轴对称测试题及答案
轴对称习题卷含答案
图形的对称一.选择题1. 将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到(C )A.B.C.D.2.下列说法正确的是(D)A.如果图形甲和图形乙关于直线MN对称,则图形甲是轴对称图形B.任何一个图形都有对称轴,有的图形不止一条对称轴C.平面上两个大小、形状完全一样的图形一定关于某直线对称D.如果△ABC和△EFG成轴对称,那么它们的面积一定相等3.下列各图中,为轴对称图形的是(C)A.B.C.D.4.小王在镜子里看到他背后墙上的电子钟示数为12:01,则此时实际时刻为(D)A.21:01 B.10:21 C.10:15 D.10:515.等腰三角形的两边长为3和6,则此等腰三角形的周长为(C)A.12或15 B.12 C.15 D.186. 坐标平面上有一个轴对称图形,A(3,5 2-)、B(3,11 2-)两点在此图形上且互为对称点.若此图形上有一点C(-2,-9),则C的对称点坐标为何(A)A.(-2,1)B.(-2,32-) C.(32-,-9) D.(8,-9)7.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去小扇形,把纸片展开,得到的图形是(A)A.B.C.D.8.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为(D)A.1 B.2 C.3 D.4解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=6,BC=8,点E是BC中点,∴BE=CE=CE′=4,∵AB⊥BC,CD⊥BC,∴CE′BE′=CF AB ,即4 8+4 =CF 6 ,解得CF=2,∴DF=CD-CF=6-2=4.故选D.备选题.*在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成三角形,又能拼成平行四边形和梯形的可能是(C)A.B.C.D.*将一圆形纸片对折后再对折得图,然后沿着图中的虚线剪开,得①、②两部分,将②展开后的平面图形可以是图中的(C)A.B.C.D.*墙上有一块镜子,镜子对面的墙上有一个钟,小强从镜子中看到如图所示的时间,则这时的实际时间为(B)A.3:35 B.8:25 C.9:05 D.8:35A.15°B.20°C.25°D.30°* 如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔果一个球按图中所示的方向被击出(球可以经过多反射),那么该球最后将落入的球袋是(B)A.1号袋B.2号袋C.3号袋D.4号袋二.填空题9.等边三角形是轴对称图形,对称轴的条数是三条..10.如果等腰三角形的底角等于30°,腰长为5cm,则底边上的高等于.5cm11.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为2π.12.如图,两平面镜OA与OB之间的夹角为110°,光线经平面镜OA反射到平面镜OB上,再反射出去,其中∠1=∠2,则∠1的度数为35 度.13.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD得周长为13cm,则△ABC的周长是19cm.14.已知点A(a,-3),B(4,b)关于y轴对称,则a-b= -115.如图所示,∠BAC=105°,若MP和NQ分别垂直平分AB和AC.∠PAQ=30°.16.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为20 度.11题12题13题15题16题备选题。
人教版八年级数学上册《轴对称》测试卷(含答案)
人教版八年级数学上册《轴对称》测试卷(含答案)一、选择题(每小题3分,共30分)1.点A(m,3)与B(4,n)关于x轴对称,则m,n的值分别为( )A.4,3B.-4,-3C.-4,3D.4,-32.下列交通标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多的是( )A.线段B.等边三角形C.五角星D.圆4.下列三角形中,不是轴对称图形的是( )A.等腰直角三角形B.有一个角是30°的直角三角形C.两内角分别是30°,120°的三角形D.两内角分别是30°,75°的三角形5.如图,ABCD 是矩形纸片,翻折∠B、∠D,使AD、BC 边与对角线AC重叠,且顶点B、D恰好落在同一点0上,折痕分别是CE、AF,则AE等于( )EBA.√3B.2C.1.5D.√26.到三角形三个顶点距离相等的点是( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三边垂直平分线的交点7.如图,在等腰梯形ABCD中,AD //BC,AB=CD,AC=BD,AC平分∠BCD,若∠ABC=72°,则图中等腰三角形共有( )A.8个B.6个C.4个D.2个8.如图,在△ABC 中,AB<AC,BC边的垂直平分线交BC于D,交AC 于E,连BE,AB=6cm,△ABE 的周长为14cm,则AC的长为( )A.4cmB.6cmC.8cmD.10cm9.如图,已知AB=AC=BD,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠BAC=90,AB=AC,BD平分∠ABC交AC于D,AE⊥BD,交BC于E,下列说法:①AB=BE;②∠CAE=1∠C;③AD=CE;④CD=CE.其中正确的是( )2A.①②③B.②③④C.①②④D.①②③④二、填空题(每小题3分,共18分)11.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=_________,n=__________.12.等腰三角形的一个角是80°,则它顶角的度数是_______________度.13.在△ABC 中.①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有__个.14.如图,在△ABC 中,∠A=90°,∠ABC=60°,∠ABC,∠ACB的平分线交于点O,OE // AB交BC于E,OF //AC交BC于F,若AB=1,则△OEF 的周长为_____________.15.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC 于点E,交AD于点F ,若AD=9,则DF长为____.16.已知Rt△ABC 中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有________个.三、解答题(72分)17.(8分)如图,△ABC 中,点D是BC边的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:∠BAD=∠CAD.18.(8分)如图,在△ABC中,D,E分别是AC,AB边上的点,BD,CE相交于点0,给出下列条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形?(用序号写出所有的情形);(2)选择(1)中的一种情形,证明△ABC是等腰三角形.19.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F 的坐标.20.(8分)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1) 求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.21.(8分)已知如图,在△ABC中,AB=BC=2,∠ABC=120°,BC//x轴,点B的坐标是(一3,1).(1)写出顶点C的坐标;(2)作出△ABC 关于y轴对称的△A'B'C';(3)求以点A,B,B',A'为顶点的四边形的周长.22.(10 分)在△ABC 中,AB=CB.(1)若AC=AB,如图1,CM⊥AB 于点M,MN⊥AC 于点N,NP ⊥BC 于点P.若CP=2,则BP=_______;(2)若∠BAC=45°,如图2,CD平分∠ACB交AB于点D,过边AC上一点E作EF //CD,交AB于点F,AG是△AEF的高,探究高AG与边EF的数量关系;(3)若∠ABC=90°,点E是射线BC上的一个动点,作AF⊥AE且AF=AE,连CF交直线AB于点G.若BCCE =53,则AGBG=__________.23.(10分)图1,在△ABC中,AB=AC,∠BAC=30°,点D 是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE 的度数___________;(2)求证:DE=AD+DC;(3)作BP 平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP 的长.24.(12分)如图1,A 是OB 的垂直平分线上的一点,P为y轴上一点,且∠OPB=∠OAB.(1)若∠AOB=60°,PB=4,求点P的坐标;(2)在(1)的条件下,求证:PA+PO=PB;(3)如图2,若点A是OB 的垂直平分线上的一点,已知A(2,5),∠OPB=∠OAB,求PO+PB 的值.参考答案:。
轴对称练习题及答案
轴对称练习题及答案一、选择题1. 以下哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴与图形的对称点之间的关系是:A. 垂直B. 平行C. 相交D. 重合3. 一个轴对称图形的对称点到对称轴的距离是:A. 相等B. 不相等C. 有时相等有时不相等D. 无法确定4. 如果一个图形关于x轴对称,那么它的对称点的坐标关系是:A. (x,y)和(x,-y)B. (x,y)和(-x,y)C. (x,y)和(-x,-y)D. (x,y)和(y,x)5. 一个点关于y轴的对称点的坐标是:A. (-x,y)B. (x,-y)C. (-y,x)D. (y,-x)二、填空题1. 轴对称图形的对称轴是图形中所有对称点的________。
2. 如果一个图形关于y轴对称,那么它的对称点的坐标关系是(x,y)和________。
3. 一个图形关于原点对称,那么它的对称点的坐标关系是(x,y)和________。
三、解答题1. 已知点A(3,4),求点A关于x轴的对称点的坐标。
2. 已知点B(-2,-3),求点B关于y轴的对称点的坐标。
3. 已知点C(1,-1),求点C关于原点的对称点的坐标。
四、判断题1. 所有矩形都是轴对称图形。
()2. 所有等腰三角形都是轴对称图形。
()3. 所有等边三角形都是轴对称图形。
()4. 所有平行四边形都是轴对称图形。
()五、综合题1. 给出一个等腰梯形的上底长为4cm,下底长为8cm,高为3cm,求等腰梯形的对称轴。
2. 如果一个矩形的长为10cm,宽为6cm,求矩形关于x轴对称后,新的矩形的长和宽。
3. 已知一个正方形的边长为5cm,求正方形关于y轴对称后,新正方形的边长。
答案:一、选择题1. A2. D3. A4. A5. A二、填空题1. 连线中点2. (-x,y)3. (-x,-y)三、解答题1. 点A关于x轴的对称点的坐标为(3,-4)。
轴对称单元测试题及答案
轴对称单元测试题及答案一、选择题(每题2分,共20分)1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的什么?A. 对称轴B. 中心线C. 垂直线D. 平行线3. 一个图形的轴对称图形与其本身是否完全重合?A. 是B. 否C. 有时是D. 不确定4. 轴对称图形的对称轴可以有多少条?A. 只有一条B. 至少一条C. 无数条D. 没有5. 下列哪个图形不是轴对称图形?A. 等边三角形B. 等腰梯形C. 矩形D. 正五边形二、填空题(每空1分,共10分)6. 轴对称图形的对称轴是________。
7. 如果一个图形关于点O对称,那么这个点O被称为该图形的________。
8. 一个轴对称图形的对称轴可以是一条________或多条________。
9. 轴对称图形的对称轴将图形分成两个完全________的部分。
10. 轴对称图形的对称轴是图形上所有点到________的距离相等的直线。
三、判断题(每题1分,共10分)11. 所有圆形都是轴对称图形。
()12. 轴对称图形的对称轴可以是曲线。
()13. 轴对称图形的对称轴一定经过图形的中心。
()14. 一个图形的轴对称图形与原图形是完全相同的。
()15. 轴对称图形的对称轴是唯一的。
()四、简答题(每题5分,共10分)16. 请解释什么是轴对称图形,并给出一个例子。
17. 描述如何确定一个图形是否是轴对称图形。
五、应用题(每题5分,共10分)18. 给定一个矩形,如果将其沿一条对角线折叠,这条对角线是否是该矩形的对称轴?为什么?19. 如果一个图形关于某条直线对称,那么这条直线上的所有点是否也是对称的?请解释。
六、解答题(每题5分,共10分)20. 给定一个等边三角形ABC,如果点A关于对称轴l对称到点A',求证点B和点C也关于对称轴l对称。
答案一、选择题1. A2. A3. A4. B5. D二、填空题6. 对称轴7. 对称中心8. 直线,直线9. 重合10. 对称轴三、判断题11. √12. ×13. ×14. √15. ×四、简答题16. 轴对称图形是指一个图形关于某条直线(对称轴)对称,这条直线将图形分成两个完全相同的部分。
轴对称经典测试题(含答案)
一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______条对称轴,正三角形的对称轴有条.2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同请指出这个图形,并说明理由.答:这个图形是:(写出序号即可),理由是.3.等腰△ABC中,若∠A=30°,则∠B=________.4.△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=__ __.5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.6.判断下列图形(如图所示)是不是轴对称图形.7.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.8.如图,△ABC中,AD垂直平分边BC,且△ABC的周长为24,则AB+BD = ;又若∠CAB=60°,则∠CAD = .9.如图,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O与边BC的关系如何请用一句话表示:.如图:等腰梯形ABCD中,AD∥BC,AB=6,AD=5,BC=8,且AB∥____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.12.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为B E CDAABC DBHFAECGO第8题图第9题图第10题图____________.13.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为__ ___.14.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.15.如图,将长方形ABCD沿对角线BD折叠,使点C恰好落在如图C1的位置,若∠DBC=30º,则∠ABC1=________.16.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35º,∠BCO=30º,那么∠AOB=____ ___.二、解答题(共68分)17.(5分)已知点M)5,3(ba-,N)32,9(ba+关于x轴对称,求a b的值.18.(5分)已知AB=AC,BD=DC,AE平分∠FAC,问:AE与AD是否垂直为什么19.(5分)如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC 于E,AC=9 cm,△BCE的周长为15 cm,求BC的长.第14题图第15题图第16题图ABC DEF20.(5分)如图所示,已知△ABC和直线MN.求作:△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)21.(5分)如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..BA .22.(5分)如图,在ABC中,AB=AC,A=92,延长AB到D,使BD=BC,连结DC.求D的度数,ACD的度数.A23.(5分)有一本书折了其中一页的一角,如图:测得AD =30cm,BE =20cm ,∠BEG =60°,求折痕EF 的长.24.(8分)如图所示,在△ABC 中,CD 是AB 上的中线,且DA =DB =DC .(1)已知∠A =︒30,求∠ACB 的度数; (2)已知∠A =︒40,求∠ACB 的度数; (3)已知∠A =︒x ,求∠ACB 的度数; (4)请你根据解题结果归纳出一个结论.25.(6分)如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE =EF =FC 的道理.26.(7分)已知AB =AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.A DBCABOEFCAF27.(7分)等边△ABC 中,点P 在△ABC 内,点Q在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形试说明你的结论.28.(5分)如图①是一张画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l 剪掉标有A 的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来.轴对称单元测试答案(二)一、填空题ACBPQ1.2,3 2.④,不是轴对称图形3.75度或30度4.3 5.4 6.(1)(3)(6)是轴对称图形,(2)(4)(5)不是轴对称图形7.5 8.12 9.点O到BC两端的距离相等10.1511.正反写的4和6 12.4,6 13.353cm或5cm 14.2、4,2 15.30度16.130度二、解答题18.垂直19.BC=6cm 20.略21.略22.22度,66度23.20cm 24.(1)90度;(2)90度;(3)90度;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90度25.略26.略27.是等边三角形28.略-。
轴对称测试题及答案
轴对称测试题及答案一、选择题(每题3分,共30分)1. 下列图形中,哪一个是轴对称图形?A. 不规则多边形B. 等腰三角形C. 任意四边形D. 圆形答案:B、D2. 轴对称图形的定义是什么?A. 一个图形关于某条直线对称B. 一个图形关于某点对称C. 一个图形关于某面对称D. 一个图形关于某曲线对称答案:A3. 一个图形关于一条直线对称,那么这条直线被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:A4. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 半圆形D. 非等腰的梯形答案:D5. 一个图形关于某点对称,那么这个点被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:B6. 一个图形关于某面对称,那么这个面被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:C7. 轴对称图形的对称轴可以有多少条?A. 0条B. 1条C. 2条D. 无数条答案:D8. 一个图形关于某条直线对称,那么这条直线将图形分成的两部分是:A. 完全相同B. 完全相反C. 部分相同D. 完全不同答案:A9. 轴对称图形的对称轴一定是:A. 直线B. 曲线C. 点D. 面答案:A10. 下列哪个图形不是轴对称图形?A. 正五边形B. 正六边形C. 正七边形D. 正八边形答案:C二、填空题(每题4分,共20分)1. 一个图形关于一条直线对称,那么这条直线被称为______。
答案:对称轴2. 轴对称图形的定义是:一个图形关于某条直线对称,那么这条直线将图形分成的两部分是______。
答案:完全相同3. 一个图形关于某点对称,那么这个点被称为______。
答案:对称中心4. 轴对称图形的对称轴可以有______条。
答案:无数5. 一个图形关于某面对称,那么这个面被称为______。
答案:对称面三、简答题(每题5分,共10分)1. 请说明什么是轴对称图形,并给出一个例子。
中考数学总复习《轴对称》专项测试卷-附有参考答案
中考数学总复习《轴对称》专项测试卷-附有参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.在平面直角坐标系中,点P(−2,3)关于x轴对称的点的坐标为( )A.(−2,−3)B.(2,−3)C.(−3,2)D.(3,−2) 2.下列四个图案中,不是轴对称图案的是( )A.B.C.D.3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( )A.中B.国C.加D.油4.点P(m,−2)与点P1(−4,n)关于x轴对称,则m,n的值分别为( )A.m=4,n=−2B.m=−4,n=2C.m=−4,n=−2D.m=4,n=25.若等腰三角形的周长为30cm,一边为14cm,则腰长为( )A.2cm B.8cmC.8cm或2cm D.14cm或8cm6.如图,在△ABC中,DE是AC的垂直平分线AC=8cm,且△ABD的周长为14cm则△ABC的周长为( )A.15cm B.18cm C.22cm D.25cm7.在Rt△ABC中∠ABC=90∘,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是( )A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.若等腰三角形的一个内角为80∘,则这个等腰三角形的顶角为( )A.80∘B.50∘C.80∘或50∘D.80∘或20∘二、填空题(共5题,共15分)9.如图,等边△ABC,B点在坐标原点,C点的坐标为(4,0),点A关于x轴对称点Aʹ的坐标为.10.如图,已知△ABC是等边三角形,D是AC边上的任意一点,点B,C,E在同一条直线上,且CE=CD,则∠E=度.11.如图,在△ABC中AB=AC=5,BC=6,AD平分∠BAC交BC于点D,分别以点A和点C为圆心,大于1AC的长为半径作弧,两弧相交于点M和点N,作直线MN,2交AD于点E,则DE的长为.12.如图,长方形纸条ABCD中AB∥CD,AD∥BC,∠A=∠B=∠C=∠D=90∘.将长方形纸条沿直线EF折叠,点A落在Aʹ处,点D落在Dʹ处,AʹE交CD于点G.若∠AEF=α,则∠AʹGC=(用含α的式子表示).13.在平面直角坐标系中,点A的坐标是(−1,2).作点A关于y轴的对称点,得到点Aʹ,再将点Aʹ向下平移4个单位长度,得到点Aʺ,则点Aʺ的坐标是(,).三、解答题(共3题,共45分)14.如图,△ABC中,BO平分∠ABC,CO平分∠ACB,MN过点O交AB于点M,交AC于点N,且MN∥BC,BM=6,CN=7.求MN的长.15.如图,在△ABC中AB=AC,点D,E,F分别在AB,BC,AC边上,且BE= CF,BD=CE.(1) 求证:△DEF为等腰三角形;(2) 当∠A=50∘时,求∠DEF的度数.16.如图,△ABC为等边三角形,D为△ABC内一点,且∠ABD=∠DAC,过点C作AD 的平行线,交BD的延长线于点E,BD=EC连接AE.(1) 求证:△ABD≌△ACE;(2) 求证:△ADE为等边三角形.参考答案1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】B5. 【答案】D6. 【答案】C7. 【答案】C8. 【答案】D9. 【答案】63∘或27∘10. 【答案】3011. 【答案】7812. 【答案】180∘−2α13. 【答案】1;−214. 【答案】∵BO平分∠ABC∴∠ABO=∠CBO∵MN∥BC∴∠CBO=∠BOM∴∠ABO=∠BOM∴BM=OM同理可得:∠ACO=∠CON∴CN=ON∴MN=OM+ON=BM+CN=6+7=13.15. 【答案】(1) ∵AB=AC∴∠B=∠C在△BDE和△CEF中{BD=CE,∠B=∠C, BE=CF,∴△BDE≌△CEF(SAS)∴DE=EF∴△DEF为等腰三角形;(2) ∵△BDE≌△CEF∴∠BDE=∠CEF∴∠BED+∠CEF=∠BED+∠BDE∵∠B+(∠BED+∠BDE)=180∘∠DEF+(∠BED+∠BDE)=180∘∴∠B=∠DEF.∵∠A=50∘AB=AC∴∠B=12(180∘−50∘)=65∘∴∠DEF=65∘.16. 【答案】(1) ∵△ABC是等边三角形∴AB=AC∠BAC=∠ACB=60∘∵AD∥CE∴∠DAC=∠ACE,且∠ABD=∠DAC∴∠ACE=∠ABD,且AB=AC BD=CE∴△ABD≌△ACE(SAS).(2) ∵△ABD≌△ACE∴AD=AE∠BAD=∠CAE∵∠BAD+∠DAC=∠BAC=60∘∴∠CAE+∠DAC=∠DAE=60∘,且AD=AE∴△ADE是等边三角形.。
轴对称单元测试题(含答案--高质量)
(轴对称)一、选择题(每小题3%,共30%)1。
下面四组图形中,右边与左边成轴对称的是( )A. B 。
C 。
D 。
2。
下列图形中一定有4条对称轴的是( )A 。
长方形 B.正方形 C.等边三角形 D 。
等腰直角三角形 3。
下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个 C 。
4个 D.6个 4.如图1:射线BA,CA 相交于点A,连接BC ,已知AB=AC ,∠B=400, 则∠CAE 的度数为( )A 。
400 B.600 C 。
800 D.10005.等腰三角形是轴对称图形,它的对称轴有( )A 。
1条B 。
2条 C.3条 D.1条或3条 图1 6。
如图2:在△ABC 中,DE 垂直平分AB,AE 平分∠BAC,若∠C=900,则∠B 的度数为( ) A 。
30B.20C 。
40D 。
25图27。
底和腰不等的等腰三角形中,它的角平分线、中线、高共有线段( ) A 。
9条 B 。
6条 C.7条 D.3条 8。
如图3:在△ABC 中,AB=AC,∠A=360,BD ,CE 分别平分∠ABC 和∠ACB,相交于点F ,则图中等腰三角形共有( ) A 。
7个 B 。
8个 C 。
6个 D 。
9个图39。
如图4:如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1000,则∠BCD 的度数为( ) A 。
700B.800C.600D.90010。
等腰三角形一腰上的高与另一腰的夹角为300,则顶角的度数为( ) 图4BCAE B C A E DAB C D E FA BCDEmA.600B.1200C.600或1500D.600或1200二、填空题(每小题3%,共15%)11.从镜子中看到背后墙上电子钟的示意数为 ,这时的实际时间为______。
12。
在△ABC 中,AB=AC,AD ⊥BC 于D ,由以上两个条件 可得_________________.(写出一个结论即可)13.如图5:在△ABC 中, ∠A=900,BD 平分∠ABC,交AC于点D,已知AD=4。
《轴对称》测试题包含答案
《轴对称》测试题包含答案轴对称是指一个物体或图形相对于某个中心轴线对称。
在数学中,轴对称也被称为镜像对称。
轴对称在几何学、物理学和艺术中都有广泛的应用。
下面是一些轴对称的测试题及其答案,帮助你更好地理解和掌握轴对称的概念。
1.画出以下几何图形的轴对称轴线: a) 正方形 b) 长方形 c) 圆形 d) 三角形答案: a) 从正方形的中心点连接任意相对的两个顶点,得到的线段就是正方形的轴对称轴线。
b) 从长方形的中心点连接任意相对的两个顶点,得到的线段就是长方形的轴对称轴线。
c) 圆形的轴对称轴线可以是任意一条穿过圆心的直径线。
d) 三角形的轴对称轴线是连接每个顶点与对边中点的线段。
2.判断以下物体是否具有轴对称: a) 人体 b) 椅子 c) 钻石 d) 马答案:a) 人体不具有轴对称,因为我们的身体左右两侧并不完全对称。
b) 椅子具有轴对称,因为椅子的左右两侧是镜像对称的。
c) 钻石具有轴对称,因为它的左右两侧是完全对称的。
d) 马不具有轴对称,因为马的左右两侧并不完全对称。
3.在平面直角坐标系中,点A(2, 3)关于y轴的轴对称点是什么?答案:点A关于y轴的轴对称点是(-2, 3)。
4.在平面直角坐标系中,抛物线y = x^2的图像关于x轴和y轴的轴对称图形分别是什么?答案:抛物线y = x^2关于x轴的轴对称图形是y = -x^2,关于y轴的轴对称图形是y = x^2。
5.用轴对称的方法,画出一个完整的五角星。
答案:首先,画一个正五边形,然后将正五边形的中心点与每个顶点连接,得到五个三角形。
接下来,将每个三角形沿着与顶点相对的边的中点进行翻转,得到五角星的完整图形。
这些测试题希望能够帮助你理解和掌握轴对称的概念。
通过练习和实践,你可以更好地应用轴对称的知识,并在几何学、物理学和艺术中发挥出色。
记得多多练习,加深对轴对称的理解和应用。
轴对称测试题及答案初二
轴对称测试题及答案初二一、选择题(每题3分,共30分)1. 轴对称图形的定义是什么?A. 能被一条直线分成两个完全相同的图形B. 能被一个点分成两个完全相同的图形C. 能被一个面分成两个完全相同的图形D. 能被一条曲线分成两个完全相同的图形答案:A2. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 菱形D. 圆答案:D3. 轴对称图形的对称轴是什么?A. 任意一条直线B. 任意一条曲线C. 经过图形中心的直线D. 经过图形中心的曲线答案:C4. 一个图形关于某条直线对称,那么这条直线是该图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:A5. 一个图形关于某点对称,那么这个点是该图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:B6. 两个图形关于某条直线对称,那么这条直线是两个图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:A7. 两个图形关于某点对称,那么这个点是两个图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:B8. 一个图形的对称轴有几条?A. 一条B. 两条C. 无数条D. 没有答案:C9. 一个图形的对称中心有几个?A. 一个B. 两个C. 无数个D. 没有答案:A10. 一个图形的对称点有多少个?A. 一个B. 两个C. 无数个D. 没有答案:C二、填空题(每题3分,共30分)1. 轴对称图形的对称轴是________。
答案:经过图形中心的直线2. 一个图形的对称中心是________。
答案:图形上所有对称点的集合3. 一个图形的对称点是________。
答案:关于对称轴或对称中心对称的点4. 一个图形的对称轴可以是________。
答案:直线或曲线5. 一个图形的对称中心可以是________。
答案:点或线段6. 一个图形的对称点可以是________。
答案:图形上的任意点7. 一个图形的对称轴数量可以是________。
初中轴对称测试题及答案
初中轴对称测试题及答案一、选择题1. 以下哪个图形是轴对称图形?A. 等腰三角形B. 非等边三角形C. 任意四边形D. 不规则五边形答案:A2. 轴对称图形的对称轴将图形分成两个完全相同的部分,以下哪个图形的对称轴是一条直线?A. 圆形B. 正方形C. 等腰梯形D. 任意多边形答案:B3. 如果一个图形沿着某条直线折叠后,直线两旁的部分能够完全重合,那么这条直线就是这个图形的对称轴。
以下哪个图形的对称轴是一条曲线?A. 半圆B. 正六边形C. 等腰三角形D. 长方形答案:A二、填空题4. 一个等腰三角形的底边长为6厘米,腰长为5厘米,那么这个等腰三角形的高是______厘米。
(答案不唯一,根据勾股定理计算即可)答案:45. 一个正方形的对角线长度为10厘米,那么这个正方形的边长是______厘米。
答案:5√2三、解答题6. 已知一个轴对称图形的一半,画出它的另一半。
(此处应有图形,学生根据图形画出另一半)7. 证明:如果一个图形是轴对称的,那么它的对称轴至少有一条。
证明:设图形为G,若G是轴对称的,则存在至少一条直线l,使得G关于l对称。
根据轴对称的定义,G上任意一点P关于l的对称点P'也在G上,且P和P'关于l对称。
因此,G的对称轴至少有一条,即直线l。
8. 计算:一个轴对称图形的面积是50平方厘米,那么它的对称轴将图形分成的两个部分的面积分别是多少?答案:25平方厘米四、综合题9. 已知一个轴对称图形,它的对称轴是y=x,且图形上有一点A(2,3),求点A关于对称轴的对称点B的坐标。
答案:(3,2)10. 给定一个轴对称图形,它的对称轴是x轴,且图形上有一点C(-1,4),求点C关于对称轴的对称点D的坐标。
答案:(-1,-4)。
轴对称图形及性质专项练习30题(有答案)ok
25.如图,点P在∠AOB内,点M,N分别是点P关于AO,BO的对称点,若△PEF的周长是30cm,求MN的长.
26.如图,△ABC和△A′B′C′关于直线m对称.
轴对称图形及性质专项练习30题(有答案)
1.下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形的个数是( )
A.
1
B.
2
C.
3
D.
4
2.如本题图所示,这是我国四所著名大学的校微图案,如果忽略各个图案中的文字、字母和数字,只关注图形.其中不是轴对称图形的是( )
A.
B.
C.
D.
3.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是( )
∴对称轴的条数为2的图形的个数是3;
故选:C
2.解:根据轴对称图形的概念可得:A、B和C选项中的图案是轴对称图形,D选项中的图案不是轴对称图形,
故选D
3.解:根据镜面对称的性质,题中所显示的时刻与10:51成轴对称,
所以此时实际时刻为10:51.
故选C
4.解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.
A.
2种
B.
3种
C.
4种
D.
5种
13.下列说法错误的是( )
A.
线段是轴对称图形,它的对称轴是线段的垂直平分线
轴对称测试题及答案
轴对称测试题及答案一、选择题1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形答案:A2. 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形被称为:A. 旋转对称图形B. 平移对称图形C. 轴对称图形D. 反射对称图形答案:C二、填空题3. 轴对称图形的对称轴是图形上所有点到对称轴的距离都相等的________。
答案:直线4. 如果一个图形关于某条直线对称,那么这条直线就被称为图形的________。
答案:对称轴三、判断题5. 所有矩形都是轴对称图形。
()答案:错误6. 轴对称图形的对称轴可以是曲线。
()答案:错误四、简答题7. 请描述如何判断一个图形是否为轴对称图形,并给出一个例子。
答案:判断一个图形是否为轴对称图形,需要检查该图形是否能够沿着一条直线对折,使得对折后的两部分完全重合。
例如,等腰三角形就是一个轴对称图形,因为它可以沿着从顶点到底边中点的高线对折,使得两边的腰完全重合。
8. 解释什么是轴对称变换,并给出一个实际应用的例子。
答案:轴对称变换是一种几何变换,其中一个图形通过沿着一条直线(对称轴)对折,变换成另一个与之完全重合的图形。
实际应用的例子包括镜像反射,例如在镜子中看到的自己的倒影,就是通过镜子作为对称轴进行轴对称变换得到的。
五、计算题9. 已知一个轴对称图形的对称轴是y轴,图形上一点A的坐标为(3,4),请计算点A关于y轴的对称点B的坐标。
答案:点A关于y轴的对称点B的坐标为(-3,4)。
10. 如果一个轴对称图形的对称轴是x轴,图形上一点C的坐标为(-2,3),请计算点C关于x轴的对称点D的坐标。
答案:点C关于x轴的对称点D的坐标为(-2,-3)。
六、绘图题11. 根据题目描述,绘制一个轴对称图形,并标出其对称轴。
答案:[此处应绘制图形,例如一个等腰三角形,其对称轴是连接顶点和底边中点的高线。
]12. 在给定的坐标系中,绘制一个点关于x轴的对称点。
初二轴对称l单元测试题及答案
初二轴对称l单元测试题及答案初二轴对称单元测试题及答案一、选择题(每题2分,共10分)1. 下列图形中,不是轴对称图形的是:A. 等边三角形B. 正方形C. 圆D. 五角星2. 如果一个图形关于某条直线对称,那么这条直线称为该图形的:A. 对称轴B. 对称线C. 反射线D. 镜像线3. 一个图形的轴对称变换不改变图形的:A. 形状B. 大小C. 颜色D. 位置4. 根据轴对称的性质,下列说法正确的是:A. 对称轴两侧的图形形状相同B. 对称轴两侧的图形颜色相同C. 对称轴两侧的图形大小相同D. 对称轴两侧的图形位置相同5. 在平面直角坐标系中,如果一个点关于y轴对称,那么它的对称点的坐标是:A. (-x, y)B. (x, -y)C. (y, x)D. (-y, x)二、填空题(每题2分,共10分)6. 若一个图形关于直线x=1对称,则该图形的对称轴是________。
7. 等腰三角形的底边中点与顶点的连线是该三角形的________。
8. 在平面直角坐标系中,点(3,4)关于x轴对称的点的坐标是________。
9. 轴对称图形的对称轴是图形的________。
10. 如果一个图形的对称轴是y=2,那么该图形在对称轴上的所有点的y坐标都是________。
三、简答题(每题5分,共15分)11. 描述如何判断一个图形是否为轴对称图形。
12. 解释轴对称图形的对称轴的确定方法。
13. 给出一个实际生活中轴对称的应用例子,并解释其工作原理。
四、作图题(每题5分,共10分)14. 给定一个三角形ABC,A(-1,2),B(2,4),C(3,-1),请画出三角形ABC关于直线x=1的对称图形。
15. 在平面直角坐标系中,画出点(2,3)关于y轴的对称点。
五、计算题(每题5分,共15分)16. 已知点P(-2,3),求点P关于直线y=x的对称点P'的坐标。
17. 已知点Q(4,-1),求点Q关于原点的对称点Q'的坐标。
轴对称期末考试试题及答案
轴对称期末考试试题及答案一、选择题(每题3分,共30分)1. 下列图形中,哪一个是轴对称图形?A. 三角形B. 正方形C. 圆形D. 五边形答案:C2. 轴对称图形的对称轴是:A. 直线B. 曲线C. 点D. 面答案:A3. 如果一个图形关于某条直线对称,那么这条直线被称为:A. 对称线B. 垂直线C. 平行线D. 斜线答案:A4. 一个轴对称图形的对称轴有:A. 0条B. 1条C. 2条D. 无数条答案:D5. 轴对称图形的对称点关于对称轴:A. 垂直B. 平行C. 重合D. 相交答案:D6. 轴对称图形的对称轴可以是:A. 任意直线B. 任意曲线C. 唯一直线D. 唯一曲线答案:C7. 如果一个图形沿某条直线折叠后,两侧部分完全重合,那么这条直线是该图形的:A. 对称线B. 垂直线C. 平行线D. 斜线答案:A8. 轴对称图形的对称点到对称轴的距离:A. 相等B. 不相等C. 有时相等,有时不相等D. 无法确定答案:A9. 轴对称图形的对称点的连线:A. 垂直于对称轴B. 平行于对称轴C. 重合于对称轴D. 与对称轴相交答案:D10. 下列图形中,哪一个不是轴对称图形?A. 矩形B. 菱形C. 梯形D. 椭圆答案:C二、填空题(每题2分,共20分)1. 轴对称图形的定义是:如果一个图形沿一条直线折叠后,两侧部分完全________,则这条直线被称为该图形的对称轴。
答案:重合2. 轴对称图形的对称点的连线________对称轴。
答案:相交于3. 轴对称图形的对称轴可以是直线,也可以是________。
答案:曲线4. 轴对称图形的对称点到对称轴的距离________。
答案:相等5. 如果一个图形沿某条直线折叠后,两侧部分完全重合,那么这个图形是________图形。
答案:轴对称6. 轴对称图形的对称轴可以有________条。
答案:无数7. 轴对称图形的对称点关于对称轴________。
答案:对称8. 轴对称图形的对称轴是图形中所有对称点连线的________。
轴对称测试题及答案
轴对称测试题及答案1. 什么是轴对称图形?2. 轴对称图形的性质有哪些?3. 如何判断一个图形是否是轴对称图形?4. 给定一个图形,如何找到它的对称轴?5. 如果一个图形关于某条直线对称,那么这条直线被称为什么?6. 一个等边三角形是轴对称图形吗?如果是,它有多少条对称轴?7. 给定一个矩形,它有几条对称轴?8. 一个圆有多少条对称轴?9. 给定一个点A(x, y),如果它关于x轴对称,那么它的对称点坐标是什么?10. 给定一个点A(x, y),如果它关于y轴对称,那么它的对称点坐标是什么?答案1. 轴对称图形是指一个图形可以通过一条直线(称为对称轴)进行翻转,使得图形的两部分完全重合的图形。
2. 轴对称图形的性质包括:- 对称轴两边的图形完全重合。
- 对称轴是图形上任意两点连线的中垂线。
3. 判断一个图形是否是轴对称图形的方法是:- 检查图形是否可以通过一条直线翻转后完全重合。
4. 找到图形的对称轴的方法是:- 观察图形,寻找一条直线,使得图形的任意两点关于这条直线对称。
5. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的对称轴。
6. 一个等边三角形是轴对称图形,它有3条对称轴,分别是三条中线。
7. 一个矩形有2条对称轴,分别是两条对角线。
8. 一个圆有无数条对称轴,因为圆的任意直径都是它的对称轴。
9. 如果点A(x, y)关于x轴对称,那么它的对称点坐标是(-x, y)。
10. 如果点A(x, y)关于y轴对称,那么它的对称点坐标是(x, -y)。
附加练习题1. 一个正方形有几条对称轴?请说明它们的位置。
2. 如果一个图形既有轴对称又有中心对称,那么它是什么图形?3. 给定一个点A(x, y),如果它关于原点对称,那么它的对称点坐标是什么?4. 描述如何通过坐标变换将一个图形关于y轴进行对称。
5. 描述如何通过坐标变换将一个图形关于x轴进行对称。
附加练习题答案1. 一个正方形有4条对称轴,分别是两条对角线和连接相邻顶点的两条线段。
初中轴对称试题及答案
初中轴对称试题及答案一、选择题(每题2分,共10分)1. 下列哪个图形是轴对称图形?A. 等边三角形B. 正方形C. 圆D. 所有选项答案:D2. 如果一个图形沿一条直线对折后,直线两旁的部分能够完全重合,那么这条直线被称为什么?A. 对称轴B. 垂直线C. 斜线D. 边界线答案:A3. 一个图形的对称轴数量最多可以是多少?A. 1B. 2C. 无数D. 没有答案:C4. 下列哪个图形不是轴对称图形?A. 等腰梯形B. 菱形C. 正五边形D. 任意四边形答案:D5. 轴对称图形的对称轴是:A. 直线B. 曲线C. 点D. 面答案:A二、填空题(每题2分,共10分)1. 一个图形沿对称轴对折后,两侧图形能够完全重合,这种性质称为______。
答案:轴对称性2. 轴对称图形的对称轴可以是图形的______、______或______。
答案:边、对角线、任意线段3. 轴对称图形的对称轴将图形分成两个完全相同的部分,这两部分称为______。
答案:对称部分4. 圆的对称轴有______条。
答案:无数5. 一个图形的对称轴越多,表示这个图形的对称性越______。
答案:强三、判断题(每题2分,共10分)1. 所有等腰三角形都是轴对称图形。
()答案:正确2. 轴对称图形的对称轴一定是图形的边。
()答案:错误3. 任何多边形都有对称轴。
()答案:错误4. 正方形有4条对称轴。
()答案:正确5. 一个图形的对称轴越多,其对称性越弱。
()答案:错误四、解答题(每题10分,共20分)1. 给定一个等腰三角形,底边长为6cm,腰长为5cm,请画出它的对称轴,并说明对称轴的性质。
答案:对称轴是连接顶点和底边中点的线段,它将三角形分成两个完全相同的等腰三角形。
2. 已知一个矩形的长为8cm,宽为4cm,请画出它的对称轴,并说明对称轴的数量和位置。
答案:矩形有两条对称轴,一条是连接长边中点的线段,另一条是连接宽边中点的线段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称测试题及答案
新人教版八年级数学上册第十二章轴对称测试题及答案
选择题(本大题共12小题,每小题2分,共24分)
1.下列几何图形中,是轴对称图形且对称轴的条数大于1的有()
(1)长方形;⑵正方形:⑶圆;⑷三角形:⑸线段:⑹射线;⑺直线.
A. 3个
B.4个
C. 5个
D.6个
2.下列说法正确的是()
A.任何一个图形都有对称轴
B.两个全等三角形一定关于某直线对称
C.若AABC与厶DEF成轴对称,则厶ABC^ADEF
D.点A,点B在直线L两旁,且AB与直线L交于点O,若AO二BO,则点A与点B
关于直线L对称3•如图所示是-只停泊在平静T水面的小船,它的“倒影”应是图中的()
4•在平面直角坐标系\ 中,有点A (2, -1),点A关于y轴的对
5.已知点A的坐标为(1, 4),则点A关于x轴对称的点的纵坐标为()
6•等腰三角形是轴对称图形,它的对称轴是()
A.过顶点的直线
B.底边上的高
C.底边的中线
D.顶角平分线所在的直线.
7.已知点A (-2, 1)与点B关于直线x=l成轴对称,则点B的坐标为()
A. (4, 1)
B. (4, -1)
C. (-4, 1)
D. (-4, -1)
&已知点P (1, a)与Q (b, 2)关于x轴成轴对称,又有点Q (b, 2)与
点M (m, n)关于y轴成轴对称,则m-n的值为()
A. 3
B.-3
C. 1
D. -1
9•等腰三角形的一个内角是50。
,则另外两个角的度数分别为()
A. 1
B. - 1
C.4
D. 一4
1) C. (2, 1) D. (1, -2)
°, 65° °, 80° °, 65。
或 50。
,80° °t 50°
10.等腰三角形一腰上的高与另一腰的夹角为60。
,则这个等腰三角形的顶角为() A. 30°
B. 150°
C. 30°或 150°
°
11 •等腰三角形底边长为6cm,—腰上的中线把它的周长分成两部分的差为2cm,则腰长 为()
A. 4cm
B. 8cm
C. 4cm 或 8cm
D.以上都不对
12•已知乙AOB 二30。
,点P 在乙AOB 的内咅乞点厂和点P 关于OA 对称,点P?和点P 关于OB 对称,则円、O 、P2三点构成的三角形是() A.直角三角形
B.钝角三角形
C.等腰直角三角形
D.等边三角形
二、填空题:(本大题共8小题,每小题3分,共24分)
13•等边三角形是轴对称图形,它有_条对称轴.
卩 图,如果△ AxBjC,与△ ABC 关于y 轴对称,那么点A 的对应点
C
坐标为
-4 -3 -2 -1 卩
第14題
16•已知乙AOB 二30。
,点P 在OA 上 且OP 二2,点P 关于直线OB 的对称点是Q 则
PQ 二 ___ ・
17. __________________________________________________ 等腰三角形顶角为
30。
,腰长是4cm,则三角形的面积为 ______________________________ •
18. 点P (1, 2)关于直线y 二1对称的点的坐标是—;关于直线x 二1对称的的坐标
是 ___ •
19. 三角形三内角度数之比为1 : 2 : 3,最大边长是8cm,则最小边的长是—• 20•在AABC 和厶ADC 中,下列3个论断:①AB 二AD ;②乙BAC 二ZDAC ;③BC 二
14 •如 Ai 的
15.
4-
如图是某时刻在镜子中看到准确时钟的情况,则实际时间
DC•将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:
三、解答题:(本大题共52分)
21・(每小题5分,共10分)作图题:(不写作法,保留作图痕迹)
(1) 写出点C 和点D 的坐标; (2) 求出梯形ABCD 的面积.
24. (5分)如图,ZXABC 中,DE 是AC 的垂直平 A 分线,AE 二3cm, A ABD 的周
求证:(1)CD = BE. (2)乙BPC = 120°
⑶写岀点A- B v C ]的坐标.
B (-1, 0),
(1)如图,已知线段AB 和直线L,作出与线段AB 关于直线L 对称的图形.
⑵ 已知ZAOB 和C 、D 两点,求作一点P,使PC=PD,且P 到ZAOB 两边的距离相等.
23. (5分)如图所示,梯形ABCD 关 A 的坐标为(-3, 3),
点B 的坐标为(-2, 0).
长为13cm.
求AABC 的周长.
25・(6分)如图,D 是等边三角形ABC 内一点, BP 二 AB, ZDPB =
/DBC.
求证:乙BPD 二30。
・
26. (8分)如图,AABC 为任意三角形,
作等边三角形ABD 和等边三角形 CD 、BE 并且相交于点P.
占
八
为边分别向外
A ACE ?连接
P
以边AB 、AC
D
A D
B 二 DA, B
27. (6分)下面有三个结论:
(1)等腰三角形两底角的平分线的交点到底边两端的距离相等.
(2)等腰三角形两腰上中线的交点到底边两端的距离相等.
(3)等腰三角形两腰上的髙的交点到底边两端的距离相等.
请你任选一个结论进行证明.
28. (7分)如图,在厶ABC中,AB二AC,乙A二120。
,BC二6, AB的垂直平分线交
BC于M交AB于E, AC的垂直平分线交BC于N,交AC于F,
求证:BM二MN二NC・
参考答案和提示:
一、选择题:::::;:;;:;
二、填空题:13.3 ; 14. (- 1, 3);15.4点 40分;16.2 ; 17.4cm2; 18. (l f
0)
(1
,
2)
19.4cm ;20•等腰三角形的顶角平分线和底边上的中线重合.
三、解答题:21 •
略;
22.(1)= ><5x3 二(平方单位);⑵略;(3)Ai (1, 5) f B. (1,0) ;Ci (4. 3)
・
23.(1 )C (2, 0) , D (3, 3) .(2;S II 二
24.v DE是线段AC的垂直平分线
AD 二 CD
V AABD的周长为13cm (4 + 6) x3二15 (平方单位)・
・•・ AB + BC = 13cm
•・• AE 二 3cm
・•・ AC = 2AE = 6cm. AABC 的周长为:AB + BC + AC = 19cm. 25•连接CD,并延度CD交AB于E,证CE垂直平分AB,可得乙DCB二30。
再证ABDC竺ABDP即可
26•
略;
27 •略
28•连接 MA、NA,证明:MA 二 NA 二 MN.。