2019-2020学年浙江省杭州市富阳区八年级(上)期末数学试卷

合集下载

浙教版2019-2020学年八年级数学上学期期末测试题(含答案)

浙教版2019-2020学年八年级数学上学期期末测试题(含答案)

2019-2020学年八年级数学上学期期末测试卷一、选择题(每题3分,共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3 B.4,4,4 C.6,6,8 D.7,8,92.满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD4.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,rB.C,π,r C.C,πD.C,2π,r5.一次函数y=3x+6的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限6.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:18.如果不等式组的解集是x>7,则n的取值范围是()A.n=7 B.n<7 C.n≥7 D.n≤79.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x10.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米二、填空题(本小题共8小题,每小题3分,共24分)11.请用不等式表示“x的2倍与3的和大于1”:.12.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y=.13.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是.14.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).15.命题“等腰三角形的两个底角相等”的逆命题是.16.在平面直角坐标系中,若点A(m,2)向上平移3个单位,向左平移2个单位后得到点B(3,n),则m+n=.17.如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于°.18.如图,已知B1(1,y1),B2(2,y2)B3(3,y3)…在直线y=2x+3上,在x 轴上取点A1,使OA1=a(0<a<1);作等腰△A1B1A2面积为S1,等腰△A2B2A3面积为S2…;求S2017﹣S2016=.三、解答题(共46分)19.解不等式<1﹣,把它的解集在数轴上表示出来,并写出该不等式的自然数解.20.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)21.如图,已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0)且与y轴分别交于B,C两点.(1)分别求出这两个一次函数的解析式;(2)求△ABC的面积.22.某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;(2)请你帮助他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元.23.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求证:∠BDE=90°;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.24.如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且OC=2OB(1)求点B坐标和k值.(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程轴,求△AOB的面积S与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为;(3)在上述条件下,x轴正半轴上是否存在点P,使△ABP为等腰三角形?若存在请写出满足条件的所有P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每题3分,共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3 B.4,4,4 C.6,6,8 D.7,8,9【考点】三角形三边关系.【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、1+2=3,不能构成三角形;B、4+4>4,能构成三角形;C、6+6>8,能构成三角形;D、7+8>9,能构成三角形.故选A.2.满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】﹣1<x≤2表示不等式x>﹣1与不等式x≤2的公共部分.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】解:由于x>﹣1,所以表示﹣1的点应该是空心点,折线的方向应该是向右.由于x≤2,所以表示2的点应该是实心点,折线的方向应该是向左.所以数轴表示的解集为故选B.3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【考点】等腰三角形的性质.【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.4.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,rB.C,π,r C.C,πD.C,2π,r【考点】常量与变量.【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;∴变量是C,r,常量是2π.故选A.5.一次函数y=3x+6的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限【考点】一次函数图象与系数的关系;一次函数的性质.【分析】根据一次函数解析式中k=3>0、b=6>0,结合一次函数图象与系数的关系即可得出结论.【解答】解:∵在一次函数y=3x+6中:k=3>0,b=6>0,∴一次函数y=3x+6的图象经过第一、二、三象限.故选A.6.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.【考点】待定系数法求正比例函数解析式.【分析】利用待定系数法把(1,﹣2)代入正比例函数y=kx中计算出k即可得到解析式.【解答】解:∵正比例函数y=kx经过点(1,﹣2),∴﹣2=1•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x.故选B.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:1【考点】勾股定理.【分析】根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.【解答】解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选:B.8.如果不等式组的解集是x>7,则n的取值范围是()A.n=7 B.n<7 C.n≥7 D.n≤7【考点】解一元一次不等式组.【分析】先解两个不等式得到x>7和x>n,然后根据同大取大可确定n的范围.【解答】解:,解①得x>7,解②得x>n,而不等式组的解集是x>7,所以n≤7.故选D.9.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x【考点】作图—基本作图;坐标与图形性质.【分析】根据角平分线的性质以及第二象限点的坐标特点,进而得出答案.【解答】解:由题意可得出:P点在第二象限的角平分线上,∵点P的坐标为(2x,y+1),∴2x=﹣(y+1),∴y=﹣2x﹣1.故选:B.10.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米【考点】一次函数的应用.【分析】设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.【解答】解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:.故这次越野跑的全程为:1600+300×2=2200米.故选C.二、填空题(本小题共8小题,每小题3分,共24分)11.请用不等式表示“x的2倍与3的和大于1”:2x+3>1.【考点】由实际问题抽象出一元一次不等式.【分析】x的2倍为2x,大于1即>1,据此列不等式.【解答】解:由题意得,2x+3>1.故答案为:2x+3>1.12.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y=﹣6.【考点】待定系数法求正比例函数解析式.【分析】设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入求出k的值,得出解析式,然后代入x=3,求得y即可.【解答】解:设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入得:4=﹣2k,解得:k=﹣2,所以,y=﹣2x,当x=3时,y=﹣2×3=﹣6,故答案为﹣6.13.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).14.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=DE(只需写一个,不添加辅助线).【考点】全等三角形的判定.【分析】求出BC=EF,∠ABC=∠DEF,根据SAS推出两三角形全等即可.【解答】解:AB=DE,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=DE.15.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.16.在平面直角坐标系中,若点A(m,2)向上平移3个单位,向左平移2个单位后得到点B(3,n),则m+n=10.【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:∵点A(m,2)向上平移3个单位,向左平移2个单位后得到点B (3,n),∴m﹣2=3,2+3=n,∴m=5,n=5,∴m+n=10,故答案为:10.17.如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于60°.【考点】直角三角形斜边上的中线.【分析】由直角三角形的性质知,中线CE=AE=BE,所以∠EAC=∠ECA,∠B=∠BCE,由三角形内角和即可求得.【解答】解:由直角三角形性质知,∵E为AB之中点,∴CE=AE=BE,(直角三角形斜边上的中线等于斜边的一半)∴∠B=∠BCE=20°,∠EAC=∠ECA=70°,∴∠ACF=70°,又∵AD=DB,∴∠B=∠BAD=20°,∴∠FAC=50°,∴在△ACF中,∠AFC=180°﹣70°﹣50°=60°,∴∠DFE=∠AFC=60°.故答案为,6018.如图,已知B1(1,y1),B2(2,y2)B3(3,y3)…在直线y=2x+3上,在x 轴上取点A1,使OA1=a(0<a<1);作等腰△A1B1A2面积为S1,等腰△A2B2A3面积为S2…;求S2017﹣S2016=4037﹣8072a.【考点】一次函数图象上点的坐标特征;等腰三角形的性质.【分析】根据一次函数图象上点的坐标特征,求得点B1、B2、B3的纵坐标,然后由三角形的面积公式求得S1,S2…S n;由此得出规律,即可求得S2017﹣S2016的值.【解答】解:∵B1(1,y1)、B2(2,y2)、B3(3,y3),…,在直线y=2x+3上,∴y1=2×1+3=5,y2=2×2+3=7,y3=2×3+3=9,y4=2×4+3=11,…,y n=2n+3;又∵OA1=a(0<a<1),∴S1=×2×(1﹣a)×5=5(1﹣a);S2=×2×[2﹣a﹣2×(1﹣a)]×7=7a;S3=×2×{3﹣a﹣2×(1﹣a)﹣2×[2﹣a﹣2×(1﹣a)]}×9=9(1﹣a);S4=×2×[1﹣(1﹣a)]×11=11a;…∴S n=(2n+3)(1﹣a)(n是奇数);S n=(2n+3)a(n是偶数),∴S2017﹣S2016=(2×2017+3)(1﹣a)﹣(2×2016+3)a=4037﹣8072a.故答案是:4037﹣8072a.三、解答题(共46分)19.解不等式<1﹣,把它的解集在数轴上表示出来,并写出该不等式的自然数解.【考点】一元一次不等式的整数解;在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示解集,最后求出自然数解即可.【解答】解:去分母得:2x<4﹣x+3,2x+x<4+3,3x<7,x<,在数轴上表示为:,不等式的自然数解为0,1,2.20.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)【考点】利用轴对称设计图案;坐标与图形性质.【分析】(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.【解答】解:(1)如图2所示,C点的位置为(﹣1,2),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴;(2)如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意.21.如图,已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0)且与y轴分别交于B,C两点.(1)分别求出这两个一次函数的解析式;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)把A点坐标分别代入两函数解析式,可求得a、b的值,可求得两函数的解析式;(2)由两函数解析式,可求得B、C两点的坐标,可求得△ABC的面积.【解答】解:(1)把A(﹣2,0)分别代入y=2x+a和y=﹣x+b得,a=4,b=﹣2,∴这两个函数分别为y=2x+4和y=﹣x﹣2;(2)在y=2x+4和y=﹣x﹣2中,令x=0,可分别求得y=4和y=﹣2,∴B(0,4),C(0,﹣2),又∵A(﹣2,0),∴OA=2,BC=6,=OA•BC=×2×6=6.∴S△ABC22.某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;(2)请你帮助他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元.【考点】一次函数的应用.【分析】(1)根据题意可以求得w关于n的函数关系式,由所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,可以确定n 的取值范围;(2)根据(1)中的函数关系式可以求得w的最小值及此时购买的A和B种两种笔记本的数量.【解答】解:(1)由题意可得,w=12n+8(30﹣n)=4n+240,∵,解得,15<n≤20,即w(元)关于n(本)的函数关系式是w=4n+240(15<n≤20);(2)∵w=4n+240(15<n≤20),n为正整数,∴n=16时,w取得最小值,此时w=4×16+240=304,∴30﹣n=30﹣16=14,即购买A种笔记本16本、B种笔记本14本时,花费最少,此时的花费是304元.23.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求证:∠BDE=90°;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.【考点】三角形综合题.【分析】(1)欲证明CD=AE,只要证明△ABE≌△DBC即可.(2)如图②中,取BE中点F,连接DF,证出△DBF是等边三角形,进一步得出∴∠FDE=∠FED=30°,即可证明△BDE是直角三角形.(3)如图③中,连接DC,先利用勾股定理的逆定理证明△DEC是直角三角形,得∠DEC=90°即可解决问题.【解答】(1)证明:∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴CD=AE.(2)证明:如图②中,取BE中点F,连接DF.∵BD=AB=1,BE=BC=2,∠ABD=∠EBC=60°,∴BF=EF=1=BD,∠DBF=60°,∴△DBF是等边三角形,∴DF=BF=EF,∠DFB=60°,∵∠BFD=∠FED+∠FDE,∴∠FDE=∠FED=30°∴∠EDB=180°﹣DEB∠DBE﹣∠DEB=90°.(3)解:如图③中,连接DC,∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC.∵DE2+BE2=AE2,BE=CE,∴DE2+CE2=CD2,∴∠DEC=90°,∵∠BEC=60°,∴∠DEB=∠DEC﹣∠BEC=30°.24.如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且OC=2OB(1)求点B坐标和k值.(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程轴,求△AOB的面积S与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为;(3)在上述条件下,x轴正半轴上是否存在点P,使△ABP为等腰三角形?若存在请写出满足条件的所有P点坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)首先求得直线y=kx﹣3与y轴的交点,则OC的长度即可求解,进而求得B的坐标,把B的坐标代入解析式即可求得k的值;(2)根据三角形的面积公式即可求解;再利用函数关系式即可得出结论;(3)分三种情况,利用等腰三角形的性质即可得出结论.【解答】解:(1)在y=kx﹣3中,令x=0,则y=﹣3,∴C的坐标是(0,﹣3),OC=3,∵OC=2OB,∴OB=OC=,则B的坐标是:(,0),把B的坐标代入y=kx﹣3,得:k﹣3=0,∴k=2;(2)OB=,则S=×(2x﹣3)=x﹣;∵△AOB的面积为;∴x﹣=,∴x=3,则A的坐标是(3,3);(3)设P(m,0),(m>0)由(1)(2)知,A(3,3),B(,0),∴AB2=(3﹣)2+9=,AP2=(m﹣3)2+9=m2﹣6m+18,BP2=(m﹣)2,∵△ABP为等腰三角形,①当AB=AP时,∴AB2=AP2,∴=m2﹣6m+18,∴m=﹣(舍)或m=,∴P (,0)②当AB=BP 时,∴AB 2=BP 2,∴=(m ﹣)2,∴m=(舍)或m=,∴P (,0) ③当AP=BP 时,AP 2=BP 2,∴m 2﹣6m +18=(m ﹣)2,∴m=,∴P (,0)满足条件的P 的坐标为P (,0)或(,0)或(,0).2017年2月28日。

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)
【解析】 28.(1)证明:连接 OC, ∵DE 与⊙ O 切于点 C, ∴OC⊥ DE. ∵AD⊥ DE,∴ OC∥ AD.∴∠ 2=∠ 3. ∵OA=OC,∴∠ 1=∠ 3. ∴∠ 1=∠ 2,即 AC 平分∠ DAB. (2)解:∵ AB=4, B 是 OE的中点, ∴OB=BE=2, OC=2. ∵CF⊥ OE, ∴∠ CFO= 90o, ∵∠ COF= ∠ EOC,∠ OCE= ∠ CFO, ∴△ OCE∽△ OFC,
第1页共6页
A. 21 B . 15 C . 13 D. 11 9. 某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀 速流出.那么该倒置啤酒瓶内水面高度 h 随水流出的时间 t 变化的图象大致是( )
A.
B.
C.
D.
10. 下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是
D
.﹣ 5+a<﹣ 5+b
33
2. 若点 P 是第二象限内的点,且点 P 到 x 轴的距离是 4,到 y 轴的距离是 3,则点 P 的坐标
是( )
A.(﹣ 4,3) B .( 4,﹣ 3) C .(﹣ 3, 4) D .( 3,﹣ 4)
3. 某种出租车的收费标准:起步价 7 元(即行驶距离不超过 3 千米都需付 7 元车费),超
第4页共6页
22. 不等式组的所有整数解是 1、 2、 3. 23. ( 1) 900, 4 小时两车相遇.( 2)所以线段 BC所表示的 y 与 x 之间的函数关系式为: y=225x ﹣ 900( 4≤ x≤ 6)( 3)第二列快车比第一列快车晚出发 0.75 小时
24.(1) 、 2 13 ; (2) 、 8 ; (3) 、5.5 秒或 6 秒或 6.6 秒 3

2019—2020年最新浙教版八年级数学上学期期末考试达标测试题及答案解析.docx

2019—2020年最新浙教版八年级数学上学期期末考试达标测试题及答案解析.docx

第一学期八年级数学期末考试卷一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求1、一次函数y=3x+6的图象经过( ▲ )A. 第1、2、3象限B. 第2、3、4象限C. 第1、2、4象限D. 第1、3、4象限2、在平面直角坐标系中.点P (1,-2)关于y 轴的对称点的坐标是( ▲ ) A .(1,2) B .(-1,-2) C .(-1,2) D .(-2,1)3、下列各式中,正确的是( ▲ ) A .3222-= B .842= C .()255-= D .2(5)-=-54、.把不等式组的解集表示在数轴上,下列选项正确的是( ▲ )A B C D 5、把方程x 2-4x -6=0配方,化为(x+m )2=n 的形式应为( ▲ ). A.(x -4)2=6 B.(x -2)2=4 C.(x -2)2=10 D.(x -2)2=06、如图所示,在下列条件中,不能证明△ABD ≌△ACD 的是 ( ▲ ) A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC7、不等式2+x <6的正整数解有( ▲ ) 第6题图A 、1个B 、2个C 、3 个D 、4个8、如图,在△ABC 中,∠ACB=90°, D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB. 若∠B=20°,则∠DFE 等于( ▲ ) A .30° B .40° C .50° D .60°第8题图9、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ▲ ) A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠10、一次长跑中,当小明跑了1600米时,小刚跑了1400米, 小明、小刚在此后所跑的路程y (米)与时间t (秒)之间 的函数关系如图,则这次长跑的全程为( ▲ )米. A 、2000米 B 、2100米 C 、2200米 D 、2400米 二、填空题(每小题3分,共24分)11、在Rt △ABC 中,∠C=Rt ∠,∠A=70°,则∠B=__▲ ___. 12、函数5y x =-中自变量x 的取值范围是__▲ _____. 13、边长为2的等边三角形的高为 ▲ .14、方程x 2-6x +8=0的两个根是等腰三角形的底和腰,则这个三角形的周长为____ ▲___.15、如图将一副三角尺如图所示叠放在一起,若AB=4cm ,则阴影部分的面积是__▲___cm 2.16、将正比例函数y=x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是__▲___.第15题图第17题图17、如图,Rt ΔABC 中,AB=9,BC=6,∠B=900,将ΔABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为___▲______.18、已知过点()1,1的直线()y ax b a 0=+≠不经过第四象限.设2s a b =+,则s 的取值范围是___▲______ 三、解答题(6小题、共46分)19、(6分) 如图,已知在△ABC 中,∠A=120º,∠B=20º,∠C=40º,请在三角形的边上找一点P ,并过点P 和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数)CAB CAB20、(12分)(1) 解不等式: 3x -2(1+2x) ≥1 (2)计算:12)326242731(⋅-+(3) 解方程:2x 2﹣4x ﹣1=021、(5分)如图,已知1011A B -(,),(,),把线段AB 平移,使点B 移动到点D (3,4)处,这时点A 移动到点C 处. (1)写出点C 的坐标___▲____;(2)求经过C 、D 的直线与y 轴的交点坐标.22、(6分)如图,在ABC △中,2C B ∠=∠,D 是BC 上的一点,且AD AB ⊥,ACD EB点E 是BD 的中点,连结AE . (1)说明AEC C ∠=∠成立的理由;(2)若 6.5AC =,5AD =,那么ABE △的周长是多少?23、(8分)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类 别 电视机洗衣机进价(元/台) 1800 1500 售价(元/台)20001600计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(不考虑除进价之外的其它费用)(1) 如果商店将购进的电视机与洗衣机销售完毕后获得利润为y 元,购进电视机x 台,求y 与x 的函数关系式(利润=售价-进价) (2)请你帮助商店算一算有多少种进货方案?(3)哪种进货方案待商店将购进的电视机与洗衣机销售完毕后获得利润最多?并求出最多利润.24(9分)如图①所示,直线L :5y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点。

《试卷3份集锦》浙江省名校2019-2020年八年级上学期期末达标测试数学试题

《试卷3份集锦》浙江省名校2019-2020年八年级上学期期末达标测试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列长度的三条线段可以组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,10【答案】D【分析】根据三角形任意两边之和大于第三边逐一判断即可.【详解】A.3+4=7<8,故不能组成三角形,不符合题意,B.5+6=11,故不能组成三角形,不符合题意,C.1+2=3,故不能组成三角形,不符合题意,D.5+6=11>10,故能组成三角形,符合题意,故选:D.【点睛】本题考查了能够组成三角形三边的条件,三角形任意两边之和大于第三边,任意两边之差小于第三边;用两条较短的线段相加,如果大于最长那条就能够组成三角形.熟练掌握三角形的三边关系是解题关键.2.将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是()A.(0,1) B.(2,﹣1) C.(4,1) D.(2,3)【答案】C【分析】把点(2,1)的横坐标加2,纵坐标不变即可得到对应点的坐标.【详解】解:∵将点(2,1)向右平移2个单位长度,∴得到的点的坐标是(2+2,1),即:(4,1),故选:C.【点睛】本题主要考查了坐标系中点的平移规律,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.下列说法错误的是()A.136的平方根是16±B.9-是81的一个平方根C 4D3=-【答案】C【解析】根据平方根的性质,立方根的性质依次判断即可.【详解】136的平方根是16±,故A 正确; 9-是81的一个平方根,故B 正确;,算术平方根是2,故C 错误;3=-,故D 正确,故选:C.【点睛】此题考查平方根与立方根的性质,熟记性质并熟练解题是关键.4.若三角形的三边长分别为x 、2x 、9,则x 的取值范围是( )A .3<x <9B .3<x <15C .9<x <15D .x >15 【答案】A【分析】根据三角形的三边关系列出不等式组即可求出x 的取值范围.【详解】∵一个三角形的三边长分别为x ,2x 和1,∴9292x x x x<+⎧⎨>-⎩, ∴3<x <1.故选:A .【点睛】考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.5.正常情况下,一个成年人的一根头发大约是0.0000012千克,用科学记数法表示应该是( ) A .1.2×10﹣5B .1.2×10﹣6C .0.12×10﹣5D .0.12×10﹣6【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000012=1.2×10﹣1.故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.过点()1,3P -作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( ) A .4条B .3条C .2条D .1条 【答案】C【分析】先设出函数解析式,y=kx+b ,把点P 坐标代入,得-k+b=3,用含k 的式子表示b ,得b=k+3,求出直线与x轴交点坐标,y轴交点坐标,求三角形面积,根据k的符号讨论方程是否有解即可.【详解】设直线解析式为:y=kx+b,点P(-1,3)在直线上,-k+b=3,b=k+3,y=kx+3+k,当x=0时,y=k+3,y=0时,x=k+3 -k,S△=1k+3k+3-=52k,2k+3=10k,当k>0时,(k+3)2=10k,k2-4k+9=0,△=-20<0,无解;当k<0时,(k+3)2=-10k,k2+16k+9=0,△=220>0,k=-16220±.故选择:C.【点睛】本题考查的是直线与坐标轴围成的三角形面积问题,关键是用给的点坐标来表示解析式,求出与x,y轴的交点坐标,列出三角形面积,进行分类讨论.7.若15a=,则实数a在数轴上对应的点的大致位置是()A.B.C.D.【答案】B【分析】根据无理数的估算,估算出a的取值范围即可得答案.91516∴15,∴3<a<4,故选B.【点睛】15. 8.下列命题中,是假命题的是( )A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形【答案】C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A. △ABC 中,若∠B=∠C -∠A ,则∠C =∠A+∠B ,则△ABC 是直角三角形,本选项正确;B. △ABC 中,若a 2=(b+c)(b -c),则a 2=b 2-c 2,b 2= a 2+c 2,则△ABC 是直角三角形,本选项正确;C. △ABC 中,若∠A ∶∠B ∶∠C=3∶4∶5,则∠,故本选项错误;D. △ABC 中,若a ∶b ∶c=5∶4∶3,则△ABC 是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.9.已知A (x 1,3),B (x 2,12)是一次函数y =﹣6x+10的图象上的两点,则下列判断正确的是( ) A .12x x <B .12x x >C .12x x =D .以上结论都不正确【答案】B【分析】根据一次函数y =−6x +10图象的增减性,以及点A 和点B 的纵坐标的大小关系,即可得到答案.【详解】解:∵一次函数y =−6x +10的图象上的点y 随着x 的增大而减小,且3<12,∴x 1>x 2,故选B .【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.10.如图,BE=CF ,AE ⊥BC ,DF ⊥BC ,要根据“HL ”证明Rt △ABE ≌Rt △DCF ,则还需要添加一个条件是( )A .AE=DFB .∠A=∠DC .∠B=∠CD .AB= CD【答案】D 【分析】根据垂直定义求出∠CFD =∠AEB =90°,由已知BE CF =,再根据全等三角形的判定定理推出即可.【详解】添加的条件是AB =CD ;理由如下:∵AE ⊥BC ,DF ⊥BC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △DCF 中,AB CD BE CF =⎧⎨=⎩, ∴Rt ABE Rt DCF ≅ (HL).故选:D .【点睛】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.二、填空题11.2015年10月.我国本土科学家屠呦呦荣获诺贝尔生理学或医学奖,她创制新型抗疟药青蒿素为人类作出了突出贡献.疟原虫早期期滋养体的直径约为0.00000122米,这个数字用科学记数法表示为______米.【答案】1.22×10﹣1.【详解】解:0.00000122=1.22×10-1.故答案为1.22×10-1.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,BD 是ABC 的角平分线,AE BD ⊥,垂足为F ,且交线段BC 于点E ,连结DE ,若50C ∠=︒,设 ABC x CDE y ∠=︒∠=︒,,则y 关于x 的函数表达式为_____________.【答案】80y x =-【分析】根据题意,由等腰三角形的性质可得BD 是AE 的垂直平分线,进而得到AD =ED ,求出BED ∠的度数即可得到y 关于x 的函数表达式.【详解】∵BD 是ABC ∆的角平分线,AE BD ⊥ ∴1122ABD EBD ABC x ∠=∠=∠=︒,90AFB EFB ∠=∠=︒ ∴1902BAF BEF x ∠=∠=︒-︒ ∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.13.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的中位数是__________岁.【答案】15【分析】由图得到男子足球队的年龄及对应的人数,再根据中位数的概念即可得答案.【详解】由图可知:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∵∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,∵把这组数据从小到大排列11名和第12名的年龄分别是15岁、15岁,∴这些队员年龄的中位数是15岁,故答案为:15【点睛】本题考查了求一组数据的中位数.求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果数据有偶数个,则中间两个数据的平均数就是这组数据的中位数;熟练掌握中位数的等于是解题关键.14.当a=3,a -b=-1时,a 2-ab 的值是【答案】-1【解析】试题分析:直接提取公因式,然后将已知代入求出即可.即a 2-ab=a (a-b )=1×(-1)=-1.考点:因式分解-提公因式法.点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.15.一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,则此正多边形是_____ 边形,共有_____ 条对角线.【答案】九 1【分析】设多边形的一个外角为α,则与其相邻的内角等于3α+20°,根据内角与其相邻的外角的和是180度列出方程,求出α的值,再由多边形的外角和为360°,求出此多边形的边数为360°÷α;依据n边形的对角线条数为:12n(n-3),即可得到结果.【详解】解:设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20)+α=180°,解得:α=40°.即多边形的每个外角为40°.又∵多边形的外角和为360°,∴多边形的外角个数=3609 40.∴多边形的边数为9;∵n边形的对角线条数为:12n(n-3),∴当n=9时,1 2n(n-3)=12×9×6=1;故答案为:九;1.【点睛】本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系以及多边形的对角线条数,运用方程求解比较简便.16.如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB 于E,连接PQ交AB于D.(1)证明:在运动过程中,点D是线段PQ的中点;(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【答案】(1)见解析;(2)AP=2;(1)DE的长不变,定值为1.【分析】(1)过P作PF∥QC交AB于F,则AFP∆是等边三角形,根据AAS证明三角形全等即可;(2)想办法证明BD=DF=AF即可解决问题;(1)想办法证明12 DE AB=即可解决问题.【详解】(1)证明:过P作PF∥QC交AB于F,则AFP∆是等边三角形,∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在DBQ∆和DFP∆中,DQB DPFQDB PDFBQ PF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()DBQ DFP AAS∆∆≌,∴DQ=DP;(2)解:∵DBQ DFP∆∆≌,∴BD=DF,∵60DBC BQD BDQ∠∠+∠︒==,30BQD∠︒=∴30BQD BDQ FDP FPD∠∠∠∠︒====,∴123BD DF PF FA AB=====,∴AP=2;(1)解:由(2)知BD=DF,∵AFP∆是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF1122BF FA+=12AB==1,为定值,即DE的长不变.【点睛】本题主要考查了三角形全等的性质及判定,以及三角形中的动点问题,熟练掌握相关几何综合的解法是解决本题的关键.17.如图所示,在ABC 中,AB AC =,40A ︒∠=,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则CBE ∠的度数为(________)【答案】30︒【分析】利用等腰三角形的性质可得出∠ABC 的度数,再根据垂直平分线定理得出AD=BD ,40A ABE ︒∠=∠=,继而可得出答案.【详解】解:,40AB AC A ︒=∠=70ABC C ︒∴∠=∠=DE 垂直平分AB40A ABE ︒∴∠=∠=704030ABC ABE ︒︒︒∴∠-∠=-=故答案为:30︒.【点睛】本题考查的知识点是等腰三角形的性质以及垂直平分线的性质,掌握以上知识点是解此题的关键.三、解答题18.阅读下列解题过程:已知a ,b ,c 为△ABC 的三边长,且满足222244a c b c a b -=-,试判断△ABC 的形状.解:∵ 222244a c b c a b -=-, ①∴ 2222222()()()c a b a b a b -=-+. ②∴ 222c a b =+. ③∴ △ABC 是直角三角形. ④回答下列问题:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为 .(2)错误的原因为 .(3)请你将正确的解答过程写下来.【答案】(1)③;(2)忽略了220a b -= 的可能;(3)见解析【分析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以22a b -,没有考虑22a b -是否为0;(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【详解】(1)根据题意可知,∵由()()()2222222c a b a b a b -=-+, ∴通过移项得()()22220a b c a b ⎡⎤--+=⎣⎦,故③错误; (2)由(1)可知,错误的原因是:忽略了220a b -=的可能;(3)正确的写法为:∵222244a c b c a b -=-,∴()()()2222222ca b a b a b -=-+, ∴()()()22222220c a b a b a b ---+=, ∴()()22220a b c a b ⎡⎤--+=⎣⎦, ∴220a b -=或()2220c a b-+=,∴a b =或222c a b =+, ∴ABC 是等腰三角形或直角三角形或等腰直角三角形;故答案为ABC 是等腰三角形或直角三角形或等腰直角三角形【点睛】本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.19.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子232x x ++和223x x +-分解因式,如图:()()23212x x x x ++=++;()()223123x x x x +-=-+.请你仿照以上方法,探索解决下列问题:(1)分解因式:2712y y ;(2)分解因式:2321x x --.【答案】(1)(x ﹣3)(x ﹣4);(2)(x ﹣1)(3x+1).【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案;(2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.【详解】(1)y 2﹣7y+12=(x ﹣3)(x ﹣4);(2)3x 2﹣2x ﹣1=(x ﹣1)(3x+1).【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.20.已知x a =3,x b =6,x c =12,x d =1.(1)求证:①a+c =2b ;②a+b =d ;(2)求x 2a ﹣b+c 的值.【答案】(1)①证明见解析;②证明见解析;(2)1.【分析】(1)根据同底数幂的乘法法则x a+c =x 2b .x a •x b =x d .据此即可证得①a+c =2b ;②a+b =d ; (2)由(1)的结论①+②得2a+b+c =2b+d ,移项合并即可得原式= x d =1.【详解】(1)证明:①∵3×12=62,∴x a •x c =(x b )2即x a+c =x 2b ,∴a+c =2b .②∵3×6=1,∴x a •x b =x d .即x a+b =x d .∴a+b =d ;(2)解:由(1)知a+c =2b ,a+b =d .则有:2a+b+c =2b+d ,∴2a ﹣b+c =d∴x 2a ﹣b+c =x d =1.本题考查同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算性质是解题的关键.21.解方程:(1)51544x x x--=--; (2)212111x x x +-=--. 【答案】(1)无解;(2)0x =【分析】(1)方程两边同乘()4x -化为整式方程求解,再验根即可;(2)方程两边同乘()()11x x +-化为整式方程求解,再验根即可.【详解】(1)51544x x x--=-- 51520-+=-x x416-=-x4x =经检验,4x =是增根,原方程无解.(2)212111x x x +-=-- ()22121+-=-x x0x = 经检验,0x =是原方程的解.【点睛】本题考查解分式方程,找到最简公分母,将分式方程转化为整式方程是解题的关键,注意分式方程需要验根.22.某零件周边尺寸(单位,cm )如图所示,且90CDA ︒∠=.求该零件的面积.【答案】零件的面积为24.【分析】连接AC 后,根据勾股定理和勾股定理的逆定理的应用,可判定这个四边形是由两个直角三角形组成,从而求出面积.【详解】解:连结AC .,93,40A CDA D CD ︒=∠==12,13AB BC==22222251213AC AB BC ∴+=+==90BAC︒∴∠=∴零件的面积11512343062422ABC ADCS S∆∆=-=⨯⨯-⨯⨯=-=【点睛】本题考查勾股定理和勾股定理逆定理的应用,不要漏掉证明ABC∆是直角三角形.23.已知,如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高。

2019-2020学年浙教新版八年级(上)期末数学试卷 (解析版)

2019-2020学年浙教新版八年级(上)期末数学试卷 (解析版)

2019-2020学年浙教新版八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>36.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.49.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是.14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=度.15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是cm.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点最近;(2)第四次相遇时甲与最近顶点的距离是厘米.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.参考答案一、选择题(每小题3分.共30分)1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限解:因为点P(﹣3,2)的横坐标为负,纵坐标为正,所以其在第二象限,故选B.2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣解:∵函数y=,∴2x+3≥0,∴x≥﹣,故选:B.3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.解:为△ABC中BC边上的高的是A选项.故选:A.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个解:A、2x<6的解集是x<3,故此选项正确;B、﹣x<﹣4的解集是x>4,故此选项错误;C、x<3的整数解有无数个,故此选项正确;D、x<3的正整数解有1,2两个,故此选项正确;故选:B.5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>3解:根据一次函数的性质,对于y=(k﹣3)x+2,当k﹣3>0时,即k>3时,y随x的增大而增大.故选:D.6.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个解:当2边长分别为7,6时,1<第3边<7,可取2,3,4,5,6共5个数;当2边长为7,5时,2<第3边<7,可取3,4,5,6共4个数;当2边长为7,4时,3<第3边<7,可取4,5,6共3个数;当2边长为7,3时,4<第3边<7,可取5,6共2个数;当2边长为7,2时,5<第3边<7,可取6共1个数;去掉重合的7,6,5;7,6,4;7,6,3;7,6,2,4组,这样的三角形共有5+4+3+2+1﹣4=11(组).故选:D.8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.4解:设可买x支笔则有:3x+4×2≤21即3x+8≤213x≤13x≤所以x取最大的整数为4,她最多可买4支笔.故选:D.9.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选:C.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是﹣1<m<2.解:∵点P(m﹣2,m+1)在第二象限,∴,解得,﹣1<m<2,故答案为:﹣1<m<2.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是2x﹣5≥0.解:根据题意,得2x﹣5≥0.故答案是:2x﹣5≥0.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是(1,2).解:联立,解这个方程组得,所以,交点坐标为(1,2).故答案为:(1,2).14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=25度.解:由光的反射可知∠PMC=∠AMN,又PM∥AB,∴∠PMC=∠A,∴∠A=∠AMN,又∠BNM为△AMN的外角,且∠BNM=∠AND,∴∠BNM=∠A+∠AMN=2∠A,即∠AND=2∠A,在△ADN中,∠ADN=105°,则180°﹣∠ADN=∠A+∠AND=3∠A,即3∠A=75°,所以∠A=25°.故答案为:25°15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是2<a≤3cm.解:∵关于x的一元一次不等式x﹣1<a有3个正整数解,∴关于x的一元一次不等式x﹣1<a的3个正整数解,只能是3、2、1,∴a的取值范围是:3<a+1≤4,即2<a≤3.故答案为:2<a≤3.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点C最近;(2)第四次相遇时甲与最近顶点的距离是C厘米.解:(1)设出发x秒后甲乙第一次相遇,根据题意得:x+3x=12×3,解得x=9,所以第一次相遇时甲离顶点C最近;(2)第二次相遇的时间为:9+36÷(2+4)=16(秒),第三次相遇的时间为:16+36÷(3+5)=20.5(秒),第四次相遇的时间为:20.5+36÷(4+5)=24.5(秒),甲所走路程为:9+2×(16﹣9)+3×(20.5﹣16)+4×(24.5﹣20.5)=52.5(cm),52.5﹣12×4=4.5(cm),所以第四次相遇时甲离顶点C最近.故答案为:(1)C;(2)C.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)解:(1)3(x﹣1)+4≥2x,去括号,得3x﹣3+4≥2x,移项及合并同类项,得x≥﹣1,故原不等式的解集是x≥﹣1;(2),由不等式①,得x<8,由不等式②,得x>,故原不等式组的解集是<x<8.18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.解:设一次函数解析式为y=kx+b,将x=3,y=﹣2;x=2,y=﹣3代入得:,解得:k=1,b=﹣5,则一次函数解析式为y=x﹣5.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.【解答】证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.解:(1)∵A(6,0),B(0,8),∴OA=6,OB=8,∴AB ===10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴OM=3,BM=OB﹣OM=5,∴S△ABM =×BM×AO =×5×6=15.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?解:(1)依题意,得600x+400(20﹣x)≥480×20,解得x≥8.∴至少需要购买甲种原料8千克,答:至少需要购买甲种原料8千克.(2)根据题意得:y=9x+5(20﹣x),即y=4x+100,∵k=4>0,∴y随x的增大而增大,∵x≥8,∴当x=8时,y最小,y=4×8+100=132,∴购买甲种原料8千克时,总费用最少,是132元,答:购买甲种原料8千克时,总费用最少,是132元.22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.【解答】(1)证明:∵AB=AC,∴∠B=∠C=30°,∵AD⊥AC,∴∠DAC=90°,∴∠ADC=60°,∵∠ADC=∠B+∠BAD,∴∠B=∠BAD=30°,∴DB=DA,∵CD=2AD,∴BC=3BD.(2)解:过点A作AH⊥BC于H.∵AB=AC=20,AH⊥BC,∴BH=CH=16,∵cos∠C==,∴=,∴CD=25,∴BD=BC﹣CD=32﹣25=7.∴CD=BH﹣DH=16﹣9=7.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600),所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲;(3)∵点A(8,120),点O(0,0),∴AB解析式为y=15x,当0<t≤8时,20t﹣15t=20,∴t=4,当8<t<10时,20t﹣(40t﹣200)=20,∴t=9,当10≤t<30时,40t﹣200﹣20t=20,∴t=11,综上所述:当t=4或9或11时,甲乙之间的路程为20米.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.解:(1)如图1中,∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,∠OMN=30°,∴∠ONM=60°,∵△ABC为等边三角形∴∠AOC=60°,∠NOA=30°∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×6=3cm.(2)如图2中,作NT∥OB,过点Q作QR⊥NT于R,过点B作BH⊥NT于H.在Rt△MON中,∵∠OMN=30°,OM=6cm,∴ON=OM•tan30°=2(cm),∵∠NOB=∠ONH=∠BHN=90°,∴四边形OBHN是矩形,∴BH=ON=2(cm),∵NT∥OB,∴∠MNT=∠OMN=30°,∵QR⊥NT,∴QR=NQ,∴2BQ+NQ=2(BQ+NQ)=2(BQ+QR),∵BQ+QR≥BH,∴BQ+QR≥2,∴2BQ+NQ≥4,∴2BQ+NQ的最小值为4.(3)存在,有4种情况:如图3中,①当点P在线段AB上时,点P在AB上运动的时间为s,∵△PEF为等腰三角形,∠PEF=90°,∴PE=EF,∵∠A=60°,∠AFE=30°,∴EF=AE=(3﹣BE)=(3﹣)=t,∴=t或=t,解得t=或>(故舍去),②当点P在AF上时,若PE=PF时,点P为EF的垂直平分线与AC的交点,此时P为直角三角形PEF斜边AF的中点,∴PF=AP=2t﹣3,∵点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,∴0<t<3,在直角三角形中,cos30°=,∴=,解得:t=2,若FE=FP,AF===t,则t﹣(2t﹣3)=t,解得:t=12﹣6;③当PE=EF,P在AF上时无解,④当P点在CF上时,AP=2t﹣3,AF=t,则PF=AP﹣AF=t﹣3=EF,所以t﹣3=t,解得t=12+6>3,不合题意,舍去.综上,存在t值为或12﹣6或2时,△PEF为等腰三角形.。

浙江省杭州市2019-2020学年八年级(上)期末数学模拟试卷(含答案)

浙江省杭州市2019-2020学年八年级(上)期末数学模拟试卷(含答案)

浙江省杭州市2019—2020年度第一学期期末考试模拟试题八年级数学(时间90分钟,满分120分) 班级 姓名 学号 分数________ 一,填空题1.2018-1()=_____. 2.若一个正多边形的内角和是其外角和的倍,则这个多边形的边数是______.3.当x=_________时,分式293x x -+的值为零. 4.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .5.若29x kx ++是一个完全平方式,则k=_______.6. 观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有______个点.二、选择题7.在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是( ) A. B. C. D.8.以下列各组线段为边,能组成三角形是( ) A. 1cm ,2cm ,4cmB. 4cm ,6cm ,8cmC. 5cm ,6cm ,12cmD. 2cm ,3cm ,5cm9.如图,在ABC △和DBE ∆中,BC BE =,还需再添加两个条件才能使ABC DBE ≌,则不能添加的一组条件是( )A. AC=DE ,∠C=∠EB. BD=AB ,AC=DEC . AB=DB ,∠A=∠D D. ∠C=∠E ,∠A=∠D10.下列计算中,正确的是( )A. x 3•x 2=x 4B. (x+y )(x ﹣y )=x 2+y 2C. x (x ﹣2)=﹣2x+x 2D. 3x 3y 2÷xy 2=3x 411.下列各式从左到右的变形中,是因式分解的是( )A. 3x+2x ﹣1=5x ﹣1B. (3a+2b )(3a ﹣2b )=9a 2﹣4b 2C . x 2+x=x 2(1+1x ) D. 2x 2﹣8y 2=2(x+2y )(x ﹣2y )12.如图,在△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=8,则CD 等于()A. 3B. 4C. 5D. 613.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A. ①②③④B. ④③①②C. ②④③①D. ④③②①14.如图,△ABC 中,∠A =40°,AB 的垂直平分线MN 交AC 于点D ,∠DBC =30°,若AB =m ,BC =n ,则△DBC 的周长为( )A. m +nB. 2m +nC. m +2nD. 2m -n三、解答题:15.计算 22(2)4()ab a b a b -÷-- 16.解方程:542332x x x+=--. 17.先化简(1111x x --+)÷222x x -,然后在-1、1、4中选取一个合适的数作为x 的值代入求值。

浙教版2019-2020学年八年级数学上学期期末考试试题(含答案)

浙教版2019-2020学年八年级数学上学期期末考试试题(含答案)

2019-2020学年八年级数学上学期期末考试试卷一、精心选一选(每小题4分,共48分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,42.若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<03.如图,笑脸盖住的点的坐标可能为()A.(5,2) B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°5.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°6.已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°7.直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不等式x+2<6的正整数解有()A.1个 B.2个 C.3 个D.4个9.小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A.B.C.D.10.下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有()A.4个 B.3个 C.2个 D.1个11.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣12.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.B.y=x+ C.D.二、细心填一填(每小题4分,共24分)13.函数y=中自变量x的取值范围是.14.在直角三角形中,一个锐角为57°,则另一个锐角为.15.一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是.16.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD=.17.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=.18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为m2.三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.解不等式组,并把解表示在数轴上.20.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.21.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).22.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.23.如图,AB∥CD,CE平分∠ACD交AB于E点.(1)求证:△ACE是等腰三角形;(2)若AC=13cm,CE=24cm,求△ACE的面积.24.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?25.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.26.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP 全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为A',连接A'B,在点P运动的过程中,∠OA'B的度数是否会发生变化,若不变,请求出∠OA'B的度数,若改变,请说明理由.参考答案与试题解析一、精心选一选(每小题4分,共48分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2=3,不能组成三角形,故B选项错误;C、1+2>2,能组成三角形,故C选项正确;D、1+2<4,能组成三角形,故D选项错误;故选:C.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<0【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、m≤0时,不等式不成立,故A错误;B、a<0时,不成立,故B错误;C、两边都乘以﹣1,不等号的方向改变,故C错误;D、两边都减a,不等号的方向不变,故D正确;故选:D.3.如图,笑脸盖住的点的坐标可能为()A.(5,2) B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)【考点】点的坐标.【分析】笑脸盖住的点在第二象限内,那么点的横坐标小于0,纵坐标大于0,比较选项即可.【解答】解:笑脸盖住的点在第二象限内,则其横坐标小于0,纵坐标大于0,那么结合选项笑脸盖住的点的坐标可能为(﹣2,3).故选B.4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.5.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【考点】全等三角形的性质.【分析】要求∠F的大小,利用△ABC≌△DEF,得到对应角相等,然后在△DEF 中依据三角形内角和定理,求出∠F的大小.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选B.6.已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°【考点】等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形的性质,可以求得其顶角的度数.【解答】解:∵等腰三角形的一个底角为80°,∴顶角=180°﹣80°×2=20°.故选A.7.直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的性质进行判断即可.【解答】解:∵直线y=﹣x﹣2中,k=﹣1<0,b=﹣2<0,∴此函数的图象在二、三、四象限.故选A.8.不等式x+2<6的正整数解有()A.1个 B.2个 C.3 个D.4个【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<4,故不等式x+2<6的正整数解为1,2,3,共3个.故选C.9.小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A.B.C.D.【考点】函数的图象.【分析】由题意,0到20分钟,小明离家越来越远,在20分钟时,离家最远,为900米;在超市购物用了10分钟,即20到30分钟期间,离家距离没变,为900米;15分钟返回家中,即在30到45分钟期间,离家越来越近,在45分钟时,离家距离为0.过程清楚,问题解决.【解答】解:由题意,图形应有三个阶段,①从家到超市,时间为0﹣﹣20分钟;②在超市购物,20﹣﹣30分钟;③从超市到家,30﹣﹣45分钟.A、图显示20到45分钟时,距家都是900米,实际上45分钟时已经到家了,距离应为0;故错误.B、图显示20到45分钟时,离家越来越近,实际上,20到30分钟时一直在超市;故错误.C、图显示不出20到30分钟时,离家一直是900米来,故错误.D、图显示的符合三个阶段,是正确的.综上所述,故选D.10.下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有()A.4个 B.3个 C.2个 D.1个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①有一个角为60°的等腰三角形是等边三角形,故①正确;②等腰直角三角形一定是轴对称图形,故②正确;③有一条直角边对应相等的两个直角三角形全等,故③错误;④到线段两端距离相等的点在这条线段的垂直平分线上,故④正确;故选:B.11.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.【解答】解:由(1)得x>8;由(2)得x<2﹣4a;其解集为8<x<2﹣4a,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a<﹣.故选B.12.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.B.y=x+ C.D.【考点】待定系数法求一次函数解析式;正方形的性质.【分析】直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出点A的坐标,根据待定系数法即可得到该直线l的解析式.【解答】解:直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P 作PC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴BP•AB=5,∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则,解得.∴直线l解析式为y=x+.故选B.二、细心填一填(每小题4分,共24分)13.函数y=中自变量x的取值范围是x≠3.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式进行计算即可求解.【解答】解:根据题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.14.在直角三角形中,一个锐角为57°,则另一个锐角为33°.【考点】直角三角形的性质.【分析】利用直角三角形的两锐角互余可求得答案.【解答】解:∵直角三角形的两锐角互余,∴另一锐角=90°﹣57°=33°,故答案为:33°.15.一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是k <2.5.【考点】一次函数的性质.【分析】根据已知条件“一次函数y=(2k﹣5)x+2中y随x的增大而减小”知,2k ﹣5<0,然后解关于k的不等式即可.【解答】解:∵一次函数y=(2k﹣5)x+2中y随x的增大而减小,∴2k﹣5<0,解得,k<2.5;故答案是:k<2.516.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD= 6.5.【考点】勾股定理的逆定理;直角三角形斜边上的中线.【分析】由△ABC的三边长,利用勾股定理的逆定理判断出三角形为直角三角形,且AC为斜边,再由D为斜边上的中点,得到BD为斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即可求出BD的长.【解答】解:∵AB=5,BC=12,AC=13,∴AB2+BC2=25+144=169,AC2=132=169,即AB2+BC2=AC2,∴△ABC为以AC为斜边的直角三角形,又∵D为AC的中点,即BD为斜边上的中线,∴BD=AC=6.5.故答案为:6.5.17.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=3.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用△ABC的面积列方程求解即可.【解答】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC面积是45cm2,∴×16•DE+×14•DF=45,解得DE=3cm.故答案为:3.18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为8或10m2.【考点】勾股定理的应用;等腰三角形的性质.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AC=CD,②AD=AB,2种情况进行讨论.【解答】解:∵两直角边长为3m,4m,∴由勾股定理得到:AB==5m.①如图1:当AC=CD=8m时;∵AC⊥CB,此时等腰三角形绿地的面积:×4×4=8(m2);②如图2,延长AC到D使AD等于5m,此时AB=AD=5m,此时等腰三角形绿地的面积:×5×4=10(m2);综上所述,扩充后等腰三角形绿地的面积为8m2或10m2;故答案为:8或10三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.解不等式组,并把解表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两不不等式得到x≥﹣1和x<3,再利用数轴表示解集,然后写出不等式组的解集.【解答】解:解不等式(1)得x≥﹣1,解不等式(2)得x<3在数轴上表示为所以不等式组的解集为﹣1≤x<3.20.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.【考点】全等三角形的判定与性质.【分析】(1)运用HL定理直接证明△ABE≌△CBF,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.【解答】解:(1)在Rt△ABE与Rt△CBF中,,∴△ABE≌△CBF(HL).(2)∵△ABE≌△CBF,∴∠BAE=∠BCF=20°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=65°.21.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).【考点】作图—应用与设计作图.【分析】(1)利用网格结构,过点A的竖直线与过点B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可;(2)根据网格结构,作出BD=AB或AB=AD,连接即可得解.【解答】解:(1)如图1,①、②,画一个即可;(2)如图2,①、②,画一个即可.22.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】(1)设这个一次函数的解析式为y=kx+b(k≠0),根据点的坐标利用待定系数法即可求出一次函数解析式;(2)将x=﹣代入一次函数解析式中求出y值即可;(3)由y<1可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)设这个一次函数的解析式为y=kx+b(k≠0),把(﹣4,9)、(6,﹣1)代入y=kx+b中,,解得:,∴这个一次函数的解析式为y=﹣x+5.(2)当x=﹣时,y=﹣(﹣)+5=.(3)∵y=﹣x+5<1,∴x>4.23.如图,AB∥CD,CE平分∠ACD交AB于E点.(1)求证:△ACE是等腰三角形;(2)若AC=13cm,CE=24cm,求△ACE的面积.【考点】等腰三角形的判定与性质;平行线的性质.【分析】(1)如图,证明∠AEC=∠ACE,即可解决问题.(2)如图,作辅助线;求出AG的长度,运用三角形的面积公式,即可解决问题.【解答】(1)证明:如图,∵AB∥CD,∴∠AEC=∠DCE,又∵CE平分∠ACD,∴∠ACE=∠DCE,∴∠AEC=∠ACE,∴△ACE为等腰三角形.(2)过A作AG⊥CE,垂足为G;∵AC=AE,∴CG=EG=CE=12(cm);∵AC=13(cm),由勾股定理得,AG=5(cm);=×24×5=60(cm2).∴S△ACE24.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?【考点】一次函数的应用.【分析】(1)设生产甲礼品x万件,乙礼品万件,根据收入=售价×产量列出函数关系式即可;(2)设生产甲礼品x万件,乙礼品万件,所获得的利润为y万元,根据成本不超过1380万元求出x的取值范围,然后根据利润=(售价﹣成本)×销量,列出函数关系式,求y的最大值;【解答】解:(1)设生产甲礼品x万件,乙礼品万件,由题意得:y=(22﹣15)x+(18﹣12)=x+600;(2)设生产甲礼品x万件,乙礼品万件,所获得的利润为y万元,由题意得:15x+12≤1380,∴x≤60,利润y=(22﹣15)x+(18﹣12)=x+600,∵y随x增大而增大,∴当x=60万件时,y有最大值660万元.这时应生产甲礼品60万件,乙礼品40万件.25.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.【考点】一次函数综合题.【分析】(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;②设点B的坐标为(0,y),根据|﹣﹣0|≥|0﹣y|,得出点A与点B的“非常距离”最小值为|﹣﹣0|,即可得出答案;(2)设点C的坐标为(x0,x0+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x0= x0+2,据此可以求得点C的坐标;【解答】解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);②设点B的坐标为(0,y).∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,).26.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP 全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为A',连接A'B,在点P运动的过程中,∠OA'B的度数是否会发生变化,若不变,请求出∠OA'B的度数,若改变,请说明理由.【考点】三角形综合题.【分析】(1)由AB∥x轴,可找出四边形ABCO为长方形,再根据△APB为等腰三角形可得知∠OAP=45°,从而得出△AOP为等腰直角三角形,由此得出结论;(2)由全等三角形的性质和等腰三角形的性质可得出结论,注意分类讨论;(3)由等腰直角三角形的性质和全等三角形的性质即可得出结论.【解答】解:(1)过点B作BC⊥x轴于点C,如图1所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°﹣∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4.t=4÷1=4(秒),故t的值为4.(2)点M的坐标为(4,7)或(6,﹣4)或(10,﹣1)或(0,4);(3)∠OA'B=45°,不发生变化;理由如下:∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠PAO+∠APO=90°,∴∠PAO=∠BPC.在△PAO和△BPC中,,∴△PAO≌△BPC(AAS),∴AO=PC,BC=PO.∵点A(0,4),点P(t,0)∴PC=AO=4,BC=PO=t,CO=PC+PO=4+t∴点B(4+t,t);∴点B在直线y=x﹣4上又∵点A关于x轴的对称点为A'(0,﹣4)也在直线y=x﹣4上,∴∠OA'B=45°.2017年2月6日。

2019-2020学年浙江省杭州八年级上册期末数学试卷

2019-2020学年浙江省杭州八年级上册期末数学试卷

2019-2020学年浙江省杭州八年级上册期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. √45−2√5=7√5B. 2√2×3√2=6√2C. √76÷√56=√75D.√2=√222.若x=2是关于x的方程ax2−bx=2的解,则2019−2a+b的值为()A. 2017B. 2018C. 2019D. 20203.如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(√3,1),则点B的坐标为()A. (√3−1,√3+1)B. (√3−1,1)C. (1,√3+1)D. (√3−1,2)4.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A. 10B. 6C. 8D. 55.一次函数y=−2x+1的图象不经过...()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.如图,已知函数y=2x和y=ax+4的图象交于点A(m,3),则不等式的解集为()A. x<32B. x<3C. x>32D. x>37.已知A,B两地相距120千米,甲乙两人沿同一条公路匀速行驶,甲骑自行车以20千米/时从A地前往B地,同时乙骑摩托车从B地前往A地,设两人之间的距离为s(千米),甲行驶的时间为t(小时),若s与t的函数关系如图所示,则下列说法错误的是()A. 经过2小时两人相遇B. 若乙行驶的路程是甲的2倍,则t=3C. 当乙到达终点时,甲离终点还有60千米D. 若两人相距90千米,则t=0.5或t=4.58.若方程mx2−6x+1=0有两个不相等的实数根,则m的取值范围是()A. m<9且m≠0B. m>9C. 0<m<9D. m<99.如图所示,在平面直角坐标系中,点P的坐标是()A. (−2,3)B. (3,−2)C. (−3,−2)D. (2,−3)10.如图,∠AOB的平分线与AB的垂直平分线CE交于点C,CD⊥OB于D,若OA=6,OB=8,则BD的长为()A. 1B. √2C. 2D. √10第II卷(非选择题)二、填空题(本大题共6小题,共30.0分)11.已知a=2+√3,b=2−√3,则a2b+ab2=_____.12.已知关于x的方程2mx2−x−1=0有实数根,则m的取值范围为______.13.若一次函数y=kx+2的图像经过点(3,5),则k的值为__________________.14.已知点A(x1,y1),B(x2,y2)在一次函数y=ax+b(a<0)的图象上,且x1>x2,则y1和y2的大小关系为______x平行,则该一次函数的表15.一次函数y=kx+b的图象经过点(0,2),且与直线y=12达式为___________.16.如图所示,在平面坐标系中B(3,1),AB=OB,∠ABO=90°,则点A的坐标是______.三、计算题(本大题共1小题,共6.0分)17.已知x=−1是一元二次方程x2+mx+2m+3=0的一个根,求方程的另一个根.四、解答题(本大题共6小题,共54.0分)18. 已知:a =√3+√2,求√(a −1a)2+4 −√(a +1a)2−4的值.19. 计算:(1)√8+2√3−(√27−√2)(2)(7+4√3)(7−4√3)−(3√5−1)2.20. 设m 是√5的整数部分,n 是√5的小数部分,试求2m −n 的值.21. 已知关于x 的方程mx 2−(m +2)x +2=0.(1)求证:方程总有实数根;(2)已知方程有两个不相等的实数根α,β满足1α+1β=2,求m 的值.22.为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分 2.5超出75m3不超出125m3的部分a超出125m3的部分a+0.25(1)若甲用户3月份的用气量为60m3,则应缴费______ 元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?x+2分别交x轴和y轴于A,C两点,直线BD:y=−x+b 23.如图,直线AC:y=12分别交x轴和y轴于B,D两点,直线AC与BD交于点E,且OA=OB.(1)求直线BD的解析式和E的坐标.(2)若直线y=x分别与直线AC,BD交于点H和F,求四边形ECOF的面积.答案和解析1.【答案】D【解析】解:A、原式=3√5−2√5=√5,所以A选项错误;B、原式=6√2×2=12,所以B选项错误;C、原式=√76×65=√355,所以C选项错误;D、原式=√22,所以D选项正确.故选D.根据二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据分母有理化对D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.【答案】B【解析】【试题解析】【分析】此题考查了一元二次方程的解,代数式求值,整体代入法,方程的解即为能使方程左右两边相等的未知数的值.把x=2代入方程求出2a−b的值,代入原式计算即可求出值.【解答】解:把x=2代入方程得:4a−2b=2,即2a−b=1,则原式=2019−(2a−b)=2019−1=2018.故选:B.3.【答案】A【解析】【分析】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.作BG⊥y轴于G,作CE⊥x轴于E,BG与CE交于H;由AAS证明△BCH≌△COE,得出对应边相等BH=CE=1,CH=OE=√3,求出BG、HE即可.【解答】解:作BG⊥y轴于G,作CE⊥x轴于E,BG与CE交于H;如图所示:则∠BHC=∠CEO=90°,∴∠HBC+∠BCH=90°,∵C点坐标为(√3,1),∴OE=√3,CE=1,∵四边形ABCO是正方形,∴BC=OC,∠BCO=90°,∴∠BCH+∠OCE=90°,∴∠HBC=∠OCE,在△BCH和△COE中,{∠BHC=∠CEO ∠HBC=∠OCE BC=OC,∴△BCH≌△COE(AAS),∴BH=CE=1,CH=OE=√3,∴BG=√3−1,HE=√3+1,∴点B的坐标为:(√3−1,√3+1).故选A.4.【答案】D【解析】【分析】由等腰三角形的性质证得AD⊥DC,根据直角三角形斜边上的中线的性质即可求得结论.本题主要考查了等腰三角形的性质,直角三角形斜边中线等于斜边一半.解:∵AB=AC=10,AD平分∠BAC,∴AD⊥DC,∵E为AC的中点,∴DE=12AC=12×10=5,故选:D.5.【答案】C【解析】解:∵一次函数y=−2x+1中k=−2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C.先根据一次函数y=−2x+1中k=−2,b=1判断出函数图象经过的象限,进而可得出结论.本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.6.【答案】A【解析】【分析】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.先利用正比例函数解析式确定A点坐标,然后利用函数图象,写出直线y=ax+4在直线y=2x上方所对应的自变量的范围即可.【解答】解:把A(m,3)代入y=2x得,2m=3,解得,m=32,则A(32,3),根据图象得,当x<32时,.故选A.【解析】【分析】本题主要考查的是一次函数的图象,性质,一次函数的应用的有关知识,由题意对给出的各个选项进行逐一分析即可.【解答】解:由图象知:经过2小时两人相遇,A选项正确,∵乙的速度是甲的两倍,所以t在3小时以内都满足路程关系一直是2倍,B选项错误,乙的速度是80÷2=40千米/时,乙到达终点时所需时间为120÷40=3(小时),3小时甲行驶3×20=60(千米),离终点还有120−60=60(千米),故C选项正确,当0<t≤2时,S=−60t+120,当S=90时,即−60t+120=90,解得:t=0.5,当3<t≤6时,S=20t,当S=90时,即20t=90,解得:t=4.5,∴若两人相距90千米,则t=0.5或t=4.5,故D正确.故选B.8.【答案】A【解析】解:∵关于x的一元二次方程mx2−6x+1=0有两个不相等的实数根,∴m≠0且△>0,即62−4⋅m⋅1>0,解得m<9,∴m的取值范围为m<9且m≠0.故选:A.由关于x的一元二次方程mx2−6x+1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△>0,即62−4⋅m⋅1>0,两个不等式的公共解即为m的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;也考查了一元二次方程的定义.9.【答案】D【解析】[分析]过点P向x轴作垂线,垂足在x轴上的坐标为横坐标;过点P向y轴作垂线,垂足在y轴上的坐标为纵坐标,即可得解.本题主要考查点的坐标,解题的关键是掌握点的坐标的概念.[详解]解:由图知,点P的坐标为(2,−3),故选D.10.【答案】A【解析】[分析]连接AC,BC,作CH⊥OA于H.由Rt△ACH≌Rt△BCD(HL),推出AH=BD,由Rt△OCH≌Rt△OCD(HL),推出OH=OD,可得OA+OB=OH−AH+OD+DB=2OD= 14,推出OD=7,由此即可解决问题;本题考查角平分线的性质、线段的垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.[详解]解:如图,连接AC,BC,作CH⊥OA于H.∵OC平分∠AOB,CH⊥OA,CD⊥OB,∴CH=CD,∵EC垂直平分线段AB,∴CA=CB,∵∠CHA=∠CDB=90°,∴Rt△ACH≌Rt△BCD(HL),∴AH=BD,∵OC=OC,CH=CD,∴Rt△OCH≌Rt△OCD(HL),∴OH=OD,∴OA+OB=OH−AH+OD+DB=2OD=14,∴BD=OB−OD=1,故选A.11.【答案】4【解析】【分析】本题主要考查了二次根式的化简求值,考查了因式分解,属于基础题.先利用提公因式法分解所求式子,然后把a,b的值代入计算可得答案.【解答】解:因为a=2+√3,b=2−√3,所以a2b+ab2=ab(a+b)=(2+√3)(2−√3)(2+√3+2−√3)=(4−3)×4=4,故答案为4.12.【答案】m≥−18【解析】【分析】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac 有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.注意分m=0和m≠0两种情况讨论:当m=0时,方程是一元一次方程,有实数根;当m≠0时,是一元二次方程,方程有实数根则Δ≥0,可得关于m的不等式,解之可得.【解答】解:当m=0时,方程有实数根x=−1;当m≠0时,方程为一元二次方程,则根据题意得:Δ=(−1)2−4×2m×(−1)≥0,即1+8m≥0,,解得:m≥−18.故答案为m≥−1813.【答案】1【分析】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.直接把点(3,5)代入一次函数y=kx+2,求出k的值即可.【解答】解:∵一次函数y=kx+2的图象经过点(3,5),∴5=3k+2,解得k=1,故答案为1.14.【答案】y1<y2【解析】【试题解析】【分析】本题考查了一次函数的性质,能熟记一次函数的性质是解此题的关键.根据已知函数的解析式得出y随x的增大而减小,即可得解.【解答】解:∵y=ax+b(a<0),∴y随x的增大而减小,∵一次函数y=ax+b(a<0)图象上有A、B两点,A(x1,y1),B(x2,y2),x1>x2,∴y1<y2,故答案为y1<y2.x+215.【答案】y=12【解析】【分析】本题考查的是一次函数解析式的求法和两直线平行的问题,根据平行线的解析式的k值相等求出k值是解题的关键.根据互相平行的两直线的解析式的k值相等求出k,再把经过的点的坐标代入函数解析式进行计算求出b的值,从而得解.【解答】解:∵一次函数y =kx +b 的图象与直线y =12x 平行,∴k =12, ∵一次函数y =kx +b 的图象经过点(0,2),∴12×0+b =2,解得b =2,所以一次函数的表达式为y =12x +2.故答案为y =12x +2. 16.【答案】(2,4)【解析】【分析】过点A 作AC//x 轴,过点B 作BD//y 轴,两条直线相交于点E ,根据ASA 定理得出△ABE≌△BOD ,故可得出AC 及DE 的长,由此可得出结论.本题考查的是全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.【解答】解:如图,过点A 作AC//x 轴,过点B 作BD//y 轴,两条直线相交于点E ,∵B(3,1),∴OD =3,BD =1.∵∠DOB +∠OBD =90°,∠OBD +∠ABE =90°,∠BAE +∠ABE =90°,∴∠BOD =∠ABE ,∠OBD =∠BAE .在△ABE 与△BOD 中,∵{∠BOD =∠ABE OB =AB ∠OBD =∠BAE, ∴△ABE≌△BOD(ASA),∴AE =BD =1,BE =OD =3,∴AC=OD−AE=3−1=2,DE=BD+BE=1+3=4,∴A(2,4).故答案为:(2,4).17.【答案】解:把x=−1代入方程x2+mx+2m+3=0得:1−m+2m+3=0,解得:m=−4,即方程为x2−4x−5=0,解得:x=5或−1,即方程的另一个根为5.【解析】把x=−1代入方程得出1−m+2m+3=0,求出m,把m的值代入方程,再求出方程的解即可.本题考查了根与系数的关系和一元二次方程的解,能求出m的值是解此题的关键.18.【答案】解:∵a=√3+√2=√3−√2原式=√a2−2+1a2+4−√a2+2+1a2−4=√(a+1a)2−√(a−1a)2又∵a+1a >0,a−1a<0∴原式=a+1a −1a+a=2a∴原式=2×(√3−√2)=2√3−2√2.【解析】此题考查二次根式的混合运算,可先根据已知a=√3+√2=√3−√2,再化简√(a−1a )2+4−√(a+1a)2−4为最简,代入a的值即可.19.【答案】解:(1)√8+2√3−(√27−√2)=2√2+2√3−3√3+√2=3√2−√3;(2)(7+4√3)(7−4√3)−(3√5−1)2=72−(4√3)2−(3√5)2+6√5−1=49−48−45+6√5−1=−45+6√5.【解析】根据二次根式的性质把二次根式化简,根据二次根式的混合运算法则计算即可.本题考查的是二次根式的混合运算、掌握二次根式的性质、二次根式的混合运算法则是解题的关键.20.【答案】解:∵4<5<9,∴2<√5<3,∴m =2,n =2,∴2m −n =2×2−(−2),=6−故答案为6−.【解析】本题考查了估算无理数大小的知识,注意运用“逼近法”得出m ,n 的值是解答此题的关键.先运用逼近法得出m ,n 的值,再代入2m −n ,计算即可求解. 21.【答案】(1)证明:当m =0时,原方程为−2x +2=0,解得:x =1,∴当m =0时,方程有解;当m ≠0时,△=[−(m +2)]2−4×2m =m 2−4m +4=(m −2)2≥0,∴当m ≠0时,方程mx 2−(m +2)x +2=0有解.综上:无论m 为何值,方程总有实数根; (2)解:∵方程有两个不相等的实数根α,β,∴α+β=m+2m ,αβ=2m . ∵1α+1β=α+βαβ=2,即m+22=2,解得:m =2.【解析】(1)当二次项系数为零时,通过解一元一次方程可得出该方程有解;当二次项系数非零时,由根的判别式△=(m −2)2≥0可得出当m =0时方程有解.综上,此题得证;(2)根据根与系数的关系可得出α+β=m+2m ,αβ=2m ,结合1α+1β=2即可得出关于m 的方程,解之即可得出m 的值.本题考查了根的判别式、根与系数的关系以及一元二次方程的定义,解题的关键是:(1)分二次项系数非零及二次项系数为零两种情况找出方程有解;(2)利用根与系数的关系结合1α+1β=2找出关于m 的方程. 22.【答案】(1)150;(2)由题意,得a =(325−75×2.5)÷(125−75),a =2.75,∴a +0.25=3,设OA 的解析式为y 1=k 1x ,则有2.5×75=75k 1,∴k 1=2.5,∴线段OA 的解析式为y 1=2.5x(0≤x ≤75);设线段AB 的解析式为y 2=k 2x +b ,由图象,得{187.5=75k 2+b 325=125k 2+b, 解得{k 2=2.75b =−18.75, ∴线段AB 的解析式为:y 2=2.75x −18.75(75<x ≤125);(385−325)÷3=20,故C (145,385),设射线BC 的解析式为y 3=k 3x +b 1,由图象,得{325=125k 3+b 1385=145k 3+b 1, 解得:{k 3=3b 1=−50, ∴射线BC 的解析式为y 3=3x −50(x >125)(3)设乙用户2月份用气xm 3,则3月份用气(175−x)m 3,当x >125,175−x ≤75时,3x −50+2.5(175−x)=455,解得:x =135,175−135=40,符合题意;当75<x ≤125,175−x ≤75时,2.75x −18.75+2.5(175−x)=455,解得:x=145,不符合题意,舍去;当75<x≤125,75<175−x≤125时,2.75x−18.75+2.75(175−x)−18.75=455,此方程无解.∴乙用户2、3月份的用气量各是135m3,40m3.【解析】【分析】本题是一道一次函数的综合试题,考查了单价×数量=总价的运用,待定系数法求一次函数的解析式的运用,分段函数的运用,一元一次方程的应用以及分类讨论思想在解实际问题的运用,解答时求出函数的解析式是关键.(1)根据单价×数量=总价就可以求出3月份应该缴纳的费用;(2)根据单价×数量=总价的关系建立方程就可以求出a值,再从0≤x≤75,75<x≤125和x>125运用待定系数法分别表示出y与x的函数关系式即可;(3)设乙用户2月份用气xm3,则3月份用气(175−x)m3,分3种情况:x>125,175−x≤75时,75<x≤125,175−x≤75时,当75<x≤125,75<175−x≤125时分别建立方程求出其解就可以.【解答】解:(1)由题意,得60×2.5=150(元);故答案为150;(2)见答案;(3)见答案.x+2分别交x轴和y轴于A,C两点,23.【答案】解:(1)∵直线AC:y=12∴A(−4,0),C(0,2),∵OA=OB,∴OA=OB=4,B(4,0),∵直线BD:y=−x+b分别交x轴和y轴于B,D两点,∴0=−4+b,∴b=4,D(0,4)∴直线BD:y=−x+4.解{y =12x +2y =−x +4得 {x =43y =83, ∴E(43,83),综上,直线BD 的解析式为:y =−x +4,点E 坐标为(43,83).(2)由(1)知:C(0,2),D(0,4),E(43,83),且由{y =x y =−x +4,得点F(2,2),∴S 四边形ECOF =S △DOF −S △DCE=4×2÷2−(4−2)×43÷2 =4−43=83故四边形ECOF 的面积为83.【解析】本题是关于求一次函数解析式,两直线交点以及利用坐标来求相关图形面积的综合问题.(1)先求直线AC :y =12x +2与x 轴和y 轴的交点A ,C ,由OA =OB 得点坐标,代入直线BD :y =−x +b ,求出b ,即可知直线BD 的解析式;再把直线BD 的解析式与直线AC :y =12x +2联立即可求出点E 的坐标.(2)由(1)知点C ,D ,E 的坐标,再联立y =x 和直线BD 的解析式,求出点F 的坐标,由三角形DOF 的面积减去三角形DCE 的面积,即可求出四边形ECOF 的面积.。

2019-2020学年度第一学期浙教版八年级数学期末考试题(附答案)

2019-2020学年度第一学期浙教版八年级数学期末考试题(附答案)

2019-2020学年度第一学期浙教版八年级数学期末考试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.下面各组线段中,能组成三角形的是()A. 5,11,6B. 8,8,16C. 10,5,4D. 6,9,142.下列命题中,是真命题的是()A. 两直线平行,内错角相等B. 两个锐角的和是钝角C. 直角三角形都相似D. 正六边形的内角和为360°3.等腰三角形腰长10cm,底边16cm,则面积()A. 96cm2B. 48cm2C. 24cm2D. 32cm24.把一块直尺与一块三角板放置,若∠1=50°,则∠2的度数为()A. 115°B. 120°C. 130°D. 140°5.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分,设她答对了x道题,则根据题意可列出不等式为( )A. 10x-5(20-x) ≥90B. 10x-5(20-x)>90C. 10x-(20-x) ≥90D. 10x-(20-x)>906.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有1个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A. 8(x﹣1)<5x+12<8B. 0<5x+12<8xC. 0<5x+12﹣8(x﹣1)<8D. 8x<5x+12<87.下列说法不正确的是()A. 的平方根是B. -9是81的一个平方根;C. 0.2的算术平方根是0.02 ;D.8.函数y=ax2与y=-ax+b的图象可能是()A. B. C. D.9.甲、乙两车从A地匀速驶向B地,甲车比乙车早出发2h,并且甲车在途中休息了0.5h后仍以原速度驶向B地,如图是甲、乙两车行驶的路程y(km)与行驶的时间x(h)之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40km/h,乙车的速度是80km/h;③当甲车距离A地260km时,甲车所用的时间为7h;④当两车相距20km时,则乙车行驶了3h或4h,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个10.函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1,y2的值都大于零的x的取值范围是()A. x>-1B. x>2C. x<2D. -1<x<2二、填空题(共6题;共24分)11.如图,已知∠ABD=∠CBD,若以“SAS”为依据判定△ABD≌△CBD,还需添加的一个条件是________.12.解不等式组请结合题意填空和画图,完成本题的解答:解:解不等式①,得________。

最新2019-2020年度浙教版八年级数学上学期期末考试模拟试卷及答案解析-精品试题

最新2019-2020年度浙教版八年级数学上学期期末考试模拟试卷及答案解析-精品试题

八年级(上)第二次段考数学试卷一、精心选一选(每小题3分,共30分)1.点P(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.在直角坐标系中,点A(2,1)向下平移2个单位长度后的坐标为()A.C.3.已知点P(x,y)在第四象限,且|x|=3,|y|=5,则P点的坐标是()A.C.4.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50B.∠A=40°,∠B=60°C.∠A=40°,∠B=70D.∠A=40°,∠B=80°5.点B(0,﹣3)在()A.x轴的正半轴上B.x轴的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上6.下列判断正确的是( ) A .顶角相等的两个等腰三角形全等B .有一边及一锐角相等的两个直角三角形全等C .腰相等的两个等腰三角形全等D .顶角和底边分别相等的两个等腰三角形全等7.不等式组的解集在数轴上表示正确的是( )A .B .C .D .8.一个等腰三角形的两边长分别是3和7,则它的周长为( )A .17B .15C .13D .13或179.下列判断正确的是( )A .若|﹣a|<|﹣b|,则a >bB .若a <0,则2a <aC .若a≠b,则a 2一定不等于b 2D .若a >0,且(1﹣b )a <0,则b <110.已知点P 1(a ﹣1,4)和P 2(2,b )关于x 轴对称,则(a+b )2015的值为( )A.72014B.1 C.﹣1 D.11.在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B=.12.用不等式表示:x与3的和不大于1,则这个不等式是:13.AD是△ABC的中线,若△ABC的面积是20cm2,则△ADC的面积是.14.已知两条线段的长为3cm和4cm,当第三条线段的长为cm 时,这三条线段能组成一个直角三角形.15.点(3,﹣2)关于y轴的对称点的坐标是.16.不等式﹣2a<6的解是.17.如图,是象棋盘的一部分,若“帅”位于点(2,﹣1)上,“相”位于点(4,﹣1)上,则“炮”所在的点的坐标是.18.如图,在△ABC中,AB=AC,∠B=75°,将纸片的一角对折,使点A落在△ABC内,若∠2=20°,则∠1=°.19.若关于x的不等式组有解,则写出符合条件的一个a的值.20.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=4,则图中阴影部分的面积为.三、解答题(共40分)21.如图,已知△ABC,请作出△ABC关于x轴对称的图形.并写出A、B、C 关于x轴对称的点坐标.22.解下列不等式(组),并将其解集在数轴上表示出来.(1)<+1;(2).23.如图,校园内有两棵树,相距8米,一棵树树高AB=13米,另一棵树高CD=7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少米?24.如图,DA⊥AB于点A,CB⊥AB于点B,E是AB上一点,且BC=AE,∠1=∠2,则:(1)求证:Rt△ADE≌Rt△BEC.(2)△DEC是不是等腰直角三角形?说明理由.(3)若DC=10,P为DC的中点,求PE的长度.25.如图所示,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律将△OA 4B 4变换成△OA 5B 5,则A 5的坐标是 ,B 5的坐标是 .(2)若按第(1)题的规律将△OAB 进行了n 次变换,得到△OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,请推测A n 的坐标是 ,B n 的坐标是 .参考答案与试题解析一、精心选一选(每小题3分,共30分)1.点P(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标符号直接判断的判断即可.【解答】解:∵P(﹣1,2),横坐标为﹣1,纵坐标为:2,∴P点在第二象限.故选:B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.2.在直角坐标系中,点A(2,1)向下平移2个单位长度后的坐标为()A.C.【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:点A(2,1)向下平移2个单位长度后的坐标为(2,1﹣2),即(2,﹣1),故选:D.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.3.已知点P(x,y)在第四象限,且|x|=3,|y|=5,则P点的坐标是()A.C.【考点】点的坐标.【分析】先根据P点的坐标判断出x,y的符号,进而求出x,y的值,即可求得答案.【解答】解:∵点P(x,y)在第四象限,∴x>0,y<0,又∵|x|=3,|y|=5,∴点P(x,y)坐标中,x=3,y=﹣5,∴P点的坐标是(3,﹣5).故选C.【点评】本题主要考查了点在第四象限时点的坐标的符号及绝对值的性质,熟记各象限内点的坐标的符号特点是解题的关键.4.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50B.∠A=40°,∠B=60°C.∠A=40°,∠B=70D.∠A=40°,∠B=80°【考点】等腰三角形的判定.【分析】根据等腰三角形性质,利用三角形内角和定理对4个选项逐一进行分析即可得到答案.【解答】解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=60°时,∠A=60°≠40°,当∠A=40°时,∠B=70°≠60°,所以B选项错误.当顶角为∠A=40°时,∠C=70°=∠B,所以C选项正确.当顶角为∠A=40°时,∠B=70°≠80°,当顶角为∠B=80°时,∠A=50°≠40°所以D选项错误.故选C.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是熟练掌握三角形内角和定理.5.点B(0,﹣3)在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上 D.y轴的负半轴上【考点】点的坐标.【分析】根据y轴上点的横坐标为零,纵坐标小于零在y轴的负半轴上,可得答案.【解答】解:B(0,﹣3)在在y轴的负半轴上,故选:D.【点评】本题考查了点的坐标,x轴上点的纵坐标为零,y轴上点的横坐标为零.6.下列判断正确的是()A.顶角相等的两个等腰三角形全等B.有一边及一锐角相等的两个直角三角形全等C.腰相等的两个等腰三角形全等D.顶角和底边分别相等的两个等腰三角形全等【考点】全等三角形的判定;三角形内角和定理;等腰三角形的性质.【专题】推理填空题.【分析】举出反例图形,根据图形即可判断A、C;如果是直角边和斜边相等,即可判断B;根据等腰三角形性质和三角形内角和定理求出∠B=∠E,根据全等三角形的判断AAS即可判断D.【解答】解:A、如图:等腰△ABC和△DEF,∠A=∠D,但两三角形不全等,故本选项错误;B、△ABC和△DEF,∠C=∠F=90°,BC=ED,∠A=∠D,但△ABC和△DEF不全等,故本选项错误;C、如图:△ABC和△DEF,AB=AC,DE=DF,AB=DE,但△ABC和△DEF不全等,故本选项错误;D、∵△ABC和△DEF,AB=AC,DE=DF,BC=EF,∠A=∠D,∴∠B=∠C=(180°﹣∠A),∠E=∠F=(180°﹣∠D),∴∠E=∠B,在△ABC和△DEF中,∴△ABC≌△DEF,故本选项正确;故选D.【点评】本题考查了三角形的内角和定理,等腰三角形的性质和全等三角形的性质和判定等知识点的运用,解此题的关键是熟练地运用定理进行推理,难度不大,题型较好.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】计算题.【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可.【解答】解:由不等式组得,再分别表示在数轴上为,故选B.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17 【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.9.下列判断正确的是()A.若|﹣a|<|﹣b|,则a>b B.若a<0,则2a<aC.若a≠b,则a2一定不等于b2D.若a>0,且(1﹣b)a<0,则b <1【考点】不等式的性质.【分析】根据不等式的性质分别判断得出即可.【解答】解:A、若|﹣a|<|﹣b|,则当a,b为负数时,a<b,故此选项错误;B、若a<0,则2a<a,根据负数的性质得出,此选项正确;C、若a≠b,则a2不一定不等于b2,故此选项错误;D、若a>0,且(1﹣b)a<0,则1﹣b<0,则b>1,故此选项错误.故选:B .【点评】此题主要考查了不等式的性质,熟练根据不等式的性质举出反例是解题关键.10.已知点P 1(a ﹣1,4)和P 2(2,b )关于x 轴对称,则(a+b )2015的值为( )A .72014B .1C .﹣1D .关于x 轴的对称点P′的坐标是(x ,﹣y ),进而得出A ,b 的值,再利用有理数的乘方运算法则得出答案.【解答】解:∵点P 1(a ﹣1,4)和P 2(2,b )关于x 轴对称,∴a﹣1=2,b=﹣4, 解得:a=3,b=﹣4,则(a+b )2015的值为:(3﹣4)2015=﹣1.故选:C .【点评】此题主要考查了关于x 轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键.二、细心填一填:(每题3分,共30分)11.在Rt△ABC 中,锐角∠A=35°,则另一个锐角∠B= 55° .【考点】直角三角形的性质.【专题】计算题.【分析】根据在直角三角形中两个锐角互余即可得出答案.【解答】解:∵在Rt△ABC中,锐角∠A=35°,∴另一个锐角∠B=90°﹣35°=55°,故答案为:55°.【点评】本题考查了直角三角形的性质,属于基础题,主要掌握直角三角形中两个锐角互余.12.用不等式表示:x与3的和不大于1,则这个不等式是:x+3≤1【考点】由实际问题抽象出一元一次不等式.【分析】“x与3的和不大于1”意思是x+3小于或等于1,据此列式即可.【解答】解:由题意得:x+3≤1.【点评】解决本题的关键是理解“不大于”用数学符号表示应为:“≤”.13.AD是△ABC的中线,若△ABC的面积是20cm2,则△ADC的面积是10 .【考点】三角形的面积.【分析】根据三角形的中线把三角形分成面积相等的两个三角形解答即可.【解答】解:∵AD是△ABC的中线,△ABC的面积是18cm2,∴△ADC的面积=×20=10cm2.故答案为:10.【点评】本题考查了三角形的面积,根据等底等高的三角形的面积相等得到三角形的中线把三角形分成面积相等的两个三角形是解题的关键.14.已知两条线段的长为3cm和4cm,当第三条线段的长为5或cm时,这三条线段能组成一个直角三角形.【考点】勾股定理的逆定理.【分析】本题从边的方面考查三角形形成的条件,涉及分类讨论的思考方法,即:由于“两边长分别为3和5,要使这个三角形是直角三角形,”指代不明,因此,要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时,根据勾股定理,第三边的长==5,三角形的边长分别为3,4,5能构成三角形;当第三边是斜边时,根据勾股定理,第三边的长==,三角形的边长分别为3,,亦能构成三角形;综合以上两种情况,第三边的长应为5或,故答案为5或.【点评】本题考查了勾股定理的逆定理,解题时注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边,当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.15.点(3,﹣2)关于y轴的对称点的坐标是(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出点(3,﹣2)关于y轴的对称点的坐标.【解答】解:点(3,﹣2)关于y轴的对称点的坐标是(﹣3,﹣2).【点评】本题比较容易,考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.16.不等式﹣2a<6的解是a>﹣3 .【考点】解一元一次不等式.【分析】不等式的两边同时除以﹣2即可得出结论.【解答】解:不等式的两边同时除以﹣2得,a>﹣3.故答案为:a>﹣3.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.17.如图,是象棋盘的一部分,若“帅”位于点(2,﹣1)上,“相”位于点(4,﹣1)上,则“炮”所在的点的坐标是(﹣1,2).【考点】坐标确定位置.【专题】图表型.【分析】根据“帅”的坐标,向左2个单位,向上1个单位为坐标原点建立平面直角坐标系,然后写出“炮”的坐标即可.【解答】解:建立平面直角坐标系如图,“炮”所在的点的坐标是(﹣1,2).故答案为:(﹣1,2).【点评】本题考查了坐标确定位置,是基础题,准确确定出坐标原点的位置是解题的关键.18.如图,在△ABC中,AB=AC,∠B=75°,将纸片的一角对折,使点A落在△ABC内,若∠2=20°,则∠1=40 °.【考点】等腰三角形的性质;三角形内角和定理;翻折变换(折叠问题).【分析】由等腰三角形等边对等角的性质及三角形内角和定理求出∠A、∠C的大小,进而在△DEF中,得出∠DEF与∠EFD的和,再在四边形BCEF中,即可求出∠1的大小.【解答】解:如图,∵AB=AC,∴∠C=∠B=75°,∴∠A=180°﹣∠B﹣∠C=30°=∠D.在△DEF中,则∠DEF+∠EFD=150°,在四边形BCEF中,∠B+∠C+∠CEF+∠EFB=360°,即∠B+∠C+∠1+∠DEF+∠EFD+∠2=360°,75°+75°+∠1+150°+20°=360°,∠1=40°.故答案为40.【点评】本题主要考查了轴对称的性质,等腰三角形的性质,三角形与四边形内角和定理,难度适中.19.若关于x的不等式组有解,则写出符合条件的一个a的值0 .【考点】解一元一次不等式组.【专题】开放型.【分析】先分别解的两个不等式得到x≥﹣a和x<1,由于原不等式组有解,则﹣a<1,解得a>﹣1,然后在此范围内取一值即可.【解答】解:,解①得x≥﹣a,解②得x<1,∵不等式组有解,∴﹣a<1,∴a>﹣1,∴a可以取0.故答案为0.【点评】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.20.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=4,则图中阴影部分的面积为8 .【考点】勾股定理;等腰直角三角形.【专题】计算题.【分析】根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.【解答】解:在Rt△AHC 中,AC 2=AH 2+HC 2,AH=HC ,∴AC 2=2AH 2,∴HC=AH=,同理;CF=BF=,BE=AE=, 在Rt△ABC 中,AB 2=AC 2+BC 2,AB=4,S 阴影=S △AHC +S △BFC +S △AEB =HCAH+CFBF+AEBE ,=×+×+×=(AC 2+BC 2+AB 2)=(AB 2+AB 2)=×2AB 2=AB 2=×42=8.故答案为8.【点评】本题考查了勾股定理的知识,难度适中,解题关键是运用勾股定理证明三个等腰直角三角形的面积之间的关系.三、解答题(共40分)21.如图,已知△ABC,请作出△ABC关于x轴对称的图形.并写出A、B、C 关于x轴对称的点坐标.【考点】作图-轴对称变换.【分析】根据关于x轴对称的点的坐标特点作出△ABC关于x轴对称的图形,并写出各点坐标即可.【解答】解:如图所示,由图可知,A、B、C关于x轴对称的点坐标分别为(2,﹣3),(1,﹣1),(3,2).【点评】本题考查的是作图﹣轴对称变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.22.解下列不等式(组),并将其解集在数轴上表示出来.(1)<+1;(2).【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】(1)根据解不等式的一般步骤解答即可,一般步骤为:去分母,去括号,移项及合并同类项,系数化为1即可得解;(2)先求出两个不等式的解集,再求其公共解.【解答】解:去分母,得2(x+1)<3(5﹣x)+12,去括号,得2x+2<15﹣3x+12,移项,得2x+3x<15+12﹣2,合并同类项,得5x<25,不等式两边都除5,得x<5,所以原不等式的解集为x<5;如图所示:(2)解:,由①得,2x﹣x>2,解得x>2,由②得,x﹣4x>﹣1﹣8,解得x<3,两个不等式的解集表示在数轴上如图,所以原不等式组的解集为2<x<3.【点评】本题主要考查了一元一次不等式(组)解集的求法,注意利用不等式的基本性质3时,不等号的方向要改变.23.如图,校园内有两棵树,相距8米,一棵树树高AB=13米,另一棵树高CD=7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少米?【考点】勾股定理的应用.【分析】作DE⊥AB于点E,然后求得AE和DE的长,用勾股定理求得AD的长即可.【解答】解:如图,作DE⊥AB于点E,根据题意得:AE=AB﹣BE=AB﹣CD=13﹣7=6米,DE=BC=8米,由勾股定理得:AD==10米,答:小鸟至少要飞10米.【点评】本题考查了勾股定理的应用,解题关键是将小鸟的飞行路线转化为求直角三角形的斜边.24.如图,DA⊥AB于点A,CB⊥AB于点B,E是AB上一点,且BC=AE,∠1=∠2,则:(1)求证:Rt△ADE≌Rt△BEC.(2)△DEC是不是等腰直角三角形?说明理由.(3)若DC=10,P为DC的中点,求PE的长度.【考点】全等三角形的判定与性质.【分析】(1)利用“HL”证明Rt△ADE≌Rt△BEC.(2)△DEC是等腰直角三角形,证明∠DEC=90°,即可解答;(3)利用在直角三角形中,斜边的中线等于斜边的一半,即可解答.【解答】解:(1)∵∠1=∠2,∴DE=CE,∵DA⊥AB于点A,CB⊥AB于点B,∴∠A=∠B=90°,在Rt△DAE和Rt△EBC中,∴Rt△DAE≌Rt△EBC.(2)△DEC是等腰直角三角形,∵Rt△DAE≌Rt△EBC.∴∠ADE=∠BEC,∵∠ADE+∠AED=90°,∴∠BEC+∠AED=90°,∴∠DEC=180°﹣(∠BEC+∠AED)=90°,∵∠1=∠2,∴DE=CD,∴△DEC是等腰直角三角形.(3)如图,∵△DEC 是等腰直角三角形.CD=10,P 是CD 的中点,∴PE=CD==5(在直角三角形中,斜边的中线等于斜边的一半).【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明Rt△ADE≌Rt△BEC.25.如图所示,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律将△OA 4B 4变换成△OA 5B 5,则A 5的坐标是 (32,3) ,B 5的坐标是 (64,0) .(2)若按第(1)题的规律将△OAB 进行了n 次变换,得到△OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,请推测A n 的坐标是 (2n ,3) ,B n 的坐标是 (2n+1,0) .【考点】规律型:点的坐标.【分析】(1)对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是3,同理B 1,B 2,B n 也一样找规律.(2)根据第一问得出的A 4的坐标和B 4的坐标,再此基础上总结规律即可知A 的坐标是(2n ,3),B 的坐标是(2n+1,0).【解答】解:(1)因为A (1,3),A 1(2,3),A 2(4,3),A 3(8,3)…纵坐标不变为3,同时横坐标都和2有关,为2n ,那么A 5(32,3);因为B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)…纵坐标不变,为0,同时横坐标都和2有关为2n+1,那么B 的坐标为B 5(64,0);(2)由上题第一问规律可知A n 的纵坐标总为3,横坐标为2n ,B n 的纵坐标总为0,横坐标为2n+1,∴A n 的坐标是(2n ,3),B n 的坐标是(2n+1,0). 故答案为:(32,3),(64,0);(2n ,3),(2n+1,0).【点评】本题考查了学生观察图形及总结规律的能力,涉及的知识点为:平行于x 轴的直线上所有点纵坐标相等,x 轴上所有点的纵坐标为0.。

2019-2020学年浙江省杭州市八年级上册期末数学试卷

2019-2020学年浙江省杭州市八年级上册期末数学试卷

2019-2020学年浙江省杭州市八年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.下列各点在第二象限的是()A. (−4,2)B. (−2,0)C. (3,5)D. (2,−3)2.下列长度的三条线段能组成三角形的是()A. 1cm 2cm 3cmB. 6cm 2cm 3cmC. 4cm 6cm 8cmD. 5cm 12cm 6cm3.等腰三角形的顶角为100°,则它的一个底角是()A. 40°B. 50°C. 60°D. 80°4.已知命题A:“带根号的数都是无理数”.在下列选项中,可以作为判断“命题A是假命题”的反例的是()A. B. C. D.5.一个三角形三个内角的度数之比为2:5:7,这个三角形一定是()A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形6.若a>b,则下列不等式不一定成立的是()A. a−3.14>b−3.14B. 1−2a<1−2bC. −23a<−23b D. (a+1)2>(b+1)27.已知点A(1,y1),B(−3,y2)都在直线y=−12x+2上,则()A. y1<y2B. y1=y2C. y1>y2D. 无法比较8.如图,△ABC中,∠ACB=90°,BA的垂直平分线交CB边于D,若AC=6,BC=8,则△ACD的周长是()A. 10B. 12C. 14D. 169.王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学带了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)()A. 6B. 7C. 8D. 910.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是()A. 甲的速度是70米/分B. 乙的速度是60米/分C. 甲距离景点2100米D. 乙距离景点420米第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)11.点P(−2,1)向上平移2个单位后的点的坐标为______.12.如图,E为△ABC边CA延长线上一点,过点E作ED//BC.若∠BAC=70°,∠CED=50°,则∠B=______°.13.关于x的方程7−2k=2(x+3)的解为负数,则k的取值范围是______.14.如图,△ABC为等边三角形,以AC为直角边作等腰直角△ACD,∠ACD=90°,则∠CBD=________°.15.一次函数y=x+2与y=−3x+6的图象相交于点(1,3),则方程组{y=x+2,y=−3x+6的解为________,关于x的不等式组−3x+6>x+2>0的解为________.16.如图,△ABC中,∠BCA=90°,∠BAC=24°,将△ABC绕点C逆时针旋转α(0°<α<90°)得△DEC,若CD交AB于点F,当α=______时,△ADF为等腰三角形.三、解答题(本大题共7小题,共66.0分)17.如图,△ABC在平面直角坐标系中的坐标分别为A(−3,4),B(−6,2),C(−2,−2)(1)作出△ABC关于y轴对称的图形△A1B1C1;(2)分别求出A1、B1、C1的坐标.18.解下列不等式(组),并把(1)的解集在数轴上表示出来(1)7x−2≥5x+2;(2){6x−2>3x−4 2x+13−1−x2<119.如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.20.设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(−1,−1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值.(3)已知点C(x1,y1)和点D(x2,y2)在该一次函数图象上,设m=(x1−x2)(y1−y2),21.如图,△ABC中,AB=BC,∠ABC=45∘,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若CD=3,求AF的长.22.已知一次函数y=kx+b的图象经过点(−2,4),且与正比例函数y=2x的图象平行.(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴所围成的三角形的面积;23.如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.(1)求证:PQ//AB;(2)若点D在∠BAC的平分线上,求CP的长;(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.答案和解析1.【答案】A【解析】【分析】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【解答】解:A.(−4,2)在第二象限,故本选项正确;B.(−2,0)在x轴上,故本选项错误;C.(3,5)在第一象限,故本选项错误;D.(2,−3)在第四象限,故本选项错误.故选A.2.【答案】C【解析】解:A.∵1+2=3,∴1cm 2cm 3cm不能组成三角形,故A错误;B.∵3+2<6,∴6cm 2cm 3cm不能组成三角形,故B错误;C.∵4+6>8,∴4cm 6cm 8cm能组成三角形,故C正确;D.∵5+6<12,∴5cm 12cm 6cm不能组成三角形,故D错误;故选:C.判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边之差小于第三边.3.【答案】A【解析】【分析】本题考查三角形内角和定理和等腰三角形的性质的运用,根据三角形内角和定理和等腰解:∵等腰三角形的一个顶角为100°,∴底角=(180°−100°)÷2=40°.故选A.4.【答案】C【解析】【分析】本题考查的是命题的真假判断,掌握无理数的概念、算术平方根的定义是解题的关键.根据无理数的概念、算术平方根的定义进行判断即可.【解答】3、√8是无理数,解:√3、√2√4=2是有理数,可以作为该命题是假命题的反例是√4,故选C.5.【答案】B【解析】解:∵一个三角形三个内角的度数之比为2:5:7,∴设三个内角的度数分别为2x,5x,7x,)°,∴2x+5x+7x=180°,解得x=(907)°=90°,∴7x=7×(907∴此三角形是直角三角形.故选:B.设三个内角的度数分别为2x,5x,7x,再根据三角形内角和定理求出x的值,进而可得出结论.本题考查的是三角形的内角和定理,熟知三角形的内角和等于180°是解答此题的关键.6.【答案】D本题考查的知识点是不等式的性质,熟知不等式的基本性质是解题的关键,根据不等式的性质逐项进行判断即可得到答案.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 【解答】解:A.根据不等式性质1,两边同时减去−3.14可得到:a −3.14>b −3.14,故不合题意;B .根据不等式性质3,两边同时乘以−2,再根据不等式性质1,两边同时+1可得到:1−2a <1−2b ,故不合题意;C .根据不等式性质3,两边同时乘以−23可得到:−23a <−23b ,故不合题意;D .根据不等式性质1,两边同时+1可得到a +1>b +1,但不能确定(a +1)2>(b +1)2,故符合题意, 故选D .7.【答案】A【解析】 【分析】本题考查一次函数的性质,对于一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.根据一次函数的性质解答即可. 【解答】解:∵k =−12<0,∴一次函数y 随x 的增大而减小,∵点A(1,y 1),B(−3,y 2)都在直线y =−12x +2上,1>−3, ∴y 1<y 2, 故选A .8.【答案】C【试题解析】【分析】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.先根据线段垂直平分线的性质得出AD=BD,进而可得出结论.【解答】解:∵△ABC中,∠ACB=90°,BA的垂直平分线交CB边于D,BC=8,AC=6,∴AD=BD,∴△ACD的周长=AC+CD+AD=AC+(CD+BD)=AC+BC=8+6=14.故选:C.9.【答案】B【解析】【分析】此题主要考查了二元一次方程的应用,得出不等关系是解题关键.设购买x支中性笔,y本笔记本,根据题意得出:9.2<0.8x+1.2y≤10,进而求出即可.【解答】解:设购买x只中性笔,y只笔记本,(x>0且y>0)根据题意得出:9.2<0.8x+1.2y≤10,当x=2时,y=7,当x=3时,y=6,当x=4时,无满足题意的y值,当x=5时,y=5,当x=6时,y=4,当x=7时,无满足题意的y值,当x=8时,y=3,当x=9时,y=2,当x=10时,无满足题意的y值,当x=11时,y=1,故一共有7种方案.10.【答案】D=70米/分,故A正确,不符合题意;【解析】解:甲的速度=4206设乙的速度为x米/分.则有,660+24x−70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选:D.根据图中信息以及路程、速度、时间之间的关系一一判断即可;本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.【答案】(−2,3)【解析】解:平移后点P的横坐标为−2;纵坐标为1+2=3;∴点P(−2,1)向上平移2个单位后的点的坐标为(−2,3).故答案为:(−2,3).让点的横坐标不变,纵坐标加2即可.本题考查点坐标的平移,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.12.【答案】60【解析】【分析】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B的度数.【解答】解:∵ED//BC,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°−50°−70°=60°,故答案为:60.13.【答案】k>0.5【解析】解:解关于x的方程7−2k=2(x+3),得:x=1−2k2,根据题意知1−2k2<0,解得:k>0.5,故答案为:k>0.5.先解关于x的方程得到x=1−2k2,根据方程的解为负数得出1−2k2<0,解之可得.本题主要考查解一元一次不等式,解题的关键是根据题意列出关于k的不等式及解不等式的基本步骤.14.【答案】15【解析】【分析】此题考查了等边三角形的性质,等腰三角形的判定和性质,等腰直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.由△ABC为等边三角形,得到AB=BC=AC,∠ABC=∠ACB=60°,由△ACD是等腰直角三角形,得到AC=CD,等量代换得到BC= CD,根据等腰三角形的性质得到∠CBD=∠CDB,根据三角形的内角和即可得到结论.【解答】解:∵△ABC为等边三角形,∴AB=BC=AC,∠ABC=∠ACB=60°,∵△ACD是等腰直角三角形,∴AC=CD,∴BC=CD,∴∠CBD=∠CDB,∵∠BCD=∠ACB+∠ACD=150°,∴∠CBD=15°,故答案为:15°.15.【答案】{x =1y =3;−2<x <1【解析】【分析】本题主要考查了一次函数与二元一次方程组以及与一元一次不等式问题,属于基础题,体现了数形结合的思想方法,准确确定出交点坐标,是解答本题的关键.根据一次函数与二元一次方程组以及与一元一次不等式的关系解答即可.【解答】解:∵一次函数y =x +2与y =−3x +6的图象相交于点(1,3),则方程组{y =x +2y =−3x +6的解为{x =1y =3, 由图象可得关于x 的不等式组−3x +6>x +2>0的解为−2<x <1故答案为{x =1y =3;−2<x <1. 16.【答案】28°或44°【解析】【分析】本题考查了旋转的性质、等边对等角的性质、三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于要分情况讨论.根据旋转的性质可得AC =CD ,根据等腰三角形的两底角相等求出∠ADF =∠DAC ,再表示出∠DAF ,根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠AFD ,然后分①∠ADF =∠DAF ,②∠ADF =∠AFD ,③∠DAF =∠AFD 三种情况讨论求解.【解答】解:∵△ABC 绕C 点逆时针方向旋转得到△DEC ,∴AC =CD ,∴∠ADF =∠DAC =12(180°−α),∴∠DAF =∠DAC −∠BAC =12(180°−α)−24°,根据三角形的外角性质,∠AFD =∠BAC +∠DCA =24°+α,△ADF 是等腰三角形,分三种情况讨论,①∠ADF =∠DAF 时,12(180°−α)=12(180°−α)−24°,无解,②∠ADF =∠AFD 时,12(180°−α)=24°+α,解得α=44°,③∠DAF =∠AFD 时,12(180°−α)−24°=24°+α,解得α=28°,综上所述,旋转角α度数为28°或44°.故答案为:28°或44°. 17.【答案】解:(1)如图所示,△A 1B 1C 1即为所求;(2)∵△ABC 与△A 1B 1C 1关于y 轴对称,∴对应点的横坐标互为相反数,纵坐标相同,又∵A(−3,4),B(−6,2),C(−2,−2),∴A 1(3,4),B 1(6,2),C 1(2,−2).【解析】(1)依据轴对称的性质,即可得到△ABC 关于y 轴对称的图形△A 1B 1C 1;(2)依据△ABC 与△A 1B 1C 1关于y 轴对称,可得对应点的横坐标互为相反数,纵坐标相同,进而得到A 1、B 1、C 1的坐标.本题主要考查了利用轴对称变换作图以及图形与坐标的关系,解决问题的关键是掌握轴对称的性质.18.【答案】解:(1)7x −2≥5x +2,移项,得:7x −5x ≥2+2,合并同类项得:2x ≥4,系数化成1得:x ≥2;在数轴上表示为:(2){6x −2>3x −4①2x +13−1−x 2<1②由①得 x >−23;由②得 x <1;不等式组的解−23<x <1.【解析】本题考查的是一元一次不等式及不等式组的解法,解此类题目常常要结合数轴来判断.(1)移项、合并同类项、系数化成1即可求解;(2)解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.19.【答案】证明:∵∠BAE =∠DAC ,∴∠BAE +∠CAE =∠DAC +∠CAE ,∴∠CAB =∠EAD ,在△ABC 和△ADE 中,{AB =AD ∠CAB =∠EAD AC =AE, ∴△ABC≌△ADE(SAS)∴∠C =∠E .【解析】本题考查了全等三角形的判定和性质,证明∠CAB =∠EAD 是本题的关键. 先证∠CAB =∠EAD ,由“SAS ”可证△ABC≌△ADE ,可得∠C =∠E .20.【答案】解:(1)∵一次函数y =kx +b(k,b 是常数,k ≠0)的图象过A(1,3),B(−1,−1)两点,∴{k +b =3−k +b =−1,得{k =2b =1, 即该一次函数的表达式是y =2x +1;(2)点(2a +2,a 2)在该一次函数y =2x +1的图象上,∴a 2=2(2a +2)+1,解得,a =−1或a =5,即a 的值是−1或5;(3)反比例函数y =m+1x 的图象在第一、三象限,理由:∵点C(x 1,y 1)和点D(x 2,y 2)在该一次函数y =2x +1的图象上,m =(x 1−x 2)(y 1−y 2),∴m =(x 1−x 2)(2x 1+1−2x 2−1)=2(x 1−x 2)2,∴m+1=2(x1−x2)2+1>0,∴反比例函数y=m+1x的图象在第一、三象限.【解析】本题考查一次函数图象上点的坐标特征、反比例函数的性质、待定系数法求一次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.(1)根据一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(−1,−1)两点,可以求得该函数的表达式;(2)根据(1)中的解析式可以求得a的值;(3)根据题意可以判断m+1的正负,从而可以解答本题.21.【答案】解:(1)证明:∵AD⊥BD,∠ABC=45°,∴AD=BD,∵∠BFD=∠AFE,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD,在△BDF和△ADC中,{∠BFD=∠ACD ∠BDF=∠ADC BD=AD,∴△BDF≌△ADC(AAS),∴BF=AC;(2)连接CF,∵△BDF≌△ADC,∴DF=DC,∴△DFC是等腰直角三角形.∵CD=3,CF=√2CD=3√2,∵AB=BC,BE⊥AC,∴AE=EC,BE是AC的垂直平分线.∴AF=CF,∴AF=3√2.【解析】本题考查了全等三角形的判定,全等三角形对应边相等的性质,等腰三角形底边三线合一的性质,本题中求证△BDF≌△ADC是解题的关键.(1)根据等腰三角形腰长相等性质可得AD=BD,即可求证△BDF≌△ADC,即可解题;(2)连接CF,根据全等三角形的性质得到DF=DC,得到△DFC是等腰直角三角形.推出AE=EC,BE是AC的垂直平分线.于是得到结论.22.【答案】解(1)∵一次函数y=kx+b的图象与正比例函数y=2x的图象平行,∴y=2x+b,∵y=kx+b的图象经过点(−2,4),∴4=−2×2+b,b=8,∴一次函数y=kx+b的解析式为:y=2x+8;(2)当x=0时,y=8,当y=0时,x=−4,∴图象与坐标轴所围成的三角形的面积为:1×4×8=16.2【解析】此题考查待定系数法求一次函数的解析式,一次函数的性质.(1)平行的两条直线的自变量的系数相同,可得二次函数为y=2x+b,再把(−2,4)代入即可;(2)求出图像和坐标轴的交点,再计算即可.23.【答案】(1)证明:∵在Rt△ABC中,AB=15,BC=9,∴AC=√AB2−BC2=√152−92=12.∵PCBC =3x9=x3,QCAC=4x12=x3,∴PCBC =QCAC.∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ//AB;(2)解:连接AD,∵PQ//AB,∴∠ADQ=∠DAB.∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ.在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=2x.∵AQ=12−4x,∴12−4x=2x,解得x=2,∴CP=3x=6.(3)解:当点E在AB上时,∵PQ//AB,∴∠DPE=∠PEB.∵∠CPQ=∠DPE,∠CPQ=∠B,∴∠B=∠PEB,∴PB=PE=5x,∴3x+5x=9,解得x=98.①当0<x ≤98时,T =PD +DE +PE =3x +4x +5x =12x ,此时0<T ≤272; ②当98<x <3时,设PE 交AB 于点G ,DE 交AB 于F ,作GH ⊥FQ ,垂足为H ,∴HG =DF ,FG =DH ,Rt △PHG∽Rt △PDE ,∴GH ED =PG PE =PH PD .∵PG =PB =9−3x ,∴GH4x =9−3x5x=PH 3x , ∴GH =45(9−3x),PH =35(9−3x),∴FG =DH =3x −35(9−3x),∴T =PG +PD +DF +FG =(9−3x)+3x +45(9−3x)+[3x −35(9−3x)] =125x +545,此时,272<T <18.∴当0<x <3时,T 随x 的增大而增大,∴T =12时,即12x =12,解得x =1;T =16时,即125x +545=16,解得x =136. ∵12≤T ≤16,∴x 的取值范围是1≤x ≤136.【解析】本题考查的是几何变换综合题,涉及到勾股定理、相似三角形的判定与性质等知识,在解答(3)时要注意进行分类讨论.(1)先根据勾股定理求出AC 的长,再由相似三角形的判定定理得出△PQC∽△BAC ,由相似三角形的性质得出∠CPQ =∠B ,由此可得出结论;(2)连接AD ,根据PQ//AB 可知∠ADQ =∠DAB ,再由点D 在∠BAC 的平分线上,得出∠DAQ =∠DAB ,故∠ADQ =∠DAQ ,AQ =DQ.结合勾股定理得,DQ =2x.AQ =12−4x ,故可得出x 的值,进而得出结论;(3)当点E 在AB 上时,根据等腰三角形的性质求出x 的值,再分0<x ≤98;98<x <3两种情况进行分类讨论.。

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)

2019-2020学年度浙教版八年级数学上册期末考试题(有答案) 学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题(题型注释)1.如果a >b ,下列各式中不正确的是( ) A .a ﹣4>b ﹣4 B .﹣3a <﹣3bC .﹣2a <﹣2bD .﹣5+a <﹣5+b 2.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A .(﹣4,3)B .(4,﹣3)C .(﹣3,4)D .(3,﹣4) 3.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米B .7千米C .8千米D .15千米4.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y=x+4与x 轴、y 轴分别交于点E ,F .将菱形ABCD 沿x 轴向左平移k 个单位,当点C 落在△EOF 的内部时(不包括三角形的边),k 的值可能是( )A .2B .3C .4D .5 5.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高 A .B .C .D .8.如图在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF=3,BC=8,则△EFM 的周长是( )A .21B .15C .13D .119.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是( )A .B .C .D .10.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A.1,2,6B.2,2,4C.1,2,3D.2,3,4 11.如图,已知AD 平分∠BAC ,AB=AC ,则此图中全等三角形有( )..3对 C .4对 D .5对评卷人 得分二、填空题(题型注释)12.已知实数x ,y 满足084=-+-y x ,则以x ,y 的值为两边长的等腰三角形的周长是 .13.请写出定理:“等腰三角形的两个底角相等”的逆定理_______________.14.如图点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE=3,则点P 到AB 的距离是 .15.在Rt △ABC 中,∠C=90°,∠B=30°,AB=16,则AC= .16.已知函数y=2x+b 经过点A (2,1),将其图象绕着A 点旋转一定角度,使得旋转后的函数图象经过点B (﹣2,7).则①b= ;②旋转后的直线解析式为 .17.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (3,0),B (0,4),则点B 100的坐标为 .18.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有______对全等三角形.19.如图,△ABC 中,∠A=40°,∠B=70°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF= 度.20.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为 .21.不等式组211{213xx+>-+<的整数解是________.三、计算题(题型注释)22.解不等式组:并写出它的所有的整数解.23.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y,图中的折线表示y与x之间的函数关系.(1)甲、乙两地之间的距离为千米;图中点B的实际意义是;(2)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?24.如图,已知△ABC中,∠B=90°,AB=8cm, BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB第一次能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.四、解答题(题型注释)y=mx+2的图像经过点(-2,6).(1)求m 的值;(2)画出此函数的图像;26.解不等式组()3321318x x x x -⎧+≥⎪⎨⎪---⎩①②,并将解集在数轴上表示出来.27.如果一个三角形有一边上的中线与这边的长相等,那么称这个三角形为“和谐三角形”.(1)请用直尺和圆规在图1中画一个以线段AB 为一边的“和谐三角形”;(2)如图2,在△ABC 中,∠C=90°,AB=7,BC=3,请你判断△ABC 是否是“和谐三角形”?证明你的结论;(3)如图3,已知正方形ABCD 的边长为1,动点M ,N 从点A 同时出发,以相同速度分别沿折线AB ﹣BC 和AD ﹣DC 向终点C 运动,记点M 经过的路程为S ,当△AMN 为“和谐三角形”时,求S 的值.28.如图,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过点C 的切线,垂足为点D ,AB 的延长线交切线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长.答案1.D2.C3.C4.B5.B6.B7.A8.D9.A10.D11.C.12.20. 13.有两个角相等的三角形是等腰三角形.14.3.15.816.﹣3,y=﹣x+417.(600,4).18.319.7520.421.0,122.不等式组的所有整数解是1、2、3.23.(1)900,4小时两车相遇.(2)所以线段BC 所表示的y 与x 之间的函数关系式为:y=225x ﹣900(4≤x ≤6)(3)第二列快车比第一列快车晚出发0.75小时 24.(1)、213;(2)、38;(3)、5.5秒或6秒或6.6秒 25.(1) m=-2;(2)作图见解析. 【解析】25.试题分析:(1)把点(-2,6)代入函数解析式,利用方程来求m 的值;(2)由“两点确定一条直线”来作图;试题解析:(1)将x=-2,y=6代入y=mx+2,得 6=-2m+2, 解得m=-2;(2)由(1)知,该函数是一次函数:y=-2x+2, 令x=0,则y=2; 令y=0,则x=1,所以该直线经过点(0,2),(1,0).其图象如图所示: .考点:1.一次函数的图象;2.一次函数图象上点的坐标特征. 26.﹣2<x ≤3,作图详见解析. 【解析】26.试题分析:根据解不等式组的方法可以求得不等式组的解集,从而可以在数轴上表示不等式组的解集.试题解析:()3321318x x x x -⎧+≥⎪⎨⎪---⎩①②, 解不等式①,得x ≤3, 解不等式②,得x >﹣2,不等式①、②的解集在数轴表示如下图所示,故原不等式组的解集为:﹣2<x ≤3.考点:解一元一次不等式组;在数轴上表示不等式的解集. 27.(1)作图见解析;(2)△ABC 是“和谐三角形”,理由见解析; (3)当△AMN 为“和谐三角形”时,S 的值为43或5 【解析】27.解:(1)如图1, 作线段AB 的中点O ,②以点O 为圆心,AB 长为半径画圆,③在圆O 上取一点C (点E 、F 除外),连接AC 、BC .∴△ABC 是所求作的三角形.(2)如图2,∠C=90°,2AC=,CD=1,在Rt△BCD中,2BD==,∴中线BD=边AC,∴△ABC是“和谐三角形”;(3)易知,点M在AB上时,△AMN是等腰直角三角形,不可能是“和谐三角形”,当M在BC上时,连接AC交MN于点E,(Ⅰ)当底边MN的中线AE=MN时,如图,有题知(2-s),(2-S),())222s s-=-,S=43,(Ⅱ)当腰Am与它的中线NG相等,即AM=GN=AN时,作NH⊥AM于H,如图∵NG=NA, NH⊥AM, ∴GH=AH=12GN=14AM,在Rt△NHA中,NH AM ===在Rt△NHM中,tan∠HMN=434AMHNMH AM==在Rt△AME中, tan∠AME)22sAE sME s-===-;2SS=-5s=。

2019-2020学年浙教新版八年级上册期末数学试卷

2019-2020学年浙教新版八年级上册期末数学试卷

2019-2020学年浙教新版八年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.平面直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3,4,则点P的坐标为()A. (−4,−3)B. (3,4)C. (−3,−4)D. (4,3)2.函数y=1√2x−1的自变量x的取值范围是()A. x≤12B. x≥12C. x<12D. x>123.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.则△ABC中AC边上的高是()A. AEB. CDC. BFD. AF4.不等式1−x>2x−8的正整数解有()A. 1个B. 2个C. 3个D. 无数多个5.在一次函数y=(m−1)x+3的图象上,y随x的增大而减小,则m的取值范围是()A. m>1B. m>0C. m≥1D. m<16.要说明命题“若a>b,则|a|>|b|”是假命题,能举的一个反例是()A. a=3,b=2B. a=4,b=−1C. a=1,b=0D. a=1,b=−27.若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是()A. 7B. 6C. 5D. 48.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为()A. 14B. 13C. 12D. 119.取一张正方形纸片,将它按如图所示方法对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图案是()A. B.C. D.10.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行。

他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示。

下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480。

杭州市2019-2020学年八年级上学期期末数学试题C卷

杭州市2019-2020学年八年级上学期期末数学试题C卷

杭州市2019-2020学年八年级上学期期末数学试题C卷姓名:________ 班级:________ 成绩:________一、单选题1 . 将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h 的取值范围是()A.B.C.D.2 . 有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确说法的个数是()A.1B.2C.3D.43 . 下面四个图形分别是节能、节水、低碳和绿色食品标志,其中是轴对称图形的有()个A.1B.2C.3D.44 . 函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1>y2的x 的取值范围是()A.x>0B.x>1C.x>-1D.-1<x<25 . x是(﹣3)2的平方根,y是64的立方根,则x+y=()A.3B.7C.3,7D.1,76 . 和点P(﹣3,2)关于y轴对称的点是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)7 . 如图,直线l过正方形ABCD的顶点B,点A、C至直线l的距离分别为2和3,则此正方形的面积为()A.5B.6C.9D.138 . 对于一次函数y=kx+k﹣1(k≠0),下列说法:①当0<k<1时,函数图象经过第一、二、三象限;②当k >0时,y随x的增大而减小;③函数图象一定经过点(﹣1,﹣2);④当k<1时,函数图象一定交于y轴的负半轴.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题9 . 如图,正五边形FGHIJ的顶点在正五边形ABCDE的边上,若∠AFJ=20°,则∠CGH=_____°.10 . 若函数是正比例函数,则m=__________.11 . 如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=21,则DE=________.12 . 如图,点B、F、C、E在同一直线上,AB∥DE,且AB=DE,要使AC=DF,可以补充的条件是:_____.(填一个即可)13 . 用四舍五入法取近似数:1.2356≈________.(精确到百分位)14 . 已知A(0,1),B(2,1),点P在x轴上,若要使PA+PB最小,则点P的坐标为_____.15 . 将一次函数y=x+1的图像向下平移3个单位得到的函数关系式为_____.16 . 如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为_____.三、解答题17 . (1)如图,在中,DE是AC的垂直平分线,,的周长为13cm,求的周长.(2)如图,在中,,AD是它的角平分线,,垂足分别为E、F,若的面积为12,求的面积.18 . 已知是49的算术平方根,的立方根是2,求的平方根.19 . 在平面直角坐标系中,已知抛物线和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=-1,二次函数的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.20 . (阅读材料)南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.(解决问题)甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?21 . 在一次“智慧课堂”教学比武的课堂上,李老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,张晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用表示它的小数部分.”李老师说:“张晶同学的说法是正确的,因为的整数部分是,将这个数减去其整数部分,差就是小数部分,”请你解答:已知,其中是一个整数,且,请你求出的值.22 . 首先,我们学习一道“最值”问题的解答:问题:已知x>0,求的最小值.解答:对于x>0,我们有:当,即时,上述不等式取等号,所以的最小值是由解答知,的最小值是.弄清上述问题及解答方法之后,解答下述问题:(1)求的最小值.(2)在直角坐标系 xOy 中,一次函数的图象与 x 轴、 y 轴分别交于 A 、 B 两点.①求 A 、 B 两点的坐标;②求当DOAB 的面积值等于时,用b 表示 k ;③在②的条件下,求DAOB 面积的最小值.23 . 在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)①作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;②作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.24 . 如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABD和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN.求证:AE=DC25 . 设a、b、c是等腰△ABC的三条边,关于x的方程x2+2x+2c—a=0有两个相等的实数根,且a、b为方程x2+mx—3m=0的两根,求m的值.。

2019-2020学年浙江省杭州市富阳区八年级(上)期末数学试卷-(解析版)

2019-2020学年浙江省杭州市富阳区八年级(上)期末数学试卷-(解析版)

2019-2020学年浙江省杭州市富阳区八年级(上)期末数学试卷-(解析版)-CAL-FENGHAI.-(YICAI)-Company One12019-2020学年浙江省杭州市富阳区八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)点(2,4)P -所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)若长度分别为a ,3,5的三条线段能组成一个三角形,则下列选项中符合条件的a 值是( ) A .1B .2C .3D .83.(3分)在6-,2-,1,3-四个数中,满足不等式2x <-的有( ) A .1个B .2个C .3个D .4个4.(3分)如果一次函数y kx b =+的图象经过第二第四象限,且与x 轴正半轴相交,那么( )A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <5.(3分)已知ABC ∆≅△111A B C ,A 和1A 对应,B 和1B 对应,70A ∠=︒,150B ∠=︒,则C ∠的度数为( ) A .70︒B .50︒C .120︒D .60︒6.(3分)已知1(2,)y -,2(1,)y -,3(1.7,)y 是直线5(y x b b =-+为常数)上的三个点,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .321y y y >>C .132y y y >>D .312y y y >>7.(3分)如图,ABC ∆中,AB AC =,100BAC ∠=︒,DE 是AC 边的垂直平分线,则BAE ∠的度数为( )A .60︒B .50︒C .45︒D .40︒8.(3分)已知x y >,则下列不等式成立的是( ) A .22x y ->-B .43x y >C .55x y ->-D .23x y ->-9.(3分)如图,在44⨯方格中,以AB 为一边,第三个顶点也在格点上的等腰三角形可以作出( )A .7个B .6个C .4个D .3个10.(3分)如图,在OAB ∆和OCD ∆中,OA OB =,OC OD =,OA OC >,30AOB COD ∠=∠=︒,连接AC ,BD 交于点M ,AC 与OD 相交于E ,BD 与OA 相交于F ,连接OM .则下列结论中:①AC BD =;②30AMB ∠=︒;③OEM OFM ∆≅∆;④MO 平分BMC ∠. 正确的个数有( )A .4个B .3个C .2个D .1个二、填空题(共6小题,每小题4分,满分24分) 11.(4分)x 减去y 大于4-,用不等式表示为 .12.(4分)若点(3,4)M a a -+在x 轴上,则点M 的坐标是 . 13.(4分)在ABC ∆中,::2:3:4A B C ∠∠∠=,则C ∠= .14.(4分)已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为 . 15.(4分)某商店卖水果,数量x (千克)与售价y (元)之间的关系如下表,(y 是x 的一次函数) x (千克)0.5 1 1.5 2 ⋯ y (元)1.60.1+3.20.1+4.80.1+6.40.1+⋯当7x =千克时,售价y = 元.16.(4分)如图,CD 是ABC ∆的角平分线,AE CD ⊥于E ,6BC =,4AC =,ABC ∆的面积是9,则AEC ∆的面积是 .三.解答题:本大题有7个小题.共66分,解答应写出文字说明,证明过程或演算步骤17.(6分)解下列不等式(组):(1)4123x x-<-(2)543(1) 13125x xx x+<+⎧⎪--⎨⎪⎩18.(8分)如图所示,ABC∆在正方形网格中,若点A的坐标是(2,4),点B的坐标是(1,0)-,按要求解答下列问题:(1)在图中建立正确的平面直角坐标系,写出点C的坐标;(2)在图中作出ABC∆关于x轴对称的△111A B C.19.(8分)如图,已知B,D,E,C在同一直线上,DC BE=,ADE AED∠=∠.求证:AB AC=.20.(10分)如图1,公路上有A,B,C三个车站,一辆汽车从A站以速度1v匀速驶向B站,到达B站后不停留,以速度2v匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图象如图2所示.(1)求y 与x 之间的函数关系式及自变量的取值范围; (2)汽车距离C 站20千米时已行驶了多少时间?21.(10分)如图,在ABC ∆中,AC AB BC <<,AD 是高线,B α∠=,C β∠=. (1)用直尺与圆规作三角形内角BAC ∠的平分线AE ;(不写作法,保留作图痕迹) (2)在(1)的前提下,判断①12EAD βα∠=-,②1()2EAD βα∠=-中哪一个正确?并说明理由.22.(12分)如图,已知直线11:23l y x =--,直线22:3l y x =+,1l 与2l 相交于点P ,1l ,2l 分别与y 轴相交于点A ,B .(1)求点P 的坐标.(2)若120y y >>,求x 的取值范围.(3)点(,0)D m 为x 轴上的一个动点,过点D 作x 轴的垂线分别交1l 和2l 于点E ,F ,当3EF =时,求m 的值.23.(12分)如图,CD,BE是ABC∆的两条高线,且它们相交于F,H是BC边的中点,连结DH,DH与BE相交于点G,已知CD BD=.(1)求证BF AC=.(2)若BE平分ABC∠.①求证:DF DG=.②若8AC=,求BG的长.参考答案一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)点(2,4)P-所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限解:20>,-<,40P-在第二象限,∴点(2,4)故选:B.2.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则下列选项中符合条件的a值是()A.1B.2C.3D.8解:由题意得:5353-<<+,a则28<<,a故选:C.3.(3分)在,2-,1,3-四个数中,满足不等式2x<-的有() A.1个B.2个C.3个D.4个解:469<<,∴<<,23∴-<<-,32-<,21∴在,2-,1,3-四个数中,小于2-的数有两个,即满足不等式2x<-的有2个,故选:B.4.(3分)如果一次函数y kx b=+的图象经过第二第四象限,且与x轴正半轴相交,那么()A.0b>D.0k<,0k<,0b<b>B.0k>,0k>,0b<C.0解:由题意得,函数y kx b =+的图象经过第一、二、四象限,0k <,0b >. 故选:C .5.(3分)已知ABC ∆≅△111A B C ,A 和1A 对应,B 和1B 对应,70A ∠=︒,150B ∠=︒,则C ∠的度数为( ) A .70︒B .50︒C .120︒D .60︒解:ABC ∆≅△111A B C ,A 和1A 对应,B 和1B 对应,70A ∠=︒,150B ∠=︒, 150B B ∴∠=∠=︒,则C ∠的度数为:180507060︒-︒-︒=︒. 故选:D .6.(3分)已知1(2,)y -,2(1,)y -,3(1.7,)y 是直线5(y x b b =-+为常数)上的三个点,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .321y y y >>C .132y y y >>D .312y y y >>解:5y x b =-+,50k =-<, 故y 随x 的增大而减小, 1.712>->-,故123y y y >>, 故选:A .7.(3分)如图,ABC ∆中,AB AC =,100BAC ∠=︒,DE 是AC 边的垂直平分线,则BAE ∠的度数为( )A .60︒B .50︒C .45︒D .40︒解:设B x ∠=︒, AB AC =, B C x ∴∠=∠=︒,,又AC 边的垂直平分线交BC 于点E ,AE CE ∴=, CAE C x ∴∠=∠=︒, 22AEB C x ∴∠=∠=︒,180(1803)BAE B CAE x ∴∠=︒-∠-∠=-︒,1803(1802)BAC BAE CAE x x x ∴∠=∠+∠=-+=-︒, 100BAC ∠=︒, 1802100x ∴-=,解得:40x =,60BAE BAE CAE ∴∠=∠-∠=︒.故选:A .8.(3分)已知x y >,则下列不等式成立的是( ) A .22x y ->-B .43x y >C .55x y ->-D .23x y ->-解:A 、根据不等式两边乘(或除以)同一个负数,不等号的方向改变,原变形错误,故本选项不符合题意;B 、不等式两边大的乘以4,小的乘以3,不等号的方向不变或改变或相等,原变形错误,故本选项不符合题意;C 、不等式两边乘(或除以)同一个负数,不等号的方向改变,不等式两边加(或减)同一个数(或式子),不等号方向不变,原变形错误,故本选项不符合题意;D 、不等式两边大的减去2,小的减去3,不等号的方向不变,原变形正确,故本选项符合题意. 故选:D .9.(3分)如图,在44⨯方格中,以AB 为一边,第三个顶点也在格点上的等腰三角形可以作出( )A .7个B .6个C .4个D .3个解:如图所示,分别以A 、B 为圆心,AB 长为半径画弧,则圆弧经过的格点1C 、2C 、3C 、4C 、5C 、6C 、7C 即为第三个顶点的位置;作线段AB 的垂直平分线,垂直平分线未经过格点.故以AB 为一边,第三个顶点也在格点上的等腰三角形可以作出7个.故选:A .10.(3分)如图,在OAB ∆和OCD ∆中,OA OB =,OC OD =,OA OC >,30AOB COD ∠=∠=︒,连接AC ,BD 交于点M ,AC 与OD 相交于E ,BD 与OA 相交于F ,连接OM .则下列结论中:①AC BD =;②30AMB ∠=︒;③OEM OFM ∆≅∆;④MO 平分BMC ∠. 正确的个数有( )A .4个B .3个C .2个D .1个解:30AOB COD ∠=∠=︒, AOC BOD ∴∠=∠, OA OB =,OC OD =,()AOC BOD SAS ∴∆≅∆, AC BD ∴=,所以①正确; OAC OBD ∴∠=∠,而AFM BFO ∠=∠,30AMF BOF ∴∠=∠=︒,所以②正确; OC OA <, OCA OAC ∴∠>∠,30OEM OCE ∠=∠+︒,3030OFM OBF OAM ∠=∠+︒=∠+︒,OEM OFM ∴∠>∠,OEM ∴∆与OFM ∆不可能全等,所以③错误;作OH AC ⊥于H ,OG BD ⊥于G ,如图, AOC BOD ∆≅∆, OH OG ∴=,MO ∴平分BMC ∠,所以④正确.故选:B .二、填空题(共6小题,每小题4分,满分24分)11.(4分)x 减去y 大于4-,用不等式表示为 4x y ->- . 解:由题意得:4x y ->-, 故答案为:4x y ->-.12.(4分)若点(3,4)M a a -+在x 轴上,则点M 的坐标是 (7,0)- . 解:(3,4)M a a -+在x 轴上, 40a ∴+=,解得4a =-, 3437a ∴-=--=-,M ∴点的坐标为(7,0)-.故答案为(7,0)-.13.(4分)在ABC ∆中,::2:3:4A B C ∠∠∠=,则C ∠= 80︒ . 解:::2:3:4A B C ∠∠∠=,∴设2A x ∠=︒,3B x ∠=︒,4C x ∠=︒,由三角形内角和定理可得:234180x x x ++=, 解得20x =, 480C x ∴∠=︒=︒,故答案为:80︒.14.(4分)已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为 4或34 .解:当3和5都是直角边时,第三边长为:223534+=, 当5是斜边长时,第三边长为:22534-=, 故答案为:4或34.15.(4分)某商店卖水果,数量x (千克)与售价y (元)之间的关系如下表,(y 是x 的一次函数) x (千克)0.5 1 1.5 2 ⋯y (元) 1.60.1+3.20.1+4.80.1+6.40.1+⋯当7x =千克时,售价y = 22.5 元. 解:设y 与x 的函数关系式为y kx b =+, 0.5 1.60.13.20.1k b k b +=+⎧⎨+=+⎩, 解得, 3.20.1k b =⎧⎨=⎩,即y 与x 的函数关系式为 3.20.1y x =+, 当7x =时, 3.270.122.5y =⨯+=, 故答案为:22.5.16.(4分)如图,CD 是ABC ∆的角平分线,AE CD ⊥于E ,6BC =,4AC =,ABC ∆的面积是9,则AEC ∆的面积是 3 .解:延长AE 交BC 于F , CD 是ABC ∆的角平分线, ACE FCE ∴∠=∠, AE CD ⊥于E , 90AEC CEF ∴∠=∠=︒,CE CE =,()ACE FCE ASA ∴∆≅∆, 4CF AC ∴==, 6BC =,2BF ∴=,ABC ∆的面积是9,2963ACF S ∆∴=⨯=, AEC ∴∆的面积132ACF S ∆==, 故答案为:3.三.解答题:本大题有7个小题.共66分,解答应写出文字说明,证明过程或演算步骤 17.(6分)解下列不等式(组): (1)4123x x -<- (2)543(1)13125x x x x +<+⎧⎪--⎨⎪⎩解:(1)移项合并得:22x <-, 解得:1x <-;(2)()543113125x x x x ⎧+<+⎪⎨--⎪⎩①②,解不等式①得:12x <-,解不等式②得:3x -, 则不等式组的解集为3x -.18.(8分)如图所示,ABC ∆在正方形网格中,若点A 的坐标是(2,4),点B 的坐标是(1,0)-,按要求解答下列问题:(1)在图中建立正确的平面直角坐标系,写出点C 的坐标;(2)在图中作出ABC∆关于x轴对称的△A B C.111解:(1)如图:(3,2)C;(2)如图所示,△A B C即为所求.11119.(8分)如图,已知B,D,E,C在同一直线上,DC BE∠=∠.求=,ADE AED证:AB AC=.【解答】证明:ADE AED∠=∠,180∠+∠=︒,AED AECADE ADB∠+∠=︒,180∴=,ADB AECAD AE∠=∠,=,DC BE∴=BD CE在ADB∆和AEC∆中,AD AE ADB AEC BD CE =⎧⎪∠=∠⎨⎪=⎩, ()ADB AEC SAS ∴∆≅∆, AB AC ∴=.20.(10分)如图1,公路上有A ,B ,C 三个车站,一辆汽车从A 站以速度1v 匀速驶向B 站,到达B 站后不停留,以速度2v 匀速驶向C 站,汽车行驶路程y (千米)与行驶时间x (小时)之间的函数图象如图2所示.(1)求y 与x 之间的函数关系式及自变量的取值范围; (2)汽车距离C 站20千米时已行驶了多少时间?解:(1)设汽车从A 站到B 站对应的函数解析式为y kx =, 1100k ⨯=,得100k =,即汽车从A 站到B 站对应的函数解析式为100y x =, 当300y =时,300100x =,得3x =,设汽车从B 站到C 站对应的函数解析式为y ax b =+, 33004420a b a b +=⎧⎨+=⎩,的12060a b =⎧⎨=-⎩, 即汽车从B 站到C 站对应的函数解析式为12060y x =-, 由上可得,y 与x 之间的函数关系式是100(03)12060(34)x x y x x ⎧=⎨-<⎩;(2)当42020400y =-=时, 40012060x =-,得236x =,答:汽车距离C 站20千米时已行驶了236小时. 21.(10分)如图,在ABC ∆中,AC AB BC <<,AD 是高线,B α∠=,C β∠=. (1)用直尺与圆规作三角形内角BAC ∠的平分线AE ;(不写作法,保留作图痕迹) (2)在(1)的前提下,判断①12EAD βα∠=-,②1()2EAD βα∠=-中哪一个正确?并说明理由.解:如图,(1)AE 即为BAC ∠的平分线;(2)②1()2EAD βα∠=-正确,理由如下:在(1)的前提下, AE 为BAC ∠的平分线, 12EAB EAC BAC ∴∠=∠=∠, 1(180)2αβ=︒-- 119022αβ=︒--,AD 是高线, 90ADC ∴∠=︒,9090DAC C β∴∠=︒-∠=︒-, EAD EAC DAC ∴∠=∠-∠1190(90)22αββ=︒---︒-1()2βα=-.所以②1()2EAD βα∠=-正确.22.(12分)如图,已知直线11:23l y x =--,直线22:3l y x =+,1l 与2l 相交于点P ,1l ,2l 分别与y 轴相交于点A ,B .(1)求点P 的坐标.(2)若120y y >>,求x 的取值范围.(3)点(,0)D m 为x 轴上的一个动点,过点D 作x 轴的垂线分别交1l 和2l 于点E ,F ,当3EF =时,求m 的值.解:(1)根据题意,得:233y x y x =--⎧⎨=+⎩,解得:21x y =-⎧⎨=⎩,∴点P 的坐标为(2,1)-.(2)在直线22:3l y x =+中,令0y =,解得3x =-, 由图象可知:若120y y >>,x 的取值范围是32x -<<-;(2)由题意可知(,23)E m m --,(,3)F m m +, 3EF =,|233|3m m ∴----=,解得:3m =-或1m =-.23.(12分)如图,CD ,BE 是ABC ∆的两条高线,且它们相交于F ,H 是BC 边的中点,连结DH ,DH 与BE 相交于点G ,已知CD BD =.(1)求证BF AC=.(2)若BE平分ABC∠.①求证:DF DG=.②若8AC=,求BG的长.【解答】(1)证明:CD,BE是ABC∆的两条高线,CEF ADC BDF∴∠=∠=∠=︒,90∠=∠,CFE BFD∴∠=∠,ACD DBF=,CD BDACD FBD ASA∴∆≅∆,()∴=;BF AC(2)解:①90=,∠=︒,CD BDBDC∴∆是等腰直角三角形,BDCH是BC边的中点,DH BC∴⊥,∴∠+∠=︒,90HGB HBGBE平分ABC∠,HBG FBD∴∠=∠,∠+∠=︒,90DFB DBF∴∠=∠,DFG BGH∠=∠,BGH DGF∴∠=∠,DFG DGF∴=;DF DG②过G作GH BD∆是等腰直角三角形,⊥于P,则DPGDP GP ∴=,设DP GP x ==,则2DF DG x ==, 8AC =, 8BF AC ∴==, GP BD ⊥,FD BD ⊥, //GP FD ∴, BGP BFD ∴∆∆∽, ∴PG BGFD BF=, ∴82x BGx=, 42BG ∴=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年浙江省杭州市富阳区八年级(上)期末数学试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)点(2,4)P -所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)若长度分别为a ,3,5的三条线段能组成一个三角形,则下列选项中符合条件的a 值是( )A .1B .2C .3D .83.(3分)在6-,2-,1,3-四个数中,满足不等式2x <-的有( ) A .1个B .2个C .3个D .4个4.(3分)如果一次函数y kx b =+的图象经过第二第四象限,且与x 轴正半轴相交,那么()A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <5.(3分)已知ABC ∆≅△111A B C ,A 和1A 对应,B 和1B 对应,70A ∠=︒,150B ∠=︒,则C ∠的度数为( ) A .70︒B .50︒C .120︒D .60︒6.(3分)已知1(2,)y -,2(1,)y -,3(1.7,)y 是直线5(y x b b =-+为常数)上的三个点,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .321y y y >>C .132y y y >>D .312y y y >>7.(3分)如图,ABC ∆中,AB AC =,100BAC ∠=︒,DE 是AC 边的垂直平分线,则BAE ∠的度数为( )A .60︒B .50︒C .45︒D .40︒8.(3分)已知x y >,则下列不等式成立的是( )A .22x y ->-B .43x y >C .55x y ->-D .23x y ->-9.(3分)如图,在44⨯方格中,以AB 为一边,第三个顶点也在格点上的等腰三角形可以作出( )A .7个B .6个C .4个D .3个10.(3分)如图,在OAB ∆和OCD ∆中,OA OB =,OC OD =,OA OC >,30AOB COD ∠=∠=︒,连接AC ,BD 交于点M ,AC 与OD 相交于E ,BD 与OA 相交于F ,连接OM .则下列结论中:①AC BD =;②30AMB ∠=︒;③OEM OFM ∆≅∆;④MO 平分BMC ∠. 正确的个数有( )A .4个B .3个C .2个D .1个二、填空题(共6小题,每小题4分,满分24分) 11.(4分)x 减去y 大于4-,用不等式表示为 .12.(4分)若点(3,4)M a a -+在x 轴上,则点M 的坐标是 . 13.(4分)在ABC ∆中,::2:3:4A B C ∠∠∠=,则C ∠= .14.(4分)已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为 . 15.(4分)某商店卖水果,数量x (千克)与售价y (元)之间的关系如下表,(y 是x 的一次函数) x (千克)0.5 1 1.5 2⋯ y (元) 1.60.1+ 3.20.1+ 4.80.1+ 6.40.1+⋯当7x =千克时,售价y = 元.16.(4分)如图,CD 是ABC ∆的角平分线,AE CD ⊥于E ,6BC =,4AC =,ABC ∆的面积是9,则AEC ∆的面积是 .三.解答题:本大题有7个小题.共66分,解答应写出文字说明,证明过程或演算步骤17.(6分)解下列不等式(组):(1)4123x x-<-(2)543(1)13125x xx x+<+⎧⎪--⎨⎪⎩18.(8分)如图所示,ABC∆在正方形网格中,若点A的坐标是(2,4),点B的坐标是(1,0)-,按要求解答下列问题:(1)在图中建立正确的平面直角坐标系,写出点C的坐标;(2)在图中作出ABC∆关于x轴对称的△111A B C.19.(8分)如图,已知B,D,E,C在同一直线上,DC BE=,ADE AED∠=∠.求证:AB AC=.20.(10分)如图1,公路上有A,B,C三个车站,一辆汽车从A站以速度1v匀速驶向B站,到达B站后不停留,以速度2v匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图象如图2所示.(1)求y 与x 之间的函数关系式及自变量的取值范围; (2)汽车距离C 站20千米时已行驶了多少时间?21.(10分)如图,在ABC ∆中,AC AB BC <<,AD 是高线,B α∠=,C β∠=. (1)用直尺与圆规作三角形内角BAC ∠的平分线AE ;(不写作法,保留作图痕迹)(2)在(1)的前提下,判断①12EAD βα∠=-,②1()2EAD βα∠=-中哪一个正确?并说明理由.22.(12分)如图,已知直线11:23l y x =--,直线22:3l y x =+,1l 与2l 相交于点P ,1l ,2l 分别与y 轴相交于点A ,B . (1)求点P 的坐标.(2)若120y y >>,求x 的取值范围.(3)点(,0)D m 为x 轴上的一个动点,过点D 作x 轴的垂线分别交1l 和2l 于点E ,F ,当3EF =时,求m 的值.23.(12分)如图,CD ,BE 是ABC ∆的两条高线,且它们相交于F ,H 是BC 边的中点,连结DH ,DH 与BE 相交于点G ,已知CD BD =.(1)求证BF AC=.(2)若BE平分ABC∠.①求证:DF DG=.②若8AC=,求BG的长.2019-2020学年浙江省杭州市富阳区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)点(2,4)P -所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:20-<,40>, ∴点(2,4)P -在第二象限,故选:B .2.(3分)若长度分别为a ,3,5的三条线段能组成一个三角形,则下列选项中符合条件的a 值是( )A .1B .2C .3D .8【解答】解:由题意得:5353a -<<+, 则28a <<, 故选:C .3.(3分)在2-,1,3-四个数中,满足不等式2x <-的有( ) A .1个B .2个C .3个D .4个【解答】解:469<<,23∴<<,32∴-<-,21-<,∴在2-,1,3-四个数中,小于2-的数有两个,即满足不等式2x <-的有2个, 故选:B .4.(3分)如果一次函数y kx b =+的图象经过第二第四象限,且与x 轴正半轴相交,那么()A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <【解答】解:由题意得,函数y kx b =+的图象经过第一、二、四象限,0k <,0b >.5.(3分)已知ABC ∆≅△111A B C ,A 和1A 对应,B 和1B 对应,70A ∠=︒,150B ∠=︒,则C ∠的度数为( ) A .70︒B .50︒C .120︒D .60︒【解答】解:ABC ∆≅△111A B C ,A 和1A 对应,B 和1B 对应,70A ∠=︒,150B ∠=︒, 150B B ∴∠=∠=︒,则C ∠的度数为:180507060︒-︒-︒=︒. 故选:D .6.(3分)已知1(2,)y -,2(1,)y -,3(1.7,)y 是直线5(y x b b =-+为常数)上的三个点,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .321y y y >>C .132y y y >>D .312y y y >>【解答】解:5y x b =-+,50k =-<, 故y 随x 的增大而减小,1.712>->-, 故123y y y >>, 故选:A .7.(3分)如图,ABC ∆中,AB AC =,100BAC ∠=︒,DE 是AC 边的垂直平分线,则BAE ∠的度数为( )A .60︒B .50︒C .45︒D .40︒【解答】解:设B x ∠=︒,AB AC =, B C x ∴∠=∠=︒, ,又AC 边的垂直平分线交BC 于点E ,CAE C x ∴∠=∠=︒, 22AEB C x ∴∠=∠=︒,180(1803)BAE B CAE x ∴∠=︒-∠-∠=-︒,1803(1802)BAC BAE CAE x x x ∴∠=∠+∠=-+=-︒, 100BAC ∠=︒, 1802100x ∴-=, 解得:40x =,60BAE BAE CAE ∴∠=∠-∠=︒. 故选:A .8.(3分)已知x y >,则下列不等式成立的是( ) A .22x y ->-B .43x y >C .55x y ->-D .23x y ->-【解答】解:A 、根据不等式两边乘(或除以)同一个负数,不等号的方向改变,原变形错误,故本选项不符合题意;B 、不等式两边大的乘以4,小的乘以3,不等号的方向不变或改变或相等,原变形错误,故本选项不符合题意;C 、不等式两边乘(或除以)同一个负数,不等号的方向改变,不等式两边加(或减)同一个数(或式子),不等号方向不变,原变形错误,故本选项不符合题意;D 、不等式两边大的减去2,小的减去3,不等号的方向不变,原变形正确,故本选项符合题意. 故选:D .9.(3分)如图,在44⨯方格中,以AB 为一边,第三个顶点也在格点上的等腰三角形可以作出( )A .7个B .6个C .4个D .3个【解答】解:如图所示,分别以A 、B 为圆心,AB 长为半径画弧,则圆弧经过的格点1C 、2C 、3C 、4C 、5C 、6C 、7C 即为第三个顶点的位置;作线段AB 的垂直平分线,垂直平分线未经过格点.故以AB为一边,第三个顶点也在格点上的等腰三角形可以作出7个.故选:A.10.(3分)如图,在OABAOB COD>,30∠=∠=︒,∆中,OA OB∆和OCD=,OC OD=,OA OC连接AC,BD交于点M,AC与OD相交于E,BD与OA相交于F,连接OM.则下列结论中:①AC BD∠=︒;③OEM OFM∠.∆≅∆;④MO平分BMCAMB=;②30正确的个数有()A.4个B.3个C.2个D.1个【解答】解:30∠=∠=︒,AOB COD∴∠=∠,AOC BOD=,=,OC ODOA OBAOC BOD SAS∴∆≅∆,()∴=,所以①正确;AC BD∴∠=∠,OAC OBD而AFM BFO∠=∠,∴∠=∠=︒,所以②正确;30AMF BOF<,OC OA∴∠>∠,OCA OAC∠=∠+︒=∠+︒,OFM OBF OAM30∠=∠+︒,3030OEM OCE∴∠>∠,OEM OFMOEM ∴∆与OFM ∆不可能全等,所以③错误; 作OH AC ⊥于H ,OG BD ⊥于G ,如图,AOC BOD ∆≅∆, OH OG ∴=,MO ∴平分BMC ∠,所以④正确. 故选:B .二、填空题(共6小题,每小题4分,满分24分)11.(4分)x 减去y 大于4-,用不等式表示为 4x y ->- . 【解答】解:由题意得:4x y ->-, 故答案为:4x y ->-.12.(4分)若点(3,4)M a a -+在x 轴上,则点M 的坐标是 (7,0)- . 【解答】解:(3,4)M a a -+在x 轴上,40a ∴+=, 解得4a =-,3437a ∴-=--=-,M ∴点的坐标为(7,0)-.故答案为(7,0)-.13.(4分)在ABC ∆中,::2:3:4A B C ∠∠∠=,则C ∠= 80︒ . 【解答】解:::2:3:4A B C ∠∠∠=, ∴设2A x ∠=︒,3B x ∠=︒,4C x ∠=︒,由三角形内角和定理可得:234180x x x ++=, 解得20x =,480C x ∴∠=︒=︒, 故答案为:80︒.14.(4分)已知一个直角三角形的两条边的长分别为3和5,则第三条边的长为 4或34 . 【解答】解:当3和5223534+当5是斜边长时,第三边长为:22534-=, 故答案为:4或34.15.(4分)某商店卖水果,数量x (千克)与售价y (元)之间的关系如下表,(y 是x 的一次函数) x (千克)0.5 1 1.5 2⋯ y (元) 1.60.1+ 3.20.1+ 4.80.1+ 6.40.1+⋯当7x =千克时,售价y = 22.5 元.【解答】解:设y 与x 的函数关系式为y kx b =+, 0.5 1.60.13.20.1k b k b +=+⎧⎨+=+⎩, 解得, 3.20.1k b =⎧⎨=⎩,即y 与x 的函数关系式为 3.20.1y x =+, 当7x =时, 3.270.122.5y =⨯+=, 故答案为:22.5.16.(4分)如图,CD 是ABC ∆的角平分线,AE CD ⊥于E ,6BC =,4AC =,ABC ∆的面积是9,则AEC ∆的面积是 3 .【解答】解:延长AE 交BC 于F ,CD 是ABC ∆的角平分线, ACE FCE ∴∠=∠, AE CD ⊥于E , 90AEC CEF ∴∠=∠=︒, CE CE =,()ACE FCE ASA ∴∆≅∆, 4CF AC ∴==,6BC =,2BF ∴=,ABC ∆的面积是9, 2963ACF S ∆∴=⨯=, AEC ∴∆的面积132ACF S ∆==,故答案为:3.三.解答题:本大题有7个小题.共66分,解答应写出文字说明,证明过程或演算步骤 17.(6分)解下列不等式(组): (1)4123x x -<- (2)543(1)13125x x x x +<+⎧⎪--⎨⎪⎩【解答】解:(1)移项合并得:22x <-, 解得:1x <-;(2)()543113125x x x x ⎧+<+⎪⎨--⎪⎩①②,解不等式①得:12x <-,解不等式②得:3x -, 则不等式组的解集为3x -.18.(8分)如图所示,ABC ∆在正方形网格中,若点A 的坐标是(2,4),点B 的坐标是(1,0)-,按要求解答下列问题:(1)在图中建立正确的平面直角坐标系,写出点C 的坐标; (2)在图中作出ABC ∆关于x 轴对称的△111A B C .【解答】解:(1)如图:(3,2)C ;(2)如图所示,△111A B C 即为所求.19.(8分)如图,已知B ,D ,E ,C 在同一直线上,DC BE =,ADE AED ∠=∠.求证:AB AC =.【解答】证明:ADE AED ∠=∠,180ADE ADB ∠+∠=︒,180AED AEC ∠+∠=︒,AD AE ∴=,ADB AEC ∠=∠,DC BE =, BD CE ∴=在ADB ∆和AEC ∆中,AD AE ADB AEC BD CE =⎧⎪∠=∠⎨⎪=⎩, ()ADB AEC SAS ∴∆≅∆, AB AC ∴=.20.(10分)如图1,公路上有A ,B ,C 三个车站,一辆汽车从A 站以速度1v 匀速驶向B 站,到达B 站后不停留,以速度2v 匀速驶向C 站,汽车行驶路程y (千米)与行驶时间x (小时)之间的函数图象如图2所示.(1)求y 与x 之间的函数关系式及自变量的取值范围; (2)汽车距离C 站20千米时已行驶了多少时间?【解答】解:(1)设汽车从A 站到B 站对应的函数解析式为y kx =,1100k ⨯=,得100k =,即汽车从A 站到B 站对应的函数解析式为100y x =, 当300y =时,300100x =,得3x =,设汽车从B 站到C 站对应的函数解析式为y ax b =+, 33004420a b a b +=⎧⎨+=⎩,的12060a b =⎧⎨=-⎩, 即汽车从B 站到C 站对应的函数解析式为12060y x =-, 由上可得,y 与x 之间的函数关系式是100(03)12060(34)x x y x x ⎧=⎨-<⎩;(2)当42020400y =-=时,40012060x =-,得236x =,答:汽车距离C 站20千米时已行驶了236小时. 21.(10分)如图,在ABC ∆中,AC AB BC <<,AD 是高线,B α∠=,C β∠=. (1)用直尺与圆规作三角形内角BAC ∠的平分线AE ;(不写作法,保留作图痕迹)(2)在(1)的前提下,判断①12EAD βα∠=-,②1()2EAD βα∠=-中哪一个正确?并说明理由.【解答】解:如图,(1)AE 即为BAC ∠的平分线;(2)②1()2EAD βα∠=-正确,理由如下:在(1)的前提下,AE 为BAC ∠的平分线,12EAB EAC BAC ∴∠=∠=∠,1(180)2αβ=︒-- 119022αβ=︒--,AD 是高线,90ADC ∴∠=︒,9090DAC C β∴∠=︒-∠=︒-, EAD EAC DAC ∴∠=∠-∠1190(90)22αββ=︒---︒-1()2βα=-. 所以②1()2EAD βα∠=-正确.22.(12分)如图,已知直线11:23l y x =--,直线22:3l y x =+,1l 与2l 相交于点P ,1l ,2l 分别与y 轴相交于点A ,B . (1)求点P 的坐标.(2)若120y y >>,求x 的取值范围.(3)点(,0)D m 为x 轴上的一个动点,过点D 作x 轴的垂线分别交1l 和2l 于点E ,F ,当3EF =时,求m 的值.【解答】解:(1)根据题意,得:233y x y x =--⎧⎨=+⎩,解得:21x y =-⎧⎨=⎩,∴点P 的坐标为(2,1)-.(2)在直线22:3l y x =+中,令0y =,解得3x =-, 由图象可知:若120y y >>,x 的取值范围是32x -<<-;(2)由题意可知(,23)E m m --,(,3)F m m +,3EF =,|233|3m m ∴----=, 解得:3m =-或1m =-.23.(12分)如图,CD ,BE 是ABC ∆的两条高线,且它们相交于F ,H 是BC 边的中点,连结DH ,DH 与BE 相交于点G ,已知CD BD =. (1)求证BF AC =. (2)若BE 平分ABC ∠.①求证:DF DG=.②若8AC=,求BG的长.【解答】(1)证明:CD,BE是ABC∆的两条高线,∴∠=∠=∠=︒,90CEF ADC BDF∠=∠,CFE BFD∴∠=∠,ACD DBF=,CD BD()∴∆≅∆,ACD FBD ASA∴=;BF AC(2)解:①90=,BDC∠=︒,CD BD∴∆是等腰直角三角形,BDCH是BC边的中点,∴⊥,DH BC90∴∠+∠=︒,HGB HBG∠,BE平分ABC∴∠=∠,HBG FBD90∠+∠=︒,DFB DBF∴∠=∠,DFG BGH∠=∠,BGH DGF∴∠=∠,DFG DGF∴=;DF DG②过G作GH BD∆是等腰直角三角形,⊥于P,则DPG∴=,DP GP设DP GP x==,则2==,DF DG x8AC =, 8BF AC ∴==, GP BD ⊥,FD BD ⊥, //GP FD ∴, BGP BFD ∴∆∆∽, ∴PG BGFD BF =, ∴82x BG x =, 42BG ∴=.。

相关文档
最新文档