第六章-简单超静定问题-习题选解

合集下载

第6章简单的超静定问题

第6章简单的超静定问题
T1l 1 GI P1 T2l 2 GI P 2
材料力学 任课教师:金晓勤
21
φ
代入变形几何条件得:
φ1 φ2
T1l T1l Tl GI P1 GI P 2 GI P 2

I P1T 32 T1 T2 I P1 I P 2 D 4 d 4 D 4 d 4 1 1 2 2 32 32 1004 904 2 1.165kNm 4 4 4 4 100 90 90 80
代入数据,得
FW 0.717 F Fst 0.283F
根据角钢许用应力,确定F
F
st
0.283F st Ast
F 698kN
根据木柱许用应力,确定F
0.717 F W W AW
许可载荷
F 1046kN
250 250
F 698kN
材料力学
将平衡方程与补充方程联立,求解,可得:
RA RB P RAl1 RB l2 E A E A 0 2 2 1 1
P RA E2 A2l1 1 E1 A1l2
P RB E1 A1l2 1 E2 A2l1
材料力学 任课教师:金晓勤
9
例题 木制短柱的4个角用4个40mm×40mm×4mm的等边角钢加固, 已知角钢的许用应力[σst]=160MPa,Est=200GPa;木材的许 用应力[σW]=12MPa,EW=10GPa,求许可载荷F。 F 解: 平衡方程: F FW Fst 变形协调关系: l st l w (1)
b
⑶物理方程
FN 1l1 FN 1l l1 E1 A1 E1 A1 cos FN 2l2 FN 2l l2 E2 A2 E2 A2

第六章简单超静定问题习题选解

第六章简单超静定问题习题选解

图习题⋅-16图⋅N l 图习题⋅-56习 题[6-1] 试作图示等直杆的轴力图。

解:把A 支座去掉,代之以约束反力A R (↑)。

A AC R N = F R N A CD 2-=F R N A BD 3-=变形协调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)2(2=-+-+F R F R R A A A47FR A =故:47F R N A AC == 42472FF F F R N A CD -=-=-= 453473FF F F R N A BD-=-=-= 轴力图如图所示。

[6-5] 图示刚性梁受均布荷载作用,梁在A 端铰支,在B 点和C 点由两根钢杆BD 和CE 支承。

已知钢杆BD 和CE 的横截面面积22200mm A =和21400mm A =,钢杆的许用应力MPa 170][=σ,试校核该钢杆的强度。

解:以AB 杆为研究对象,则:0=∑AM1023)330(3121=⨯⨯-⨯+⨯N N 135321=+N N (1)变形协调条件:3121=∆∆l l 123l l ∆=∆112238.1EA lN EA l N ⨯=⋅ 40032008.112N N =⋅ 212.1N N = (2)(2)代入(1)得:13532.122=+N N)(143.322.41352kN N ≈=(拉力) )(571.38143.322.12.121kN N N ≈⨯== (压力)按轴力正负号的规定,记作:kN N 571.381-=;kN N 143.322=强度校核:MPa MPa mm N A N 170][4275.9640038571||||2111=<===σσ,符合强度条件。

图习题⋅-156 MPa MPa mm NA N 170][715.160200321432122=<===σσ,符合强度条件。

第六章简单的超静定问题

第六章简单的超静定问题

第六章简单的超静定问题知识要点1.超静定问题的概念(1)静定问题结构或结构的约束反力或内力均能通过静力学平衡方程求解的问题。

(2)超静定问题结构或构件的约束反力或内力不能仅凭静力学平衡方程全部求解的问题。

(3)超静定次数未知力(约束反力或内力)数超过独立的静力平衡方程书的数目。

(4)多余约束力超静定问题中,多余维持静力平衡所必需的约束(支座或杆件)。

(5)多余未知力与多余(支座或杆件)相应的支座反力或内力。

(6)基本静定系在求解静定结构时,解除多余约束,并代之以多余未知力,从而得到一个作用有荷载和多余未知力的静定结构,称之为原超静定结构的基本体静定系。

2.静不定问题的解题步骤(1) 静力平衡条件——利用静力学平衡条件,列出平衡方程。

(2) 变形相容条件——根据结构或杆间变形后应保持连续的变形相容条件,作出位移图,由位移图的几何关系列出变形间的关系方程。

(3) 物理关系——应用胡克定律列出力与变形间的关系方程。

(4) 将物理关系代入变形相容条件,得补充方程 。

补充方程和静力平衡方程,二者方程数之和正好等于未知数的个数,联立平衡方程和补充方程,求解全部未知数。

习题详解6-1 试作题6-1图(a )所示等直杆的轴力图。

解 解除题6-1图(a )所示等直杆的约束,代之以约束反力,作受力图,如题6-1图(b )所示。

由静力学平衡条件,03,0=-+=∑F F F FB A Y和变形协调条件0=∆+∆+∆DB CD AC 并将()EAa F EA a F F EA a F B DB A CD A AC -=∆-=∆=∆,22,代入式②,可得 联立式①,③,解得45,47F F F F B A == 轴力如图6-1图(c )所示6-2 题6-2图(a )所示支架承受荷载F=10 kN,1,2,3各杆由同一材料制成,其横截面面积分别为232221200,150,100mm A mm A mm A ===。

试求各杆的轴力。

材料力学-简单的超静定问题

材料力学-简单的超静定问题

2021/6/16
4
2021/6/16
5
2021/6/16
6
§6-2 拉压超静定问题
拉压变形时的胡克定律 l FN l EA
综合考虑变形的协调条件、虎克定律和静力 学平衡条件求解拉压超静定问题。
2021/6/16
7
例 已知1、2杆抗拉刚度为E1A1, 3杆抗拉刚度为E3A3, F的大小已知,求各杆内力。
13
2
l
A
A*
l3
FN 3l E3 A3
9
4、联解方程
FN1
2 cos
F
E 3 A3
E 1 A1 c o s 2
FN 3
1
2
F E 1 A1
cos3
E 3 A3
2021/6/16
10
装配应力的计算:超静定结构中由于加工误 差, 装配产生的应力。
平衡方程:
FN1 FN2
F N 3(F N 1F N 2)cos
超静定问题:若未知力的个数多于独立的平
衡方程的个数,仅用静力平衡方程便无法确定
全部未知力,这类问题为超静定问题。相应结
构称为超静定结构。
2021/6/16
2
超静定次数:未知力个数与独立平衡方程数之 差,也等于多余约束数。
多余约束:在结构上加上的一个或几个约束, 对于维持平衡来说是不必要的约束称多余约束。 对应的约束力称多余约束反力。
由于超静定结构能有效降低结构的内力及变 形,在工程上应用非常广泛。
2021/6/16
3
基本静定系:解除多余约束代之于未知力后的 结构。
●超静定问题的解法:综合考虑变形的几何相 容条件、物理关系和静力学平衡条件。

材料力学第六章简单的超静定问题

材料力学第六章简单的超静定问题
A3
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm

例2
图所示结构,刚性横梁AB由斜杆CD吊在水 平位置上,斜杆CD的抗拉刚度为EA,B点 处受荷载F作用,试求B点的位移δB。
§6-1 超静定问题
静定结构:
约束反力 可由静力平 衡方程全部 求得
超静定结构:结构的强度和刚度均得到提高 约束反力不能全 部由平衡方程求得 超静定次数: 约束反力多于 独立平衡方程的数
独立平衡方程数: 平面任意力系: 3个平衡方程 平面共点力系:
2个平衡方程
平面平行力系:2个平衡方程 共线力系:1个平衡方程
3
B
联立①②③,解得:
D
1 C 2 30 30 3
A
y
A
3FN1 2FN 2 3FN 3
FN1 FN 3 2F
F
FN 1 FN 2 FN 3
y
A
x
FN 3 2FN1 2FN 2
2 FN1 2 F 25.4kN 3 1 127MPa(拉)
FN 1 FN 2 FN 3
y
A
列出平衡方程: FN 1 cos 30 0 FN 2 FN 3 cos 30 0 Fx 0
Fy 0
FN1 sin 30 0 FN 3 sin 30 0 F
FN1 FN 3 2F
x 即:
3FN1 2FN 2 3FN 3
1 2
EA
2000
EA N1 =
6000

《材料力学》第6章-简单超静定问题-习题解

《材料力学》第6章-简单超静定问题-习题解

轴力图1234-5-4-3-2-11234567N(F/4)x(a)第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。

设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。

[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。

试求各杆的轴力。

解:以节点A 为研究对象,其受力图如图所示。

∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。

材料力学土木类第六章简单的超静定问题

材料力学土木类第六章简单的超静定问题
§6.1 超静定问题及其解法
第6章 简单的超静定问题
静定结构: 仅靠静力平衡方程就可以求出结构的约束反力或内力
超静定结构(静不定结构): 静力学平衡方程不能求解 超静定结构的未知力的数目多于独立的平衡方程的数目;两者的差值称为超静定的次数
分析:画出受力及变形简图
写出独立平衡方程
一次超静定问题。
l
变形协调条件:原杆两端各自与刚性板固结在一起,故内、外杆的扭转变形相同。即变形协调条件为
代入物理关系(胡克定理),与平衡方程联立,即可求得Ma和Mb。
并可进一步求得杆中切应力如图(内、外两杆材料不同),一般在两杆交界处的切应力是不同的。
按叠加原理:
BB、BM分别为MB、Me引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为
代入上式可解得
MA可平衡方程求得 。
例 图示一长为l 的组合杆,由不同材料的实心圆截面杆和空心圆截面杆套在一起而组成,内、外两杆均在线弹性范围内工作,其扭转刚度分别为GaIpa和GbIpb。当组合杆的两端面各自固结于刚性板上,并在刚性板处受一对扭转力偶矩Me作用时,试求分别作用在内、外杆上的扭转力偶矩。
根据分离体的平衡条件,建立独立的平衡方程;
建立变形协调条件,求补充方程
利用胡克定律,得到补充方程;
联立求解
归纳起来,求解超静定问题的步骤是:
例 一平行杆系,三杆的横截面面积、长度和弹性模量均分别相同,用A、l、E 表示。设AC为一刚性横梁,试求在荷载F 作用下各杆的轴力
解: (1)受力分析--平衡方程
例 设l,2,3杆用铰连接如图,1、2两杆的长度、横截面面积和材料均相同,即l1=l2=l,A1=A2 =A , E1= E2=E;3杆长度为l3 ,横截面面积为A3,弹性模量为E3 ,试求各杆的轴力。

简单的超静定问题

简单的超静定问题

M A Me M B 0
Me MB
A
C
B
2、变形协调方程
B 0

BM BM 0
e B
Me
MB
A
C
B
3、补充方程
BM
e
M e a GI p
BM
BM Bl GI p NhomakorabeaM e a M Bl 0 GI p GI p
M ea MB l

4、联立解得
3、物理方程
FN 1l l1 EA FN 3 l l 3 EA FN 2 l l 2 EA

FN 1 FN 2 FN 3
F 12 F 3
C′
补充方程 FN 1 FN 3 2FN 2
7F 12
例题3:如图所示结构,杆①、②的刚度为EA,梁BD 为刚体,载荷F=50kN,许用应力[s]160MPa。试确 定各杆的横截面积。 解: 1、确定各杆内力 取横梁为研究对象 平衡方程
FB aEAT
由平衡方程得 FA FB aEAT
例题5:如图所示结构,三杆的刚度均为EA,杆③的长 度比设计长度l短了d。试求装配后各杆的轴力。
A
D
① ③ a a C′ C l2 ②
B
解:对称结构,内力对称 变形协调方程
l1 d l 3 cos a
l
d
l3 l1
lt a1 T l1 a 2 T l 2
A
l1
C
l2
B
约束力产生的变形
l FB FB l1 F l B2 E1 A1 E2 A2
lt
FB
变形协调方程

孙训方材料力学06简单的超静定问题

孙训方材料力学06简单的超静定问题
量E3 .试求在沿铅垂方向的外力 F 作用下各杆的轴力.
B
DC
1
3

2
A
F
10
材料力学
第六章 简单的超静定问题
解:(1)判断超静定次数 结构为一次超静定。
(2)列平衡方程
Fx 0 FN1 FN2
Fy 0
FN1 cos FN2 cos FN3 F 0
B
D
1
3 2
l2 C
l1 A
A
B
F (6)联立平衡方程与补充方程求解
FN1 FN2 FN3 F 0 2aFN1 aFN2 0 FN1 FN3 2FN2
FN1 F / 6 FN2 F / 3 FN3 5F / 6
材料力学
Ⅱ. 装配应力
B
杆系装配好后,各杆将处于
材料力学
【例】 图示等直杆 AB 的两端分别与刚性支承连结。设两 支承的距离(即杆长)为 l,杆的横截面面积为 A,材料的弹
性模量为 E,线膨胀系数为 。试求温度升高 T 时杆内的
温度应力。
A
B
l
材料力学 A
解: 这是一次超静定问题
l
变形相容条件:杆的长度不变
A
Δl 0
杆的变形为两部分:
q B
l/2
FC
l
基本静定系 或相当系统
材料力学
第六章 简单的超静定问题
求解超静定问题的步骤
(1) 判断超静定次数:去掉多余约束,画上相应约束反力 —建立基本静定系。
(2) 列平衡方程: 在已知主动力,未知约束反力及多余约束 反力共同作用下;
(3) 列几何方程:根据变形相容条件; (4) 列物理方程:变形与力的关系; (5) 组成补充方程:物理方程代入几何方程即得。

第六章简单的超静定问题

第六章简单的超静定问题

Tl
GI p
补充方程:由几何方程和物理方程得;
解由平衡方程和补充方程组成的方程组。
[例]长为 L=2m 的圆杆受均布力偶 m=20Nm/m 的作用,如图,若杆
的内外径之比为 =0.8 ,外径 D=0.0226m ,G=80GPa,试求固端
反力偶。
解:①杆的受力图如图示, 这是一次超静定问题。 平衡方程为:
所有超静定结构,都是在静定结构上再加一个或几个约束,这些约束对于特定的 工程要求是必要的,但对于保证结构平衡却是多余的,故称为多余约束.
未知力个数与平衡方程数之差,称为超静定次数或静不定次数.
求解超静定问题,需要综合考察结构的平衡,变形协调和物理等三个方面.
超静定问题的方法步骤:
平衡方程; 几何方程——变形协调方程; 物理方程——胡克定律; 补充方程:由几何方程和物理方程得; 解由平衡方程和补充方程组成的方程组。
两杆的横截面面积分别为A钢=1000mm2,A铜=2000mm2。当F=200kN, 且温度升高20℃时,试求1、2杆内的应力。钢杆的弹性模量为E钢=210GPa 线膨胀系数αl钢=12.5×10-6 ℃-1;铜杆的弹性模量为E铜=100GPa,线膨胀 系数αl铜=16.5×10-6 ℃ -1;
1 F1
装配应力——预应力 温度应力
2.拉压超静定问题 一铰接结构如图示,在水平刚性横梁的B端作用有载荷F,
例题 6.1
垂直杆1,2的抗拉压刚度分别为E1A1,E2A2,若横梁AB的自重不计,求 两杆中的内力.
MA 0
1
A
C
2
L1
FN1a FN22a F2a 0
B
变形协调方程
a
a
F
试校核该梁的强度.

简单超静定问题—习题

简单超静定问题—习题

6-1试作图示等直杆的轴力图。

解:平衡方程:0:3xA B FF F F =+=∑几何方程:00ABACD D AB C B l lll l ∆=∆+∆+∆==∆物理方程:(2)2(2)A AC AAC A C D A C D B ACB AC F l F al E A E AF F l F F al E AE AFlF a lE AE A++-∆==--∆==∆==-补充方程:(32)042A A A B B F a F F a F aE A E A FA E F F -+--==联立求解:7453344A B A A B B F F F F FF F F F F +=⎧⎨-=⎩⎧=⎪⎪⎨⎪=⎪⎩轴力图:如图所示。

F N7F /4 - +F /4 5F /46-2如图所示托架承受载荷10kN F =,等直杆1、2、3由同一材料制成,各杆横截面面积分别为21100mm A =、22150mm A =、23200mm A =。

试求1、2、3轴力。

解:平衡方程(如图所示):oo0:()cos3000:()cos600x D B C y D B F F F F F F F F ⎧=--=⎪⎨=+-=⎪⎩∑∑几何方程(如图所示):123o o13oo 2321o2;;cos(60)cos(90)cos(60)cos(60)1(ctg sin 2cos(60)1(ctg sin 2l l l l l l l l l l θθθθθθθθθ∆∆∆=∆=∆=∆--+⎧∆-==⎪∆⎪∆-∆⇒⎨∆+⎪==∆⎪⎩物理方程: 123oo123;;cos30cos30B C D F l F l F ll l l E A E A E A ∆=∆=∆=补充方程:1323222B D CB DC F F F F F F A A A -=⇒-=联立求解:8.4530kN 2.6795kN 11.5470kN(220(02)2B C B D C D D B C D B F F F F F F F F F F F F ⎧-=⎪+-=⇒⎨⎪-=⎧⎩=⎪=⎨⎪=⎩ll 1 D x6-3如图所示刚性板由四根截面形状、大小及杆长相同的支柱支撑。

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-简单的超静定问题(圣才出品)

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-简单的超静定问题(圣才出品)
图 6-2-4 (2)补充方程 作铰 A 的位移图,由几何关系可得变形协调方程: Δl1/sin30°=2Δl2/tan30°+Δl3/sin30°③ 其中,由胡克定律可得物理关系:
8 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台

Δl1=FN1l1/EA1=FN1l/(EA1cos30°) Δl2=FN2l2/EA2=FN2l/(EA2) Δl3=FN3l3/EA3=FN3l/(EA3cos30°) 代入式③可得补充方程: FN1l/(EA1sin30°·cos30°)=2FN2l/(EA2tan30°)+FN3l/(EA3sin30°·cos30°)④ (3)求解 联立式①②④,可得各杆轴力:FN1=8.45kN,FN2=2.68kN,FN3=11.55kN。
9 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台

MB = 0
FN2 Leabharlann 2 2a+
FN4
2 2
a
+
FN3
2a − F ( 2 a + e) = 0 2

根据结构的对称性可得 FN2=FN4③
(2)补充方程
如刚性板的位移图所示,根据几何关系可得:Δl1+Δl3=2Δl2④
由结构对称可知 Δl2=Δl4,其中,由胡克定律可得各杆伸长量:
Δl1=FN1l/EA,Δl2=FN2l/EA,Δl3=FN3l/EA
代入式④,整理可得补充方程:FN1+FN3=2FN2⑤
(3)求解
联立式①②③⑤,解得各杆轴力:
FN1
=
(1 4

e )F(压) 2a
FN2
=
FN4
=
F 4

06第六章 简单超静定问题(拉压)

06第六章 简单超静定问题(拉压)

补充内容:第六章简单超静定问题§6-1 超静定问题及其解法•一、静定和超静定问题静定问题:约束反力(轴力)可由静力平衡方程求得用平衡方程可求两杆轴力,为静定问题。

§6-2 拉、压超静定问题超静定度(次)数:平面平行力系:2个平衡方程共线力系:1个平衡方程§6-2 拉、压超静定问题拉压超静定结构的求解方法:5、求解方程组得αα3221cos 21cos +==F F F N N α33cos 21+=F F N 1l ∆2l ∆3l ∆§6-2 拉、压超静定问题§6-2 拉、压超静定问题§6-2 拉、压超静定问题o30BC o 30D123§6-2 拉、压超静定问题o30BC o 30D123F§6-2 拉、压超静定问题o30BC o 30D123F拉压超静定问题例 图示刚性梁AB受均布载荷作用,梁在A端铰支,在B点和C点由两根钢杆BD和CE支承。

已知钢杆的横截面面积ADB=200mm2, 例题 6.2 A =400mm2,其许用应力[σ]=170MPa,试校核钢杆的强度。

CE 1)列静力平衡方程 2)变形协调方程1.8L∑MA=0FNCE = 135kN − 3FNBDFNBD × 1.8l 5 3× F × l FNCE= 3∆L− 30kN / m × 3m × 1.56 + FNBD= 3m = 0 NCE 2 ×1m m 2 = × ∆LDB CE NCE 200 × 10 −FNBD × E F400 × 10 −6 m × E mD630kN / mBFNBD = 32.2kNFNCE = 38.4kNALC1m2mEDFBD32.2 × 103 N FNBD = = 161MPa2p [σ ] σ BD = 200mm ADBσ CEB′ FBD1m 2m30kN / mF = NCE ACE38.4 × 103 N = = 96MPa p [σ ] 400mm 2ABCE∆LCE∆ LDB例题 6.3 图示结构中的三角形板可视为刚性板。

材料力学-简单超静定

材料力学-简单超静定

EA
C
F
B
FRA

b L
F
FRB

a L
F
L
例 图示一长为l 的组合杆,由不同材料的实心圆截
面杆和空心圆截面杆套在一起而组成,内、外两杆
均在线弹性范围内工作,其扭转刚度分别为GaIpa和 GbIpb。组合杆的左端为固定端,右端固结于刚性板 上。当在刚性板处受力偶矩Me作用时,试求分别作 用在内、外杆上的扭矩。
FN1 FN2 FN3 /2
(2) 几何方程
B 1
1
C1 2
A1 l
C 1 3
B
C
A C'
aa
l1l3 Δ FN1l FN3l Δ EA E3A3
二、温度应力
a
t
A
EA
C
L
a
t
A
EA
C
L
b B
b B
静定结构无温度应力
超静定结构 有温度应力
B=0
FB
tL F B L =0
l
A
A
A
F
F
FN3’
(1)
(2)
ΔA1 ΔA2
(F FN3)l
2E1A1 cos2

FN' 3l cos
E3 A3
FN3
12
F E1A1
cos3
E3A3
FN1
FN2

F
2cosE1AE13cAo32s
讨论:1. 刚度引起的受力分配原则 2. 基本结构的不同取法
例2-12 如图所示,三杆的横截面积、长度和弹性
a
b
FAFFB
F

第六章简单的超静定问题共51页

第六章简单的超静定问题共51页

试校核该梁的强度.
列静力平衡方程
q
Fy 0
A
C
L2
FA
L2
FC
变形协调方程
B
FAF BF CqL 0
MA0
FB
L
qL2
FC 2FBL 2 0
5 qL 4
CqCF C0384 EI Z
FC L3 48 EI Z
7.5kNm0FC来自5 qL 8FB
3 16
qL
FA
3 16
qL
M 7.5kNm max
例题
6.2
点由两根钢杆BD和CE支承。已知钢杆的横截面面积ADB=200mm2, ACE=400mm2,其许用应力[σ]=170MPa,试校核钢杆的强度。
列静力平衡方程 MA0
FNCE 13k5 N 3FNBD
变形协调方程
D
F LN DB 31 C m L CE 3 E k / m 0 N 2 3 m F 0 N 1 1 . 5 0 B F6 m 0 1 Nm D .B 8 2 DlF N E 65 F4 3 NB m CE3 0 D 1 0 F N 0 6 0 m C 2 l E E
F
2m
列静力平衡方程 MA0
F12F2F
变形协调方程2 m F F L1 1 24 mm F 2 L24m
2m A
L2 2L1
4m
F2
1m 2
L1 EF11LA1! gTL1
F2L2 E2A2
L2tTEFL222LA222(EFt11LA1T! L2gTL1)
2 . 1 F 2 8 F 1 2 4 0 1 . 5 1 2 . 5 4 6 . 2 1 2 N 0
a

第六章 简单的超静定问题

第六章     简单的超静定问题
C
A
4m
F A
20kN m
ω1 =ω2 B B
A
M A
ω1 B
4m
B
F B ′ F 40kN B
L F 3q 5 P3 q 4 −FL =87 k L . 5N F B B ω1=2 8 − 4 = 8 B 8 IZ 3 IZ 3 E E 2 L L F 15 NP F F =q −F =7 .2 k L3 A FL B P2 2 L ω 2 = BL + + B q2 3 I 3 E E M = IZ −FE= 2 k2 IZ 2 L Z1 5 N m A B 2
EI1 P a A b
P3 a y= 1 3I E1
P P M A A y1 x y2
EI2 x y
(P ) ⋅a ab y = 2 E2 I
P2 a b a y=y +y = ( + ) 1 2 E 3 1 I2 I
(P ) 2 ab x= 2 I2 E
轴向拉压
对称弯曲
扭 转
内力分量 轴力F 轴力FN 应力分布规律 正应力均匀分布
A. 若取支反力 B为多余约束力,则变形协调条件是截面 的挠度 B=0; 若取支反力F 为多余约束力,则变形协调条件是截面B的挠度 的挠度ω B. 若取支承面 1对弹簧底面的作用力 c1为多余约束力,则变形协调条件为 若取支承面C 对弹簧底面的作用力F 为多余约束力, C1面的铅垂线位移 1=0; 面的铅垂线位移∆C C. 若取支承面 1对弹簧底面的作用力 c1为多余约束力,则变形协调条件为 若取支承面C 对弹簧底面的作用力F 为多余约束力, C1面的铅垂线位移 1等于弹簧的变形 面的铅垂线位移∆C 等于弹簧的变形; D. 若取弹簧与梁相互作用力为多余约束力,则变形协调条件为梁在 截面的挠 若取弹簧与梁相互作用力为多余约束力,则变形协调条件为梁在C截面的挠 等于弹簧的变形。 度ωc等于弹簧的变形。

第6章简单的超静定问题详解

第6章简单的超静定问题详解

(3) 建立补充方程
FN1 RA
FN 2 RB
l1
FN1l1 E1 A1
l2
FN 2l2 E2 A2
RAl1 RBl2 0 —— 补充方程 E1A1 E2 A2
RA A P C
B RB
材料力学 任课教师:金晓勤 8
(4) 联立求解
将平衡方程与补充方程联立,求解,可得:
RA RB P
查表知40mm×40mm×4mm等边角钢 Ast 3.086cm2 故 Ast 4Ast 12.34cm2, AW 25 25 625cm2
代入数据,得 FW 0.717F Fst 0.283F
根据角钢许用应力,确定F
st
0.283F Ast
st
F 698kN
根据木柱许用应力,确定F
例: 若管道中,材料的线膨胀系数 12.5106 / C, E 200GPa,
温度升高 T 40C

T
RB A
E T
100MPa
材料力学 任课教师:金晓勤 14
2).装配应力
图示超静定杆系结构,中间杆加工 制作时短了Δ。已知1,3杆拉伸刚 度为E1A1 , 2杆为E2A2 ,试求三 杆在D点铰接在一起后各杆的内力。
超静定结构:约束反力不能由平衡方程求得 结构的强度和刚度均得到提高
超静定度(次)数: 约束反力多于独立 平衡方程的数
独立平衡方程数:
平面任意力系: 3个平衡方程
平面共点力系: 2个平衡方程
平面平行力系:2个平衡方程 共线力系:1个平衡方程
材料力学 任课教师:金晓勤 4
6.2 拉压超静定问题
例: 图示构件是由横截面 面积和材料都不相同的 两部分所组成的,在C截 面处受P力作用。试求杆 两端的约束反任课教师:金晓勤 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


习题⋅-16


N l 图
习题⋅-56习 题
[6-1] 试作图示等直杆的轴力图。

解:把A 支座去掉,代之以约束反力A R (↑)。

A AC R N = F R N A CD 2-=
F R N A BD 3-=
变形协调条件为:
0=∆l
02=⋅+⋅+⋅EA a
N EA a N EA a N BD CD AC 02=++BD CD AC N N N
03)2(2=-+-+F R F R R A A A
4
7F
R A =
故:4
7F R N A AC =
= 42472F
F F F R N A CD -=-=-= 4
53473F
F F F R N A BD
-
=-=-= 轴力图如图所示。

[6-5] 图示刚性梁受均布荷载作用,梁在A 端铰支,在B 点和C 点由两根钢杆BD 和CE 支承。

已知钢杆BD 和CE 的横截面面积22200mm A =和21400mm A =,钢杆的许用应力MPa 170][=σ,试校核该钢杆的强度。

解:以AB 杆为研究对象,则:
0=∑A
M
1
02
3
)330(3121=⨯
⨯-⨯+⨯N N 135321=+N N (1)
变形协调条件:
3
1
21=∆∆l l 123l l ∆=∆
1
12238.1EA l
N EA l N ⨯=⋅ 400
32008.11
2N N =⋅ 212.1N N = (2)
(2)代入(1)得:
13532.122=+N N
)(143.322
.4135
2kN N ≈=
(拉力) )(571.38143.322.12.121kN N N ≈⨯== (压力)
按轴力正负号的规定,记作:
kN N 571.381-=;kN N 143.322=
强度校核:
MPa MPa mm N A N 170][4275.9640038571||
||2
111=<===σσ,符合强度条件。


习题⋅-15
6 MPa MPa mm N
A N 170][715.160200321432
122=<===
σσ,符合强度条件。

因此,钢杆符合强度条件,即安全。

[6-15(a)] 试求图示超静定梁的支反力。

解:把B 支座去掉,代之以约束反力B R ,则变形协调方程为:
0=B w 0=+B e R BM w w
查附录IV ,得:
EI
a M EI a M w e e BM e
2222)2(-=-=
EI
a R a a EI a R w B B R B
38)223(6)2(3
2-=-⨯-=
故, 03823
2=--=+EI
a R EI a M w w B e R BM B e
03
4=+
a
R M B e a
M R e
B 43-
= (负号表示方向向下,即↓) 由0=∑Y 得:a
M R e
A 43=
(↑)
B

习题⋅-176
B
由0=∑A M 得:e e A M a a M M +⋅-243,a
M
M e A 2=(逆时针方向转动)
[习题6-17] 梁AB 因强度和刚度不足,用同一材料和同样截面的短梁AC 加固,如图所示。

试求:
(1)二梁接触处的压力C F ;
(2)加固后梁AB 的最大弯矩和B 点的挠度减小的百分数。

解:(1)求二梁接触处的压力C F
以AB 为研究对象,把C 处的圆柱垫去掉,代之以约束反力C F (↑);以AC 为研究对象,作用在C 处的力为'C F (↓)。

C F 与'C F 是一对作用与反作用力,
'C C F F =。

受力如图所示。

AB 梁在C 处的挠度:
C CF CF AB C w w w +=,。

查附录IV 得:
EI
Fl l l EI l F w CF
48523(6)2(32
=
-=
B
B
FL

M EI
l F l l EI l F w C C CF C
24)223(6)2(32
-
=-⋅-= 故,EI
l F EI Fl w w w C CF CF AB C C 244853
3,-=+= AC 梁在C 处的挠度:
EI
l F EI l F w C C AC
C 243)2(33
',=
= 变形协调方程:
AC C AB C w w ,,=
EI
l F EI l F EI Fl C C 242448533
3=- 2424485C
C F F F =- C C F F F 225=-
4
5F
F C =
(↑) (2)求加固后梁AB 的最大弯矩和B 点的挠度减小的百分数 ① 弯矩的变化情况
加固前:2
2Fl l F M C -=⋅
-= max M Fl M A =-=
B
A

M Fl 3Fl 加固后:
max '
2
2M Fl l F M C
=-=⋅-=
8
3245'
Fl
l F Fl M A -
=⋅+
-= 显然,AB 梁的最大弯矩
减小:%5021=-Fl Fl
Fl (负弯矩只表示AB 梁上侧受拉) ② B 点挠度的变化情况
加固前:
EI
Fl w B 33
=
加固后:2
'
l w w w C C CF CF CF B ⋅++=θ
EI
Fl w CF
33= EI Fl EI l F EI l F l l EI l F w C C CF C
965244524)223(6)2(333
2-
=⋅-=-=-⋅-= EI
Fl EI l F EI l F EI l F EI l l F C C C CF C
3258458]2)2(22[222
2-
=⋅-=-=-⋅⋅-=θ 故,2
'
l w w w C C CF CF CF B ⋅++=θ
23259653233l
EI Fl EI Fl EI Fl ⋅--=
EI
Fl 192393
=
B 点挠度减小的百分数为:
%3964251926419225319239333
333===-EI
Fl EI Fl EI Fl EI Fl EI Fl。

相关文档
最新文档