光学系统的像差_色差

合集下载

第9章 光学系统的像差

第9章 光学系统的像差

第 九 章 光学系统的像差
9.1
三、光学系统的 球差分布公式
1、原理分析
L L+ L
'
'
*
含义: L 包含了前面几个面的球差贡献 L * L 及该折射面本身所产生的球差
nu sin u = ' ' 其中: ' 为转面倍率 n u sin u
. 应用 . 光学
第 九 章 光学系统的像差
9.1
2、球差分布公式
克莱伯公式: 单个折射球面的球差表示式为:
整个系统的球差表示式为:
或:
. 应用 . 光学
第 九 章 光学系统的像差
9.1
四、单个折射球面的球差分布系数,不晕点 经过推导,可得到单个折射球面的球差分布系数
PA校对法
令上式为零:可以得到一下三个无球差点
第一:L=0,此时L’必为零,故物点、像点和顶点 重合。 第二:sinI-sinI’=0,这个条件只能在I’=I=0时才 能满足,相当于光线与球面法线重合,物点 像点和球面中心重合,此时L=L’=r; 第三:sinI’-sinU=0,则I’=U;
五、单个折射球面的球差正负和物体位置的关系
. 应用 . 光学
第 九 章 光学系统的像差
9.1
一、球差的定义及其计算
1、轴向像差:由轴上点发出的同心光束,经光学系统 各个折射面折射后,不同孔径角的交线交于不同点,相 对于理想像点的位置有不同的偏离,这就是球面像差。
L L l
' '
'
实际像点与理想像点的沿轴距离
L a1U a2U a3U
' ' 2 1 4 1 6 1

华中科技大学 《应用光学》课程PPT——第九章 光学系统的像差

华中科技大学 《应用光学》课程PPT——第九章 光学系统的像差
轴外弧矢球差:表示轴外点弧矢宽光束交点与弧矢
细光束交点沿光轴方向的偏离的量度;
§ 9-4 畸变
1. 主光线和高斯象面交点的高 度不等于理想象高,其差别就 是系统的畸变。
Yz Yz y
当孔阑位置移动,主光线与高斯像面交点 高度 变化,引起像的变形。
2. 畸变的影响: 畸变与所有的其它像 差不同,它仅由主光线的 光路决定,仅引起像的变 形,使像对物产生失真, 对成像的清晰度并无影响。
§ 9-1 轴上点的球差
1. 定义:轴上点发出的不同孔径角的光线经系统后的象方截距和 其近轴光象方截距之差称为球差。 轴向球差: L L l 垂轴球差: y LtgU 2.产因:由轴上点发出的同心光束,经光学系统各个折射面折射后, 不同孔径角U的光线交光轴于不同点上,相对于理想象点的位置有 不同的偏离。
主光线与辅助一致
4. 弧矢彗差:点BS′到主光线的垂直于光轴方向的距离为弧矢彗 差,以KS′表示。
空间光线追踪的方法计算Ys’
Xs′为宽光束的弧矢场曲。
彗差的存在和消除。
§ 9-3 象散和像面弯曲
一、宽光束的象散和场曲
XT′为宽光束的子午场曲。
宽光束的象散
XT XS X TS
实际像高比理想像高大,称正畸变,反之称负畸变。根据畸变的正负,等距的同心圆 将会变成不同形状的不等距的同心圆,正方网格也会变成枕形或桶形。
3. 相对畸变: 在光学设计中常用上述象高差 δ YZ′相对于理想象高 y′的百 分比q′表示,称相对畸变。
Yz y q 100% y
q
只有匹兹万曲面才能对平面 物体呈清晰像
单个折射面匹兹万象面弯曲的表示式 :
1 n n x p J 2 nnr 2nu

关于像差、慧差、球差、场曲、畸变、色差的名词解释

关于像差、慧差、球差、场曲、畸变、色差的名词解释

关于像差、慧差、球差、场曲、畸变、色差的名词解释1。

球差:由主轴上某一物点向光学系统发出的单色圆锥形光束,经该光学系列折射后,若原光束不同孔径角的各光线,不能交于主轴上的同一位置,以至在主轴上的理想像平面处,形成一弥散光斑(俗称模糊圈),则此光学系统的成像误差称为球差。

2。

慧差:由位于主轴外的某一轴外物点,向光学系统发出的单色圆锥形光束,经该光学系列折射后,若在理想像平面处不能结成清晰点,而是结成拖着明亮尾巴的慧星形光斑,则此光学系统的成像误差称为慧差。

彗差属轴外点的单色像差。

轴外物点以大孔径光束成像时,发出的光束通过透镜后,不再相交一点,则一光点的像便会得到一逗点状,型如彗星,故称“彗差”。

3。

像散:由位于主轴外的某一轴外物点,向光学系统发出的斜射单色圆锥形光束,经该光学系列折射后,不能结成一个清晰像点,而只能结成一弥散光斑,则此光学系统的成像误差称为像散。

4。

场曲:垂直于主轴的平面物体经光学系统所结成的清晰影像,若不在一垂直于主轴的像平面内,而在一以主轴为对称的弯曲表面上,即最佳像面为一曲面,则此光学系统的成像误差称为场曲。

5。

畸变:被摄物平面内的主轴外直线,经光学系统成像后变为曲线,则此光学系统的成像误差称为畸变。

6。

色差:由白色物点向光学系统发出一束白光,经该光学系列折射后,组成该束白光的红、橙、黄、绿、青、蓝、紫等各色光,不能会聚于同一点,即白色物点不能结成白色像点,而结成一彩色像斑的成像误差,称为色差。

球差、慧差所引起的成像模糊现象称为光晕。

像散:由位于主轴外的某一轴外物点,向光学系统发出的斜射单色圆锥形光束,经该光学系列折射后,不能结成一个清晰像点,而只能结成一弥散光斑。

当前后移动像平面至某一位置(弧矢像面)时,弥散光斑变成垂直于光学系统弧矢面的短线s。

当前后移动像平面至另一位置(子午像面)时,弥散光斑又变成垂直于光学系统子午面的短线t。

在子午像面和弧矢像面之间可以找到一弥散光斑最小的成像平面,而在其余位置只能得到一介椭圆形弥散光斑,则此光学系统的成像误差称为像散。

7种常见像差的原因

7种常见像差的原因

7种常见像差的原因像差是指光学系统在成像过程中产生的图像质量不理想的现象。

下面将介绍光学系统中常见的7种像差原因,包括球差、散光、像散、像场弯曲、畸变、色差和像间干涉。

1. 球差:球差是由于光线通过球面透镜时,不同入射位置的光线会聚或发散到不同焦点位置而导致的像差。

球差的主要表现是像点失焦,即中央和边缘部分的图像清晰度不同。

球差可以通过使用非球面透镜或复合透镜进行校正。

2. 散光:散光是由于透镜的曲率在不同方向上不同而引起的像差。

散光使得图像的焦点在不同的平面上,导致成像模糊。

散光可以通过使用散光校正透镜或非球面透镜进行校正。

3. 像散:像散是由于透镜的不同色散特性引起的像差。

不同波长的光线通过透镜后,会聚到不同的焦点位置,导致不同颜色的图像产生色差。

像散可以通过使用折射率不同的材料组合或使用色散补偿透镜进行校正。

4. 像场弯曲:像场弯曲是指光线通过透镜时,不同位置的像点距离透镜中心的距离不一致,导致图像的形状在不同位置有畸变。

像场弯曲可以通过使用非球面透镜进行校正。

5. 畸变:畸变是由于透镜的形状或光线的折射发生变化而引起的像差。

畸变可以分为桶形畸变和垫形畸变。

桶形畸变使得图像中心位置变窄,而边缘位置扩展;垫形畸变使得图像中心位置扩展,而边缘位置收缩。

畸变可以通过使用非球面透镜或使用畸变校正透镜进行校正。

6. 色差:色差是由于不同波长的光线通过透镜后,折射程度不一样而产生的像差。

常见的色差有色焦差和色散,色焦差是指不同颜色的光线聚焦位置不同,色散是指不同颜色的光线折射程度不同。

色差可以通过使用折射率不同的材料组合或使用色差补偿透镜进行校正。

7. 像间干涉:当光线经过光学系统中的多个透镜或镜面反射时,光线的相位差会导致干涉现象。

这种干涉现象会产生亮度变化或干涉条纹等干扰图像质量的现象。

像间干涉可以通过设计光学系统的结构,如透镜组的距离和角度等参数进行校正。

以上是光学系统中常见的7种像差原因的介绍。

投影仪测量误差产生的原因及其对策

投影仪测量误差产生的原因及其对策

投影仪测量误差产生的原因及其对策王树刚投影仪的误差主要是由投影屏上的成像质量和工作台的测量误差产生的,主要有以下几点:一、放大倍率误差(光学系统误差)1.产生原因主要是由于光学镜头在设计过程中及光学零件在加工制造过程中,因装配不当造成透镜调焦误差和像差而引起的,对测量准确度影响很大。

物镜的焦距误差直接影响放大倍数。

光学系统的像差包括色差、球差、慧差、像散、畸变和场曲,这些都会影响成像质量,特别是畸变和场曲将引起像的失真和轮廓模糊。

2.对策毫米投影放大率的误差是因为视场照明不均匀,表明灯丝不位于聚光镜的焦面上,破坏了远心照明条件,从而引起调焦误差所造成的放大率变化。

在修复毫米投影放大率时,必须先调节好灯源。

如果灯丝架是个歪头,则无论如何是调节不好的,这时应换只好灯泡。

毫米投影放大率超差的原因除了灯源未调节好之外,还有可能是物镜松动或可调反射镜走动。

先调节灯源并旋紧物镜,如果仍存在放大率超差现象,则可判断是由可调反射镜走动所造成的。

现以新天投影仪JT5为例来说明。

将可调反射镜上方的盖板卸下,调节可调反射镜背后的4个螺钉,使毫米刻线像在清晰及平行于屏上分划线的条件下改变距离,满足正确的放大率。

旋出周围的3个小螺钉,旋进中间的1个大螺钉时,将使反射镜后退,且放大率向大的方向变化。

反之,则放大率缩小。

在调节时,应微量调节,以防止反射镜脱落。

因光路在设计时已经采用复合光路、多片透镜组合来消除像差,所以在使用过程中对已经装配校准好的仪器物镜组不可随意拆卸。

二、灯丝长度的误差1.产生原因光源的灯丝长度不是一个点而具有一定的长度。

故光线经聚光镜后,光束不能与光轴平行,应与光轴成一定角度,其最大的角度是在灯丝两端发出的光线与光轴夹角为式中:l——灯丝长度。

显然灯丝越长,φ角越大。

由于斜光束的影响,工件轮廓影像边缘不清晰,读数瞄准困难,即对准误差增大,因而影响测量准确度。

但如果减小灯丝长度将减弱照明强度。

2.对策采用可调光圈来限制灯丝长度,在满足照明的原则下,尽量采用较小的光圈。

几何光学-第六章-像差理论

几何光学-第六章-像差理论
2、通常情况下,不能以一定宽度的光束对一定大小的物体成完善像。
成像特点: 物点——弥散斑
计算:实际光线计算 追迹成像的位置、大小与理想像的偏离——像差
小结:几何像差
像差类型 轴 单色 球差 上 色球差 物 复色 位置(轴向)色差 点 轴 外 单色 场曲 物 畸变 点 复色 倍率色差 影响因素 孔径 孔径、波长 在高斯像面上 接收到的像 单色弥散圆斑 彩色弥散圆斑
1 1 1
2 2 2
1
2
例:远轴物点发出的同心细光束,经过有像散的光学系统, 同心性会受到破坏,垂直于主轴的光屏在沿轴不同位置时, 所接收到的成像光束截面形状会发生很大的变化。
像散差
子午 焦线
明晰 圆
弧矢 焦线
3、像散特征:一个物点有子午焦线和弧矢焦线同时出现。
物点离轴越远,像散差越显著。
5、像散的物理意义
波长 孔径、视场 视场
大物面 波长
彗差(正弦差) 细光束像散
形状复杂的 弥散斑
作业
1、简述球差的产生机制、表现形式和消除方法。 2、简述慧差的形成机理和影响。 3、简述像散的机制、特征和影响。 4、简述场曲的形成机制和影响。 5、简述畸变的形成机制和影响。 6、简述位置色差及倍率色差的形成机制和影响。
b1 c1
★ 波面的中心光线: b
F 2
2
F 2 F1
a1
b2
a2
a3 b3
c2
c3
F1
F1
F2
F 2
F1
——光束在相互垂直的两截面内, 各有不同的曲率中心。 ★ 焦线:光束曲率中心的轨迹 两条相互垂直的短线 F F F 和 F F F 。 ★ 像散差:沿中心光线上两焦线之间的距离 F F 。

第八章光学系统的像质评价和像差公差

第八章光学系统的像质评价和像差公差

第八章光学系统的像质评价和像差公差光学系统的像质评价和像差公差是光学设计中非常重要的内容,对于确保光学系统的成像效果和减小像差具有重要意义。

本文将从像质评价和像差公差两个方面进行详细介绍。

第一部分:像质评价在光学系统设计中,像质评价是衡量系统成像效果好坏的一项重要指标。

像质评价可以通过不同的参数来进行,如分辨率、畸变、像场曲率等。

1.分辨率:分辨率是指系统能够分辨出最小细节的能力。

在光学系统中,分辨率受到折射率、孔径、波长等因素的影响。

分辨率的提高可以通过增加系统的孔径、减小像散等方法来实现。

2.畸变:畸变是指光学系统成像时图像相对于参考图像的形变情况。

主要分为径向畸变和切向畸变两种。

径向畸变是指图像中心与边缘的变形情况,切向畸变是指图像的扭曲情况。

畸变的产生主要是由于光学元件的形状和定位误差导致的,可以通过优化元件设计和加强装配精度来减小畸变。

3.像场曲率:像场曲率是指光学系统各个像点的焦距随着物距的变化情况。

如果像场曲率过大,会导致成像不清晰,失去焦点。

可以通过调整透镜曲率半径、引入焦点平面等方法来改善像场曲率。

第二部分:像差公差像差是指光学系统成像时图像与理想像之间的差异,它是光学系统中不可避免的问题。

为了减小像差,需要对光学系统进行像差公差的设计和控制。

1.球面像差:球面像差是由于透镜表面的曲率或者抛物率与光线的入射角度不匹配导致的成像失真。

可以通过优化透镜表面形状和选择合适的材料来减小球面像差。

2.形状像差:形状像差是光学元件的形状不规则或者安装位置偏差导致的成像失真。

可以通过优化元件设计和加强装配精度来减小形状像差。

3.色差:色差是指透镜对不同波长的光具有不同的折射率,从而导致颜色偏差。

色差主要分为色散和像散两种。

色散是指透镜对不同波长的光具有不同的聚焦效果,像散是指不同波长的光成像位置不一致。

可以通过使用多片透镜组合、引入补偿透镜等方法来减小色差。

在光学系统设计中,像质评价和像差公差是重要的内容,对于确保系统的成像效果和减小像差具有重要意义。

光学系统成像的像差的描述

光学系统成像的像差的描述

光学系统成像的像差的描述在光学系统中,成像的品质受到多种因素的影响,其中最主要的因素之一就是像差。

像差是指光学系统由于各种原因导致成像结果与理想成像结果的差异。

在实际应用中,我们需要尽可能减小像差,以获得清晰、准确的成像。

1.球差球差是由于光线通过透镜时,不同离轴位置的光线聚焦点与光轴上的光线聚焦点不一致而产生的像差。

球面透镜会使离轴光线聚焦于球心之前或之后,从而导致像差。

为了减小球差,可以采用非球面透镜或者多个球面透镜组合的方法。

2.色差色差是指不同波长的光线通过透镜后,其聚焦点位置不同所引起的像差。

由于光线的折射率随着波长的不同而变化,所以不同波长的光线在经过透镜后会有不同的折射效果,从而导致色差。

为了减小色差,可以采用消色差透镜、复合透镜等方法。

3.像散像散是指透镜或者光学系统在聚焦光线时,不同位置的光线聚焦点不在同一平面上而产生的像差。

像散分为径向像散和切向像散两种。

径向像散是指光轴上的光线与离轴光线在像平面上的聚焦点不一致,而切向像散则是指光轴上的光线与离轴光线在像平面上的聚焦点不在同一条直线上。

为了减小像散,可以采用适当的光学元件,如棱镜等。

4.畸变畸变是指光学系统在成像过程中,使得直线或者平面失真的现象。

畸变分为径向畸变和切向畸变两种。

径向畸变是指光线通过光学系统后,离轴的像点与光轴上的像点之间的距离不一致,而切向畸变则是指光线通过光学系统后,离轴的像点与光轴上的像点之间的位置关系不一致。

为了减小畸变,可以采用非球面透镜或者适当的校正方法。

5.散焦深度散焦深度是指光学系统在成像过程中,能够保持清晰成像的距离范围。

当物体与透镜或者光学系统的距离超出散焦深度时,成像会变得模糊不清。

散焦深度受到孔径大小和焦距的影响。

为了增加散焦深度,可以使用小孔径和长焦距的透镜。

光学系统成像的像差是由于光线经过透镜或者光学系统时,由于各种因素导致成像结果与理想成像结果的差异。

常见的像差包括球差、色差、像散、畸变和散焦深度等。

像差与色差

像差与色差

像差:球差,慧差,像散,场曲,畸变。

理想的成像与光学系统的实际成像之间的差异。

1.球差:平行于主轴的光线,经过凸透镜发生折射后,边缘与中心部分的折射光线在透镜光轴上不能会聚相交在一点。

离主轴近的光线会聚后离透镜远,离主轴远的光线会聚后离透镜近。

(轴上的物点发出的光线入射进透镜时,数值孔径越大的光线,其折射越强,与光轴相交时偏离理想成像的位置也就越大)2.慧差:又叫侧面球差,它是由于与主轴不平行的光线通过透镜折射会聚所形成的一种像差。

产生原因:主要是由于透镜边缘一带的光线与透镜主轴一带的光线所会聚的焦点位置和影像大小有差别。

影像一端宽大虚散而较暗,另一端则窄小清晰而较亮,如同拖带尾巴的彗星一样。

用缩小光圈的办法可在一定程度上减小因彗形象差所引起的缺陷。

3.像散:凡是由侧面射来的光线,通过透镜折射后,在底片边缘部分不能同时呈现出横竖线条都清晰的影像而产生像散。

所以像散也叫纵横像差。

(检查摄影镜头是否有像散现象,只需将镜头对着十字交叉线条来调焦即可)4.场曲:当垂直于主轴的平面物体经镜头成像时,如果在底片的平面上不能使中心部分和边缘部分的影像都清晰,只能在一个球面上达到影像清晰的效果,这种像差就是像场弯曲。

(产生原因:是由球面形状的镜头表面和平坦的胶片表面存在不平行的对照所引起的。

由通过镜头轴心的光线所产生的)。

5.畸变:由于透镜对同一物体不同部分有不同的放大率,因而使影像产生变形扭曲的现象,越是边缘的部分就越明显,这种像差就叫畸变。

(畸变现象有两种不同的表现形式:当边缘部分的放大率大于中心部分的放大率时,影像的直线将向中心凹进弯曲,称作枕形畸变,又叫正畸变;当边缘部分的放大率小于中心部分的放大率时,影像的直线将向四周突出弯曲,称作桶形畸变,又叫负畸变。

色差:轴向色差,倍率色差。

具有各种颜色的平面物体所反射的光线,通过透镜后不能同时聚焦在胶片平面上形成清晰的影像,这中成像差别就是色差现象。

产生色差的原因,是因为不同颜色的光线的波长不同。

几何像差与色差

几何像差与色差

u3 u5 u7 u9 sin u u 3! 5! 7! 9!
三级像差(或初级像差)----5种: 1) 球差(spherical aberration) 2) 慧差(coma) 3) 像散(astigmatism)和场曲(curvature of field) 4) 畸变(distortion)
M C
(b) 场曲的矫正
S
(a) 场曲的特征
图2.5-5 场曲及其矫正
C:明晰圆 M:子午焦面 S:弧矢焦面
加光阑 像散和场曲的校正: 复合透镜 非球面透镜;
说明:单个透镜的场曲可通过在透镜前适当 位置上放置一小孔屏来矫正,但像散 要通过复杂的透镜组来矫正。
5 畸变(Distortion)
球差的校正:
3 慧差(Coma) 靠近光轴的物点发出的大孔径光线不聚焦于一点. 通过透镜孔径不同通光环带的光线,形成的圆盘像逐渐错开。 Y
慧尾形的弥散像 X
P
慧差的产生
慧差的定量: H he hc
dH > 0 --- 正慧差 dH < 0 --- 负慧差
不同大小慧差的照片
慧差的校正:
像散的产生
像散现象
弧矢焦线 子午焦线
子午面:主光线和光轴 的平面 弧矢面:包含光轴并垂 直于子午面 慧差的定量:
最小弥散圆
L l s l t
dL > 0 -- 正像散差 dL < 0 -- 负像散差
主光线
弧矢焦线 lt ls 子午焦线
P Q L 光轴 明晰圆 子 午 焦 线
子午 椭圆 明晰 椭圆 弧矢 焦线 光斑 圆 光斑 焦线 像平面附近的像散光斑
又: C 公用,故: MCQ Q'CM

工程光学第六章像差理论重点讲解

工程光学第六章像差理论重点讲解

校对公式:
h lu lu nuy nuy J
最后可计算出像点位置和系统各基点位置。
焦点位置及焦距计算:l1 , u1 0
f ' h1 / u'k
2、轴外物点近轴光线光路计算(第二近轴光线)
仍用近轴光线光路计算公式和校对公式,所有量均注以下标z.
已知:物方物位、入瞳位置和物高,即 l, lz , uz 。 求解:像方物位、出瞳位置和像高,即 l, lz , uz 。
i
l
r
r
u(当l1
时, u1
0,i1
h1
/
r1)
i' n i
n'
u' u i i'
l' r(1 i' )
u'
l' n'lr
n'l n(l r)
第二节 光线的光路计算
对于有k个面的折射系统,需利用根据过渡公式:
过渡公式:
lk lk1 dk 1 uk uk 1 nk nk 1
对于小视场的光学系统,例如望远物镜和显微物镜等,只 要求校正与孔径有关的像差,所以只需计算上述第一种光线。 对大孔径、大视场的光学系统,如照相物镜等,要求校正所 有像差,所以需要计算上述三种光线。
第二节 光线的光路计算
由已知条件:
光学系统的结构参数(r,d,n)
物体的位置和大小 入瞳的位置和大小
解决问题:
第一节 概述
像差校正:
在实际光学系统中,各种像差是同时存在的,像差 影响光学系统成像的清晰度、相似性和色彩逼真度等 ,就降低了成像质量。故像差的大小反映了光学系统 质量的优劣。
除了平面镜成像以外,没有像差的光学系统是不 存在的。完全消除像、色差是不可能的,针对光学系 统的不同用途,只要把像、色差降低在某范围内,使 光接收器不能分辨,或者说这种差别只要能骗过光接 收器,就可以认为是理想的。

光学工程专业复试题及答案

光学工程专业复试题及答案

光学工程专业复试题及答案一、选择题(每题2分,共20分)1. 光的波长为λ,频率为ν,光速为c,则下列关系正确的是:A. c = λνB. c = λ/νC. c = ν^2/λD. c = λ^2/ν2. 光学系统中的像差包括:A. 球面像差B. 色差C. 像场弯曲D. 所有以上3. 以下哪个不是光学成像系统的类型?A. 望远镜B. 显微镜C. 激光器D. 投影仪...二、简答题(每题10分,共30分)1. 简述干涉和衍射的区别。

2. 解释什么是光学传递函数,并简述其在光学系统设计中的应用。

3. 描述光学显微镜的工作原理。

三、计算题(每题15分,共30分)1. 已知一个光学系统的焦距为f=100mm,物体距离镜头为u=200mm,求像的位置和大小。

2. 给定一个光学系统的光阑直径为D=10mm,光波长λ=500nm,计算系统的衍射极限分辨率。

四、论述题(每题20分,共20分)1. 论述光学成像系统在现代科技领域的应用,并给出具体的例子。

答案一、选择题1. A. c = λν2. D. 所有以上3. C. 激光器...二、简答题1. 干涉是光波相遇时的叠加现象,可以产生明暗相间的干涉条纹;衍射则是光波在遇到障碍物或通过狭缝时,波前弯曲传播的现象,产生光强分布不均的衍射图样。

2. 光学传递函数(OTF)是描述光学系统传递空间频率信息能力的函数,它在光学系统设计中用于评估系统的成像质量,如分辨率和对比度。

3. 光学显微镜通过物镜收集被观察物体的光线,形成一个中间像,然后通过目镜放大这个中间像,形成可观察的放大像。

三、计算题1. 根据成像公式1/f = 1/u + 1/v,解得v = 100mm,即像的位置在焦距处;由于u > 2f,所以像为实像且为倒立、缩小。

2. 衍射极限分辨率可通过公式θ = 1.22λ/D计算,代入数值得θ ≈ 0.061mm。

四、论述题光学成像系统在现代科技领域应用广泛,例如在生物医学领域,光学显微镜用于细胞和组织的观察;在航空航天领域,光学成像系统用于卫星遥感和天文观测;在通信领域,光纤通信系统利用光学成像原理实现高速数据传输。

像差

像差

像差像差(全称色像差, aberration)是指实际光学系统中,由非近轴光线追迹所得的结果和近轴光线追迹所得的结果不一致,与高斯光学(一级近似理论或近轴光线)的理想状况的偏差。

像差主要分为球差、彗差、场曲、像散、畸变、色差以及波像差。

词条对上述像差进行了详细的介绍。

1像差简介像差一般分两大类:色像差和单色像差。

色像差简称色差,是由于透镜材料的折射率是波长的函数,由此而产生的像差。

它可分为位置色差和放大率色差两种。

单色像差是指即使在高度单色光时也会产生的像差,按产生的效果,又分成使像模糊和使像变形两类。

前一类有球面像差、彗形像差和像散。

后一类有像场弯曲和畸变。

实际工作中光学系统所成的像与近轴光学(Paraxial Optics,高斯光学)所获得的结果不同,有一定的偏离,光学成像相对近轴成像的偏离称像差。

由于像差使成像与原物形状产生差异。

复色光引起的色像差简称色差;非近轴单色光则引起单色像差。

初级像差又分为五种,分别为:球面像差、彗形像差、像散、像场弯曲和畸变五种。

摄影影头因制作不精密,或人为的损害,不能将一点所发出的所有光线聚焦于底片感光膜上的同一位置,使影像变形,或失焦模糊不清。

实际的光学系统存在着各种像差。

一个物点所成的像是综合各种像差的结果;此外实际光学系统完全可以不调焦在理想像平面处,这时像差(指在这个实像面上的像斑)当然也要变化。

在天文上常用光线追迹的点列图来表示实际像差;也可用波像差来表示像差,由一个物点发出的光波是球面波,经过光学系统后,波面一般就不再是球面的。

它与某一个基准点为中心的球面的偏离量,乘以该处介质的折射率值,称为波像差。

赛德尔的五像差[1]1856年德国的赛德尔,分析出五种镜头像差源之于单一色(单一波长)。

此称为赛德尔五像差。

2球差在共轴球面系统中,轴上点和轴外点有不同的像差,轴上点因处于轴对称位置,具有最简单的像差形式。

当轴上物点的物距L确定,并以宽光束孔径成像时,其像方截距随孔径角U(或孔径高度h)的变化而变化,因此轴上物点发出的具有一定孔径的同心光束,经光学系统成像后不复为同心光束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


5
轴向色差
上图中,波阵面(λ)可看作球心在O1’处的一个 球面,波阵面(λ+δλ)则可看作中心在O2’ 处、半径不同的另一个球面。O1’到O2’的距离就 是轴向色差,是一种纵向像差。 作为波像差的轴向色差,从图上的几何关系可推 导出,初步近似值: 系数 不同于波像差展开式中的b1, 向色差量。 表示轴

8
色差
上述对主要色差的讨论中,我们假定只有被考虑 的像差出现在系统中,其他所有像差均设为0。 由前面两个横向与轴向像差的波像差公式可知, 光瞳与视场坐标的幂次和为2。因此,主色差是 二阶波像差(一阶横向像差)。

9
魏葰

1
色差
轴向色差(Axial Chromatic Aberration)也 可简称为axial color,须看作像位置的色变化 量或色焦移量。 横向色差(Lateral Chromatic Aberration) 或放大倍率的色差,或简称为lateral color, 是像大小的色变化量。 波像差不仅可以表示单色像差,也可以表示色 差。要做到这点,需要满足一些条件。
和我一起学光学设计系列教程
光学系统的像差 色差
魏葰
色差
色差(Chromatic Aberration)是由于波长 改变导致折射率变化而引起的变化量。 所有的单色像差都有色变化量。 非正式地,可以说色彗差(colored coma)、 色像散(colored astigmatism)等等。 球差的色差有一个单独的名称:色球差 (spherochromatism)。 改变近轴或高斯参量的折射率,如轴向像位置 和像大小,也会造成色差的变化,这些色差描 述主要的色像差。6源自横向色差7
横向色差
如上图所示,波长λ的波阵面作为参考球面,作 近似处理,波长λ+δλ的波阵面是一个具有几乎 相同半径且相对于参考球面倾斜的球面。 O1’到O2’的距离就是横向色差,是一种横向像 差。 对应的波像差与孔径和视场的关系如下式: 系数 不同于波像差展开式中的b2, 向色差量。 表示横

3
轴向色差作为波像差

4
轴向色差
如上图所示,基于波长λ的波阵面可视为参考球 面,当波长改变为λ+δλ时,波像差的色变化量 δW 就是从P1到P2点的光程。 计算光程[P1 P2]时,应该用折射率n’(波长 λ)还是折射率n’+δn’(波长λ+δλ)并不 明确。在这里波长变化量δλ假定是一个很小 的量,因此计算基于几何路径的光程时,使用 n’,可忽略δn’。
• 对于单色像差,波阵面通过出瞳中心,与表示理想 波阵面的参考球面进行比较。 • 定义波像差的色差时,需比较不同波长的两个波阵 面。这有些人为因素,但可证明这是一种很有用处

2
色差
• 的方法,使单色像差和色差都具有相同的基本认 识。 • 如下图所示,轴向色差作为一种波像差,具有相同 的与光瞳和视场坐标的关系,波像差表达式中包含 b1的项表示单色焦移量。对于横向色差,波像差取 决于孔径和视场对应的包含的b2项,该项表示像大 小的单色变化量。
相关文档
最新文档