)(0≤y i≤m-1).取数组(y1,y2),(y2,y3),…,(y i,y i+1),….由于只有m2个不同的数组.故取m2+1个数组,必有两个数组相同,即存在1≤i<j ≤m2+1,使y i=y j,y i+1=y j+1,于是(y i,y i+1)=(y j,y j+1),取满足此要求的最小的i,则i必须为1.否则,由i>1,则y i-1≡y i+1-y i,y j-1≡y j+-y j(mod m),1于是,y i-1=y j-1,得(y i-1,y i)=(y j-1,y j),这与i的最小性矛盾.从而i=1.即存在(y j,y j+1)=(1,1)(j≤m2+1),此时y j-1=0,即m|x j-1.故证.16、连结正n 边形的顶点,得到一个n -折线(即用这个正n 边形的n 个顶点为顶点连出一个有n 条边的闭折线).证明:若n 为偶数,则连线中有两条平行线;若n 为奇数,则连线中不可能恰有两条平行线.证明:按逆时针顺序把为n 个顶点编号:0,1,2,…,n -1.且按a 0-a 1-…-a n -1-a n =a 0连成折线,其中a 0,a 1,…,a n -1是0,1,2,…,n -1的一个排列.由于a i 为正n 边形的顶点,故a i a i +1∥a j a j +1⇔⌒a i a i +1=⌒a j a j +1⇔a i +a i +1≡a j +a j +1(mod n).⑴ 当n 为偶数时,2 |/ n ⁄-1,故模n 的任一完系之和≡0+1+…+(n -1)=12n(n -1)≡/0(mod n).但Σi =0n -1(a i +a i +1)=Σi =0n -1a i +Σi =0n -1a i +1=2Σi =0n -1a i =2×12n(n -1)≡0(mod n). 这说明全体a i +a i +1不构成完系.所以,必有0≤i ,j ≤n -1,i ≠j ,使a i +a i +1≡a j +a j +1(mod n),于是必有两条平行线.若n 为奇数,若恰有一对边a i a i +1∥a j a j +1,则a i +a i +1(mod n)的剩余类中,必有一对剩余类r 出现2次,故必有一对剩余类s 没有出现,于是Σi =0n -1(a i +a i +1)=Σi =0n -1a i +Σi =0n -1a i +1=2Σi =0n -1a i ≡0(mod n), 另一方面,Σi =0n -1(a i +a i +1)≡0+1+…+(n -1)+r -s ≡r -s ≠0(mod n). 这说明,n 为奇数时,不可能恰有一对边平行.17、设n 为奇数,n ≥3.集合S ={0,1,2,…,n -1}.证明:在S 中去掉任一个元后,余下的元都能划分成两个集合,每个集合都有n -12个元,且两组的和模n 同余. 证明:1° 首先,若去掉的元为0,⑴ n =4k +1,则余下4k 个元分成2k 对:{1,4k},{2,4k -1},…,{2k ,2k +1},每对的和mod n 均为0.于是,任取其中k 对为一组,余下k 对为另一组,两组的和模n 同余;⑵ n =4k +3,余下4k +2个元中,先取{1,2,4k},{3,4k +1,4k +2},再把其余的数分成2k -2对:{4,4k -1},{5,4k -2},…,{2k +1,2k +2},每对的和mod n 均为0.于是,任取其中k -1对加上{1,2,4k}为一组,余下k -1对加上{3,4k +1,4k +2}为另一组,两组的和模n 同余;2° 若去掉的数为a ,则把所有的数都加n -a 得到集合S '={n -a ,n -a +1,…,n ,n +1,2n -a -1},S '仍是模n 的完系.去掉S 中的a 对应于S '中的n .于是S '可以按1°分成满足要求的两组,再把分好的数各减去n -a 即得到S 的一个分法.18、一个立方体的顶点标上数+1或-1,各面中心标上一个数,它等于该面4个顶点上标的数的乘积.证明:这样标出的14个数的和不能为0.证明:设此14个数的和为S .现把任一个标-1的顶点改为标+1,则它同时使相关3个面上的数的符号改变,改变后14个顶点上数的和为S '.于是S -S '=2(±1±1±1±1)但任何4个+1或-1的和为偶数,于是S -S '≡0(mod 4).这样一起做下去,直到所有顶点标的数都为+1,此时和S "=14≡2(mod 4).于是S ≡2(mod 4),从而S ≠0.19、求所有正整数n ,使由n -1个数码1及1个数码7组成的n 位数都是素数.解:对于n ,所有这样的n 位数都可写成N =A n +6×10k (其中,A n 表示由n 个1组成的n 位数,k =0,1,…,n -1).若3|n ,则3|A n ,于是3|N .此时N 不是素数.现设3 |⁄ n , A n注意A 6≡0(mod 7),故有A 6k +r ≡A r (k ∈N *,1≤r ≤6).由于(10,7)=1,故1,10,102,…,105是7的一个缩系,从而6×10k (k =0,1,2,3,4,5)也是mod 7)的一个缩系.又有下表:且6×106k +r ≡6×10r (k ∈N *,0≤r ≤5).∴ n >6时,按n ≡1,2,4,5(mod 6),取k =0,4,5,2,即有7|N .此时N 不是素数.而n =4时,7111=13×547;n =5时,11711=7×1673,即n =4,5均不满足要求. ∴ n =1,2.三、高斯函数与不定方程21.高斯函数[]x :表示不超过x 的最大整数,称为x 的整数部分.同时记{}[]x x x =-为x 小数部分(或称尾数部分).22.[]x 的基本性质:①x R ∀∈,[][]11x x x x -<<+≤;②x R ∀∈,[]{}x x x =+;③x R ∀∈,n Z ∈,[][]x n x n +=+,{}{}x n x +=.④x R ∀∈,y R ∈,[][][]x y x y ++≤,{}{}{}x y x y ++≥.⑤0x ∀≥,0y ≥,[][][]xy x y ≥.【例题选讲】20、若n≡4(mod 9),证明不定方程x3+y3+z3=n没有整数解.证明:x≡1,2,0(mod 3)⇒x3≡1,2,0(mod 9),∴x3+y3+z3≡0,1,2,3,6,7,8(mod 9).故此方程无解.21、确定方程x41+x42+…+x4 14≡1599的全部非负整数解.解:x4≡0,1(mod 16),于是x41+x42+...+x4 14≡0,1,2, (14)而1599≡5(mod 16).故无解.22、证明:方程x!y!=z!有无穷多组正整数解(x,y,z)满足x<y<z.证明:由于n!=n·(n-1)!.故(n!)!=(n!)(n!-1)!从而取x=n,y=n!-1,z=n!,则有无穷多个解.说明:给出了一个解的公式.23、求不定方程x4+y4+z4=2x2y2+2y2z2+2z2x2+24的全部整数解.解:若(x,y,z)是其一个解,则(±x,±y,±z)也是方程的一个解.x4+y4+z4-2x2y2-2y2z2-2z2x2=x4+y4+z4-2x2y2-2y2z2+2z2x2-4z2x2=(x2-y2+z2)2-(2zx)2=(x2-y2+z2+2zx)(x2-y2+z2-2zx)=(x+y+z)(x-y+z)(x-y-z)(x+y-z)=-(x+y+z)(-x+y+z)(x-y+z)(x+y-z).于是,原方程即(x+y+z)(-x+y+z)(x-y+z)(x+y-z)=-23×3.由于x+y+z,-x+y+z,x-y+z,x+y-z的奇偶性相同.若它们全为奇数,则其积为奇数,不可能等于-24,若它们全为偶数,则其积可以被24整除,也不可能等于-24.从而本题无满足要求的解.解法2由于左边为偶数,故x,y,z或都为偶数,或两奇一偶.⑴若x,y,z两奇一偶,不妨设x,y为奇数,z为偶数,则x4≡1(mod 16),y4≡1(mod 16),z4≡0(mod 16),x4+y4+z4≡2(mod 16)x2≡1,9(mod 16),y2≡1,9(mod 16),z2≡0,4(mod 16).于是x2y2≡1,9(mod 16) 2x2y2+2y2z2+2z2x2+24=2x2y2+2z2(x2+y2)+24≡2+0+8≡10(mod 16).从而x4+y4+z4≡/2x2y2+2y2z2+2z2x2+24(mod 16);⑵若x,y,z均为偶数,则x4+y4+z4≡0(mod 16),2x2y2+2y2z2+2z2x2+24≡8(mod 16),仍有x4+y4+z4≡/2x2y2+2y2z2+2z2x2+24(mod 16)从而本题无满足要求的解.24、证明:方程y+y2=x+x2+x3没有非零整数解.证明:反设存在非零整数x,y满足方程,则(y-x)(y+x+1)=x3.下证(y-x,y+x+1)=1.设(y-x,y+x+1)=p,则p|x,于是由p|y-x,知p|y,但p|y+x+1,故p|1.即p=1.于是y-x与y+x+1都是完全立方数,设y+x+1=a3,y-x=b3,x=ab.则a3-b3=2x+1⇒a3-b3=2ab+1⇒(a-b)(a2+ab+b2)=2ab+1.由x=ab,①若ab>0,则x>0.有a>b.故a-b≥1,a2+ab+b2>2ab+ab=3ab =2ab+ab≥2ab+1.从而(a -b )(a 2+ab +b 2)>2ab +1,矛盾;② ab =0,则x =0,与x 非零矛盾;③ ab <0,于是2x +1<0,故a <b .b >0,a <0,|a -b |≥2.a 2+ab +b 2≥2|ab |+ab =|ab |,所以|a -b ||a 2+ab +b 2|≥2|ab |,而|2ab +1|<2|ab |,从而|(a -b )(a 2+ab +b 2)|>|2ab +1|,矛盾.故证.25、求不定方程(n -1)!=n k -1的全部正整数解.解:n =2时,有解(n ,k )=(2,1).当n >2时,左边为偶数,故n 只能为奇数.取n =3,(3-1)!=2=31-1,故有解(n ,k )=(3,1);取n =5,(5-1)!=24=52-1,故有解(n ,k )=(5,2).下设n ≥7且n 为奇数.于是n -12为整数且n -12≤n -4,所以,2×n -12|(n -2)!,从而(n -1)2|(n -1)!.∴ (n -1)2|n k -1=[(n -1)+1]k -1=(n -1)k +C 1k (n -1)k -1+C 2k (n -1)k -2+…+C k -2k(n -1)2+k (n -1).∴ (n -1)2|k (n -1)⇒(n -1)|k ⇒k ≥n -1.此时,n k -1≥n n -1-1>(n -1)!,故n ≥7时不定方程无解.即方程的解为(n ,k )=(2,1),(3,1),(5,2).26、证明方程x 2+y 2+z 2=3xyz 有无穷多组正整数解(x ,y ,z ).证明 由于方程具有对称性,故可改证此方程的满足x ≤y ≤z 的解有无数组.若x =y =z =a (a ∈N*),则3a 2=3a 3⇒a =1.即方程有解(1,1,1);若x =y =1,则得2+z 2=3z ,得方程的另一组解为(1,1,2);若x =1,y =2,则得方程z 2-6z +5=0,得方程的另一组解(1,2,5);现设(a 0,b 0,c 0) (其中a 0<b 0<c 0)是方程的一组正整数解,即a 20+b 20+c 20=3a 0b 0c 0成立,考虑方程b 20+c 20+z 2=3b 0c 0z ,即z 2-3b 0c 0z +(b 20+c 20)=0,此方程必有一正整数解z =a 0,由韦达定理,其另一解为z 1=3b 0c 0-a 0必为正整数.于是原方程必有解(b 0,c 0,3b 0c 0-a 0)且这一组解也满足b 0<c 0<3b 0c 0-a 0.令a 1=b 0,b 1=c 0,c 1=3b 0c 0-a 0为方程的一组满足a 1<b 1<c 1的正整数解,则又可从此解出发得到方程的另一组解(b 1,c 1,3b 1c 1-a 1).这一过程可以无限延续下去,从而原方程有无穷多组解.27、求不定方程组 ⎩⎨⎧x +y +z =3,x 3+y 3+z 3=3.的全部整数解. 解:(1,1,1)是一组解.消去z : x 3+y 3+(3-x -y)3=3⇒3(x +y)2-xy(x +y)-9(x +y)+8=0.∴ (x +y)(xy -3(x +y)+9)=8.于是x +y|8⇒x +y =±1,±2,±4,±8.若x +y =1,则xy =2(无解);x +y =-1,xy =-20⇒x =-5,y =4,z =4,或x =4,y =-5,z =4;x +y =2,xy =1⇒x =y =1,z =1;x +y =-2,xy =-19(无解);x +y =4,xy =5(无解);x +y =-4,xy =-23(无解);x +y =8,xy =16⇒x =y =4,z =-5;x +y =-8,xy=-34(无解).∴ 解为(1,1,1),(-5,4,4),(4,-5,4),(4,4,-5).28、求不定方程x 3+x 2y +xy 2+y 3=8(x 2+xy +y 2+1)的全部整数解.解:(x +y)((x +y)2-2xy)=8((x +y)2-xy +1).令x +y =u ,xy =v ,则得u(u 2-2v)=8(u 2-v +1)是一个关于v 的一次方程.显然u 必为偶数,设u =2w ,则得w(2w 2-v)=2(4w 2-v +1).∴ v =2w 3-8w 2-2w -2=2w 2-4w -8-18w -2.于是w -2=±1,±2,±3,±6,±9,±18. ∴ ⎩⎨⎧w = 3, 1, 4, 0,5,-1,8,-4,11,-7, 20,-16;v =-20,8,-1,1,16, 4,85,43,188,120,711, 569.x ,y 是方程t 2-2wt +v =0的整数解,故w 2-v 为完全平方数.其中只有w =5,v =16满足此要求. ∴ (x ,y)=(2,8),(8,2).29、对任意的∑∞=+*+=∈01].22[,K k kn S N n 计算和 解:因]212[]22[11+=+++k k n n 对一切k =0,1,…成立,因此,].2[]22[]212[111+++-⋅=+k k k n n n 又因为n 为固定数,当k 适当大时,.)]2[]2([,0]2[,1201n n n S n n K k k k k ==-==<∑∞=+ 故从而 30、计算和式.]503305[5020的值∑==n nS解:显然有:若.,,1][][][,1}{}{R y x y x y x y x ∈++=+=+则503是一个质数,因此,对n=1,2,…,502, 503305n 都不会是整数,但503305n +,305503)503(305=-n 可见此式左端的两数的小数部分之和等于1,于是,[503305n ]+.304]503)503(305[=-n 故 ∑∑===⨯=-+==25115021.76304251304]),503)503(305[]503305([]503305[n n n n n S 31、设M 为一正整数,问方程222}{][x x x =-,在[1,M]中有多少个解?解:显然x =M 是一个解,下面考察在[1,M]中有少个解.设x 是方程的解.将222}{}{}{2][x x x x x +⋅+=代入原方程,化简得=}]{[2x x ,1}{0].}{}]{[2[2<≤+x x x x 由于所以上式成立的充要条件是2[x ]{x }为一个整数..1)1(],1[,.)1())1(21(2),1[,11.2)1,[),12,,1,0(2}{,][个解中有原方程在因此个解中方程有可知在又由于个解中方程有即在则必有设+--⋅=-+++-≤≤+-==∈=M M M M M M M M m m m m m k mk x N m x 32、求方程.051][4042的实数解=+-x x解:.0][,1][][不是解又因<+<≤x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥>⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥<⎩⎨⎧≤-->--⎪⎩⎪⎨⎧≤+->+-+∴.217][,23][,211][;217][,23][,25][.07][2)(3][2(.0)11][2)(5][2(.051][4][4,051][40)1]([422x x x x x x x x x x x x x x 或 经检验知,这四个值都是原方程的解. 33、.][3]3[2]2[1][][:,,n nx x x x nx N n R x ++++≥∈+∈* 证明 【证】.,2,1,][2]2[][ =+++=k kkx x x A k 令 由于.,1],[1命题成立时则==n x A .2269,02694;2229,02294;2189,01894;229,0294:,876][2][2222==-==-==-==-==x x x x x x x x x x 分别代入方程得或或或解得.,,,],[][][][][][][])[])1([(]))2[(]2([])1[(]([][]2[])2[(])1[(][])1[(]2[][][])1[(]2[][][])1[(]2[][)(:].[],2[22,],)1[()1()1(],[,][,][,].)1[(,],2[],[,1122112111221111121证毕均成立故原不等式对一切命题成立时即故相加得所以成立对一切即因为即有时命题成立设*---------∈=≤∴=+++≤++-++-++-+=+++-+-++-+++≤++++++-+++=+-+++=+++-==--=---=-=-=--≤≤≤-≤N n k n kx A kx k kx kx kx kx kx x x k x k x x k x x x x k x k kx x k x x A A A A kx x k x x kA kx x k x x A A A kA x A x A A x k A k A k kx kA kA k kx kA kA kkx A A x k A x A x A k n k k k k k k k k k k k k k k k34、对自然数n 及一切自然数x ,求证:].[]1[]2[]1[][nx n n x n x n x x =-+++++++ . 解:M =|f(x)|max =max{|f ⑴|,|f(-1)|,|f(-2a )|} ⑴若|-2a |≥1 (对称轴不在定义域内部) ,则M =max{|f ⑴|,|f(-1)|} 而f ⑴=1+a +b f(-1)=1-a +b|f ⑴|+|f(-1)|≥|f ⑴+f(-1)|=2|a|≥4则|f ⑴|和|f(-1)|中至少有一个不小于2,∴ M≥2>21 ⑵|-2a |<1 M =max{|f ⑴|,|f(-1)|,|f(-2a )|} =max{|1+a +b|,|1-a +b|,|-4a 2+b|} =max{|1+a +b|,|1-a +b|,|-4a 2+b|,|-4a 2+b|} ≥41(|1+a +b|+|1-a +b|+|-4a 2+b|+|-4a 2+b|) ≥41[(1+a +b)+(1-a +b)-(-4a 2+b)-(-4a 2+b)] =)2a 2(412+ ≥21 综上所述,原命题正确.四、阶:对于(a ,n)=1的整数,满足a r ≡1 (mod n ) 的最小整数r,称为a 模n 的阶。
数学分析简明教程答案数分11_广义积分
§1 无穷限广义积分
1.求下列积分的值:
(1)
2
1 x2 1
dx
1 2
2
1 x 1
x
1
1
dx
1 2
ln
x 1 x 1
2
1ቤተ መጻሕፍቲ ባይዱ2
lim ln
x
x 1 x 1
ln
2 1 21
1 2
ln
3.
(2)
dx 1 x(1 x2 )
1 2
dx 2 1 x2 (1 x2 )
0
cos ax 1 xn
dx;
0
cos
axdx有界,
1
1 xn
单调下降趋于零,由狄理克雷判别法知积分收敛。
(14)
1
ln
1
1 x
1 1
x
dx
1
1 x
o
1 x
1
1
x
dx
1
x
1
x
2
o
1 x
dx,
故积分收敛。
(15)
1
ln
cos
1 x
sin
1 x
dx
ln
1, 故由比较判别法可知原积分收敛。
1 x3 1 x2
x x 3 1 x2
(9) x pexdx; 由于 lim x 2 pex 0, 因此原积分收敛。
0
x
(10)
0
ln x
x
p
dx;
lim
x
x
q ln xp
x
0
p p
q ,
q
因此可知当p
1时,积分收敛;
09数论综合解答
2、n 是一个完全平方数,n+99 和 n+200 也都是完全平方数,那么 n= ( ) 解:n+99 和 n+200 是完全平方数, 则(n+200)-(n+99)=101=2×50+1,∴n+99 为 50 的平方,n+200 为 51 的平方, ∴n=2500-99=2401 3、 各位数字和等于 50 且能被 4 整除的 6 位数共有多少个? 解:六位数的数字和最大为 9 6 54 ,比 50 大了 4,另外要能被 4 整除,则末位 数字必定为偶数, 那么这 6 个数字中至少有 2 个是偶数.可知这 6 个数字可能为 (9,9,9,9,8,6)、(9,9,9,8,8,7)或(9,9,8,8,8,8). 如果 6 个数分别为 9,9,9,9,8,6,要能被 4 整除,末两位可以为 68 或 96,如果为 68,前面四位只有 1 种排法;如果为 96,前面四位有 4 种排法,所 以此时共有 5 个; 如果 6 个数分别为 9,9,9,8,8,7,末两位只能为 88,前面的四位有 4 种排法,所以此时共有 4 个; 如果 6 个数分别为 9,9,8,8,8,8,此时末两位只能为 88,前面的四位 2 C 有 4 6 种排法, 所以满足条件的数共有 5 4 6 15 个。 4、从 1,3,5,7, …。97,99,101 中最多可以选出 n 个数,使得选出的这 n 个数中,每个都不是另一个数的倍数,那么 n=_______ 解:1,3,5, ……,101 这些数中,35…101 这 34 个数中,每个数都不是另一个 数的倍数。因为 1,3,5, ……,101 都可以写成 3a t 的形式(其中 a 是 0 或自然 数, t 是不能被 3 整除的自然数)由于 1,3,5, ……,101 有 17 个不能被 3 整除 的数,剩下 51-17=34 个数不是 3 的倍数。所以 t 的值有 34 种,所以 n 34 5、 101 个连续的非零自然数的和恰好是四个不同的质数的积,那么这个最小的 和应该是_______ 解:设这个自然数为 a ,则 101 个连续自然数的和为: a +( a +1)+( a +2)+……+( a +100) =( a + a +100)×101 2 =( a +50)×101 因为 101 是质数,所以 a +50 必须是 3 个质数的乘积,要是和最小。 那么 a +50=66=2×3×11,所以和最小为 66×101=6666。
7月全国数论初步自考试题及答案解析
1全国2018年7月高等教育自学考试数论初步试题课程代码:00418一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题2分,共20分)1. 如果n 是一个自然数,那么n(n+1)是( )。
A. 奇数B. 偶数C. 奇数或偶数D. 由n 奇偶性而定 2. 19983除以9后的余数是( )。
A. 1B. 2C. 3D. 0 3. 下列哪一对数是互为亲和数?( ) A. 220,284B. 5,7C. 16,18D. 3,6 4. 模10的绝对值最小的完全剩余系是( )。
A. 0,1,2,3,…8,9B. 1,2,3,…9,10C. -5,-4,-3,-2,-1,0,1,2,3,4D. 11,12,13,…19,205. 1500的标准分解式是( )。
A. 2×2×5×5×5×3B. 3×53×22C. 22×3×53D. 2×2×3×5×5×5 6. 85340 .是( )。
A. 纯循环小数B. 混循环小数C. 有限小数D. 无理数 7. 有一批同样砖块,宽30cm ,长45cm ,至少需要这样的砖多少块,才能铺成一个正方形地面?( )A. 4B. 6C. 9D. 24 8. 边长为自然数,面积为30的长方形有多少个?( ) A. 2B. 3C. 4D. 无数 9. 一堆排球,3个3个数余2个,4个4个数余3个,问这堆排球至少有多少个?( ) A. 23B. 35C. 24D. 11 10. 下列不定方程中是三元二次不定方程的有( )。
A. xyz=9B. 5x+6y+7z=5C. xy+5z=8D. 2x+3y=62 二、填空题(每空2分,共20分)1. d(6300)=____________,σ(6300)=____________, (6300)=____________。
初等数论习题答案
初等数论习题答案初等数论习题答案数论作为数学的一个重要分支,研究整数的性质和关系,涉及到许多有趣而复杂的问题。
在初等数论中,我们经常会遇到一些习题,这些习题既能帮助我们巩固数论知识,又能培养我们的逻辑思维和问题解决能力。
下面我将为大家提供一些初等数论习题的答案,希望对大家的学习有所帮助。
1. 证明:如果一个整数能被4整除,那么它一定能被2整除。
答案:这个问题可以通过数学归纳法来证明。
首先,4能被2整除,显然成立。
假设对于任意的正整数n,如果n能被4整除,那么n也能被2整除。
现在我们考虑n+1能否被4整除。
如果n能被4整除,那么n+1与n相差1,显然n+1不能被4整除。
如果n不能被4整除,那么n+1与n相差1,显然n+1能被4整除。
综上所述,对于任意的正整数n,如果n能被4整除,那么n也能被2整除。
因此,原命题成立。
2. 证明:如果一个整数能被6整除,那么它一定能被2和3整除。
答案:这个问题也可以通过数学归纳法来证明。
首先,6能被2和3整除,显然成立。
假设对于任意的正整数n,如果n能被6整除,那么n也能被2和3整除。
现在我们考虑n+1能否被6整除。
如果n能被6整除,那么n+1与n相差1,显然n+1不能被6整除。
如果n不能被6整除,那么n+1与n相差1,显然n+1能被6整除。
综上所述,对于任意的正整数n,如果n能被6整除,那么n也能被2和3整除。
因此,原命题成立。
3. 证明:如果一个整数的平方是偶数,那么这个整数一定是偶数。
答案:这个问题可以采用反证法来证明。
假设存在一个整数n,它的平方是偶数,但是n本身是奇数。
根据奇数的定义,我们知道奇数可以表示为2k+1的形式,其中k是整数。
那么n的平方可以表示为(2k+1)^2=4k^2+4k+1。
根据整数的性质,4k^2和4k都是偶数,所以4k^2+4k也是偶数。
那么(2k+1)^2就是一个奇数加上一个偶数,根据奇数加偶数的性质,它一定是奇数。
然而,我们已知n的平方是偶数,与(2k+1)^2是奇数的结论相矛盾。
自考初等数论试题及答案
自考初等数论试题及答案一、选择题(每题2分,共10分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 一个数的最小素因子是3,那么这个数的最小公倍数是:A. 3B. 6C. 9D. 12答案:C3. 计算 \((2^3) \div 2^2\) 的结果是:A. 2B. 4C. 8D. 16答案:A4. 一个数的质因数分解是 \(2^2 \times 3^3\),那么这个数的约数个数是:A. 5B. 6C. 7D. 8答案:D5. 如果 \(p\) 是一个素数,那么 \(p^2 - 1\) 可以分解为:A. \((p-1)(p+1)\)B. \(p(p-1)\)C. \((p+1)(p-1)\)D. \(p^2 - 1\)答案:C二、填空题(每题3分,共15分)1. 如果一个数 \(n\) 能被3整除,那么 \(n\) 的各位数字之和也能被____整除。
答案:32. 一个数 \(a\) 与 \(b\) 的最大公约数(GCD)是 \(d\),那么\(a \times b\) 的最大公约数是______。
答案:d3. 一个数 \(n\) 能被9整除,那么 \(n\) 的各位数字之和也能被______整除。
答案:94. 一个数 \(n\) 能被11整除,那么 \(n\) 的奇数位数字之和与偶数位数字之和的差是______的倍数。
答案:115. 一个数 \(n\) 能被7整除,那么 \(2n + 4\) 能被______整除。
答案:7三、解答题(每题10分,共20分)1. 求 \(2^{16} - 1\) 的所有素因子。
答案:\(2^{16} - 1 = (2^8 + 1)(2^8 - 1) = (2^4 + 1)(2^4 -1)(2^8 + 1) = (2^2 + 1)(2^2 - 1)(2^4 + 1)(2^4 - 1)(2^8 + 1) = 3 \times 15 \times 17 \times 15 \times 255\),所以素因子为3, 5, 17, 255。
初等数论习题集答案
初等数论习题集答案初等数论习题集答案数论作为数学的一个分支,研究的是整数的性质和关系。
初等数论是数论中的一个重要分支,它主要研究整数的基本性质和简单的数学关系。
在学习初等数论的过程中,习题集是一个非常好的辅助工具,通过解答习题可以加深对数论知识的理解和掌握。
本文将为大家提供一些初等数论习题的答案,希望对大家的学习有所帮助。
1. 证明:若a和b是整数,且a|b,则|a|≤|b|。
证明:根据整除的定义,如果a|b,那么存在一个整数k,使得b=ak。
由此可得:|b|=|ak|=|a||k|。
由于k是一个整数,所以|k|≥1,因此有|b|≥|a|。
2. 证明:若a、b和c是整数,且a|b,b|c,则a|c。
证明:根据整除的定义,如果a|b,那么存在一个整数k1,使得b=ak1。
同理,如果b|c,那么存在一个整数k2,使得c=bk2。
将b的表达式代入c的表达式中,得到c=(ak1)k2=ak1k2。
由此可见,c也是a的倍数,即a|c。
3. 证明:如果一个整数能被2和3整除,那么它一定能被6整除。
证明:假设一个整数能被2和3整除,那么可以分别表示为2m和3n,其中m和n是整数。
将2m和3n相加得到2m+3n=6(m/2+n/3),由此可见,这个整数可以被6整除。
4. 证明:如果一个整数的平方是偶数,那么这个整数本身就是偶数。
证明:假设一个整数的平方是偶数,那么可以表示为n^2=2m,其中n和m是整数。
如果n是奇数,那么可以表示为n=2k+1,其中k是整数。
将n代入n^2=2m中,得到(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1,由此可见,这个整数的平方是奇数,与题设矛盾。
因此,假设不成立,这个整数本身一定是偶数。
5. 证明:对于任意的正整数n,n^2+n+1一定不能被2整除。
证明:假设n^2+n+1能被2整除,那么可以表示为n^2+n+1=2m,其中n和m是整数。
将n^2+n+1拆开得到n(n+1)+1=2m,由此可见,左边是一个奇数加上1,得到一个偶数。
浙江7月自考数论初步试题及答案解析
浙江省2018年7月高等教育自学考试数论初步试题课程代码:00418一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题2分,共20分)1. 已知三个正整数a、b、c的和是奇数,并且a-b=3,那么a、b、c的奇偶性为( )。
A. 三个均为奇数B. 两个奇数一个偶数C. 一个奇数两个偶数D. 三个均为偶数2. 下列哪个解不是不定方程5x+6y=22的特解( )。
A. x=2,y=2B. x=8,y=-3C. x=5,y=-3D. x=-4,y=73. 120和-72的最小公倍数是( )。
A. 720B. 120C. 360D. -3604. 五位数7913x能被9整除,则x的值为( )。
A. 7B. 2C. 3D. 05. 417被-15除后所得余数是( )。
A. -33B. 27C. -3D. 126. 下列同余式不成立的是( )。
A. 15≡(-1)(mod 7)B. 150≡3(mod 7)C. 165≡4(mod 7)D. 120≡1(mod 7)7. 用弃九法判别下列算式肯定错误的有( )。
A. 4563×12=54756B. 4563×120=547560C. 5463×12=64556D. 5463×12=655568. 下列整数中能用15和24的倍数之和表示的数是( )。
A. 5B. 1998C. 22D. 1339. 一堆苹果,3个3个数少1个,4个4个数少1个,5个5个数少1,则这堆苹果至少有多少个?( )。
A. 11B. 59C. 60D. 11910. 自然数n是大于1的平方数,则d(n)为( )。
A. 2B. 偶数C. 奇数D. 平方数二、填空题(每空格2分,共20分)1. d(1000)=________,σ(1000)=________, (1000)=________。
2. (149.24)=________。
《数论初步》综合练习答案
《数论初步》综合练习答案一、填空题1.as+bt=12.4301,17.3.40488,2.4..1311753223611⨯⨯⨯⨯⨯5..19171311753224818⨯⨯⨯⨯⨯⨯⨯6.)1(1+∏=n i i α.7.1311532⨯⨯⨯.二、计算题1.解: 28!=.2319171311753222461325⨯⨯⨯⨯⨯⨯⨯⨯2.解:24!=.231917131175322341022⨯⨯⨯⨯⨯⨯⨯⨯3.解:由辗转相除法得: (3468,24871)=17,所以 .4.解:设这两个数为a ,b ,由于(a ,b )=8,故 a=8x ,b=8y ,其中(x ,y )=1; 因为 ab=(a ,b )[a ,b],所以 64xy=512,即 xy=8;而 (x ,y )=1,故 x=1,y=8;或 x=8,y=1;所求两数为:a=8,b=64 .三、判断及叙述题判断命题:1.对2.错3.错4.对5.对6.对7.错叙述定义或定理:1.带余数除法(定理):设a,b 是两个给定的整数,0≠a ,那么一定存在唯一的一对整数q 与r ,满足b=qa+r, ||0a r <≤. 此外,a|b 的充要条件是r=0.2.算术基本定理:设a>1,则必有s p p p a 21=(*),其中)1(s j p j ≤≤是质数, 且在不计次序的意义下,a 的表示式(*)是唯一的.3.质数:设整数.1,0±≠p 如果它除了显然约数p ±±,1外没有其它的约数,那么,p 就称为是质数(或素数).四、证明题1.证:设(a,b)=d,则a=sd,b=td,且(s,t)=1,所以(na,nb)=(nsd,ntd)=nd=n(a,b) .2.证::若k n 2≠,则n=am,2|m>1,]1)2()2)[(12(1)2(1221++-+=+=+-- m a m a a m a n这与12+n是质数矛盾. 3.证:不妨设这个有理数是;1),(,1,=≥b a a a b 若c a b k=⎪⎭⎫ ⎝⎛是整数,则k k b ca =,所以k b a |;由于 (a,b)=1,所以 a|b,故 1=(a,b)=a .4.证:因为 2|n(n-1)(2n-1) (1) (两个连续整数中必有一个为偶数) .则 n=3a+b, 其中a,b 为整数,且 31≤≤b (2)当 b=1时,n-1=3a, 所以 3|(n-1);当 b=2时,2n-1=6a+3, 所以 3|(2n-1);当 b=3时,n=3a+3, 所以 3|n;故 3|n(n-1)(2n-1) (3)而 (2,3)=1,由(1),(3)式知:6|n(n-1)(2n-1).5.证:假设m 不是质数,则存在整数d,1<d<m,使得d .m 又.1)!1(,1)!1(+-+-m d m m 故由1<d<m 知)!.1(-m d 因此.1,1,)!1(1)!1(矛盾与即>--+-d d m m d所以m 为质数.6.证:假设形如4k-1的质数只有有限个,设为.14.,,,2121-⋅⋅⋅=⋅⋅⋅t t p p p N p p p 令由算术基本定理知N 可表成质数之积,即(),,,2,1,,,2,1.21t j s i p q q q q N j i s ⋅⋅⋅=⋅⋅⋅=≠⋅⋅⋅=易见 否则由.,11411矛盾知某个--⋅⋅⋅=⋅⋅⋅i t s q p p q q.14,14,1414,14,,,121矛盾与形为知形形整数之积仍为由形均为若-⋅⋅⋅=++++⋅⋅⋅t s p p N k N k k k q q q所以形如4k-1的质数有无穷多个.7.证:()()()().1,,,,1,,,=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛n n b a b b a a b a b b a a 故由于因此()()()().,,,,,n n n n n nb a b a b b a a b a =⎪⎪⎭⎫ ⎝⎛ 即()().,,nn n b a b a = (也可用算术基本定理证明).8.证:因为n 为奇数,设 n=2m+1,其中m 为整数;1)12(122-+=-m n =4m (m+1),又 2|m (m+1),故 8|4m (m+1), 即 )1(|82-n .9.证:m 为奇数,)12(|)12(],1)2()2)[(12(1221++∴++-+=+--m n n m n m n n m n , 又)12(|)12(],12()2)[(12(122)1--∴+++-=---m n m m n m m m n n , 从而 ]2)12[(|)12(+-+q m n , 其中q 为整数,即1)12,12(=+-n m 或2,显然只能为1 .10.证:)1)(1()1(2+-=-n n n n n 是三个连续整数乘积,从而其中必有一个是3的倍数, 故)1(|32-n n ;又由于n 为奇数,设n=2m+1,则)1(|8),1(4122-∴+=-n m m n ; 而(3,8)=1,故 )1(|242-n n .11.证:设 a=21n+4,b=14n+3,只要证存在整数x ,y ,使得 ax+by=1即可, 由于 3b-2a=42n+9-(42n+8)=1,所以(a ,b )=1,即 (21n+4,14n+3)=1 .。
初等数论习题及答案
初等数论习题及答案初等数论习题及答案数论作为数学的一个分支,研究的是整数的性质和关系。
它广泛应用于密码学、计算机科学和其他领域。
初等数论是数论的基础,它涉及到一些基本的概念和定理。
本文将介绍一些常见的初等数论习题,并提供相应的答案。
1. 习题:证明任意两个正整数的最大公约数和最小公倍数之积等于这两个正整数的乘积。
答案:设两个正整数分别为a和b,它们的最大公约数为d,最小公倍数为l。
根据最大公约数和最小公倍数的定义,我们有以下等式:a = dxb = dy其中x和y是互素的正整数。
根据最大公约数和最小公倍数的性质,我们有: l = dxy因此,最大公约数和最小公倍数之积等于这两个正整数的乘积。
2. 习题:证明任意一个正整数的平方都是4的倍数或者4的倍数加1。
答案:设正整数为n。
根据整数的奇偶性,我们可以将n分为两种情况讨论。
情况一:n为偶数。
偶数可以表示为2k的形式,其中k为整数。
那么n的平方为(2k)^2 = 4k^2,显然是4的倍数。
情况二:n为奇数。
奇数可以表示为2k+1的形式,其中k为整数。
那么n的平方为(2k+1)^2 = 4k^2 + 4k + 1,显然是4的倍数加1。
综上所述,任意一个正整数的平方都是4的倍数或者4的倍数加1。
3. 习题:证明任意一个正整数的立方都是6的倍数、6的倍数加1或者6的倍数减1。
答案:设正整数为n。
根据整数的奇偶性,我们可以将n分为三种情况讨论。
情况一:n为偶数。
偶数可以表示为2k的形式,其中k为整数。
那么n的立方为(2k)^3 = 8k^3,显然是6的倍数。
情况二:n为奇数且不是3的倍数。
奇数可以表示为2k+1的形式,其中k为整数。
那么n的立方为(2k+1)^3 = 8k^3 + 12k^2 + 6k + 1,显然是6的倍数加1。
情况三:n为奇数且是3的倍数。
奇数可以表示为2k+1的形式,其中k为整数。
那么n的立方为(2k+1)^3 = 8k^3 + 12k^2 + 6k + 1 = 6(4k^3 + 2k^2 + k)+ 1,显然是6的倍数减1。
数论习题详细标准答案
个人收集整理仅供参考学习1证明: a1 , a2, a n都是 m 地倍数.存在 n 个整数 p1 , p2 ,p n使a1p1m1 , a2p2 m2 , , a n p n m n又 q1 ,q2 , , q n是任意 n 个整数q1 a1q2 a2q n a n( p1 q1q2 p2q n p n )m即 q1 a1q2a2q n a n是 m 地整数2 证:n( n1)(2n1)n( n1)(n 2 n1)n( n1)(n2)( n1)n( n1)6 / n(n1)(n2),6 /(n1)n(n1)6 / n(n1)(n2)(n 1) n(n1)从而可知 6 / n(n1)(2n1)3证:a, b 不全为 0在整数集合 S ax by | x, y Z 中存在正整数,因而有形如 ax by 地最小整数ax0by0x, y Z ,由带余除法有ax by (ax0by0 )q r ,0 r ax0 by0则 r( x x0 q) a( y y0 q)b S ,由 ax0 by0是S中地最小整数知r 0 ax0by0/ ax by下证 P8第二题ax0by0 / ax by( x, y 为任意整数)ax0by0 / a, ax0 by0 / bax0by0 /(a, b).又有 (a,b) / a, (a, b) / b(a, b) / ax0by0故 ax0by0(a,b)4 证:作序列3bb ,b b 3 b则 a 必在此序列地某两项之间,,,0,, b ,,2222个人收集整理仅供参考学习即存在一个整数q ,使qb a q1b 成立22(i ) 当 q 为偶数时,若 b0. 则令 s q,t a bs aqb ,则有220 a bs t a qb a q b q b t b2 222若 b0则令 s q,t a bs aqb ,则同样有 t b2 22(ii ) 当 q 为奇数时,若b0 则令 s q1a bs aq 1,t b ,则有22b t a bs a q 1b a q 1 b 0 t b 2222若 b0,则令 s q1a bs aq1b 2, t2则同样有t b 2综上存在性得证下证唯一性当 b 为奇数时,设a bs t bs1t1则 t t1b(s s)b1而 t b bt t1t t1 b 矛盾故s s1,t t1 , t122当 b 为偶数时, s,t 不唯一,举例如下:此时b为整数23 bb 1b b 2 (b), t1b, t1b 22222a bs1t1bs2t2 , t 2b, t 2b 225.证:令此和数为S,根据此和数地结构特点,我们可构造一个整数M ,使 MS 不是整数,从而证明 S 不是整数(1)令 S=1 1 1 11,取 M= 2k 1 3 5 7p 这里k是使2k n 最234n大整数, p 是不大于 n 地最大奇数 .则在 1,2,3,┄,n 中必存在一个n02k,所以MS= M M M M M 23n0n由 M= 2k 1 3 5 7p 知M,M,,M必为整数,M3 5 7p 显个人收集整理仅供参考学习然不是整数,MS 不是整数,从而S 不是整数( 2)令 M= 3k 1 5 7( 21)则SM=MM M M,n352n12n1 k 1 5 7( 21)M M M,而由 M=3知n,,,1352nM3k 1 57(2n 1)不为整数2n12n1SM 不为整数,从而S111352n也不是整数11.证:设d是 a, b 地任一公因数,d|a,d |b由带余除法a bq1r1,b r1 q2 r2 , , r n 2rn 1qn r n , r n 1r n q n 1 ,0 r n 1r nrn 1r1 b(a,b) r n.d |a bq1r1,d| b r1q2r2,┄,d|r n 2r n 1q n r n(a, b) ,即 d 是 (a, b)地因数.反过来 (a,b) |a且 (a,b) | b ,若 d| ( a, b), 则 d| a, d| b ,所以 ( a, b) 地因数都是 a, b 地公因数,从而a, b 地公因数与 (a, b) 地因数相同.2.见本书 P2, P3 第 3 题证明 .3.有§1 习题 4 知:a, b Z, b 0,s, t Z, 使 a bsb.,t, | t |2s1 ,t1,使b s1t t1, | t1|| t |b2 , , 如此类推知:22s n , t n , t n 2 t n 1s n t n ;sn 1, tn 1,tn 1tnsn 1t n 1;且| t n 1 || t n 2 || t || b || t n |2 22n2n12而 b 是一个有限数,n N , 使t n 10(a,b)(b,t ) (t, t1 )(t1 ,t 2 )(t n , t n 1 )(t n ,0)t n,存在其求法为 (, )(,)(,())a b b a bs a bs b a bs s1个人收集整理仅供参考学习(76501,9719) (9719,76501 9719 7)(8468,9719 8468) (1251,8468 1251 64.证:由 P3§1 习题 4 知在( 1)式中有rn 1r n r n 1r n 2 r 1 b 2 2 22 n 12 n,而 rn 11bn ,2 nb ,n l o g 2 b l o gb ,即 nlog b2l o g2 log 21,证:必要性 .若 (a,b)1,则由推论 1.1 知存在两个整数 s ,t 满足: as bt (a, b) ,as bt 1充分性 .若存在整数 s , t 使 as+bt=1,则 a , b 不全为 0.又因为(a,b) | a,( a,b) | b ,所以 (a,b | as bt ) 即 (a, b) |1 .又 (a,b) 0 ,(a, b) 12.证:设 [ a 1 , a 2 ,, a n ] m 1 ,则 a i | m 1 (i 1,2, ,n)| a i || m 1 (i 1,2, ,n) 又设 [| a 1 |,| a 2 |, , | a n |] m 2 则 m 2 | m 1 .反之若 | a i || m 2 ,则 a i | m 2 , m 1 | m 2 .从而 m 1m 2 ,即 [ a 1, a 2 , , a n ] = [| a 1 |,| a 2 |, ,| a n |]23.证:设( 1)地任一有理根为p,( p,q) 1, q 1.则qa n ( p)na n 1 ( p)n 1a 1 pa 0q qqa n p n a n 1 p n 1qa 1 pq n 1 a 0 q n 0( 2)由 (2)a n p n a n 1 p n 1 qa 1 pq n 1 a 0 q n ,所 以 q 整 除 上 式 地 右 端 , 所 以 q | a n p n , 又 ( p, q)1, q 1 , 所 以(q, p n ) 1, q | a n ;又由( 2)有 a n p na n 1 p n 1q a 1 pq n 1a 0 q n因为 p 整除上式地右端, 所以 P | a 0 q n ,( p, q)1, q 1,所以 (q n , p)1,p | a故( 1)地有理根为p,且 p | a0 ,q | a n. q假设 2为有理数, x2, x220,次方程为整系数方程,则由上述结论,可知其有有理根只能是1,2 ,这与 2 为其有理根矛盾.故 2 为无理数.另证,设2为有理数 2 =p, ( p, q) 1, q 1 ,则qp 22q2p2 , ( p 2 , q 2 )(2q 2 , p 2 )q 22 2 ,1q但由 ( p, q) 1, q 1 知( p2, q2)1,矛盾,故 2 不是有理数.1.见书后 .2.解:因为 8|848,所以8 | A, A827988488 1034985623 B ,又 8|856,所以 8|B ,B8129373223 C ,又 4|32,所以 4|C,C432343322D又 9|( 3+2+3+4+3+3 ),所以 9|D,D935937 32 E ,又 9|( 3+5+9+3+7 ),所以 9|E,E 93993又3993 3 1331 3 113所以 A 2835113;同理有 8105722663500023 33 54 73 112 17 23 37 .3.证:i min(i ,i ) ,0 i i,0i ip i| p i, p i| p i k k k ki i ii (i1,2k )p i i p i i,p i i p i i .i1i1i 1i 1p11p22p k k| ( a,b) ,又显然 (a, b) | p11p22p kkp11p22p k k( a, b) ,同理可得 p11p22p k k[ a, b] ,i max{i , i }推广 .设a1p111 p212p k1 k, a2p121 p222p k 2 k,, a n p1n1 p2n 2p k nk(其中 p j 为质数 j 1,2, , k, a i 为任意 n 个正整数 i 1,2, , n, ij0 )则 p 1 i 1 p 2 i 2 p k ik(a 1 , a 2 , , a n ),ijmin{ ij} j1,2,, k1 i np 1 i1p 2i 2p k ik [ a 1, a 2 , , a n ], ijmax{ij} j1,2, , k1 i n4.证:由 p 1 1 p 2 2p k k ( a, b) , p 1 1 p 2 2p k k [ a,b] ,有( a, b )[a, b] p 11 1 p 222p k kkp 1 1 1 p 2 22p k kkab从而有 [ a,b]ab .(a,b)5.证:(反证法)设 n2k l (l 为奇数)则2 n122kl1 ( 22 k ) l 1 (22k1)[ 2 2k(l 1) 22k(l 2)1]12 k1 (2 2k) l1n,2n 1为合数矛盾,故n一定为2地方幂.2 2 12.(i) 证 ::设 [] m .则由性质 II 知 mm 1,所以 nm nnm n ,所以 nm[ n] nm n ,所以 m[n ] m 1 ,又在m与m +1之间只有唯n一整数m,所以 [[n] ] m[ ] .证一 ]设kn k1, k(ii}[{ }n 0,1,2, , n 1,则 kn{ }k 1, [ n ] n[ ] kn①当 i kn 1时,{ }i k 1 i1,[i ] [ ] ;nnn②当 i kn 时 , 2 {} ik i1,[i ] [ ] 1 ;nnn1 ]n 1]n 1n 1 ki ] n 1i ] [ ] [[[1][[n n i 0 ni 0ni n kn( n k)[] k([ ] 1)n[ ] kn1i[[ n ]]inn 1 [ 证二 ]令 f ( )i 01 ) n 1f ([ni 0i1 n 1i 1[[n ] , f ([1] f ( )])] [ nnn i 0ni1] [ n1] f ()nf ( ) 是以1为周期地函数 .nn 11 ]又当[ 0,1)时, f ()000,R, f ()0 ,即[[ n] .i0n[评注 ]:[ 证一 ]充分体现了常规方法地特点,而[ 证二 ]则表现了较高地技巧 .3.( i )证:由高斯函数[x] 地定义有[]r ,[]s,0r1;0s1.则[][ ]r s, r s1当 r s 0时,[][][]当 r s 0时,[][][]1故 [][ ][]或[]1[ ][ ]( ii )证:设[]x,[]y,0x, y1,则有0x y{}{}2下面分两个区间讨论:① 若0x y 1,则[ x y]0,所以[][][],所以[ 2][2][2[]2x][ 2[]2y] 2[]2[]2([ x][ y])2[ ]2[ ][ ][ ][][ ][ ][][]②若 1 x y2,则 [ x y]1,所以[][][]1.所以[ 2][2][ 2[]2x][2[]2y] 2[]2[]2([ x][ y])2[]2[ ]2([ x][1x])x 1 y[ ][][ ][]22([ x][x]) 2[ ]2[]1[][] [ ]2.31证:由(2ab2)(a2b21 知 (2ab2,a2b2及 (a 2b2,2ab2 ) 都a2b a2b2)2b a2b2)a2b2a2ba是单位圆周 x 2y 2 1 上地有理点.另一方面,单位圆周x2y 2 1 上地有理点可表示为x q, yr, p0 ,于是得p pq 2r 2p 2,又 q 2r 2p 2地一切非整数解都可表示为:q ab p a2b2r a2b2 a b不全为,于是第一象限中221 上地有理2 ,,,(,0)x y(2ab,a2b2点可表示为a2b2a2b2 ), (a,b不全为 0),由于单位圆周上地有理点地对称性,放x 2y21 上地任意有理点可表为(2ab2, a 2 b 2 a 2b22ab) ,其a2b a2b2) 及(a2b2,a2b2中 a, b 不全为 0,号可任意取 .b5E2RGbCAP3. 21. 证:由u, v地取值可得p s t p t p s个数,若u1p s t v1u2p s t v2 (mod p s ) ,u1p s t v1u2p s t v2 (modp s t ) 则 u1u2 (mod p s t ) ,又 0u1 ,u2p s t ,u1 u2.又 p s t v1p s t v2 (mod p s t ),v1v2 (mod p t ) ,又 0v1 ,v2p t,v1v2.u1p s t v1与u2p s t v2为同一数,矛盾,故原命题成立.3.( i )地引理对任何正整数 a,可以唯一地表示成a3n a n3n 1 a n 13a1a0地形式,其中0 a i3, (i1,2,, n) .证:( i)H3n 113n3n 13131设 A3n x n3n 1 x n 13x1x0 , (x i0,1, i1,2,, n)A H 3n ( x n 1) 3n 1 ( x n 11)3( x11) ( x01)由于 x i取值0,1故x i1取值为0,1,2.这样地数有2H+1个,其中最小地数为 0,最大地数为2H,所以A+H 可以表示下列各数:0,1, 2,,2H ,上列数中减去H得H ,H1,H2,,1,0,1, , H,则A 可表示上列各数,且表示唯一.p1EanqFDPw(ii )事实上,只需1斤,3斤,32斤,,3n斤这样地( n+1)个砝码即可 .由( I)n知 1 到 H 中任一斤有且仅有一种表示法(3i x i ).( x i1,0,1) ,当x i 1时,将i 0砝码 3i放在重物盘中;当x i0 时,不放砝码3i;当x i 1 时,将砝码3i放在砝码盘中 .如此即可 .DXDiTa9E3d3.31. 证:(a i , m) 1, 由定理 1 知 a i 所在地模 m 地剩余系是与模m 互质地 .又已知a 1 ,a 2 ,a ( m) 两两对模 m 不同余, 所以这(m) 个整数分别属于不同地模m 地剩余类 .再由定理1 知结论成立 .RTCrpUDGiT2 .证:设模m 地一个简化剩余系是r 1 , r 2 ,, r ( m) , (1 r i m) ,即 (r i , m)1 ,由于( a, m) 1 ,当 通过 m 地简化剩余系1,2 ,,( m) 时,由定理 3 知, a 1 , a 2 ,, a (m ) 也通过 模m地剩余系. 故 对 1 i (m) , 存 在j (1 j( m)) 使a imq ir jaiq ir j a i}r j , 5PCzVD7HxAm m{mm(m )a i}(m ) rj1 m (m)( m){mm 22.i1mj 13.( i )证:由定理 5 知: p 为质数时,( p )p p1p (11) .p所以(1)( p)( p ) 1 ( p 1)p 2 (1 1 )p (11 ) p 即证 .p p( ii )证 :设整数 m 地所有正约数是d 1 , d 2 , , d T ( m) ,考察 m 地完全剩余系 1,2,, m ( 1)对 (1) 中任一数 a ,设 (a, m)=d, 则 d | m ,即 (1)中任一数与 m 地最大公约数是 d 1 , d 2 ,, dT ( m)中地数 .反之,对每一个 d i , ( 1)中必有一数 a 使 (a, m) d i (例如 a a i ),而且对( 1)中任一数不可能出现(a,m) d i , (a, m) d j .(ij ) ,于是,将( 1)中地数按其与 m 地最大公约数地情形分类: ( 1)中与 m 地最大公约数是d 1 地数有(m) 个;( 1)中与 m 地最大公约数d 1是 d 2 地数有( m md 1 地数有m) 个;┄, ( 1 )中与 地最大公约数是 ( ) 个;所以d 2d 1(m) (m)(m) m , 即(m) m , 注 意m是 m 地 约 数 , 所 以d 1d 2dT (m)d i |md id i(m) m jLBHrnAILg2. 41. 解: 1010(2)101024 4(mod6) ,即 10106q 4, (q N) ,因为(10,7)1,由欧拉定理有 1061(mod7) ,所以 10101 0106q 4(106 ) q1041q104( 3)44(mod7)10所以从今天起再过1010天是星期五.3.(i) 证:对a用数学归纳法 .①当 a=2 时 ,证明(h1h2)p h1p h2p (mod p) ,p i(h1h2 ) p(C p i h1p i h2i ) ,对 C p i (1i p) 有 C p i A p i!| A p i,为整数i 0i!又因为 (1, p)( 2, p)(i , p) ,所以 (i! , p)1.i!| ( p1)( p i1) ,所以可设 q( p1)( p i 1)为整数 . C p i pq,即p | C p i , C p i0(mod p) .i!所以 (h1h2 ) p h1p h2p (mod p) .②假设命题对 k 成立,即( h1h2h k ) p h1p h2p h k (mod p) ,则对于(k1) 有(h1h2h k h k 1 )p(h1h2h k ) p h k p1 h1p h2p h k p h k p1(modp)所以命题对 ( k1) 也成立.综合①,②可知对一切自然数a,命题成立 .xHAQX74J0X(ii )证:a p (111) p1p1p1p(mod).a pa个1a个1 p版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text,pictures, and design. Copyright is personal ownership.LDAYtRyKfE 用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律个人收集整理仅供参考学习地规定,不得侵犯本网站及相关权利人地合法权利. 除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬 . Zzz6ZB2LtkUsers may use the contents or services of this articlefor personal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time,they shall abide by the provisions of copyright law and otherrelevant laws, and shall not infringe upon the legitimaterights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall beobtained from the person concerned and the relevantobligee.dvzfvkwMI1转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任. rqyn14ZNXIReproduction or quotation of the content of this articlemust be reasonable and good-faith citation for the use of news or informative public free information. It shall notmisinterpret or modify the original intention of the contentof this article, and shall bear legal liability such as个人收集整理仅供参考学习copyright.EmxvxOtOco。
数论讲义答案(第三章)
数论讲义答案(第三章)1. 证明: 若n 为正整数, α为实数, 则(1) ][][αα=⎥⎦⎤⎢⎣⎡n n , (2) [][]ααααn n n n =⎥⎦⎤⎢⎣⎡-+++⎥⎦⎤⎢⎣⎡++1...1. 证明:(1) 设n α = nq + r + {n α}, 0 ≤ r < n , 则[n α] = nq + r ,左边 = q n r q n r nq n n =⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡][α, 右边 = []q n n r q n n r nq n n =⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡=}{}{αααα 所以[]αα=⎥⎦⎤⎢⎣⎡n n ][. (2) 设n α = nq + r + {n α}, 0 ≤ r < n , 则[n α] = nq + r , α = q +( r + {n α})/n . r = 0时, α = q +{n α}/n , 左边 = q + q + … + q = nq . 右边 = nq .r ≥ 1时, 左边 = ⎥⎦⎤⎢⎣⎡-+++++⎥⎦⎤⎢⎣⎡++++⎥⎦⎤⎢⎣⎡++n n n r q n n r q n n r q 1}{...1}{}{ααα = nq +∑∑--=--=⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++11}{}{r n k n r n k n k n r n k n r αα = nq + 0 + n - 1 - (n - r ) + 1 = nq + r=[n α] = 右边. #2. 证明不等式[2α] + [2β] ≥ [α] + [α + β] + [β]证明:设α = m + a , β = n + b , m , n ∈Z , 0 ≤ a , b < 1. 不妨设a ≥ b , 则 [2α] + [2β] = [2m +2a ] + [2n + 2b ]= 2m + 2n + [2a ] + [2b ]而[α] + [α + β] + [β] = [m + a ] + [n + b ] + [m + n + a + b ]= 2m + 2n + [a ] + [b ] + [a +b ] = 2m + 2n + [a +b ]下证 [2a ] + [2b ] ≥ [a +b ] 而 a ≥ b , 故[2a ]≥[a +b ],自然有[2a ] + [2b ] ≥ [a +b ]. #3. 证明: 若a > 0, b > 0, n > 0, 满足n | a n - b n , 则n | (a n - b n )/(a -b ).证明:设p m || n , p 为一个素数, a - b = t , 若p |/t , 则由p m | a n - b n , 自然有p m | (a n - b n )/t . 现设p | t , 而tb t b t b a nn n n -+=-)( = ∑=--⎪⎪⎭⎫ ⎝⎛ni i i n t b i n 11因为!)1)...(1(11i t b i n n n t b i n i i n i i n ----+--=⎪⎪⎭⎫ ⎝⎛ (1) 在i = 1, 2, …, n 时, i !中含p 的最高方幂是∑∑∞=∞=≤-=<⎥⎦⎤⎢⎣⎡111k k kk i p ip i p i 又因p i -1 | t i -1, p m | n , 故由(1)可知p m | n i t b i n i i n ,...,1,1=⎪⎪⎭⎫ ⎝⎛--.即 p m | (a n - b n )/(a -b ). 把n 作因子分解并考察每一个素因子, 这就证明了n | (a n - b n )/(a -b ). #4. 证明: 若n ≥ 5, 2 ≤ b ≤ n , 则⎥⎦⎤⎢⎣⎡--b n b )!1(1. (1) 证明:若b < n , 则b (b -1) | (n -1)!, 即⎥⎦⎤⎢⎣⎡--b n b )!1(1, 且⎥⎦⎤⎢⎣⎡-b n )!1(∈Z , 故(1)成立. 若b = n , n 是一个合数且不是一个素数的平方, 可设b = n = rs , 1 < r < s < n , 由(n , n -1) = 1知s < n -1, 故b (b -1) = rs (n -1) | (n -1)!, (1)式成立.若b = n = p 2, p 是一个素数, 由n = p 2 ≥ 5知, 1 < p < 2p < p 2 - 1 = n - 1, 故p , 2p , n - 1是小于n 的三个不同的数. 故p ⋅2p ⋅(n -1) = 2b (b -1) | (n -1)!, 故(1)式成立.若b = n = p , p 是一个素数, 由(p -1)! + 1 ≡ 0 (mod p )知p p p p p p p p p p )1()!1(11)!1(11)!1()!1(---=-+-=⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡- 即)1()!1()!1(---=⎥⎦⎤⎢⎣⎡-p p p p p , 而(p , p -1) = 1知(p -1)⎥⎦⎤⎢⎣⎡-p n )!1(, (1)成立. #5. 证明: 对于任意的正整数n ,)!1(!)!2(+n n n是一个整数.证明: 因为pot p ((2n )!) = ∑∞=⎥⎦⎤⎢⎣⎡12i i p n , pot p ((n )!) = ∑∞=⎥⎦⎤⎢⎣⎡1i i p n , pot p ((n +1)!) = ∑∞=⎥⎦⎤⎢⎣⎡+11i i p n .所以只需证∀ i ≥ 1, ⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡≥⎥⎦⎤⎢⎣⎡i i i p n p n p n 12. (*)设n = qp i + r , 0 ≤ r < p i , 则若r < p i - 1, 则,,1q p n q p n i i =⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+(*)式成立. 若r = p i - 1, 则,,11q p n q p n i i =⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+而⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=+≥⎥⎦⎤⎢⎣⎡-++=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡i i i i i i p n p n q p p q p p q p n i 1121122222, 故此时(*)式也成立. 所以)!1(!)!2(+n n n ∈Z . #6. 证明: 设∑==kj j n n 1, 则(1)!!...!!21k n n n n 是一个整数;(2) 如n 是一个素数, 而max(n 1, …, n k ) < n , 则!!...!!|21k n n n n n .证明:(1) 证法一 只需设n 1, n 2,…, n k 均为正数, 设p 为任意素数, 则v p ((n )!) = ∑∞=⎥⎦⎤⎢⎣⎡1i i p n , v p ((n j )!) = k j p n i i j ≤≤⎥⎦⎤⎢⎣⎡∑∞=0,1, 只需证∑=⎥⎦⎤⎢⎣⎡≥⎥⎦⎤⎢⎣⎡++k j i j ik p n p n n 11...对∀i ≥ 1均成立, 而由P64 性质2知这是显然的, 故!!...!!21k n n n n ∈Z .证法二 n = 2时,Z n n n n n n ∈⎪⎪⎭⎫ ⎝⎛=-111)!(!!, 假设n - 1时结论成立, 则当n 时Z n n n n n n n n n n n n n n n n n n n n k k k k ∈++++++=+++=)!()!...)((!!)!(!!...!)!...(!!...!!213212*********(由归纳假设知Z n n n n n n k ∈+++++)!()!...)((21321, 又!!)!(2121n n n n +∈Z .)(2) 若n 是素数, 且max(n 1, n 2,…,n k ) < n , 故n | n !, 而n |/n 1!, n 2!, …, n k !, 所以 !!...!!|21k n n n n n . #7. 证明: 如果在自然数列1 ≤ a 1 < a2 < … < a k ≤ n中, 任意两个数a i , a j 的最小公倍数[a i , a j ] > n , 则k ≤ ⎥⎦⎤⎢⎣⎡+21n . 证明:断言: 对于≤2n 的任意n + 1个正整数中, 至少有一个被另一个所整除. 设1 ≤ a 1 < a 2 < … < a n +1 ≤ 2n , a i = 2λi b i , λi ≥ 0, 2|/b i , 1 ≤ i ≤ n +1, 其中b i < 2n . 因为在1, 2, …, 2n 中只有n 个不同的奇数1, 3, …, 2n -1, 故b 1, b 2, …, b n +1中至少有两个相同. 设b i = b j , 1 ≤ i < j ≤ n +1, 于是在a i = 2λi b i 和a j = 2λj b i 中, 由a i < a j 知λi < λj . 故a i | a j .若k > ,21⎥⎦⎤⎢⎣⎡+n 当n = 2t 时, k > t n =⎥⎦⎤⎢⎣⎡+21, 故a 1, …, a k 为k (k ≥ t +1)个小于等于2t 的数, 故∃ i , j , 1 ≤ i < j ≤ k , 使得a i | a j . 故[a i , a j ] = a j ≤ n , 矛盾!若n = 2t + 1, 则k > ⎥⎦⎤⎢⎣⎡+21n = t + 1, 因为1, 2, …, n = 2t + 1中只能有t + 1个奇数, 故k 个数a 1, a 2, …, a k 中有一对数i , j , 1 ≤ i < j ≤ k , 使得a i | a j , 所以[a i , a j ] = a j ≤ n 矛盾. 故k ≤ ⎥⎦⎤⎢⎣⎡+21n . # 8. 证明: 若k > 0, 则∑==kd d u )(0)(ϕ. 证明:若∃ d , 使得ϕ(d ) = k ,则(1) 22 | d , 则u (d ) = 0不考虑.(2) 2 || d , 则(d /2, 2) = 1, 所以ϕ(d ) = ϕ(2⨯d /2) = ϕ(2)⨯ϕ(d /2) = ϕ(d /2) = k .而 u (d ) + u (d /2) = 0.(3) 2|/d , 则ϕ(2d ) = ϕ(2)⨯ϕ(d ) = ϕ(d ) = k , 而u (2d ) + u (d ) = 0. 故{u (d ) ≠ 0 | u (d ) = k }可分成若干对, 每对为u (d ) + u (2d ) = 0. 故∑==kd d u )(0)(ϕ. # 9. 证明∑=nd n u d u |22)()(.证明:由u (n )的定义有⎩⎨⎧=中含有平方因子中不含有平方因子n n n u ,0,1)(2, 当n 中不含有平方因子时, 显然∑==nd u d u |21)1()(当n 中含有平方因子时, 设n = n 02m , n 0 > 1, m 不含平方因子, 则0)()()()(1||.||0222022====∑∑∑∑>n d n d mn d nd d u d u d u d u .故=∑nd d u |2)(u 2(n ). #其实, 采用类似的方法可证⎩⎨⎧>=∑其它若,11,|,0)(|m n m d u k n d k. 10. 证明: 对于任一个素数p ,∑⎪⎩⎪⎨⎧≥===n d n p n n d p u d u | ,01, ,21,1)),(()(是其余情形若若若αα. 证明:n = 1结论显然. 若n = p α, α ≥ 1, 则2)()()1()1()),(()(|=+=∑p u p u u u d p u d u nd .若(n , p ) = 1, 则0)()),(()(||==∑∑nd nd d u d p u d u .若n = p αn 1, n 1 > 1, 则0)()()()()()()),(()(111|1|),(|1),(||=+=+=∑∑∑∑∑==n d n d pp d n d p d n d nd p u d u d u p u d u d u d p u d u #11. 证明∑=n d d d u n n |2)()()(ϕϕ 证明:n = 1时结论显然.n > 1时, 由于u (n ), ϕ(n )均是积性函数, 所以u 2(d )/ϕ(d ), ∑nd d d u |2)()(ϕ也是积性函数. 设n = p 1α1…p s αs , 则右边 = ∏∏∏===-=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+++sk s k s k kk k k k k k p p p p p u p p u k k 111221111)()(...)()(1ααϕϕ. 左边 =()∏∏∏===---=-=-sk k ksk kssk kssp p pp p pp p p p s s 111111111)1(...1 (11)αααα. 故 ∑=n d n n d d u |2)()()(ϕϕ. # 12. 证明: ∑=nd d d u |0)()(ϕ的充分必要条件是)2(mod 0≡n .证明:设n = k k p p αα (1)1, p 1, …, p k 为不同的素数, αi ≥ 1, i = 1, 2, …, k .)...()...(...)()()1()1()()(111|k kki iind p p pp u p p u u d d u ϕϕϕϕ+++=∑∑==∏∑==--++--+ki ikki i pp 11)1()1(...)1)(1(1=∏=--ki i p 1)11(所以,n pd d u ind |220)()(|⇔=∃⇔=∑某个ϕ. #13. 证明:)0(2)1()(1>+=⎥⎦⎤⎢⎣⎡∑=n n n d n d nd ϕ. 证明:n = 1时结论显然.假设对n = k 时成立, 即2)1()(1+=⎥⎦⎤⎢⎣⎡∑=k k d k d kd ϕ. 则n = k + 1时, 有)1(1)()(1)(1111++⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+∑∑∑==+=k d k d k d d k d d k d kd k d k d ϕϕϕϕ =)1()(2)1(11|++++∑+<+k d k k k d k d ϕϕ = ∑+++1|)(2)1(k d d k k ϕ =12)1(+++k k k = 2)2)(1(++k k . #证法二 因为∑⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡d n k d n 11, 所以∑∑∑⎥⎦⎤⎢⎣⎡====⎥⎦⎤⎢⎣⎡d n k nd nd d d n d 1111)()(ϕϕ∑∑⎥⎦⎤⎢⎣⎡===d n k n d d 11)(ϕ∑∑=⎥⎦⎤⎢⎣⎡==nk k n d d 11)(ϕ∑=⎥⎦⎤⎢⎣⎡=n k k n k 1)(ϕ)(1k k n n k ϕ∑=⎥⎦⎤⎢⎣⎡= )(...)3(3)2(2)1(n n n n ϕϕϕϕ++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=∑∑∑+++=nd d d d d d |2|1|)(...)()(ϕϕϕn +++=...21 2)1(+=n n . # 14. 计算S (n ) = ∑⎪⎭⎫⎝⎛n d d n u d u |)(.解:若n = 1, S (1) = 1, 若n = p 1…p k , 则S (n ) = ∑⎪⎭⎫⎝⎛nd d n u d u |)(= u (1)u (p 1p 2…p k ) + u (p 1)u (p 2…p k ) + … + u (p k )u (p 1…p k -1) +… + u (p 1p 2…p k )u (1)= (-1)k (k k kk C C C +++ (1)0) = 2k (-1)k若n = p 12p 2…p k , 则S (n ) = ∑+-==⎪⎭⎫⎝⎛nd k k p p p u p u d n u d u |1211)1()...()()(其余情形S (n ) = 0. # 15. 证明: n 是素数的充分必要条件是σ(n ) + ϕ(n ) = nd (n ). 证明:“⇒” 若n 为素数, 则σ(n ) = 1 + n , ϕ(n ) = n - 1, d (n ) = 2, 所以有σ(n ) + ϕ(n ) = nd (n ).“⇐” n , d (n ), ϕ(n ), σ(n )均是极性函数, 若n 不为素数的方幂, n = n 1n 2, (n 1, n 2) = 1,σ(n 1n 2) + ϕ(n 1n 2) = σ(n 1)σ(n 2) + ϕ(n 1)ϕ (n 2)≠ (σ(n 1)+ϕ(n 1))⋅( σ(n 2)+ ϕ (n 2)) = n 1n 2d (n 1n 2).若n = p α, α ≥ 1, σ(n ) = 1 + p + … + p α-1 + p α, ϕ(n ) = p α - p α-1, d (n ) = α + 1, 1 + p + … + p α-2 + 2p α = (α + 1)p α, 只有α = 1时σ(n ) + ϕ(n ) = nd (n )才成立, 即n 是素数. # 16. 证明: 如果有正整数n 满足ϕ(n + 3) = ϕ(n ) + 2, (1)则n = 2p α 或n + 3 = 2p α, 其中α ≥ 1, p ≡ 3 (mod 4), p 是素数. 证明:经验证可知n = 1, 2不满足(1)式, 设n > 2, 则ϕ(n ), ϕ(n +3)均为偶数. 由(1)知ϕ(n )和ϕ(n +3)不能同时被4整除, 故只能有ϕ(n ) ≡ 2 (mod 4), ϕ(n +3) ≡ 0 (mod 4)或ϕ(n ) ≡ 0 (mod 4), ϕ(n +3) ≡ 2 (mod 4).令n = 2α1p 2α2…p k αk , 则ϕ(n ) = 2α1-1p 2α2-1(p 2-1)…p k αk -1(p k -1). 由于ϕ(n )中2α1-1, (p 2-1), …, (p k -1)均被2整除, 若ϕ(n ) ≡ 2 (mod 4), 则n 只能含有一个奇素数因子, 因此n 有三种情况: (1) n = 2α1, 此时α1 = 2, 故n = 4; (2) n = p 2α2, 此时p 2满足p 2 ≡ 3 (mod 4); (3) n = 2α1p 2α2, 此时α1 = 1, p 2 ≡ 3 (mod 4), 即n = 2p 2α2. 因为ϕ(4) ≠ ϕ(1) + 2, 所以若ϕ(n +3) ≡ 2 (mod 4), 经类似的分析可得n + 3 = p α, 2p α, α ≥ 1, p ≡ 3 (mod 4). 设n = p α, 由(1)得ϕ(p α+3) = p α - p α-1 + 2 (2)设2t || p α + 3, t ≥ 1, 由(2)得 p α - p α-1 + 2 = ϕ(2t ⋅(p α + 3)/2t )= 2t -1⋅ϕ( (p α + 3)/2t ) ≤ 2t -1⋅( (p α + 3)/2t -1) = (p α + 3)/2-2t -1即有 p α - p α-1 + 2 ≤ (p α + 3)/2 - 1, 化简得p α ≤ 2p α-1 - 3, 也即3 ≤ p α-1(2-p ) 由于p > 2, 故 3 ≤ p α-1(2-p )不能成立. 同样可证n + 3 = p α时, (1)式不成立, 故n = 2p α或n + 3= 2p α. # 17. 证明ϕ(n ) ≥ n /d (n ).证明:设n 的标准分解式为s l s l p p n ...11=, 故ϕ(n )d (n ) = n (1-1/p 1)…(1-1/p s )(l 1 + 1)…(l s + 1) ≥ n (1/2)s 2s = n于是得ϕ(n ) ≥ n /d (n ). # 18. 求出满足ϕ(mn ) = ϕ(m ) + ϕ(n ) (1)的全部正整数对(m , n ). 解:设(m ,n ) = d , 则从ϕ(n )的公式不难有ϕ(mn ) = d ⋅ϕ(m )⋅ϕ(n )/ϕ(d ), 由(1)得ϕ(m ) + ϕ(n ) = d ⋅ϕ(m )⋅ϕ(n )/ϕ(d ), (2)设ϕ(m )/ϕ(d ) = a , ϕ(n )/ϕ(d ) = b , a , b 都是正整数, (2)化为1/a + 1/b = d (3)d > 2时, 易证(3)无正整数解, 在d = 1和d = 2时, (3)分别仅有正整数解a = b = 2和a = b = 1. 在d = 1, a = b = 2时, ϕ(m ) = ϕ(n ) = 2, 因此(m , n ) = (3, 4), (4, 3); 在d = 2, a = b = 1时, ϕ(m ) = ϕ(n ) = 1, 于是(m , n ) = (2, 2). # 19. 若n > 0, 满足24 | n + 1, 则24 | σ(n ). 证明:由24 | n + 1知n ≡ -1(mod 3)和n ≡ -1(mod 8), 设因子d | n , 则3|/d , 2|/d , 可设d ≡ 1, 2 (mod 3), d ≡ 1, 3, 5, 7(mod 8).因为d ⋅(n /d ) = n ≡ -1 (mod 3)和d ⋅(n /d ) = n ≡ -1(mod 8), 由此推出, d ≡ 1 (mod 3), n /d ≡ 2 (mod 3) 或d ≡ 2 (mod 3), n /d ≡ 1 (mod 3), 和d ≡ 3 (mod 8), n /d ≡ 5 (mod 8) 或d ≡ 5 (mod 8), n /d ≡ 3 (mod 8) 或d ≡ 1 (mod 8), n /d ≡ 7 (mod 8) 或d ≡ 7 (mod 8), n /d ≡ 1 (mod 8).每一种情形都有d + n /d ≡ 0 (mod 3), d + n /d ≡ 0 (mod 8), 故d + n /d ≡ 0(mod 24). 又若d = n /d , 则n = d 2, d > 1, 则因为2|/n , 所以2|/d , 但n = d 2 ≡ 1 (mod 8)矛盾. 所以n 的所有正因子可以配对, 每对为d , n /d , 故24 | σ(n ). # 20. 证明: 若n = p 1α1 p 2α2⋅⋅⋅ p k αk , k ≤ 8, 则ϕ(n ) > n /6. 证明:ϕ(n ) = ⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-k p p n 11...111 而p i 越大, 1 - 1/p i 越大, 故只要证p 1, p 2, …, p 8为前8个素数时, ϕ(n ) > n /6成立即可, 即要证611911...511311211>⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-, 而左边=6132332355296>, 即结论成立. # 21. 设w (1) = 0, n > 1, w (n )是n 的不同的素因子的个数, 证明:f (n ) = w (n )*μ(n ) = 0或1.证明:若n = p α (α ≥ 2)f (n ) = w (n )*u (n ) = ∑⎪⎭⎫⎝⎛nd d n w d u |)( = u (1)⋅w (p α) + u (p )⋅w (p α-1) = u (1)⋅1 + (-1)⋅1 = 0.若n = p ,f (n ) = w (n )*u (n ) = w (1)⋅u (p ) + w (p )⋅u (1) = 1若n = p 1α1 p 2α2⋅⋅⋅ p k αk , k ≥ 2, 则 f (n ) = w (n )*u (n )= ∑⎪⎭⎫⎝⎛nd d n w d u |)(= )1()1())1(()1(...)1()1()1(1110w C k k C k u C k u C k k k k k k kk -⋅+---⋅++-⋅-⋅+⋅⋅-- = 1|)')1((=-x k x= 0 # 22. 设f (x )的定义域是[0, 1]中的有理数,F (n ) = ()nknk f 1=∑, F *(n ) = ()n k nn k k f 1),(1==∑,证明: F *(n ) = μ(n )*F (n ). 证明:由Mobius 变换定理知, 等价于证明F (n ) = F *(n )*e (n ), 即要证F (n ) = ∑∑∑==⎪⎭⎫ ⎝⎛=nd dd k k nd d k f d F |1),(1|*)(. 而对于r /n , r = 1, 2, …, n 的每个分数, 既约后均为k /d , d | n , k ≤ d , (k , d ) = 1的形式, 即为某个r /n , 1 ≤ r ≤ n . 故∑∑∑===⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛n r nd dd k k n r f d k f 1|1),(1, 即F (n ) = ∑nd d F |*)(, 再由Mobius 逆变换即得. #23. 证明: 若f (n )是完全积性函数, 则对所有的数论函数g (n ), h (n ), 有f (n ) (g (n ) *h (n )) = (f (n )g (n )) * (f (n )h (n )).证明:f (n )⋅(g (n )*h (n )) = f (n )⋅(∑⎪⎭⎫⎝⎛nd d n h d g |)()= ∑⎪⎭⎫⎝⎛nd d n h d g n f |)()(= ∑⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛nd d n h d n f d g d f |)()(= (f (n )⋅g (n ))*(f (n )⋅h (n )) #24. 证明: 若f (n )和f 1(n )各为g (n )和g 1(n )的麦比乌斯变换, 则()()d nnd dn nd f d g g d f 1|1|)()(∑=∑. 证明:f (n ) = ∑nd d g |)(, f 1(n ) = ∑nd d g |11)(,∑∑∑⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛nd n d dc d n g c g d n g d f |||11)()( ∑∑∑∑∑==⎪⎭⎫⎝⎛an b na n a an b n d b g a g b g a g d n f d g ||1||1|1)()()()()( 令b = n /d , 则(n /d ) | (n /a )⇒ a | d . 于是∑∑∑∑⎪⎭⎫⎝⎛=n d d a an b na d n g a gb g a g ||1||1)()()(.故∑∑⎪⎭⎫⎝⎛n d dc d n g c g ||1)(与∑∑n a an b b g a g ||1)()(展开式中每一项均相等, 因此()()d nnd dn nd f d g g d f 1|1|)()(∑=∑. # 证法二f = g *e ,f 1 =g 1*e , 则f *g 1 = g *e *g 1 = g *g 1*e = g *(g 1*e ) = g *f 1. # 25. 设f (x )是一个整系数多项式, ψ(n )代表f (0), f (1), ⋅⋅⋅ , f (n -1) (1)中与n 互素的数的个数, 证明: (1) ψ(n )是积性数论函数;(2) ψ(p α) = p α-1( p -b p ), b p 代表(1)中被素数p 整除的数的个数. 证明:(1) 需证 ∀(m , n ) = 1,f (0), f (1), …, f (n -1) f (n ), f (n + 1), …, f (2n -1) ……f ((m -1)⋅n ), f ((m -1)⋅n + 1), …, f ((m -1)⋅n + n -1)中与mn 互素的个数为ψ(m )ψ(n )个. 又f (x )为整系数多项式, 故 f (i + n ) ≡ f (i ) mod n f (i + m ) ≡ f (i ) mod m故上述mn 个数中每一行与n 互素的有ψ(n )个, 所以f (0), f (1), …., f ((m -1)⋅n + n -1)中共有m ψ(n )个与n 互素的数. 而f (i ), f (n + i ), …, f ((m -1)⋅n + i )由于i , n + i , …, (m -1)⋅n + i 恰好通过mod m 的一组完系, 所以上述m ψ(n )个与n 互素的数中有ψ(m )ψ(n )个与m 互素, 因此有ψ(mn ) = ψ(m )ψ(n ). (2) (a , p α) = 1⇔(a , p ) = 1, 而f (0), f (1), …, f (p -1) f (p ), f (p + 1), …, f (2p -1) ……f ((p α-1-1)⋅p ), f ((p α-1-1)⋅p + 1), …, f ((p α-1-1)⋅p + p -1) 每一行与p 互素个数为p -b p , 于是ψ(p α) = p α-1(p -b p ). # 26. 证明.))((())((2|3|t d t d nt nt ∑=∑证明:因为d 为积性函数, 故d 3, d 3*e , (d *e )2均为积性函数, 故只需对n = 1及n = p α证明上式即可!n = 1时, 左边 = 1 = 右边, 故命题成立. n = p α时, p 为素数, α ≥ 1时()()223330303|32141)1(...21)1())(())((++=++++=+==∑∑∑==ααααααi i ipt i p d t d ()()∑∑∑∑=++=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==ααααααp t i i i p t t d i p d t d |32220202|))((2141)1()()(. # 27. 找出所有的正整数n 分别满足(1) ϕ(n ) = n /2; (2) ϕ(n ) = ϕ(2n ); (3) ϕ(n ) = 12.证明: 设n = p 1α1 p 2α2⋅⋅⋅ p k αk , p 1 < p 2 < … < p k , 则ϕ(n ) = n (1-1/p 1)…(1-1/p k ).(1) 若ϕ(n ) = n /2, 则(1-1/p 1)…(1-1/p k ) = 1/2.若t = 1, 则p 1 = 2, n = 2α即为所求.若p 1 ≠ 2, (1-1/p 1)…(1-1/p k ) = 1/2, 则2(p 1-1)…(p k -1) = p 1p 2…p k , 而p 1, p 2, …, p k 均为不同的奇素数, 所以此时ϕ(n ) = n /2不成立.(2) 若n 为奇数, p 1, p 2, …, p k 均为不同的奇素数, 则)(11...1111...112112)2(11n p p n p p n n k k ϕϕ=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=. 若n 为偶数, 设p 1 = 2, 则)(211...211211...112112)2(2n p n p p n n t ϕϕ=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=. 所以当n 是奇数时, ϕ(n ) = ϕ(2n ).(3) 若ϕ(n ) = p 1α1-1(p 1-1) p 2α2-1(p 2-1)⋅⋅⋅ p k αk -1(p k -1) = 12, 则p i - 1 | 12, i = 1,2, …, k . 故p i ∈ {2, 3, 5, 7, 13}且k ≤ 3, αi ≤ 3, i = 1, 2, …, k . 则若2|/n , ϕ(n ) = 12, 则n = 13, 3⨯7; 若2||n , 则n = 2⨯13, 2⨯3⨯7; 若4 || n , 则n = 4⨯7. 若2k || n (k ≥ 3), 则ϕ(n ) = ϕ(2k )⋅ϕ(n /2k ) = 2k -1⋅ϕ(n /2k ) = 12没有整数解, 所以ϕ(n ) = 12的解只有n = 13, 3⨯7, 2⨯13, 2⨯3⨯7, 4⨯7. #28. 证明: 设p n 表示第n 个素数, 则存在正常数C 1, C 2使C 1 n log n < p n < C 2 n log n .证明:n ≥ 2时, 由第7节定理1有nnn n n log 12)(log 81≤≤π将n 换成p n , 有nn n np p n p p log 12log 81≤≤. (1)上面不等式左边给出 p n ≤ 8n log p n . (2) 两边取对数有 log p n ≤ log8n + loglog p n . (3) 又x > 1时, log x < x /2, 所以loglog p n < log p n /2. 所以由(3)式, 有log p n /2<log8n . log p n <2log8n ≤8log n (因为n ≥ 2, (8n )2 ≤ n 8)再由(2)有, p n <64n log n , 取C 2 = 64即可. 而(1)的右边给出p n ≥ n log p n /12> n log n /12, 故取C 1 = 1/12即可. 即(1/12) n log n < p n < 64 n log n . #29. 证明: 设f 1 = f 2 = 1, F n +2 = F n +1 + F n (n ≥ 0), 则(F m , F n ) = F (m , n ).证明:(1) 首先证明对于n ≥ 2, m ≥ 1有f n +m = f n -1f m + f n f m +1, (*)对m 归纳证之m = 1时, 要证f n +1 = f n -1f 1 + f n f 2 = f n -1 + f n 即可. 假设小于m 时(*)成立. 则等于m 时, 由题设 f n +m = f n +m -1 + f n +m -2= (f n -1f m -1 + f n f m ) + (f n -1f m -2+f n f m -1) (归纳假设) = f n -1(f m -1 + f m -2) + f n (f m + f m -1) = f n -1 f m + f n f m +1 (m ≥ 3)m = 2时, f n +2 = f n +1 + f n = f n + f n -1 + f n = 2f n + f n -1f 2 = f n -1f 2 + f n f 3 故(*)成立.(2) 若m | n , 则f m | f n , 事实上, 设n = mn 1, 对n 1归纳, n 1 = 1时显然, 设f m | f mn 1, 则f m (n 1+1) = f mn 1+m )1(=f mn 1-1⋅f m + f mn 1⋅f m +1 故f m | f m (n 1+1) 故m | n 时, f m | f n . (3) (f n , f n + 1) = 1, n ≥ 1设(f n , f n + 1) = d , 则由题设 f n + 1 = f n +f n - 1 ⇒ d | f n - 1, 继续下去得d | f 1 = 1, 即d = 1. (4) 设m > n , (f m , f n ) =f (m , n ). 若m = n , 显然. 事实上, 设m = nq + r , 0 < r < n .(因若n | m , 由(2)显然). 由(1)及(2)有:(f m , f n ) = (f nq + r , f n )= (f nq - 1f r + f nq f r + 1, f n ) nqn f f |=(f nq - 1f r , f n )而f n | f nq , (f nq - 1, f nq ) = 1, ∴(f nq - 1, f n ) = 1, ∴(f m , f n ) = (f r , f n )令n = q 1r + r 0, 同上又有(f r , f n ) = (f r , f r 0) =…=f (m , n ). # 30. 证明: 设f (n )是一个积性函数, 则对素数的方幂p α (α ≥ 1)有f ( p α) = f ( p )α,则f (n )是完全积性函数. 证明:设m = p 1α1 p 2α2⋅⋅⋅ p k αk , n = p 1β1 p 2β2⋅⋅⋅ p k βk , αi ≥ 0, βi ≥ 0, i = 1, 2 , …, k .f (m ) = f (p 1α1 p 2α2⋅⋅⋅ p k αk ) = f (p 1α1)…f (p k αk ) = f (p 1)α1…f (p k )αk .同理, f (n ) = f (p 1)β1…f (p k )βk . 所以f (mn ) = f (p 1α1+β1p 2α2+β2⋅⋅⋅ p k αk +βk ) = f (p 1)α1+β1…f (p k )αk +βk . #31. 证明: 若F (n ), f (n )是两个数论函数, 则F (n ) = nd |∏f (d )的充分必要条件是f (n ) = nd |∏F (d )μ(n /d ).证明:“⇒”)/(||1|)/(1)()(d n u n d dd nd d n u d f d F ∏∏∏== )/(|)/(|1111)(td n u n d d n t d f ∏∏(d = d 1t )= ∑∏)1/(|11)/(|1)(d n t td n u nd d f = ∏=11|1)(d n nd d f= f (n )“⇐”)/(||1|)/(1)()(d n u n d dd nd d n u d F d f ∏∏∏== )/(|)/(|1111)(td n u n d d n t d F ∏∏ (d = d 1t )= ∑∏)1/(|11)/(|1)(d n t td n u nd d F= ∏=11|1)(d n n d d F= F (n ) #。
高斯小学奥数五年级下册含答案第14讲_数论相关的计数
第十四讲数论相关的计数在前面的学习中,我们学习了解决计数问题的一些基本方法,包括:枚举法、树形图、分类讨论、加法原理和乘法原理、排列与组合等.计数问题是多种多样的,它经常与其他的知识联系在一起,比如几何、数论、数字谜等等.今天让我们来研究一下结合了数论知识的计数问题.例1.恰好能同时被6,7,8,9整除的四位数有多少个?「分析」大家还记得公倍数怎么求吗?练习1、恰好能同时被4,5,6整除的三位数有多少个?例2.用1、2、3、4、5、7这6个数字各一次组成六位数,并且使这个六位数是11的倍数,有多少种不同的方法?「分析」根据11的整除特性,通过分析奇位数字和与偶位数字和,再结合本题的已知条件可以获得解题的线索.练习2、用1,2,3,4各一次组成四位数,使得它是11的倍数,有多少种不同的方法?例3.从1~10这10个数中选出2个数,请问:(1)要使这2个数的乘积能被3整除,一共有多少种不同的选法?(2)要使这2个数的和能被3整除,一共有多少种不同的选法?「分析」(1)两个数的乘积能被3整除,那么这两个数中至少有一个能被3整除.如何选取才能保证选到3的倍数呢?(2)要考虑两个数的和是否能被3整除,只需要考虑每个数除以3的余数的情况,那么怎样的两个数相加才能被3整除呢?练习3、从1~12这12个数中选出2个数,请问:(1)要使这2个数的乘积能被3整除,一共有多少种不同的选法?(2)要使这2个数的和能被3整除,一共有多少种不同的选法?例4.如果称能被8整除或者含有数字8的自然数为“吉利数”,那么在1至200这200个自然数中有多少个“吉利数”?「分析」这道题目可以从两方面入手,8的倍数和含有数字8的数,注意其中重复的情况.练习4、在1至200这200个自然数中,含有数字9或者能被9整除的有多少个?前面几个例题都是计数与整除相结合的题目.而除了整除之外,与数字相关的问题也属于数论的范畴,下面我们来看两道与数字有关的计数问题.例5.有一种“上升数”,这些数的数字从左往右依次增大,将所有的四位“上升数”按从小到大的顺序排成一行:1234,1235,1236,…,6789.请问:此列数中的第100个数是多少?「分析」数字从左往右依次增大的数是“上升数”,那么四位“上升数”一共有多少个呢?显然,不能将前100个“上升数”都写出来,那怎么才能方便的计算出第100个数呢?例6.一个正整数,如果从左到右看和从右到左看都是一样的,那么称这个数为“回文数”.例如:1331,7,202,66都是回文数,而220则不是回文数.请问:六位回文数有多少个?五位回文数又有多少个?五位的回文数中,有多少个是4的倍数?「分析」“回文数”一定是左右对称的,不妨从左往右分析,一旦左面的一个数字确定,右面一定有一个数字和其相同.回文联数学当中有回文数,在文学当中也有回文联.回文联,它是我国对联修辞奇葩(pā)中的一朵.用回文形式写成的对联,既可顺读,也可倒读,不仅它的意思不变,而且颇具趣味.兹举数例如下.其一:河南省境内有一座山名叫鸡公山,山中有两处景观:“斗鸡山”和“龙隐岩”.有人就此作了一副独具慧眼的回文联:斗鸡山上山鸡斗龙隐岩中岩隐龙其二:厦门鼓浪屿鱼脯浦,因地处海中,岛上山峦叠峰,烟雾缭绕,海淼淼水茫茫,远接云天.于是,一副饶有趣味的回文联便应运而生:雾锁山头山锁雾天连水尾水连天其三:清代,北京城里有一家饭馆叫“天然居”,乾隆皇帝曾就此作过一副有名的回文联:客上天然居居然天上客上联是说,客人上“天然居”饭馆去吃饭.下联是上联倒着念,意思是没想到居然像是天上的客人.乾隆皇帝想出这副回文联后,心里挺得意.即把它当成一个联,向大臣们征对下联,大臣们面面相觑,无人言声.只有大学士纪晓岚即席就北京城东的一座有名的大庙——大佛寺,想出了一副回文联:人过大佛寺寺佛大过人上联是说,人们路过大佛寺这座庙.下联是说,庙里的佛像大极了,大得超过了人.纪学士的下联,想得挺不错.这副回文联放到乾隆皇帝的一块,就组成一副如出一口的新回文联了:客上天然居居然天上客人过大佛寺寺佛大过人其四:湛江德邻里有一副反映邻里之间友好关系,鱼水深情的回文联,至今传颂不衰:邻居爱我爱居邻鱼傍水活水傍鱼作业1.1~100中,7的倍数有多少个?除以7余2的数有多少个?2.从1~15中,选出2个数,使它们的和是3的倍数,共有多少种选法?3.用1、2、3、4、5、8、9组成不重复的七位数,其中有多少个能被11整除?4.如果把三位的“上升数”从小到大排列一下,如123、124、…,那么第20个上升数是多少?5.有一类六位数,组成每个数的六个数字互不相同,并且每个数中任意两个相邻的数字组成的两位数都能被3整除.这类六位数共有多少个?第十四讲 数论相关的计数例题:例7. 答案:18详解:一个数能被6,7,8,9整除,即是6,7,8,9的倍数.6,7,8,9的最小公倍数为504,所有满足条件的数都是504的倍数.999950419423÷=,故1~9999中共有19个数是504的倍数.9995041495÷=,故1~999中共有1个数是504的倍数.则四位数中有19118-=个数是504的倍数.即能同时被6,7,8,9整除的四位数有18个.例8. 答案:72详解:用1,2,3,4,5,7各一次组成六位数,六个数字的和为22.若为11的倍数,则奇位和与偶位和的差只能为0.奇位填1,3,7,偶位填2,4,5,考虑到1,3,7可以互换,2,4,5可以互换,故共有3333A A 36⨯= 种填法.同理奇位填2,4,5,偶位填1,3,7,也有36种填法,共72种填法.例9. 答案:(1)24;(2)15详解:(1)若两个数的乘积是3的倍数,则其中至少有一个数是3的倍数.1~10中是3的倍数的有3,6,9这3个数,不是3的倍数的有7个.分两种情况:<1>两个数中只有一个是3的倍数,有1137C C 21⨯=种选法;<2>两个数均为3的倍数,有23A 3=种选法.共有24种选法.另解:排除法:不加任何条件选两个数的方式减去,没有3的倍数的情况,22107C -C 24=;(2)将1~10这10个数按除以3的余数不同进行分类.除以3余0的有(3,6,9), 除以3余1的有(1,4,7,10),除以3余2的有(2,5,8).若两数之和为3的倍数,分两种情况:<1>两个数除以3均余0.有23C 3=种选法.<2>其中一个数除以3余1,另一个数除以3余2.有1143C C 12⨯=种选法.共有31215+=种选法.例10. 答案:56详解:可以将题目条件分成两部分,先看能被8整除的数,200825÷=,因此能被8整除的数有25个.再看含有数字8的数,我们可以从反面考虑较为方便,即看不含有数字8的数有多少个.百位可以选0或1(百位选0,表示其为两位数),十位可以选除8以外的9个数,个位也可选除8以外的9个数,共有299162⨯⨯=个数不含有数字8.0~199共有200个数,含有数字8的有20016238-=个.考虑到有些数既能被8整除,又含有数字8,这样的数有8,48,88,128,168,以及80和184,共7个数.因此吉利数有2538756+-=个.例11. 答案:3479详解:若上升数的首位为1,剩下的3位可以从2~9中选,且顺序一定,有38C 56=种选法,即首位为1的上升数有56个.同理,若首位为2,剩下的3位可以从3~9中选,有37C 35=种选法,即首位为2的上升数有35个.再考虑首位为3的上升数,依次为3456,3457,3458,3459,3467,3468,3469,3478,3479.即第100个上升数为3479.例12. 答案:900;900;200详解:六位“回文数”应为abccba 的形式,a 有1~9这9种选择,b 有0~9这10种选择,c 有0~9这10种选择,由乘法原理这样的数共有91010900⨯⨯=个.五位“回文数”应为abcba 的形式,a 有1~9这9种选择,b 有0~9这10种选择,c 有0~9这10种选择,由乘法原理这样的数共有91010900⨯⨯=个. 若回文数为4的倍数,则末两位为4的倍数,可为04,08,12,16,……,96共24个数,除去20,40,60,80这四个不满足条件的数,共有20种选择.考虑到c 有0~9这10种选择,故共有2010200⨯=个五位回文数是4的倍数.“练习:1. 答案:15简答:4、5、6的最小公倍数是60,三位数中60的倍数有99960115÷-≈个.2. 答案:8简答:用1,2,3,4各一次组成四位数,四个数字的和为10.若为11的倍数,则奇位和与偶位和的差只能为0.奇位填1,3,偶位填2,4,考虑到1,3,可以互换,2,4,可以互换,故共有224⨯=种填法.同理奇位填2,4,偶位填1,3,也有4种填法,共8种填法.3. 答案:38;22简答:解法同例3.4. 答案:55简答:先看能被9整除的数,2009222÷=,因此能被9整除的数有22个.再看含有数字9的数,仍可从反面考虑,即看不含有数字9的数有多少个.百位可以选0或1(百位选0,表示其为两位数),十位可以选除9以外的9个数,个位也可选除9以外的9个数,共有299162⨯⨯=个数不含有数字9.0~199共有200个数,含有数字9的有20016238-=个.考虑到有些数既能被9整除,又含有数字9,这样的数有9,99,189,90,198,共5个数.因此含有数字9或者能被9整除的有2238555+-=个.作业6. 答案:14,15简答:1007142÷=,7的倍数有14个;100298-=,98714÷=,14115+=.除以7余2的有15个.7. 答案:35简答:1~15中,除以3余0、余1和余2的都有5个.和为3的倍数,那么两数可能是余1+余2或者余0+余0.第一种有5525⨯=种选法,第二种有25C 10=种选法,一共有35种选法.8. 答案:432简答:能被11整除,说明这个七位数奇数位之和与偶数位之和的差是11的倍数.而奇数位之和与偶数位之和的和是123458932++++++=,那么奇数位之和与偶数位之和可以都是16,或者是27和5,后面这种情况不可能.偶数位有3个数字,和为16可能是952++,943++,853++.那么一共可以组成4343A A 3432⨯⨯=个能被11整除的七位数.9. 答案:157简答:前两位为12的上升数有7个,前两位为13的上升数有6个,前两位为14的上升数有5个.那么第19个上升数是156,第20个上升数是157.10. 答案:72简答:如果首位数字除以3余0,那么其余的所有数字也都除以3余0,这样的话一定会重复,这样的六位数不存在.如果首位数字除以3余1,那么后面的数字除以3的余数依次是2、1、2、1、2.这样的六位数有3333A A 36⨯=个.如果首位数字除以3余2,这样的六位数也有36个.一共有72个.。
小升初专项训练-第10讲数论篇1-答案
第10讲小升初专项训练数论篇1-答案姓名____________得分____________一、小升初考试热点及命题方向数论是历年小升初的考试难点,各学校都把数论当压轴题处理。
数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。
作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。
二、基本公式1、已知b|c,a|c,则[a,b]|c,特别地,若(a,b)=1,则有ab|c。
理解:b|c表示:b能整除c,即c是b的倍数,b是c的因数;a|c表示:a能整除c,即c是a的倍数,a是c的因数;[a,b]表示:a和b的最小公倍数;(a,b)=1表示:a、b的最大公因数是1,即a与b互质。
例1:若3a75b能被72整除,问a=_1_,b=_2_.(迎春杯试题)解:①根据能被8整除的数的特征,可知是b=2,即752能被8整除。
②根据能被9整除的数的特征,可知a是1,即3+1+7+5+2=18,18÷9=22、已知c|ab,(b,c)=1,则c|a。
理解:a与b的积是c的倍数,也就是“c的所有因数都包含在a与b的积中”,又因为b和c 互质,除了1之外,没有别的公因数,所以,“c的所有因数都包含在a中”,即c能整除a,写作:c|a。
3、唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积,即n= p11a× p22a×...×pkak(#)其中p1<p2<...<pk为质数,a1,a2,....ak为自然数,并且这种表示是唯一的。
该式称为n的质因子分解式。
理解:即分解质因数例2:连续3个自然数的积为210,求这三个数为5、6、7 .4、约数个数定理:理解:按以下步骤①先将这个数分解质因数,按标准的格式写出来;②再把相同的因数写成乘方的形式(注意:1不写);③将所有的指数先分别加1,再相乘,所得的积就是这个数因数的个数。
数论基础答案
数论基础答案【篇一:现代密码学(谷利泽)课后题答案】>第一章判断题选择题1、1949年,( a )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。
a、shannonb、diffiec、hellmand、shamir2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由( d)决定的。
a、加密算法b、解密算法c、加解密算法d、密钥3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是( b )。
a无条件安全b计算安全c可证明安全d实际安全4、根据密码分析者所掌握的分析资料的不通,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是( d )。
a、唯密文攻击b、已知明文攻击c、选择明文攻击d、选择密文攻击填空题:5、1976年,w.diffie和m.hellman在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。
6、密码学的发展过程中,两个质的飞跃分别指1949年香农发表的保密系统的通信理论和公钥密码思想。
7、密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分析学。
8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法5部分组成的。
9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。
10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。
第二章选择题:1、字母频率分析法对(b )算法最有效。
a、置换密码b、单表代换密码c、多表代换密码d、序列密码2、(d)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。
a仿射密码b维吉利亚密码c轮转密码d希尔密码3、重合指数法对(c)算法的破解最有效。