本科近世代数复习题

合集下载

近世代数题库

近世代数题库

近世代数题库(总12页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除群一、填空题1. 设4)(x x f =是复数集到复数集的一个映射, 则)1(1-f ={_______}.2. 设τ=(134),σ=(13)(24), 则τσ=____________________.3. 群G 的元素a 的阶是m ,b 的阶是n ,ba ab =,则≤ab ,如果),(m n = 1,则=ab_____.4. 设<a >是任意一个循环群.若|a |=∞,则<a >与________________同构;若|a |=n ,则<a >与______________同构.5. 设σ=(14)(235),τ=(153)(24),则|σ| = ____,στσ1- =______.6. 设群G 的阶为m ,G a ∈,则=m a .7. 设“~”是集合A 的一个关系,如果“~”满足_________________,则称“~”是A 的元素间的一个等价关系.8. 设σ=(23)(35),τ=(1243)(235)∈S 5,那么στ=___________(表示成若干个没有公共数字的循环置换之积), τ是 (奇、偶)置换.9. 设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为 .10. 一个群G 的非空子集H 做成一个子群的充分必要条件是 .11. 设G 为群,若对于任意的元G b a ∈,,都有ba ab =,则称群G 为 群.12.n 次对称群n S 的阶是____________.13.设G =<a >是10阶循环群,则G 的全部生成元有 ,G 的子群有 个,分别是 .14.设H 是群G 的子群,G b a ∈,,则⇔=Hb Ha .15.设G =<a >是循环群,则G 与整数加群同构的充要条件是 .16.在3次对称群3S 中,H ={(1),(123),(132)}是3S 的一个正规子群,则商群H S 3中的元素(12)H ={}.17.如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 .18.设集合A 有一个分类,其中i A 与j A 是A 的两个类,如果j i A A ≠,那么=j i A A .19. 凯莱定理说:任一个群都与一个 同构.20. 设G =<a >是12阶循环群, 则G 的生成元集合为{ }.21. 一个群G 的一个子群H 的右陪集(或左陪集)的个数叫做H 在G 中的 .22. 设G 是一个pq 阶群,其中q p ,是素数,则G 的子群的一切可能的阶数是 ____ .23. 写出S 3的一个非平凡的正规子群_____.24. 已知群G 中的元素a 的阶等于50,则4a 的阶等于 .25. 一个有限非可换群至少含有____________个元素.26. 设G 是p 阶群(p 是素数),则G 的生成元有____________个.27. 一个有限群中元素的个数叫做这个群的 .28.设R 是实数集,规定R 的一个代数运算ab b a 2:= ,(右边的乘法是普通乘法),就结合律、交换律而言,“ ”适合如下运算律: .29. 设H 是群G 的子群,G b a ∈,,则⇔=bH aH .30. 写出三次对称群3S 的子群()(){}13,1=H 的一切左陪集 .31. 如果G 是一个含有15个元素的群,那么,G 有 个5阶子群,对于∀∈a G ,则元素a 的阶只可能是___________.32.设G 是一个pq 阶群,其中q p ,都是素数,则G 的真子群的一切可能的阶数是 ,G 的子群的一切可能的阶数是 .33. 已知群G 中的元素a 的阶等于n ,则k a 的阶等于n 的充分必要条件是 .34. 设(G ,·)是一个群,那么对于∀∈b a ,G ,(ab )-1=___________.k36.若一个群G 的每一个元都是G 的某一个固定元a 的方幂,则G 称为 .37.5-循环置换)31425(=π,那么=-1π .38.设G 为群,G N ≤,且对于任意的G a ∈,有 ,则N 叫做G 的正规子群.39. 设G 为乘群,G a ∈,则能够使得e a m =的最小正整数m ,叫做a 的___________.设G 为加群,G a ∈,则能够使得 的最小正整数m ,叫做a 的阶.40.设τ=(1243)(235)∈5S ,那么1-τ=___ _.τ是 (奇、偶)置换.41. 设~是集合A 的元间的一个等价关系,它决定A 的一个分类:则a 所在的等价类a ={ }.42. 设A ={d c b a ,,,},则A 到A 的映射共有________个,A 到A 的一一映射共有 ________个,A A ⨯到A 的映射共有________个(A 上可以定义 个代数运算).43. 设G 是6阶循环群,则G 的生成元有____________个.44. 非零复数乘群*C 中由i -生成的子群是____________.45. )125(=σ,)246(=τ,则στ的阶数等于 .46.素数阶群G 的非平凡子群个数等于____________.47. 设G 是一个n 阶交换群,a 是G 的一个m (n m ≤)阶元,则商群><a G 的阶等于 .48. 设σ是集合A 到集合B 的一个映射,则存在B 到A 的映射τ,使στσ⇔=A 1 为 ;存在B 到A 的映射τ,使σστ⇔=B 1为 .49. 若群G 中的每个元素的阶都有限,则称G 为 群. 若群G 中除了单位元外,其余元素的阶都无限,则称G 为 群.50. n 阶循环群有 个生成元,有且仅有 个子群.51. 若n k ,则n 阶循环群>=<a G 必有k 阶子群,其k 阶子群为 .52. 在同构意义下,4阶群只有两个,一个是4阶循环群,另一个是 .53. 在同构意义下,6阶群只有两个,一个是6阶循环群,另一个是 .54. 非交换群G 的每个子群都是其正规子群,则称G 为 群.55. n 元置换)(21k i i i 的阶为 ,=-12121)])([(m k j j j i i i .二、选择题1. 设R B A == (实数集),如果A 到B 的映射R x x x ∈∀+→,2:ϕ,则ϕ是从A 到B 的( ).A) 满射而非单射; B) 单射而非满射;C) 一一映射; D) 既非单射也非满射.2.3S 中可以与(123)交换的所有元素有( ).A) (1),(123),(132); B) (12),(13),(23); C) (1),(123); D)3S 中的所有元素.3.设15Z 是以15为模的剩余类加群,那么15Z 的子群共有( )个.A) 2 B) 4 C) 6 D) 8.4. 设c b a ,,和x 都是群G 中的元素且xac acx bxc a x ==-,12,那么=x ( ).A) 11--a bc B) 11--a c C) 11--bc a D) ca b 1-.5. 设f 是复数集到复数集的一个映射. 如果对任意的复数x ,有4)(x x f =,则))1((1f f -=( ).A) {1,-1}; B) {i ,-i }; C) {1, -1,i ,-i }; D) 空集.6. 设A ={所有实数},A 的代数运算是普通乘法,则以下映射作成A 到A 的一个子集A 的同态满射的是( ).A) x x 10→ B) x x 2→ C) x x → D) x x -→.7. 设G 是实数集,定义乘法k b a b a ++= :,这里k 为G 中固定的常数,那么群() ,G 中的单位元e 和元x 的逆元分别是( ).A) 1和x -; B) 1和0; C) -k 和k x 2-; D)k -和)2(k x +-.8.下面的集合对于给定的代数运算不能成为群的是( ).A) 全体整数对于普通减法; B) 全体不为零的有理数对于普通乘法;C) 全体整数对于普通加法; D) 1的3次单位根的全体对于普通乘法.9. 设G 是群,c b a ,,是群G 中的任意三个元素, 则下面阶数可能不相等的元素对为( ).A)ba ab , B) bac abc , C) 1,-bab a D) 1,-a a .10. 设R 是实数集合,规定R 的元素间的四个关系如下,( )是R 的等价关系.A)b a aRb ≤⇔; B) 0≥⇔ab aRb ; C) 022≥+⇔b a aRb ; D) ab aRb ⇔<0.11.设G 是一个半群,则下面的哪一个不是做成群的充要条件( ).A) G 中有左单位元,同时G 中的每个元素都有左逆元;B) 对于G 中任意元素a 和b ,G 中恰好有一个元素x 满足a x =b ;同时G 中恰好有一个元素y满足y a =b ;C) G 中有单位元,同时G 中的每个元素都有逆元;D) 在G 中两个消去律成立.12.设H 是群G 的子群,且G 有左陪集分类{}cH bH aH H ,,,. 如果子群H 的阶是6,那么G 的阶=G ( ).A) 6 B) 24 C) 10 D) 1213. 三次对称群3S = {(1),(12),(13),(23),(123),(132)},那么下面关于3S 的四个论述中,正确的个数是( ).(1) 3S 是交换群;(2) 3S 的2阶互异子群有三个;(3) 3S 的3阶互异子群有两个;(4) 3S 的元素(123)和(132)生成相同的循环群.A) 1 B ) 2 C) 3 D) 414. 设Z 15是以15为模的剩余类加群,那么,Z 15的子群共有( )个。

近世代数试题及答案

近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。

答案:半群2. 一个群G的所有子群的集合构成一个________。

答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。

答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。

答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。

答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。

答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。

正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。

2. 请解释什么是群的同态和同构。

答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。

群的同构是同态,并且是双射,即存在逆映射。

3. 请解释什么是环的零因子和非零因子。

答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。

如果环R中不存在零因子,则称R为无零因子环。

近世代数复习题及答案

近世代数复习题及答案

近世代数复习题及答案1. 群的定义是什么?请给出一个例子。

答案:群是一个集合G,配合一个运算*,满足以下四个条件:封闭性、结合律、单位元的存在性、逆元的存在性。

例如,整数集合Z在加法运算下构成一个群。

2. 什么是子群?如何判断一个子集是否为子群?答案:子群是群G的一个非空子集H,使得H中的元素在G的运算下满足群的四个条件。

判断一个子集是否为子群,需要验证它是否在群运算下封闭,是否包含单位元,以及每个元素是否有逆元。

3. 什么是正规子群?请给出一个例子。

答案:正规子群是群G的一个子群N,对于G中任意元素g和N中任意元素n,都有gng^-1属于N。

例如,整数集合Z在加法运算下的子群2Z(所有偶数的集合)是一个正规子群。

4. 什么是群的同态?请给出一个例子。

答案:群的同态是两个群G和H之间的函数φ,使得对于G中任意两个元素a和b,都有φ(a*b) = φ(a) * φ(b)。

例如,函数φ: Z → Z_2定义为φ(n) = n mod 2,是整数群Z到模2整数群Z_2的一个同态。

5. 什么是群的同构?请给出一个例子。

答案:群的同构是两个群G和H之间的双射同态。

这意味着G和H不仅满足相同的群运算规则,而且它们之间存在一一对应关系。

例如,群Z_3(模3整数群)和群{1, -1}在乘法下构成的群是同构的。

6. 什么是环?请给出一个例子。

答案:环是一个集合R,配合两个运算+和*,满足以下条件:(R, +)是一个交换群,(R, *)满足结合律,且乘法对加法满足分配律。

例如,整数集合Z在通常的加法和乘法运算下构成一个环。

7. 什么是理想?如何判断一个子集是否为理想?答案:理想是环R的一个子集I,满足以下条件:I在加法下封闭,对于R中任意元素r和I中任意元素i,都有ri和ir属于I。

判断一个子集是否为理想,需要验证它是否在加法下封闭,以及是否满足吸收性质。

8. 什么是环的同态?请给出一个例子。

答案:环的同态是两个环R和S之间的函数φ,使得对于R中任意两个元素a和b,都有φ(a+b) = φ(a) + φ(b)和φ(a*b) = φ(a) * φ(b)。

近世代数考试试题题库

近世代数考试试题题库

近世代数考试试题题库近世代数是一门研究代数结构的数学分支,它主要研究群、环、域等代数结构的性质和它们之间的关系。

以下是一份近世代数考试试题题库的示例内容:一、选择题1. 以下哪个不是群的公理?A. 单位元存在性B. 可逆性C. 交换律D. 结合律2. 一个集合G,配合一个二元运算*,若满足以下条件,则G是一个群:A. 存在单位元B. 每个元素都有逆元C. 运算满足结合律D. 所有上述条件3. 在群G中,若a属于G,a的阶是最小的正整数n,使得a^n等于单位元,那么a的阶是:A. 1B. nC. 0D. G的阶4. 以下哪个是有限群的拉格朗日定理的表述?A. 群的子群的阶总是群的阶的因子B. 群的子群的阶等于群的阶C. 群的子群的阶总是群的阶的倍数D. 群的阶总是其子群的阶的倍数5. 环R中,若存在单位元1,并且对于任意的a, b属于R,都有a*b=b*a,则R是一个:A. 群B. 域C. 交换环D. 模二、填空题6. 群的______性质保证了每个元素都有逆元。

7. 一个有单位元的结合环,如果其每个非零元素都有逆元,则这个环称为一个______。

8. 一个环的加法群是阿贝尔群,如果它的加法运算满足______律。

9. 一个环R中,如果a^2 = a对于所有a属于R,则R被称为______环。

10. 一个域的特征是2,这意味着域中1+1=______。

三、简答题11. 解释什么是子群,并给出一个不是子群的例子。

12. 描述拉格朗日定理,并说明它在群论中的重要性。

13. 什么是环的雅各比恒等式,并解释它在交换环中的意义。

14. 举例说明什么是有限域,并讨论它的性质。

15. 解释什么是主理想环,并讨论它与环的整性之间的关系。

四、证明题16. 证明:如果H是群G的一个子群,那么G/H的阶等于[G:H]。

17. 证明:任何群的子群都是阿贝尔的当且仅当该群本身是阿贝尔的。

18. 证明:如果R是一个有单位元的交换环,并且对于任意的a, b属于R,都有a*b = b*a,则R是一个域。

近世代数复习题

近世代数复习题

近世代数复习题例1 :写出剩余类加群Z15的(1) 全部元素; { [0], [1], …, [14]}(2) 全部生成元; { [1], [2], [4], [7], [8], [11], [13], [14]}(3) 全部子加群;?[0]?, ?[1]?= Z15, ?[5]?={[0], [5], [10]}= ?[10]?,[3]?={ [0], [3], [6], [9], [12]} = ?[6]?= ?[9]?= ?[12]?.(4) 每个元素的负元;-[1]=[14], -[2]=[13], -[3]=[12],-[4]=[11], -[5]=[10], -[6]=[9], -[7]=[8].(5) 全部理想;([0]), ([1]) = Z15, ([5])={[0], [5], [10]}= ([10]),([3])={ [0], [3], [6], [9], [12]} = ([6])= ([9])= ([12]).(6) 全部可逆元;{ [1], [2], [4], [7], [8], [11], [13], [14]}(7) 全部零因子;{ [3], [5], [9], [10], [12]}(8) Z15是域吗?说明理由; 不是。

因为有零因子。

一、选择题1、设实数在有理数域Q上的极小多项式f(x)的次数为n, 则可以用圆规直尺作图作出的条件是(A)(A) n是2的方幂;(B) n是素数;(C) n是素数的方幂;(D) n>2。

2、设H是群G的正规子群,商群G/H中的元素是(C)(A) H中的元素;(B) G\H中的元素;(C) G 关于H 的所有右陪集;(D) H 的所有共轭1Hg -g.3、设是环同态, 则同态的核是 (D)(A) Ker(?)={a ∈S: 有?b ∈R, 使得 ?(b )=a };(B) Ker(?)={a ∈R: ? (a )=a };(C) Ker(?)={a ∈?R: ? (a )=1};(D) Ker(?)={a ∈?R: ? (a )=0}。

近世代数经典题与答案

近世代数经典题与答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载近世代数经典题与答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1.设为整数加群, ,求解在 Z中的陪集有:, , ,, , 所以, .2、找出的所有子群。

解:S3显然有以下子群:本身;((1))={(1)};((12))={(12),(1)};((13))={(13),(1)};((23))={(23),(1)};((123))={(123),(132),(1)}若S3的一个子群H包含着两个循环置换,那么H含有(12),(13)这两个2-循环置换,那么H含有(12)(13)=(123),(123)(12)=(23),因而H=S3。

同理,若是S3的一个子群含有两个循环置换(21),(23)或(31),(32)。

这个子群也必然是S3。

用完全类似的方法,可以算出,若是S3的一个子群含有一个2-循环置换和一个3-循环置换,那么这个子群也必然是S3。

7.试求高斯整环的单位。

解设 () 为的单位, 则存在 , 使得 , 于是因为 , 所以 . 从而 , , 或 . 因此可能的单位只有显然它们都是的单位. 所以恰有四个单位:5.在中, 解下列线性方程组:解: 即 , .12. 试求的所有理想.解设为的任意理想, 则为的子环,则 , , 且 .对任意的 , , 有 ,从而由理想的定义知, 为的理想. 由此知, 的全部理想为且 .13、数域上的多项式环的理想是怎样的一个主理想。

解由于,所以,于是得。

14、在中, 求的全部根. 解共有16个元素: , , , , 将它们分别代入 ,可知共有下列4个元素, , , 为的根.20.设R为偶数环.证明:问:是否成立?N是由哪个偶数生成的主理想?解::故另外故总之有另方面,由于且而且实际上N是偶数环中由8生成的主理想,即,但是因此,.实际上是22、设,求关于的所有左陪集以及右陪集.解 , 的所有左陪集为:;;.的所有右陪集为:;;.1.在群中, 对任意 , 方程与都有唯一解.证明令 , 那么 , 故为方程的解。

近世代数试题及答案

近世代数试题及答案

近世代数试题及答案一、单项选择题(每题3分,共30分)1. 群的元素a的阶是指最小的正整数n,使得a^n=e,其中e是群的()。

A. 单位元B. 零元C. 负元D. 逆元答案:A2. 环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R 是()。

A. 交换环B. 非交换环C. 整环答案:A3. 向量空间V中,如果存在非零向量α,使得对于V中任意向量β,都有α⊥β,则称α是V的一个()。

A. 基B. 零向量C. 法向量D. 正交向量答案:C4. 有限域F中,如果存在元素a∈F,使得a^p=a对于所有a∈F 成立,则称F是()。

A. 素域B. 特征域C. 完全域答案:B5. 群G的一个子群H,如果对于任意的h∈H,g∈G,都有ghg^-1∈H,则称H是G的一个()。

A. 正规子群B. 非正规子群C. 子群D. 群答案:A6. 环R中,如果对于任意的a,b∈R,都有ab=ba,则称R是()。

A. 交换环B. 非交换环C. 整环答案:A7. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。

A. 基B. 零向量C. 法向量D. 正交向量答案:A8. 群G的一个子群H,如果H=G,则称H是G的一个()。

A. 正规子群B. 非正规子群C. 子群答案:C9. 环R中,如果对于任意的a,b∈R,都有a-b=b-a,则称R 是()。

A. 交换环B. 非交换环C. 整环D. 除环答案:A10. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得这些向量线性无关,并且V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。

A. 基B. 零向量C. 法向量D. 正交向量答案:A二、填空题(每题4分,共40分)1. 群G中,如果对于任意的a,b∈G,都有ab=ba,则称G是________。

答案:交换群2. 环R中,如果对于任意的a,b∈R,都有ab=0,则称R是________。

(word版)近世代数期末考试题库(包括模拟卷和1套题)

(word版)近世代数期末考试题库(包括模拟卷和1套题)

多所高校近世代数题库一、〔2021年近世代数〕判断题〔以下命题你认为正确的在题后括号内打“√〞,错的打“×〞;每题1分,共10分〕1、设A与B都是非空集合,那么A B xx A且x B。

〔〕2、设A、B、D都是非空集合,那么AB到D的每个映射都叫作二元运算。

〔〕3、只要f是A到A的一一映射,那么必有唯一的逆映射G f1。

〔〕4G a中生成元a的阶是无限的,那么与整数加群同构。

〔〕、如果循环群5、如果群G的子群H是循环群,那么G也是循环群。

〔〕6、近世代数中,群G的子群H是不变子群的充要条件为gG,h H;g1Hg H。

〔〕7、如果环R的阶2,那么R的单位元10。

〔〕8、假设环R满足左消去律,那么R必定没有右零因子。

〔〕9、F(x)中满足条件p()0的多项式叫做元在域F上的极小多项式。

〔〕10、假设域E的特征是无限大,那么E含有一个与Z同构的子域,这里Z是整数环,p是由素数p生成的主理想。

p〔〕二、〔2021年近世代数〕单项选择题〔从以下各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每题f是1分,共10分〕、设12n和D 都是非空集合,而12An到D的一个映射,那么〔〕1A,A,,A AA①集合A1,A2,,A n,D中两两都不相同;②A1,A2,,A n的次序不能调换;③A1A2A n中不同的元对应的象必不相同;④一个元a1,a2, ,a n的象可以不唯一。

2、指出以下那些运算是二元运算〔〕①在整数集Z上,a b a b②在有理数集Q上,a b ab;;ab③在正实数集R上,ab alnb;④在集合n Zn0上,a ba b。

3、设是整数集Z上的二元运算,其中a b maxa,b 〔即取a与b中的最大者〕,那么在Z中〔〕①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。

4、设G,为群,其中G是实数集,而乘法:a b a b k,这里k为G中固定的常数。

近世代数10套试题

近世代数10套试题

《近世代数》试卷1(时间120分钟)二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()循环群的子群是循环子群。

2. ()满足左、右消去律的有单位元的半群是群。

3. ()存在一个4阶的非交换群。

4. ()素数阶的有限群G的任一子群都是G的不变子群。

5. ()无零因子环的特征不可能是2001。

6. ()无零因子环的同态象无零因子。

7. ()模97的剩余类环Z97是域。

8. ()在一个环中,若左消去律成立,则消去律成立。

9. ()域是唯一分解整环。

10. ()整除关系是整环R的元素间的一个等价关系。

一、填空题(共20分,第1、4、6小题各4分,其余每空2分)1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。

2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。

3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。

4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。

5. 环Z6的全部零因子是。

6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本。

(共30分)1.设S3是3次对称群,a=(123)∈S3.(1)写出H=< a>的所有元素.(2)计算H的所有左陪集和所有右陪集.(3)判断H是否是S3的不变子群,并说明理由.2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。

3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。

四、证明题(共30分)1.设G是一个阶为偶数的有限群,证明(1)G中阶大于2的元素的个数一定为偶数;(2)G中阶等于2的元素的个数一定为奇数。

江苏大学近世代数题库

江苏大学近世代数题库

近世代数题库:一、填空题:1、设集合A 有一个分类,其中i A 与j A 是A 的两个类,如果j i A A ≠,那么=j i A A 。

2、群的单位元是 的,每个元素的逆元素是 的。

3、若a,b ∈G;m,n ∈Z,且(ab )n =a n b n ,则G 为 。

4、如果S=﹛a,b ﹜,且a,b 满足关系232;a b e ba ab ===,列出群,a b 的所有元素 。

5、凯莱定理说:每一个群都同一个 同构。

6、若映射ϕ既是单射又是满射,则称ϕ为 。

7、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。

8、设φ是群G 到G ′的同构映射,且φ可逆,若a 是G 的任一元素,则1a -= 。

9、已知群G 中的元素a 的阶等于50,则4a 的阶等于 。

10、设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为 。

11、设交换群G 中a 的阶是3, b 的阶是4,则ab 的阶是 。

12、在循环群G= a 中若a 的阶是一个有限整数n ,那么G 与 同构。

13、若群G= a 是无限循环群,那么G 与 同构。

14、求Z 12的全部生成元 ,全部子群 。

15、每一个有限群都同构于一个 。

16、n 次对称群n S 的阶是 。

17、给出一个5轮换)31425(=π,那么=-1π 。

18、设置换1212n n k k k τ⎛⎫= ⎪⎝⎭,则对任一n 阶置换σ有1στσ-= 。

19、将下列轮换的乘积表示为不相交轮换的乘积(3654)(3241)(31524)= 。

20、已知σ4=(1437562),则σ= 。

21、整数加法群Z 关于子群nZ 的陪集为 。

22、设ord a=30,则4a 在a 中的所有左陪集是 。

23、在Z 12中,子群H=4中的所有左陪集是 。

24、H 是群G 一个子群,则H 的右、左陪集的个数 。

25、设N 是G 的正规子群,商群N G 中的单位元是 。

近世代数复习题答案

近世代数复习题答案

近世代数复习题答案1. 群的定义是什么?答:群是一个集合G,配备有一个二元运算*,满足以下四个条件:封闭性、结合律、单位元、逆元。

即对于任意的a, b属于G,有a*b属于G;对于任意的a, b, c属于G,有(a*b)*c = a*(b*c);存在一个元素e属于G,使得对于任意的a属于G,有e*a = a*e = a;对于每一个a属于G,存在一个元素b属于G,使得a*b = b*a = e。

2. 什么是子群?答:如果群G的一个非空子集H满足对于任意的a, b属于H,有a*b^(-1)属于H,则称H为G的一个子群。

3. 什么是正规子群?答:如果群G的一个子群N满足对于任意的g属于G和任意的n属于N,有g*n*g^(-1)属于N,则称N为G的一个正规子群。

4. 群同态的定义是什么?答:设G和H是两个群,如果存在一个映射φ: G → H,满足对于任意的a, b属于G,有φ(a*b) = φ(a)*φ(b),则称φ为从G到H的一个群同态。

5. 什么是群的同构?答:如果群G和H之间存在一个双射的群同态φ,则称G和H是同构的,记作G ≅ H。

6. 什么是环?答:环是一个集合R,配备有两个二元运算+和*,满足以下条件:(R, +)是一个交换群;(R, *)满足结合律;乘法对加法满足分配律。

即对于任意的a, b, c属于R,有(a+b)+c = a+(b+c);存在一个元素0属于R,使得对于任意的a属于R,有a+0 = 0+a = a;对于每一个a属于R,存在一个元素-a属于R,使得a+(-a) = (-a)+a = 0;对于任意的a, b属于R,有(a*b)*c = a*(b*c);对于任意的a, b属于R,有a*(b+c) = a*b + a*c,(b+c)*a = b*a + c*a。

7. 什么是理想?答:如果环R的一个非空子集I满足对于任意的a属于I和任意的r 属于R,有a*r和r*a属于I,则称I为R的一个理想。

近世代数复习

近世代数复习

近世代数复习⼀、选择题(每题2分,共16分)1.若(),G a orda n ==,()则下列说法正确的是 2.假定φ是A 与()A A A =Φ间的⼀⼀映射,A a ∈,则)]([1a φφ-和)]([1a -φφ分别为3.若G 是群,,()18,a G ord a ∈=则8()ord a =4.指出下列那些运算是⼆元运算5.设12,,,n A A A 和D 都是⾮空集合,⽽f 是12n A A A 到D 的⼀个映射,那么6.设是正整数集合N +上的⼆元运算,其中max(,)a b a b = ,那么在Z 中7.在群G 中,G b a ∈,,则⽅程b ax =和b ya =分别有唯⼀解为8.设H 是群G 的⼦群,且G 有左陪集分类{,,,}H aH bH cH .如果[:]6G H =,那么G =9.设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有()个元素。

10.设A =B =R(实数集),如果A 到B 的映射?:x →x +2,?x ∈R ,则?是从A 到B 的11.设Z 15是以15为模的剩余类加群,那么,Z 15的⼦群共有()个。

12、G 是12阶的有限群,H 是G 的⼦群,则H 的阶可能是13、下⾯的集合与运算构成群的是14、关于整环的叙述,下列正确的是15、关于理想的叙述,下列不正确的是16.整数环Z 中,可逆元的个数是17. 设M 2(R)=????????? ??d c b a a,b,c,d ∈R ,R 为实数域按矩阵的加法和乘法构成R 上的⼆阶⽅阵环,那么这个⽅阵环是18. 设Z 是整数集,σ(a)=+为奇数时当为偶数时当a ,21a a ,2a ,Z a ∈,则σ是R 的 19、设A={所有实数x},A 的代数运算是普通乘法,则以下映射作成A 到A 的⼀个⼦集的同态满射的是( ).20、设是正整数集Z 上的⼆元运算,其中{}max ,a b a b = (即取a 与b 中的最⼤者),那么在Z 中()21.设3S ={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则3S 中与元(1 2 3)不能交换的元的个数是( )22、设(),G 为群,其中G 是实数集,⽽乘法:a b a b k =++ ,这⾥k 为G 中固定的常数。

近世代数(含答案)

近世代数(含答案)

近世代数(含答案)近世代数一、单项选择题1、6阶有限群的任何一个子群一定不是( C )。

A .2阶 B .3阶 C .4阶 D .6阶2、设G 是群,G 有( C )个元素,则不能肯定G 是交换群。

A .4个B .5个C .6个D .7个3、下面的代数系统(,*)G 中,( D )不是群。

A .G 为整数集合,*为加法B .G 为偶数集合,*为加法C .G 为有理数集合,*为加法D .G 为有理数集合,*为乘法4、设G 有6个元素的循环群,a 是生成元,则G 的子集( C )是子群。

A .{}aB .{},a eC .{}3,e aD .{}3,,e a a5、在自然数集N 上,下列哪种运算是可结合的?( B )A .*a b a b =?B .{}*max ,a b a b =C .*2a b a b =+D .a b a b +=?二、填空题1、已知群G 中的元素a 的阶等于50,则4a 的阶等于( 25 )。

2、一个有单位元的无零因子的(交换环)称为整环。

3、群的单位元是(唯一)的,每个元素的逆元素是(唯一)的。

4、一个子群H 的右、左陪集的个数(相等)。

5、无零因子环R 中所有非零元的共同的加法阶数称为R 的(特征)。

6、设群G 中元素a 的阶为m ,如果na e =,那么m 与n 存在整除关系为( |m n )。

7、如果f 是A 与A 间的一一映射,a 是A 的一个元,则1[()]ff a ?=( a )。

8、循环群的子群是(循环群)。

9、若{}2,5A =,{}1,0,2B =?,则A B ×=( {}(2,1),(2,0),(2,2),(5,1),(5,0),(5,2)?? )。

10、如果G 是一个含有15个元素的群,那么,对于a G ?∈,则元素a 的阶只可能是( 1,3,5,15 )。

三、问答题 1、什么是集合A 上的等价关系?举例说明。

【答案】设R 是某个集合上的一个二元关系。

近世代数考试题和答案

近世代数考试题和答案

近世代数考试题和答案一、单项选择题(每题2分,共10分)1. 在群论中,以下哪个概念描述了元素的循环性质?A. 恒等元素B. 逆元素C. 循环子群D. 正规子群答案:C2. 有限域的阶数一定是一个素数的幂,这个性质称为:A. 素数性质B. 素数幂性质C. 有限域性质D. 素域性质答案:B3. 以下哪个不是群的同态性质?A. 同态保持群的运算B. 同态将恒等元素映射到恒等元素C. 同态将每个元素的逆映射到其逆的映射D. 同态将所有元素映射到同一个元素答案:D4. 在环论中,以下哪个性质描述了环中元素的分配律?A. 结合律B. 分配律C. 交换律D. 恒等律答案:B5. 以下哪个是有限生成阿贝尔群的基本定理?A. 每个有限生成阿贝尔群可以分解为循环群的直和B. 每个有限生成阿贝尔群可以分解为素数幂次循环群的直和C. 每个有限生成阿贝尔群可以分解为素数次循环群的直和D. 每个有限生成阿贝尔群可以分解为素数幂次循环群的直积答案:B二、填空题(每题3分,共15分)1. 如果一个群G的每个元素的阶都是有限,则称G为________群。

答案:有限2. 环R中的元素a被称为________,如果对于环R中的每个元素b,都有ab=ba。

答案:中心元素3. 一个环R被称为________,如果它满足a^2=a对于所有a属于R。

答案:布尔环4. 向量空间V上的线性变换T被称为________,如果存在另一个线性变换S,使得S∘T=T∘S=I,其中I是V上的恒等变换。

答案:可逆5. 如果一个群G的每个元素都与其逆元素交换,那么G被称为________群。

答案:阿贝尔三、简答题(每题10分,共30分)1. 请解释什么是群的正规子群,并给出一个例子。

答案:群G的一个子群N被称为正规子群,如果对于G中的每个元素g和N中的每个元素n,都有gng^-1属于N。

这意味着N在G的任何元素的共轭下都是不变的。

一个例子是,考虑对称群S_n(n个元素的所有排列的群),其正规子群是交错群A_n,它由所有偶排列组成。

近世代数复习

近世代数复习

一、选择题(每题2分,共16分)1、若(),G a orda n ==,()则下列说法正确得就是 2、假定φ就是A 与()A A A =ΦI 间得一一映射,A a ∈,则)]([1a φφ-与)]([1a -φφ分别为3、若G 就是群,,()18,a G ord a ∈=则8()ord a =4、指出下列那些运算就是二元运算5、设12,,,n A A A L 与D 都就是非空集合,而f 就是12n A A A ⨯⨯⨯L 到D 得一个映射,那么6、设o 就是正整数集合N +上得二元运算,其中max(,)a b a b =o ,那么o 在Z 中7、在群G 中,G b a ∈,,则方程b ax =与b ya =分别有唯一解为8、设H 就是群G 得子群,且G 有左陪集分类{,,,}H aH bH cH 、如果[:]6G H =,那么G =9、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 得积集合A ×B 中含有( )个元素。

10、设A =B =R(实数集),如果A 到B 得映射ϕ:x →x +2,∀x ∈R ,则ϕ就是从A 到B 得11、设Z 15就是以15为模得剩余类加群,那么,Z 15得子群共有( )个。

12、G 就是12阶得有限群,H 就是G 得子群,则H 得阶可能就是13、下面得集合与运算构成群得就是14、关于整环得叙述,下列正确得就是15、关于理想得叙述,下列不正确得就是16、整数环Z 中,可逆元得个数就是17、 设M 2(R)=⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛d c b a a,b,c,d ∈R ,R 为实数域⎭⎬⎫按矩阵得加法与乘法构成R 上得二阶方阵环,那么这个方阵环就是18、 设Z 就是整数集,σ(a)=⎪⎩⎪⎨⎧+为奇数时当为偶数时当a ,21a a ,2a ,Z a ∈,则σ就是R 得 19、设A={所有实数x},A 得代数运算就是普通乘法,则以下映射作成A 到A 得一个子集 得同态满射得就是( )、20、设ο就是正整数集Z 上得二元运算,其中{}max ,a b a b =o (即取a 与b 中得最大者),那么ο在Z 中( )21、设3S ={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则3S 中与元(1 2 3)不能交换得元得个数就是( )22、设(),G o 为群,其中G 就是实数集,而乘法:a b a b k =++o o ,这里k 为G 中固定得常数。

近世代数考试复习

近世代数考试复习

近世代数考试复习文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)<近世代数复习题>一、定义描述(8’)1、群:设G是一个非空集合,是它的一个代数运算。

如果满足以下条件:(1)结合律成立,即对G中任意元素a,b,c都有(a b) c = a (b c).(2)G中有元素e.叫做G的左单位元,它对G中每个元素a都有e a = a .(3)对G中每个元素a,在G中都有元素a-1,叫做a的左逆元,使a-1 a =e .则称G对代数运算做成一个群。

2、正规子群:设N是群G的一个子群,如果对G中每个元素a都有 aN=Na,即aNa-1=N ,则称N是群G的一个正规子群(或不变子群)。

3、环:设非空集合R有两个代数运算,一个叫做加法并用加号 + 表示,另一个叫做乘法用乘号表示,如果:(1)R对加法作成一个加群;(2)R对乘法满足结合律:(ab)c = a(bc);(3)乘法对加法满足左右分配率:a(b+c)= ab + ac ,(b+c)a = ba + ca .其中a,b,c为R中任意元素,则称R对这两个代数运算作成一个环。

4、极大理想:设N是环R的一个理想,且N≠R .如果除R和N外,R中没有包含N的其它理想,则称N为环R的一个极大理想。

5、惟一分解整环:设K是有单位元的整环。

如果K中每个既不是零又不是单位的元素都能惟一分解,则称K为惟一分解整环。

整数环Z及域F上多项式环F[ x ]都是惟一分解整环。

6、欧氏环:设K是一个有单位元的整环,如果(1)有一个从K的非零元集K – { 0}到非负整数集的映射ψ存在;(2)这个ψ对K中任意元素a及b≠0,在K中有元素q,r使a=bq + r,r=0或ψ(r)<ψ(b),则称R关于ψ作成一个欧氏环。

-------------7、素理想:设R是一个交换环,P R .如果ab∈P => a∈P或b∈P,其中a,b∈R,则称P是R的一个素理想。

近世代数试题库

近世代数试题库

近世代数试题库近世代数一、单项选择题a、{1,2,3,4}b、{2,3,6,7}c、{2,3}d、{1,2,3,5,6,7}答案:c2、循环群与交换群关系正确的是()1、若a={1,2,3,5},b={2,3,6,7},则a?b=()a、循环群是交换群b、交换群是循环群c、循环群不一定是交换群d、以上都不对答案:a3、以下命题恰当的就是()a、n次对换群sn的阶为n!b、整环一定是域c、交换环一定是域d、以上都不对答案:a4、关于标架的命题中恰当的就是()设h就是g的子群,那么a、b、c、d、对于?ah,bh,有ah?bh??或ah?bhah?h?a?hah?bh?a?1b?h以上都对答案:d5、设a=r(实数域),b=r+(正实数域)f:a→10aa?a则f是从a到b的()a、单射b、单射c、一一映射d、既非单射也非满射答案:d16、有限群中的每一个元素的阶都()a、有限b、无限c、为零d、为1答案:a7、整环(域)的特征为()a、素数b、无限c、有限d、或素数或无限答案:d8、若s就是半群,则()a、任意a,b,c?s,都有a(bc)=(ab)cb、任意a,b?s,都有ab=bac、必有单位元d、任何元素必存在逆元答案:a9、在整环z中,6的真因子就是()a、?1,?6b、?2,?3c、?1,?2d、?3,?6答案:b10、偶数环的单位元个数为()a、0个b、1个c、2个d、无数个答案:a11、设a1,a2,?,an和d都不为空集合,而f就是a1?a2an至d的一个态射,那么()a、集合a1,a2,?,an,d中两两都不相同;b、a1,a2,?,an的次序不能调换;c、a1?a2an中相同的元对应的象必不相同;d、一个元?a1,a2,?,an?的象可以不唯一。

2答案:b12、指出下列那些运算是二元运算()a、在整数集z上,a?b?a?b;abb、在有理数集q上,a?b?ab;c、在也已实数集r?上,a?b?alnb;d、在子集?n?zn?0?上,a?b?a?b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《近世代数》复习试题一、填空题1.设A={a,b,c,d},则A到A自身的所有映射共有个;其中单射有个.2.设R表示实数加群,而R+表示正实数乘法群,写出从R到R+的一个同构映射;设Q表示有理数集合,写出Q的对于普通加法来说的自同构(x→x除外).3.在整数集合Z定义两个二元关系:∼1和∼2.关系∼1具有对称性和传递性,但不具有反身性:;∼2具有反身性和对称性,但不具有传递性:.4.在有理数集合Q上定义二元关系∼:a∼b⇔a−b∈Z.写出由等价关系∼决定的等价类的代表团;写出模12的剩余类的一个代表团.5.设A是有n(n≥3)个元的集合.2A表示A的所有子集的集合.在2A上定义等价关系:X∼Y⇔X与Y有相同个数的元素.由此等价关系决定2A的分类共有类,而个数为2的类中共有个元素.6.就同构意义上来说,4阶群只有两个,它们是和;阶数最小的非交换群是;7.给出S6的一个5-循环置换π=(32154),那么π−1=,π4=.在对称群S4中,(132)2(1234)−1=.对称群S n的阶是.8.设G是群,a,b∈G,且ab=ba,a和b的阶分别是m和n,d为m,n的最大公约数,则ab的阶是.设H,K≤G,且|H|=s,|K|=t,(s,t)=1,则|H∩K|=.9.群Z8的生成元有个;Z p(p为素数)的生成元有.无限循环群的生成元只有个.10.Z6的所有子群有个;而Z8的所有子群有个.11.任一个有限群都同一个群同构;任一个群都同一个群同构.12.写出一个阶数大于10且只有平凡不变子群的群;指数是2的子群一定是.13.设群G只有平凡不变子群,f是G的非零自同态,则ker f=,Imf=.14.设G是实数域R上所有的n阶可逆矩阵关于乘法构成的群,映射f:A→det A是G到(R∗,×)的同态,则ker f=.设G={2m3n|m,n∈Z}是关于数的乘法构成的群,f:2m3n→2m是G的自同态,则Imf=.15.设H是群G的不变子群,且H在G中的指数为m,则商群G/H的阶是,且对任意g∈G,g m∈.16.写出一个有零因子没有单位元的非交换环(用集合表示);写出一个有零因子没有单位元的交换环(用集合表示).17.含有2q(q为奇素数)个元的无零因子环的特征是;在特征为5的交换环R中,对任意的a,b∈R,(a+b)5=.设R是一个有6个元且有单位元的交换环,则R必有.18.在Z6[x]中,多项式([3]x3+[5]x−[4])([2]x2+[3]x−[2])=;而方程x2−x=0在Z6中的解是.19.在整数环Z中,设m和n的最大公约数是d,则由m,n生成的理想(m,n)=;且(m)∩(n)=.20.模9的剩余类环Z9的零因子为;可逆元是.剩余类环Z p(p为素数)的逆元有.21.找出Z6的所有理想;Z6的子环{[0],[2],[4]}的单位元是.找出模12的剩余类环的所有理想.22.若I是有单位元的交换环R的由a生成的主理想,那么I中的元素可以表达为;在整数环上的多项式环Z[x]中,用集合表示由2和x生成的理想(x,2)=.23.若R是一个有单位元1的环,I是R的理想,那么R/I的单位元是;R/I的零元是.偶数环2Z的商域是.24.写出整数环Z上的多项式环Z[x]的一个极大理想;整数环Z的每个极大理想是由一个生成.25.高斯整数环Z[i]的所有单位是;与2+3i相伴的元是.26.环R={a+b √3i|a,b∈Z}的所有单位是;写出环R的一个素元.二、单项选择题1.设N是自然数集合,则以下定义的运算◦是N上的代数运算的是..................()A).a◦b=√ab B).a◦b=ln(a+b)C).a◦b=a−b D).a◦b=(a+b)22.下列定义的运算中满足交换律的是.............................................()A).非零实数集R∗的普通除法;B).全体整数集合上的普通减法;C).在Z上,a◦b=a+2b;D).在实数集R的普通乘法.3.设R是实数域,+,−,·是通常的加,减和乘法.以下定义的运算满足结合律的是...()A).a◦b=2a+b B).a◦b=bC).a◦b=a−b D).a◦b=(a+b)24.有理数集Q上的代数运算a◦b=b3.............................................()A).既适合结合律又适合交换律B).适合结合律但不适合交换律C).不适合结合律但适合交换律D).既不适合结合律又不适合交换律5.设Z是整数集合,则以下定义在Z上的关系∼是等价关系的是.....................()A).a∼b⇔a≤b B).a∼b⇔ab=0C).a∼b⇔ab≤0D).a∼b⇔a,b同奇同偶.6.以下映射中是群同态的是......................................................()A).f:(R,+)→(R,+),f(x)=|x|;B).f:(R,+)→(R,+),f(x)=x2;C).f:R∗→R∗,f(x)=x2;D).f:G→G,f(A)=A T,其中G表示数域F上全体n阶可逆矩阵关于乘法构成的群,而A T表示A的转置.7.设R是环,a,b,c∈R,m,n∈Z.则以下不成立的是............................()A).(a−b)c=ab−bc;B).(ma)(nb)=(mn)(ab).C).(a m)n=a mn;D).(a−b)n=a n−b n.8.在环Z6[x]中,以下是Z6[x]的零因子是...........................................()A).[1]x2+[2]B).[2]x3+[3]C).[3]x+[1]D).[3]x+[3]9.对称群S4中,元素(12)(34)的逆元是............................................()A).(1234)B).(1324)C).(13)(24)D).(12)(34)10.设R={a b00|a,b∈Z},R关于矩阵的加法和乘法构成环,则这个环是.....()A).无单位元有零因子的交换环B).无单位元无零因子的交换环C).无单位元的无零因子的非交换环D).无单位元的有零因子非交换环11.设C是复数域,下列映射f是C的自同构的是.....................................()A).f:a+bi→a B).f:a+bi→a−biC).f:a+bi→bi D).f:a+bi→b+ai12.以下命题中不不正确的是........................................................()A).一个群可以与它的真子群同构;B).一个有单位元的环和它的子环有相同的单位元C).两个不相连的循环置换可以交换;D).群与它的子群有相同的单位元.13.以下命题中不不正确的是........................................................()A).除环和域只有平凡理想;B).如果环R对于加法构成循环群,则R是交换环;C).设R是特征为p的环,则对任意的a,b∈R,(a+b)p=a p+b p;D).一个没有单位元的环的子环可以有单位元.14.以下命题中不不正确的是........................................................()A).不是每个环都有极大理想;B).两个理想的交还是理想.C).阶为偶数的群中,阶为2的元素的个数是奇数;D).设H是群G的不变子群,则对任意的g∈G,h∈H,gh=hg;15.以下命题不不正确的是...........................................................()A).环R上一切常数项为零的多项式的集合构成R[x]的理想;B).群G的有限子集H构成G的子群的充要条件是∀a,b∈H,ab∈H;C).无限循环群只有两个生成元;D).设R是偶数环,则(4)是R的极大理想,且R/(4)是域.16.以下命题不不正确的是...........................................................()A).若环R满足消去律,那么R必定没有零因子;B).除环的中心是一个域.C).整数集合Z中的整除关系是一个等价关系;D).设f是环R到R的满同态,I是R的理想,则f(I)也是R的理想;17.以下命题不不正确的是...........................................................()A).设p是素数,则Z p是一个域;B).4阶群一定是循环群;C).4个元的域的特征是2;D).在环Z中,(3,7)=(1)=Z.18.设a是10阶循环群G的一个生成元,则以下也是G的生成元的是..................()A).a2B).a5C).a6D).a919.域F上的多项式环F[x]是........................................................()A).除环B).域C).非唯一分解环D).欧氏环20.下列命题正确是...............................................................()A).整环是唯一分解环B).整环是主理想环C).唯一分解环是主理想环D).主理想环是唯一分解环三、辨析题.下列命题是否正确,正确的加以证明,错误的举出反例,并加以说明.1.设M是一个非空集合,2M是M的幂集(M的子集的全体称为M的幂集).则2M关于集合的并∪是构成群.2.如果群G的每一个元素的阶是有限的,则G是有限群.3.设G是阶大于2的非交换群,则一定存在非单位元a,b∈G,使得ab=ba.4.6阶群G有且只有一个3阶子群H,且H G.5.设H,K都是群G的子群,且H G,K H,则K G.6.设R是环,I R,J I,则J R.7.设f:R→¯R是环满同态,则R有零因子的充要条件是¯R有零因子.8.(x)既是Z[x]的极大理想,也是Q[x]上的极大理想.9.如果有单位元的环R只有平凡理想,则R是除环.10.整数加群与偶数加群同构,但整数环与偶数环不同构.四、证明题1.设S是任意集合,(G,+)是加群.令A=G S表示S到G的所有映射的集合.在A=G S上定义二元运算:∀f,g∈G S,x∈G,(f+g)(x)=f(x)+g(x).证明(A,+)是一个加群.2.设(Z,+)是整数加群,在Z上定义新的二元运算◦:a◦b=a+b−2,∀a,b∈Z.证明(Z,◦)是一个加群.(即交换群)3.证明实数域R 上所有n 阶可逆矩阵构成的集合M n (R )关于矩阵的乘法构成一个非交换群.设H ={A ∈M n (R )||A |=1},证明H 是M n (R )的不变子群.M n (R )/H 与什么环同构?4.设G 表示有理数域Q 到Q 的一切形如f a,b (x )=ax +b,a =0,a,b ∈Q的所有变换的集合.令H ={f 1,b∈G |b ∈Q }.再令¯G={a b 01|a,b ∈Q ,a =0},¯G 关于矩阵的乘法做成一个群.¯H ={a 001|0=a ∈Q }.证明(1).G 关于变换的合成做成一个非交换群,且G ∼=¯G.(2).H 是G 的不变子群,且G/H ∼=¯H,因而G/H 是一个交换群.5.设R ={a +b √2|a,b ∈Z ,}.证明R 关于数的加法和乘法做成一个整环.6.设R ={a +b √2|a,b ∈Q ,}.证明R 关于数的加法和乘法做成一个域.7.设R 是一个有单位元1的非交换环.用GL (R )表示R 的所有群同态的集合.在GL (R )上定义如果二元运算:∀f,g ∈GL (R ),x ∈G ,(f +g )(x )=f (x )+g (x );(f ◦g )(x )=f (g (x )).证明(GL (R ),+,◦)是一个非交换环.8.设A =Z ×Z 是关于以下定义的加法,乘法作成的环:(a,b )+(c,d )=(a +c,b +d ),(a,b )(c,d )=(ac,bd ),∀(a,b ),(c,d )∈A.令f :A →Z ,(a,b )→a .(1)证明:f 是A 到Z 的一个同态满射.(2)求ker f .(3)A/ker f 是怎样的一个环?9.设Z [x ]是整数环Z 上的多项式环.定义映射φ:Z [x ]→Z ,f (x )→f (0).证明φ是环Z [x ]到Z 的环满同态,ker φ是怎样的理想?10.设R ={a +bi |a,b ∈Z ,i 2=−1}.证明R 关于数的加法和乘法构成一个整环.R/(1+i )含有几个元?11.设Z [x ]是整数环Z 上的多项式环.(x 2+1)表示由x 2+1生成的主理想.证明Z [x ]/(x 2+1)∼=Z [i ].。

相关文档
最新文档