三角函数的最值

合集下载

三角函数的最值与综合应用.

三角函数的最值与综合应用.


a a 2 b2
,sin φ
知识清单
考点一

三角函数的最值

1.当x=2kπ- (k∈Z)时,y=sin x取最小值-1;当x=2kπ+ (k∈Z)时,y= 2 2 sin x取最大值① 1 ;正弦函数y=sin x(x∈R)的值域为[-1,1]. 2.当x=2kπ+π(k∈Z)时,y=cos x取最小值-1;当x=2kπ(k∈Z)时,y=cos x取最
k φ k φ ;函数y=Acos(ωx+φ)的图象的对称轴为x= - ,对称中心为 ,0 ω ω ω ω k φ ;函数y=Atan(ωx+φ)的图象的对称中心为 k φ .上 ,0 ,0 ω ω 2 ω 2 ω ω
2 2
y=Asin 2x+Bcos 2x+C=
B A B sin(2x+φ)+C.其中tan φ= A ,再利用有界性处理. a sin x c a cos x c (3)y= 或y= 可转化为只有分母含有sin x或cos x的函数 b sin x d b cos x d
bt c (其中a,b,c为常数,且abc≠0),令t=sin x,则转化为y=at+ b sin x
cห้องสมุดไป่ตู้ (t∈[-1,0)∪(0,1])的最值,一般利用函数的单调性或函数图象求之.
t 2 1 (3)y=a(sin x±cos x)+bsin x· cos x,可令t=sin x±cos x,则sin x· cos x=± ,把 2
2 2
1 5 = cos x - , 4 2 5 1 当cos x= ,即x=2kπ± ,k∈Z时,f(x)取得最小值- .故选D. 3 4 2

三角函数的最大值与最小值

三角函数的最大值与最小值

三角函数的最大值与最小值
三角函数是数学中的重要概念,广泛应用于物理、工程、天文、金融等领域。

其中,最大值和最小值是三角函数研究中的重要概念之一,本文将介绍三角函数的最大值和最小值。

正弦函数是最基本的三角函数之一,其定义如下:
$$\sin(x) = \frac{opposite}{hypotenuse}$$
其中,$x$表示角度,$opposite$表示角度对边的长度,$hypotenuse$表示斜边的长度。

在一般情况下,正弦函数的值域为[-1,1],即$\sin(x)\in[-1,1]$。

因此,正弦函数的最小值为-1,最大值为1。

正切函数的定义域为除去$n\pi +\frac{\pi}{2}(n\in Z)$的所有实数,而对应的值域为实数集,即$\tan(x)\in R$。

因此,正切函数没有最大值和最小值。

五、正割函数和余割函数的最大值和最小值
最后,介绍正割函数和余割函数的最大值和最小值。

正割函数和余割函数分别定义如下:
综上所述,正弦函数和余弦函数的最大值和最小值分别为1和-1,而正切函数和余切函数没有最大值和最小值,正割函数和余割函数的最大值和最小值也是1和-1。

这些概念在三角函数的研究中有着重要的应用。

三角函数的最值与值域

三角函数的最值与值域

返回 4.已知函数f(x)=-sin2x-asinx+b+1的最大值为0,最小值为 -4,若实数a>0,求a,b的值
【解题回顾】上述两题为y=asin2x+bsinx+c型的三角函数. 此类函数求最值,可转化为二次函数y=at2+bt+c在闭区间 [-1,1]上的最值问题解决.
延伸·拓展
返回
5.在Rt△ABC内有一内接正方形,它的一条边在斜边BC 上. (1)设AB=a,∠ABC=θ,求△ABC的面积P与正方形面积Q (2)当θ变化时求P/Q的最小值.
能力·思维·方法
1.已知△ABC中, tan A 2 3 ,求使 y 4 2 2 sin B sin 2 B 取最大值时∠C的大小. 6
【解题回顾】形如y=acos2x+bcosxsinx+csin2x+d(a、b、c、 d为常数)的式子,都能仿照上例变形为形如y=Acos(2x+φ)
若 3+2cosx<0,则x的范围是
2kπ+5π/6<x<2kπ+7π/6,k∈Z ;
若tanx≤1,则x的范围是___来自____________________; Z kπ-π/2<x≤kπ+π/4,k∈ 若sin2x>cos2x,则x的范围是__________________________ kπ+π/4<x<kπ+3π/4,k∈Z 2.函数y=√3sinx+cosx,x∈[-π/6,π6]的值域是( D )
3 (A)[- ,3]
(B)[-2,2]
(C)[0,2] )
(D)[0, 3]
3.函数y=2sinx(sinx+cosx)的最大值为( (A)1+√2 (B)√2-1 (C)2

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。

三角函数的最值习题精选精讲

三角函数的最值习题精选精讲

三角函数的值域或最值常见的三角函数最值的基本类型有:(1)y=asinx+b (或y=acosx+b )型,利用()1cos 1sin ≤≤x x 或,即可求解,此时必须注意字母a 的符号对最值的影响。

(2)y=asinx+bcosx 型,引入辅助角ϕ ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。

Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。

(3)y=asin 2x+bsinx+c (或y=acos 2x+bcosx+c ),型,可令t=sinx (t=cosx ),-1≤t ≤1,化归为闭区间上二次函数的最值问题。

(4)Y=d x c b x a ++sin sin (或y=dx bx a ++cos cos )型,解出sinx (或cosx ),利用()1cos 1sin ≤≤x x 或去解;或用分离常数的方法去解决。

(5)y=d x c b x a ++cos sin (y=dx c bx a ++sin cos )型,可化归为sin (x+ϕ)g (y )去处理;或用万能公式换元后用判别式去处理;当a=c 时,还可利用数形结合的方法去处理上。

(6)对于含有sinx±cosx,sinxcosx 的函数的最值问题,常用的方法是令sinx±cosx=t,2≤t ,将sinxcosx 转化为t 的函数关系式,从而化为二次函数的最值问题。

一、利用三角函数的有界性.求解这类问题,首先利用有关三角函数公式化为sin()y A x k ωϕ=++的形式.在化简过程中常常用到公式:22sin cos sin(),tan ,ba xb x x aab ϕϕϕ+=++=其中由及点(a,b)的位置确定. 例1 、(2000年高考)已知:2123sin cos 12sin y x x x x R =+⋅+∈,,求y 的最大值及此时x 的集合. 解:∵2123sin cos 12sin y x x x =+⋅+1cos 2315sin 21sin(2)44264x x x π+=++=++,∴当sin(2)16x π+=时,max 157244y=+= .此时,2262x k πππ+=+,即6x k ππ=+. 所以y 的最大值为74,此时x 的集合为{|}6x x k k Z ππ=+∈,.例2、求函数1cos 3cos xy x-=+的值域.解: 1cos 3cos x y x -=+⇒(1)cos 2y x +=-⇒2cos 1x y=-+,由|cos |1x ≤得2||11y -≤+, |1|2y +≥即,解得31y y ≤-≥或,所以函数1cos 3cos xy x-=+的值域是3][1-∞-∞ (,,+)二、利用二次函数最值性质求解这类问题,首先利用有关三角函数公式化为2sin sin y x b x c a =++的形式.例3、求函数278cos 2[,]63sin y x x x ππ=--∈-,的值域. 解:278c o s 2s i n y x x =--=278cos 2(1)cos x x ---=223,(cos 2)x --∵[,]63x ππ∈-,∴1cos [1]2x ∈,,∴3[1]2y ∈-,.例4、(90年高考)求函数sin cos sin cos y x x x x =++的最小值. 解:设sin cos x x t +=,[22]t ∈-,,则21sin cos 2x x t -=,所以()y f t ==211,2(1)t ⋅-+([2,2])t ∈-,当1[22]t =-∈-,时,y 有最小值1-.三、利用均值不等式*利用均值不等式求三角函数时,一定要注意均值不等式中的使用条件:一正、二定、三相等.例6、当0x π<<时,求sin 2cos xy x=+的最大值.解:设2223tan 0,(0),,23233x t t t x y t t π=><<=≤=⋅+则(当且仅当tan 32xt ==时取等号)。

高三数学三角函数的最值问题

高三数学三角函数的最值问题
四、作业:
;网络招生管理系统 网络招生管理系统 ;
炼器至尊,九品下の实力,凭借手中奇异の宝物,实力居然能比九品上! 风月君主从不参与各大势力の纷争,就算风月大陆各大世家明争暗斗,他都很少管.只要不触犯他订下の几条规矩就没事,一心钻研炼器,所以他炼器の水平已经达到一些极其高深の水平.或许他没有魂帝那么天马行空 变taiの思维,但是他盛在痴迷,一些君主痴迷一件事情数十万年进百万年,不间断の研究,谁也不知道他の水平已经达到什么高度了… 而期间噬大人透露の一些信息,也让白重炙对这个老好人,感官更加好了.恶魔降临之时,一直很少出关の风月君主第一站了出来,开始召集各君主,甚至派 人去了不少秘境请那几位老东西出山.在众位君主忙着清理各自大陆阴煞涧の不咋大的部分恶魔时,他就放言,如果星辰海の恶魔不立即镇压,神界将会迎来历史上第三次灭世大浩劫! 结果…各路巅峰强者,刚准备去风月大陆汇集の时候,妖智开始暴动了! 第一波浩劫来临,就在昨日风 云君主再次传讯了,今日妖月升起之前,不管各大陆の妖智击杀の情况如何,必须去风月潭集合商议对策,否则事情将不可挽回! 所以噬大人给白重炙两天の时候,白重炙听完之后一阵唏嘘.对风月君主の高尚品质很是钦佩,这种人平时不显山不露水,关键の时候却毅然挺身而出,为人类种 族の延续而奋战,这才是真正の大英雄. 三人没过多久就瞬移去了神恩大陆,距离妖月升起の时候还有一些,所以三人并没有多急,而是在神恩大陆充当了一回救火队员.神恩大陆那位自称嫣然女主の君主,虽然是神界唯一一位修魂者君主,当然此刻变成了唯二了,不过白重炙拿点魂技在嫣 然君主面前不值一提.但是毕竟她只是一人,神恩大陆情况很不妙,所以噬大人三人の到来,嫣然君主无比の感激和振奋. 白重炙休息了一不咋大的会,刚刚缓解了一些の精神压力.在神恩大陆战斗了数个数个时辰之后,再次差点灵魂奔溃了. 三位巅峰强者の加入,神恩大陆の妖智攻击在妖 月就要升起之前,终于稳定了下来.四人立即开始传送去风月大陆.白重炙苍白の脸色,让基德和噬大人一阵无奈,但是噬大人却依旧没有打算将他那半吊子空间之力の运用方法,传授给白重炙,只是模糊给他说了一句: "空间之力你呀可以当做另类の神力,本源之力你呀可以当成你呀手中 最锋利の武器,至于法则玄奥,你呀可以当做无比精妙の招式.三种结合起来,你呀の攻击力才会最大化,也能让你呀战斗の更加轻松,利用最少の空间之力,照成更大の攻击力…具体の自己去研究,俺和基德以前没有教你呀运用方法,以后也不会教你呀!" 白重炙虚弱の点了点头,虽然不明 白噬大人为何这么做,但是他知道噬大人不会害他,这就够了! 嫣然君主很少说话,幸运子和夜妖娆差不多,很冷,是这种天然の冷.不过看到白重炙如此样子,虽然没有半句客气感激の话,但是望向白重炙の眸子,已经不再那么冰冷了! 风月潭在风月城外,景色很美,漫山遍野の暗紫色不 咋大的花,高耸入云の古树下,一些深潭边,一座古朴の城堡静静伫立,这就是风月君主の居住地! 白重炙四人来の时候,风月君主亲自前来迎接,白重炙一看果然和基德述说の一模一样,一些老实の不咋大的老头般.丢到炽火城街道内,估计没有人会看第二眼. 风月君主亲自将四人迎进了 古堡内,大殿内有人,有四人.白重炙只认识一些,天启君主莫尚煌,一如既往の大嗓门,爽然性格,亲热笑容.还有三人,有两名仙风道骨の老头,气质飘然,她们几人进来,两人只是淡淡の一笑,点了点头. 白重炙の目光却一下被坐在主位の一些女子吸引住了,如果不是她们进来,那个女子眸 子转动了一下,白重炙肯定会认为这是一具冰雕,一具绝美の冰雕. 冰雪女王出岛了! 并且坐在了风月古堡の主位,似乎她是主人一样.并且所有人包括风月君主都没有半点不满,似乎那是天经地义の事情般. 冰雪女王很冷,甚至噬大人朝她点头,她都没有动一下.宛如一座冰山一样,似乎 对大殿内の这么多君主熟视无睹.偏偏众人感觉还很应该,也习以为常.这场面在白重炙看起来,无比の怪异. 但是,接下来却发生了一幕让所有君主都无比惊恐の事情,就连噬大人都微微错愕の微微张开了不咋大的口,嫣然女主一直很冷の眸子,却亮了起来. 因为冰雪女王,眸子转动の时 候,扫在白重炙身体の时候,停了下来.而后…居然笑了,她居然朝白重炙笑了!虽然笑の很勉强,笑の很冷!但是她这一笑,带给场中这几位神界最巅峰强者の感觉,却比神界浩劫来の更加震撼. 本书来自 聘熟 当前 第壹0叁壹章 灵魂又出事了… 众人落座,莫尚煌是个急幸运子,第一些 开口了:"诸位,星辰海の局势刻不容缓,时候拖延一刻,恶魔就会不断の从空间裂缝中降临.神界の天地元气中の恶魔气息就会越来越浓郁.现在是妖智暴动,估计半年之后再不镇压下去,下次暴动将会是…神界所有の低级练家子.并且,星辰海の空间裂缝被恶魔の控制之下,会变得越来越 大,越来越稳定.不用三个月,绝对能产生能降临恶魔君主の超级大裂缝.恶魔君主の强横不用多说,只要恶魔君主一降临,恐怕到时候神界の一半低级练家子,会瞬间魔化!浩劫啊,有可能灭世の大浩劫啊!" 文章阅读 笑是一件很简单の事情,婴儿在几个月の时候就会笑.看书 有人笑の很温和,不温不火の,比如白重炙,有人笑の儒雅,比如基德.有人笑得很放荡,比如莫尚煌.还有人笑の很…恐怖,比如眼前这位气质上比嫣然君主更甚一筹の冰雪女王. 因为在场中人,包括已经活了近千万年の风月君主,都没有见过冰雪女王…笑过!这位实力深不可测の女王,拥 有这女神般の气质,让无数男人看一眼,就心甘情愿就趴在脚上tian她の脚趾头女人.在场の人见过她不少次,每人都去冰雪岛拜见过她.风月君主见过他次数最多,有几十次,嫣然女主也见过她无数次. 但是…她一直宛如一座冰雕般,将身体包裹在极北之地の寒气之中.能正眼看你呀一眼 已经算是破天荒了,今日,她居然笑了!为一些第一次见面の男人笑了!为一些在场中实力垫底の不咋大的男人笑了! 风月君主最为震惊,他了解这位邻居,心比天高,实力强横,十个他都不是对手.他与世无争の幸运子很受冰雪女王待见,两人一直处の很好.基本来说能算朋友了,也一起 聊过不少次,不过今日他彻底被吓到了. 他想起神界一句古老の传言——当哪天冰女女王笑了,这个世界将会颤抖为之颤抖了! 所有人将目光投向了面色苍白の白重炙,虽然白重炙是神界历史上最为年轻の君主,第一怪才.但是他并没有帅得让人为之惭愧の容颜,也没有宛如开锋の利剑 般让人凛冽の气质.温和の笑容,淡淡の从容让人感觉宛如一些邻家の不咋大的弟弟般. 众人无比疑惑起来,嫣然君主若有所思の望着白重炙,噬大人眼中精光一闪,朝前踏出一步,眸子内闪过一丝警惕. 白重炙有些莫名其妙,不知道为何这个女神对他笑了笑,众人却如此大惊不咋大的怪? 他从来不认为自己身体上有一股王霸之气,虎躯一震,所有の女子都对他趴开那洁白の大腿.所以他朝冰雪女王微微一笑,而后在一边の蝉木椅子上坐了下来. 冰雪女王宛如冰山上の莲花盛开の一笑后,再次成为了一座冰雕.众人也就心思复杂の各自坐了下去,开始闭目眼神或者相互传音 交谈起来. 白重炙没有去看任何一人,而是闭目静坐起来,他不是装十三,而是精神太疲惫了,需要好好静修恢复. 同时他也开始内视身体起来.闭关了六百年,他出关之后就一直在战斗,此刻完全松懈下来,才有想起身体の状况起来. 闭关六百年他成就斐然,成功感悟了一些高级玄奥空间 压迫,如果这消息传出去の话,神界肯定又是一片哗然,要知道雷震如此天赋,第四个高级玄奥都感悟了三千年.法则实力已经成为了六品破仙の实力,原本准备一鼓作气继续参悟下一些高级玄奥の时候,妖姬把他叫醒了. 一查探! 结果,他差点又吓得跳了起来! 身体没事!脑袋也没事, 脑袋内の几个灵魂海洋…又出事了! 灵魂海洋上空の本源之力内の雷电依旧在不停の朝下方劈下,本源之力没有什么变幻,雷电依旧老样子,宛如一条条白色怒龙在本源之力和灵魂海洋内来回游走.灵魂海洋本来是几个褐色の海绵般の物体,宛如两瓣核桃仁般,但是此刻颜色却不对了,土 褐色变成了土黄色,并且似乎…变不咋大的了? 绝对变不咋大的了!并且,不咋大的了整整几多之一! 白重炙迅速做下了判断!而后他几个灵魂海洋开始微微颤抖起来,他恐慌起来.娘希匹の…他这六百年时候,几乎都在灵魂静寂第五层内.他虽然在闭关,但是妖姬却很准时の每隔五年, 施展她の绝世大杀招"观音坐莲"帮助他进入灵魂静寂状态! 按理来说,灵魂静寂第五层下,他の灵魂海洋会不断の扩展,虽然灵魂到达神帝境之后,进展有些缓慢.但是六百年时候,灵魂海洋扩展一倍还是没有问题,现在却马勒戈壁の变不咋大的了?还变色了? 白重炙强忍着内心の恐惧,开 始一边又一边の检查起来,一遍又一遍,最终发现似除了灵魂变不咋大的了,变色了,并没有其他の变化,也没有不良の反应.那座连接几个灵魂の桥梁虽然变得更加闪亮了,那条刚刚冒出头の黑线,也没有继续延伸の趋势… 不对! 突然,白重炙眼睛猛然睁开,将场中の诸位君主弄得一愣一 愣の,但是白重炙利马又闭上了眼睛,内心却又惊愕起来,但是这次除了惊还有喜! 灵魂海洋变不咋大的了?好像灵魂强度…变强了?还不是强了一点两点?灵魂强度不是灵魂海洋越大,就越强吗?难道自己の感觉错了? 白重炙有种当场释放一些魂技,检验一下灵魂强度の冲动.最后没敢贻 笑大方,他沉吟了片刻,最后打算,这次事情完了之后,找美丽の嫣然君主聊一聊.当然并不是谈人生理想,而是谈一谈修魂者の问题. 这位神界最强の修魂者,有这个资格为他传道解惑,当然她会不会倾囊相授就不得而知了. 虽然白重炙很想在继续检查起来,并且细细研究一下.但是随着古 堡外の空间一阵抖动,几道身影の出现,白重炙不得不打断了自己の沉思. 南岭君主血夜君主隐世君主,还有一位宛如远古蛮族般有着古铜色皮肤の巨汉走了进来.场中の所有人都睁开了眼睛,冰雪女王の眸子再次转动了一次,还轻微の点了点头,当然不是为南岭君主,而是对着那个巨汉. "这是神界极南那座神界最高青山の主人,他习惯别人称呼他青山大人!实力…和冰雪女王一样,深不可测!" 基德の传音让白重炙,眼睛微微缩了缩.今日看来神界の大部分巅峰强者都聚

三角函数的最值

三角函数的最值

∴f(x) 的单调递增区间为 [k- 3 , k+ ](kZ); 6 (2)由 2x+ = 得 x= [0, 2 ], 6 6 2 故当 x= 时, f(x) 取最大值 3+a. 由题设 3+a=4, ∴a=1. 6
5.设 [0, ], 且 cos2+2msin-2m-2<0 恒成立, 求 m 的取 2 值范围. 解:由已知 0≤sin≤1 且 1-sin2+2msin-2m-2<0 恒成立. 令 t=sin, 则 0≤t≤1 且 1-t2+2mt-2m-2<0 恒成立. 即 f(t)=t2-2mt+2m+1=(t-m)2-m2+2m+1>0 对 t[0, 1] 恒成立. 故可讨论如下: (1)若 m<0, 则 f(0)>0. 即 2m+1>0. 解得 m>- 1 , ∴- 1 <m<0; 2 2 (2)若 0≤m≤1, 则 f(m)>0. 即 -m2+2m+1>0. 亦即 m2-2m-1<0. 解得: 1- 2<m<1+ 2 , ∴0≤m≤1; (3)若 m>1, 则 f(1)>0. 即 0m+2>0. ∴mR, ∴m>1. 综上所述 m>- 1. 即 m 的取值范围是 (- 1 , +∞). 2 2
∴当 t=-1, 即 x= 时, y 取最大值 27. 当 t= 2 , 即 x= 时, y 取最小值 20-8 2 4 .
5.已知函数 f(x)=2asin2x-2 3 asinxcosx+a+b(a0) 的定义域 为[0, ], 值域为 [-5, 1], 求常数 a, b 的值. 2 解: f(x)=a(1-cos2x)- 3 asin2x+a+b =-a(cos2x+ 3 sin2x)+2a+b

求最大值和最小值的公式三角函数

求最大值和最小值的公式三角函数

求最大值和最小值的公式三角函数在数学中,我们经常需要找出函数的最大值和最小值,特别是在三角函数中。

通过对三角函数的分析和观察,我们可以找到一些公式和方法来求解函数的最大值和最小值。

正弦函数(Sine Function)正弦函数是一种常见的三角函数,通常用符号sin表示。

正弦函数的最大值和最小值是固定的,分别为1和-1。

具体而言,正弦函数的最大值出现在角度为90度或π/2弧度时,即sin(90°) = sin(π/2) = 1;最小值出现在角度为270度或3π/2弧度时,即sin(270°) = sin(3π/2) = -1。

余弦函数(Cosine Function)余弦函数是另一种常见的三角函数,通常用符号cos表示。

余弦函数的最大值和最小值也是固定的,同样为1和-1。

最大值出现在角度为0度或0弧度时,即cos(0°) = cos(0) = 1;最小值出现在角度为180度或π弧度时,即cos(180°) =cos(π) = -1。

正切函数(Tangent Function)正切函数是三角函数中的另一种重要函数,用符号tan表示。

正切函数在某些角度下可能没有最大值或最小值,但在一些特定情况下有最大值或最小值。

在正切函数的图像中,我们可以观察到周期性的最大值和最小值。

具体计算最大值和最小值的方法需要通过导数等方法来求解。

总结通过对正弦函数、余弦函数和正切函数的分析,我们可以得出它们的最大值和最小值的规律。

这些规律不仅有助于我们求解函数的最值,也有助于更深入地理解三角函数的特性和性质。

在实际问题中,我们可以利用这些公式和规律来简化计算,提高求解效率。

通过以上分析,我们可以看到三角函数中求最大值和最小值的公式都具有一定的规律和特点,掌握这些规律将有助于我们更好地理解和利用三角函数。

希望这些内容对您有所帮助!希望本文对你有所启发,谢谢阅读!。

求三角函数最值的四种方法

求三角函数最值的四种方法

求三角函数最值的四种方法解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性如有界性等,另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数二次函数等最值问题.下面介绍几种常见的三角函数最值的求解策略1.配方转化策略对能够化为形如y =a sin 2x +b sin x +c 或y =a cos 2x +b cos x +c 的三角函数最值问题,可看作是sin x 或cos x 的二次函数最值问题,常常利用配方转化策略来解决.[典例1] 求函数y =5sin x +cos 2x 的最值.[解] y =5sin x +()1-2sin 2x =-2sin 2x +5sin x +1=-2⎝⎛⎭⎪⎫sin x -542+338. ∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π-π2,k ∈Z 时, y min =-2×8116+338=-6;当sin x =1,即x =2k π+π2,k ∈Z 时,y max =-2×116+338=4.[题后悟道]这类问题在求解中,要注意三个方面的问题:其一要将三角函数准确变形为sin x 或cos x 的二次函数的形式;其二要正确配方;其三要把握三角函数sin x 或cos x 的范围,以防止出错,若没有特别限制其范围是[-1,1].2.有界转化策略对于所给的三角函数能够通过变形化为形如y =A sin(ωx +φ)等形式的,常常可以利用三角函数的有界性来求解其最值.这是解决三角函数最值问题常用的策略之一.[典例2] 设函数f (x )=4cos ⎝⎛⎭⎪⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0. 求函数y =f (x )的最值.[解] f (x )=4⎝ ⎛⎭⎪⎫32cos ωx +12sin ωx sin ωx +cos 2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx=3sin 2ωx +1,因为-1≤sin 2ωx ≤1,所以函数y =f (x )的最大值为3+1,最小值为1- 3.[题后悟道]求解这类问题的关键是先将所给的三角函数化为一个角的三角函数问题,然后利用三角函数的有界性求其最值.3.单调性转化策略借助函数单调性是求解函数最值问题常用的一种转化策略.对于三角函数来说,常常是先化为y =A sin(ωx +φ)+k 的形式,再利用三角函数的单调性求解.[典例3] 函数f (x )=22sin ⎝ ⎛⎭⎪⎫x +π4-32在⎣⎢⎡⎦⎥⎤π,17π12上的最大值为________,最小值为________.[解析] 由π≤x ≤17π12,得5π4≤x +π4≤5π3. 因为f (x )=22sin ⎝ ⎛⎭⎪⎫x +π4-32在⎣⎢⎡⎦⎥⎤π,5π4上是减函数,在⎣⎢⎡⎦⎥⎤5π4,17π12上是增函数,且f (π)>f ⎝ ⎛⎭⎪⎫17π12,所以当x =5π4时,f (x )有最小值为22sin ⎝⎛⎭⎪⎫5π4+π4-32=-22-32. 当x =π时,f (x )有最大值-2.[答案] -2 -22-32[题后悟道]这类三角函数求最值的问题,主要的求解策略是先将三角函数化为一个角的三角函数形式,然后再借助于函数的单调性,确定所求三角函数的最值.4.数形结合转化策略对于形如y =b -sin x a -cos x 的三角函数最值问题来说,常常利用其几何意义,将y =b -sin x a -cos x 视为定点(a ,b )与单位圆上的点(cos x ,sin x )连线的斜率来解决.[典例4] 求函数y =-sin x 2-cos x(0<x <π)的最小值. [解] 将表达式改写成y =0-sin x 2-cos x,y 可看成连接点A (2,0)与点P (cos x ,sin x )的直线的斜率.由于点(cos x ,sin x )的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的直线与半圆相切于点B ,则k AB ≤y <0.可求得k AB =tan 5π6=-33. 所以y 的最小值为-33⎝ ⎛⎭⎪⎫此时x =π3.[题后悟道]这类三角函数的最值问题,求解策略就是先将函数化为直线斜率的形式,再找出定点与动点满足条件的图形,最后由图形的几何意义求出三角函数的最值.。

三角函数专题:三角函数最值(值域)的5种常见考法(解析版)

三角函数专题:三角函数最值(值域)的5种常见考法(解析版)

三角函数专题:三角函数最值(值域)的5种常见考法1、形如sin y a x = (或cos y a x =)型可利用正弦函数,余弦函数的有界性,注意对a 正负的讨论 2、形如sin()y a x b ωϕ=++ (或cos()y a x b ωϕ=++型 (1)先由定义域求得x ωϕ+的范围(2)求得sin()x ωϕ+ (或cos()x ωϕ+)的范围,最后求得最值 3、形如sin cos y a x b x =+型引入辅助角转化为22)y a b x ϕ=++,其中tan baϕ=,再利用三角函数的单调性求最值。

4、形如2sin sin (0)y a x b x c a =++≠或2cos cos (0)y a x b x c a =++≠型, 可利用换元思想,设sin y x =或cos y x =,转化为二次函数2y at bt c =++求最值,t 的范围需要根据定义域来确定. 5、形如sin cos (sin cos )y x x x x =⋅±±型利用sin cos x x ±和sin cos x x ⋅的关系,通过换元法转换成二次函数求值域 6、分式型三角函数值域(1)分离常数法:通过分离常数法进行变形,再结合三角函数有界性求值域; (2)判别式法题型一 借助辅助角公式求值域【例1】该函数sin 3y x x =的最大值是( ) A .1 B 6 C .2 D .2- 【答案】C【解析】因为πsin 32sin 3y x x x ⎛⎫==+ ⎪⎝⎭,又[]πsin 1,13x ⎛⎫+∈- ⎪⎝⎭,所以函数sin 3y x x =的最大值是2.故选:C.【变式1-1】已知()()sin 3cos 0f x A x x A =->的最大值是2,则()3sin 3cos g x x A x +在π3π,44⎡⎤⎢⎥⎣⎦中的最大值是( )A .32B .3C 326+ D .23【答案】C【解析】根据辅助角公式可得:()2223sin 3=333f x A x x A x x A A ⎫=+⎪⎪++⎭()2=3A x ϕ+-,其中3tan ϕ=. 由()f x 的最大值为2()2320A A +>,解得1A =.∴()1333cos 23sin 2g x x x x x ⎫=+=⎪⎪⎭π233x ⎛⎫=+ ⎪⎝⎭.∵π3π,44x ⎡⎤∈⎢⎥⎣⎦,∴π7π13π,31212x ⎡⎤+∈⎢⎥⎣⎦. ∴当π7π312x +=,即π4x =时,()g x 取得最大值. 故()max ππ343g x ⎛⎫=+ ⎪⎝⎭231326232⎫+==⎪⎪⎝⎭故选:C.【变式1-2】已知函数()()3cos sin 3cos 0,2f x x x x x π⎫⎡⎤=∈⎪⎢⎥⎣⎦⎝⎭,则函数()f x 的值域为( ) A .33⎡⎢⎣⎦ B .3⎡⎤⎢⎥⎣⎦C .11,22⎡⎤-⎢⎥⎣⎦D .1,12⎡⎤-⎢⎥⎣⎦ 【答案】B【解析】()23sin cos 3x x f x x =+)133sin 21cos 22x x =+sin 23x π⎛⎫=+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 42,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以3sin 213x π⎛⎫≤+≤ ⎪⎝⎭, 所以函数()f x 的值域为3⎡⎤⎢⎥⎣⎦.故选:B【变式1-3】函数2()sin 3cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A .1B .2C .32D .3 【答案】C【解析】因为2()sin 3cos f x x x x =,所以1cos 231()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .【变式1-4】己知函数()3sin 4cos ,R f x x x x =+∈,则()()12f x f x -的最小值是_________. 【答案】10-【解析】由题意可得()()343sin 4cos 5sin cos 5sin 55f x x x x x x ϕ⎛⎫=+=+=+ ⎪⎝⎭,其中4sin 5ϕ=,3cos 5ϕ=,且0,2πϕ⎛⎫∈ ⎪⎝⎭.因为12,R x x ∈,所以min max ()5,()5f x f x =-=.所以()()12f x f x -的最小值是min max ()()10f x f x -=-.题型二 借助二次函数求值域【例2】求函数22sin 2sin 1y x x =-++的值域.【答案】3[3,]2-【解析】y =−2sin 2x +2sinx +1=−2(sinx −12)2+32,−1≤sinx ≤1,根据二次函数性质知,当1sin 2x =时,max 32y =;当sin 1x =-时,min 3y =-, 故值域为3[3,]2-.【变式2-1】函数2cos sin 1y x x =+-的值域为( )A .11[,]44-B .1[0,]4C .1[2,]4-D .1[1,]4- 【答案】C【解析】函数222cos sin 11sin sin 1sin sin y x x x x x x =+-=-+-=-+,设sin t x =,11t -≤≤,则()2f t t t =-+, 由二次函数的图像及性质可知2124t t -≤-+≤,所以cos 2sin 1y x x =+-的值域为1[2,]4-,故选:C.【变式2-2】函数2tan 4tan 1y x x =+-的值域为____________【答案】[)5,-+∞【解析】因为2tan 4tan 1y x x =+-令tan t x =,则t R ∈所以()()224125f t t t t =+-=+-,所以()[)5,f t ∈-+∞,故函数的值域为[)5,-+∞【变式2-3】函数()193sin cos 2R 24y x x x =+-∈的最小值是( ) A .14B .12 C .234- D .414-【答案】C【解析】22197313sin cos 2sin 3sin sin 24422y x x x x x ⎛⎫=+-=-+-=--+ ⎪⎝⎭,令sin x t =,则11t -≤≤.因为23122t ⎛⎫--+ ⎪⎝⎭在[]1,1-上单增,所以当1t =-时,2min31231224y ⎛⎫=---+=- ⎪⎝⎭.故选:C .题型三 借助换元法求值域【例】已知函数(),则()A .()f x 的最大值为3,最小值为1 B .()f x 的最大值为3,最小值为-1 C .()f x 的最大值为32,最小值为34D .()f x 的最大值为32,最小值为32 【答案】C【解析】因为函数()sin cos 2sin cos 2f x x x x x =+++,设sin cos 24x x x t π⎛⎫+=+= ⎪⎝⎭,2,2t ⎡∈-⎣, 则22sin cos 1x x t =-,所以2213124y t t t ⎛⎫=++=++ ⎪⎝⎭,2,2t ⎡∈-⎣,当12t =-时,()min 34f t =;当2t =时,()max 32f t =故选:C【变式3-1】函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________. 【答案】[-1,1]【解析】设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,即sin x cos x =1-t 22,且-1≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1. 当t =1时,y max =1;当t =-1时,y min =-1. ∴函数的值域为[-1,1].【变式3-2】函数()sin cos sin 2f x x x x =++的最大值为( ) A .1 B .12 C .12 D .3 【答案】C【解析】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[2,2]t ∈-,则22(sin cos )12sin cos t x x x x =+=+, 所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[2,2]t ∈,对称轴为12t =-,所以当2t 时,21y t t =+-取得最大值,所以函数的最大值为222121=,即()sin cos sin 2f x x x x =++的最大值为12C【变式3-3】函数f (x )=sinxcosx +√2sin (x −π4)的值域为________. 【答案】[−12−√2,1]【解析】由于f (x )=sinxcosx +√2sin (x −π4)=sinxcosx +sinx −cosx ,令sinx −cosx =t ,则sinxcosx =1−t 22,于是函数化为y =1−t 22+t =−12(t −1)2+1,而t =sinx −cosx =√2sin (x −π4)∈[−√2,√2] , 所以当1t =时,函数取最大值1,当t =−√2时,函数取最小值−12−√2,故值域为[−12−√2,1].题型四 分式型三角函数的值域【例4】函数cos 12cos 1x y x +=-的值域是( )A .][(),04,∞∞-⋃+B .][(),02,∞∞-⋃+ C .[]0,4 D .[]0,2 【答案】B【解析】令11cos ,1,,122x t t ⎡⎫⎛⎤=∈-⋃⎪ ⎢⎥⎣⎭⎝⎦,13(21)11322212122211t t y t t t -++===+⋅---,可得[)(]213,00,1t -∈-⋃,[)11,1,213t ⎛⎤∈-∞-⋃+∞ ⎥-⎝⎦,3113,,22122t ⎛⎤⎡⎫⋅∈-∞-⋃+∞ ⎪⎥⎢-⎝⎦⎣⎭,故(][),02,y ∈-∞⋃+∞.故选:B.【变式4-1】函数sin 3sin 2x y x +=+的值域为___________. 【答案】4,23⎡⎤⎢⎥⎣⎦【解析】解:sin 31sin 2sin 21x y x x +==+++, 因为1sin 1x -≤≤,所以1sin 23x ≤+≤,所以1113sin 2x ≤≤+,所以411+23sin 2x ≤≤+, 所以sin 3sin 2x y x +=+的值域是4,23⎡⎤⎢⎥⎣⎦.【变式4-2】函数sin cos ()1sin cos =++x xf x x x的值域为_____________.【答案】212111,2⎡⎫⎛-----⎪ ⎢⎪⎣⎭⎝⎦【解析】令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,[2,1)(1,2]t ∈---,则212sin cos t x x =+,即21sin cos 2t x x -=,所以2112()12t t f t t --==+,又因为[2,1)(1,2]t ∈---,所以()212111,2f t ⎫⎛---∈--⎪ ⎪ ⎣⎭⎝⎦, 即函数sin cos ()1sin cos =++x xf x x x 的值域为212111,2⎡⎫⎛-----⎪ ⎢⎪ ⎣⎭⎝⎦.【变式4-3】当04x π<<时,函数221sin ()cos sin sin xf x x x x-=⋅-的最小值是________.【答案】4【解析】22cos ()sin cos sin xf x x x x=-21tan tan x x =-, 当04x π<<时,tan (0,1)x ∈,所以21110tan tan 244<-≤-=x x ,()4f x ∴≥,即221sin ()cos sin sin xf x x x x-=⋅-的最小值为4.含绝对值的三角函数值域A .[-1,0] B .[0,1] C .[-1,1] D .[-2,0] 【答案】D【解析】当0sin 1x ≤≤ 时,sin sin 0y x x =-= ,所以,当1sin 0x -≤<,2sin y x =,又22sin 0x -≤< ,所以函数的值域为[]2,0-,故选:D.【变式5-1】函数()2sin 3cos f x x x =+的值域是( )A .[]2,5B .[]3,5C .13⎡⎤⎣⎦D .13⎡⎣【答案】C【解析】()sin()2cos()2sin 3cos 2sin 3cos f x x x x x x x +=+++=-+-=+πππ,∴()f x 为周期函数,其中一个周期为T π=,故只需考虑()f x 在[0,]π上的值域即可,当[0,]2x π∈时,()2sin 3cos 13)f x x x x =+=+α,其中cos 13α,sin 13α=, ∴max ()()132f x f =-παmin ()()22f x f ==π,当[,]2x ππ∈时,()2sin 3cos 13)f x x x x =-=+β,其中,cos 13β=sin 13=β, ∴max ()()132f x f =-πβmin ()()22f x f ==π,∴()f x 的值域为13].故选:C【变式5-2】设函数2()|sin |2cos 1f x x x =+-,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是______. 【答案】0【解析】∵2()|sin |2cos 1f x x x =+-|sin |cos 2x x =+为偶函数,∴只需求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的最小值,此时2()sin cos22sin sin 1f x x x x x =+=-++,令[]sin 0,1t x =∈,则221y t t =-++,函数的对称轴为[]10,14t =∈,∴当1t =时,min 2110y =-++=.【变式5-3】若不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则k 的取值范围是______. 【答案】[)2,∞+ 【解析】∵ ()sin 1cos sin tan sin sin cos cos x x xx x x x x++=+=,3,4x ππ⎡⎤∈⎢⎥⎣⎦∴ sin 0,1cos 0,cos 0x x x >+><,∴ tan sin 0x x +<,∴sin tan tan sin sin tan tan sin 2tan x x x x x x x x x -++=---=-, ∵ 不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立 ∴ 2tan k x ≥-,3,4x ππ⎡⎤∈⎢⎥⎣⎦,∴()max 2tan 2k x ≥-=. 故k 的取值范围是[)2,∞+.。

三角函数最值问题(典型题型)

三角函数最值问题(典型题型)

三角函数最值问题求解三角函数最值问题不仅需要用到三角函数的定义域、值域、单调性、图象以及三角函数的恒等变形,还经常涉及到函数、不等式、方程以及几何计算等众多知识.这类问题往往概念性较强,具有一定的综合性和灵活性,下面结合例子给出几种求最值的方法,供大家学习时参考。

1、利用三角函数的单调性求最值例1:求函数x x x x x f 44sin cos sin 2cos )(-⋅-= ⎢⎣⎡⎥⎦⎤∈2,0πx 的最值 解:x x x x x x x x f 2sin 2cos 2sin )sin )(cos sin (cos )(2222-=--+=45424,20ππππ≤+≤∴≤≤x x ,由余弦函数的单调性及图像知: 当442ππ=+x , 即0=x 时 ,)42cos(π+x 取最大值22; 当ππ=+42x ,即83π=x 时,)42cos(π+x 取最小值-1; 故2)(,1)(min max -==x f x f方法评析:本题虽然含有的三角函数的项的次数不尽相同,但最终能通过变形变为形如θθcos sin b a +的形式,再用辅助角公式)sin(cos sin 22ϕθθθ++=+b a b a 化为标准形式结合三角函数的单调性加以解决,这是一种最常见的求最值的方法。

2、利用三角函数的有界性或数形结合求最值例2:求1cos 2sin --=x x y 的最小值 解:(方法一)由1cos 2sin --=x x y 得:y x y x -=-2cos sin ,y x y -=-+∴2)sin(12ϕ 即212)sin(y yx +-=-ϕ,故11212≤+-≤-y y ,解之得43≥y , 故y 的最小值为43 方法评析:通过变形,借助三角函数的有界性求函数最值是一种很常见的方法,一般在分式型且对自变量无特殊限制条件下使用。

(方法二)设),(),sin ,(cos 21M x x P ,则1cos 2sin --=x x y 表示单位圆上的动点P 与平面内定点M 连线的斜率,当斜率存在时,设过P 、M 两点的直线方程为)1(2-=-x k y ,由距离公式得1122=+-k k ,解之得43=k ,结合图形可知函数的最小值为43。

高三数学三角函数的最值问题

高三数学三角函数的最值问题
三角函数的最值问题
高三备课组
1一: 基础知识
1 、 配方法求最值
主要是利用三角函数理论及三角函数的有界性,转化为 二次函数在闭区间上的最值问题, 如求函数 y sin2 x sin x 1 的最值
可转化为求函数 y t2 t 1,t 1,1
上的最值问题。
2、化为一个角的三角函数,再利用有界性求最值:
使得函数 y sin 2 x a cosx 5 a 3
练习:求函数 y sin2 x 3 sin x cos x 1
的最值,并求取得最值时的值。
思维点拨:
三角函数的定义域对三角函数有界性 的影响。
2、转化为闭区间上二次函数的最值问题。
例2 P(66)
求函数y cot x sin x cot x sin 2x的最值. 2
练习: 是否存在实数a,
注意变换前后函数的等价参数函数的最值,解题 要注意参数的作用和影响。
二、题型剖析 1、化为一个角的三角函数,再利用有界性求最值。
P(66) 函数Y=acosx+b (a.b为常数),若 7 y 1
,求bsinx +acosx 的最大值.
asin x bcox a2 b2 sin(x )
如函数 y
1
的最大值是
2 sin x cox
3、数形结合
常用到直线斜率的几何意义, 例如求函数
y sin x cox 2
的最大值和最小值。
; https:///

我们就成了虚伪的坏蛋。 你骗了别人的钱,可以退赔,你骗了别人的爱,就成了无赦的罪人。假如别人不曾识破,那就更惨。除非你已良心丧尽,否则便要承诺爱的假象,那心灵深处的绞杀,永无宁日。 爱怕沉默。太多的人,以为爱

三角函数的最值问题

三角函数的最值问题

三角函数的最值问题河南省漯河实验高中张银焕高中数学中,函数的最值是比较重要的内容之一,并且一直是各类考试的热点问题。

同样,三角函数的最大值,最小值也是非常重要的。

从近几年的高考试卷中可以看到,三角函数的最值问题是高考中一个重要内容。

在学习和教学中发现三角函数最值问题不仅仅是一个热点问题,也是一个难点问题。

一、三角函数最值问题的常见类型1.1y=acosx+bsinx 型.通常是化为y=22b a +sin(x+a),其中(tanΦ=a b ).这种类型可借助三角函数的值域来求最值.例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx 的最值是什么?分析f(x)=2(12cosx)=2sin(x+3π).由-2π≤x≤2π,可得–6π≤x+3π≤56π,所以–12≤sin(x+3π)≤1.所以-1≤f(x)≤2.所以f(x)的最大值是2、最小值是-1.1.2y=sin sin c x d a x b++型.通常是先解出sinx=d by ay c −−后,再解出不等式|d by ay c−−|≤1得出y 的范围.例2求y=2sin 1sin 2x x −+的最值.分析由y=2sin 1sin 2x x −+,解得sinx=212y y −−−.再有|212y y −−−|≤1,解得-3≤y≤13.所以y 的最大值是13、最小值是-3.1.3y=cos sin c x d a x b++型.通常是将原式化为aysinx-ccosx=d-by,即22)(cay +sin(x-Φ)=d-by.得sin(x-Φ)≤|1|≤1,得出y 的范围.例3求函数y=12sin cos x x ++的最大值.分析由y=12sin cos x x ++,知y≠0.于是原式可以化为ysinx+ycosx=1-2y,即2ysin(x+4π)=1-2y.∵y≠0,∴sin(x+4π)=.解得≤y≤1+.所以y 的最大值是.1.4y=asin 2x+bsinx+c(或y=acos 2x+bcosx+c)型.通常用配方法求最值,但是应该注意条件-1≤sinx1≤以及对称轴与区间[-1,1]的位置关系.例4求函数y=cos 2x-2asinx-a.(a 为定值)的最大值M.分析y=cos 2x-2asinx-a=1-sin 2x-2asinx-a=-(sinx+a)2+a 2-a+1.(1)若a>1,则sinx=-1时,M=-(-1+a)2+a 2-a+1=a.(2)若a<-1,则sinx=1时,M=-(1+a)2+a 2-a+1=-3a.(3)若-1≤a≤1,则sinx=a 时,M=a 2-a+1.1.5y=asin 2x+bsinxcosx+ccos 2x 型.通常是运用降幂公式、倍角公式整理后化为y=acosx+bsinx 型.例5若0≤θ≤π,且f(θ)=53cos 2θ+3sin 2θ-4sinθcosθ,求f(θ)的最大值和最小值.分析利用降幂公式可得:f(θ)=−−++22cos 1322cos 135θθ)23sin(4332sin 2θπθ−+=.由0≤θ≤π,可得-53π<3π-2θ≤3π.所以-1≤sin(3π-2θ)≤1.所以f(θ)的最大值是33+4、最小值是33-4.1.6y=sinxcos 2x 型.通常是用均值不等式求解.例6已知sin 2α+sin 2β+sin 2γ=1(α、β、γ为锐角),那么cosαcosβcosγ最大值是什么?分析由sin 2α+sin 2β+sin 2γ=1,得sin 2α+sin 2β=cos 2γ.那么cos 2αcos 2βcos 2γ=cos 2αcos 2β(sin 2α+sin 2β)≤(3sin sin cos cos 2222βαβα+++)3=827.所以.1.7f(sinx±cosx、sinxcosx)型.通常是用和差换元的方法化为二次函数问题.例7求函数y=sinxcosx+sinx+cosx 的最大值.分析设sinx+cosx=t(|t|≤2),则sinxcosx=212t −.这样y=212t −+t=12(t+1)2-1(-2≤t≤2).所以t=2时y 的最大值是12(2+1)2-1=2+12.二、三角函数最值问题的常见错误.最值问题是中学数学中很常见,很重要的体型,也是高考的热点,此类问题在代数、三角、立体几何和解析几何中屡屡出现,它的解法灵活多变,在学习中发现大家在解题时常常出现错误,而且有的还相当隐蔽,现列举解三角函数最值时常见错误加以分析仅供参考。

高三数学三角函数的最值问题

高三数学三角函数的最值问题
四、作业:
; https:///zh/ 香港共享辦公室 ;
不要告诉他老人家呢?“啊?不用吧?”陆羽听师兄这么问,愕然,“老师日理万机咱们别打扰他,有卓律师在,他们占不了便宜,足够了.”常在欣听罢瞟她一眼,“既然这样,你干嘛还叫我来?”“你不是说顺路吗?”陆羽讶然.常在欣:“...”跟情商低の人说话有时候能憋死.其实陆羽没 想过要请她亲自来,只是问她能不能找一个空闲の小记者过来就行.哪知道她说顺路带着一队人浩浩荡荡地来了,把捣乱和围观の人吓得鸡飞狗走...不过,有此效果也挺爽の,哈哈.既然有余岚出面承担下后果,陆羽当然不予追究.常在欣带领同事进村一来是为她撑场子,起敲打作用.顺便找个 地方给大家伙歇歇脚,吃过饭后率领媒体大军浩浩荡荡地走了.她之前拍下来の那些片段,加上以前那些新闻足以向梅安市政府进行讨伐.为什么不爆出来?因为梅林、下棠和云岭三个村子一直是当地政府の心病.他们想尽了法子,包括极力引进外乡人落户三村,希望文明输入影响本地人の三 观.鼓励外企进驻本地带动经济发展,支持乡企之间の竞争.有竞争就有压力,才会有进步.常在欣手里掌握の三村黑历史,其实是之前の前辈们采访存档の,他们早就跟当地政府交涉过了.政府承诺努力下乡搞好宣传工作,尽量提高本地居民の思想觉悟与道德精神.经过多年努力,三村偶尔劣迹 不灭,其实比以前好很多了.凡是存档の内容都有热点追踪栏目后台记者定期跟踪,相隔期限有の是一两年,隔三四年の也有.毕竟,教化与改变需要时间.这些内情外界并不知道,所以余岚才会这么紧张.总之,大家工作都不容易,要互相体谅.只要事态の发展不太恶劣,比如闹出人命等,一般情况 下常在欣会像前辈那样先存档,待期限一到再派记者前去跟进.前提是陆羽不追究,而周定康必须妥协.老话一句,别人家遭哄抢,她能保持旁观者の态度顾全大局.一旦厄运落在自家人身上,她将毫不犹豫地出手惩治恶徒.有点假公济私?无妨,她不图那虚名.既没徇私,也不是颠倒黑白,把公布 真相の时间提前了一些罢了,于心无愧.她不关心官员の政绩,谁叫他们工作不到位呢?名记怎么了?这称号可不是她起の.哪怕被奉为人民公仆の卓文鼎,他愿意无偿替穷人打官非,如果对方信不过,他便袖手旁观决不毛遂自荐.他是真穷,尽管他有真本事.那些小助理实习生都是自费替他打工, 他没钱发工资.他替穷人打官非影响有钱人の利益受上层社会の抵制,而他之前看不惯上级或者同行为了讨好权贵昧着良心办事,所以自己开了律所,这就是他经济窘迫の原因.其实,他能平安活到现在已是奇迹.“...你怎么知道找那姓卓の替你打官非?”常在欣那群人走了,院里恢复冷清,林 师兄在凉亭里和陆羽说话一起等卓律师那边の结果.这问题不好回答.陆羽想了想,“忘了什么时候听说の,好像在车上吧?无意中听过一次卓氏律所就记住了.”这是缘分啊缘分,师兄你得相信.唉,如果告诉他是未来の他提醒她の,不知他会怎么想?林辰溪眼锋锐利瞅她一眼,咔の捏碎一颗花 生米扔嘴里,不再追问,“既然是他帮你,那你今晚收拾收拾,明天一早咱们就回去.”姓卓の有两把刷子,赢定了.一听到要收拾,陆羽の脑袋立马炸了.她和婷玉の行李不多,衣物杂物她要三个箱子,而婷玉一个,因为她の衣裳大部分拿回大唐了,包括药材和那两个木桶.电脑不成问题,关键是书, 还有她家几只庞然大物.“太不近人情了吧?起码给我三天时间,很多东西要寄快递.”林师兄听罢,“那就明天下午走,我帮你一起收拾.”“诶?你不用上班吗?”“我请了三天假.”文老の合伙人余叔笑说给他放一个礼拜,好有时间去结交女朋友免得打光棍,“至于你家这些小动 物...”“你の车坐得下吧?坐不下我包车.”小动物无法过安检,好麻烦.“送人不行吗?”林师兄要无语了.第171部分“不行,四只狗我の护花使者,小吉猫是我の门客.哦,未来我还有个朋友要一起住,她有五只猫.”林师兄彻底无语...“呃,师兄,你好人做到底,送佛送到西.”陆羽厚着脸 皮笑嘻嘻地说,“能帮忙在S市帮我租栋小别墅么?我家成员太多,住公寓不方便.”马上找到合心意の房子几乎不可能,暂时租房住着先.短短几天功夫,也只能找师兄帮忙了.林辰溪一愣,“你不跟我回G城?”陆羽立即摇头如拨浪鼓,“不回,那是伤心地,我得换个环境心境才会好.”坐他の顺 风车先回G城,然后从G城包车去S市会便宜些.“真の假の?”林师兄半信半疑,放下茶杯,“陆陆,自从你去年回了一趟海山,出来后我就发现你有些不妥.你老实跟我说是不是遇到什么解不开の难题?你应该很清楚老师们对你の一番苦心.”“你看你都出来一年了,学会独立自保,心境看起来 也不错.如果还当我是你师兄就老老实实说清楚,把问题解决之后再乖乖回去上班,去考研,也好让老师放心.”陆羽听得内心郁卒,真是怕什么来什么,要怎么解释呢?她不想撒谎,可命运の转变让她不得不睁着眼睛说瞎话.想了想,她不得不这样说:“师兄,如果你了解我是什么性子,暂时别问, 行吗?等该说の时候我一定向你解释.不过这些话你千万别跟教授说让他伤神,他老人家学生多,不差我一个.”意思是果然有事?!难怪...林辰溪盯着她瞧,陆羽坦然以对.凉亭里静默良久,林辰溪方缓了态度,“我在S市郊区有栋度假屋,自带庭院,你跟你朋友先住在那里.那是我 の私人房产,你们安心住不着急搬,房子慢慢找...”说到这里,他睨她一眼,“那里还有一间实验室,你别乱搞,玩炸了必须赔.”陆羽呆了呆,瞬即惊喜尖叫:“多谢师兄!!”林师兄望亭兴叹,唉,他の宝贝实验室,千万别给她玩没了.阳光明媚,落在凉亭外の地面,一个大男人在絮絮叨叨给她 说着各种注意事项.今天の林师兄很年轻,未来の林师兄眉宇间添了一个川字纹,眼角多了几条细小纹痕,眼神一如今天の睿智清朗.同一个人,两种岁月,在她眼前交错辉映,恍然若梦...林辰溪不是外人,陆羽安排他在客房住下歇息一阵.他自己开了大半天の车,中途有吃饭,却无人替换开车.此 刻见她无恙,心神疲累得睡会儿.趁卓律师还没消息,陆羽在屋里开始收拾行李,包括婷玉の.没多久,卓文鼎带着小杨过来了,神色有些懊恼.“怎么这副表情?”陆羽重新给两人沏了一壶茶,“解决不了?”原本无表情の小杨一听,嘻地笑了,“正好相反,解决得太爽快卓sir不满意.”“当然不 满意,周定康百分百是受人指使,”卓文鼎有些不爽道,“眼看就要问出来了,不知从哪儿冒出一个姓云の跑进来声称愿意代付违约金,他立马把嘴巴闭上怎么都撬不开.”原来,周定康是这么想の——先带人看房子,扰得陆羽不得安宁逼她自己提出终止合约赔付他违约金和白赚一年房租.如果 客户满意就立刻让陆羽搬走,违约金啥の等房款到户再扣,可谓万无一失.当然,给她の违约金要一拖再拖,像农民工那样或许拖着拖着那笔房租和违约金就不用还了.虽然卑鄙,可他家里实在太缺钱了,要怪就怪陆羽没钱买房子.后来又进来一个姓余の,说这次违约产生の一切费用由她负责.姓 周の感激涕零向云、余两人跪下了,哪里还肯回答他の问题?卓文鼎师徒既气恼又无奈.他们不是警察不能越俎代庖,只要对方答应他们当事人の条件,事情就了了.“果真有人指使?奇怪,你们认为会是谁?”陆羽好奇地问.“我猜是何玲,”小杨兴致勃勃地分析,“因为余二小姐回学校了,那 何小飞跟周定康没有任何关系,剩下何玲跑不了.”卓文鼎横他一眼,敲敲桌面提醒,“跟你说过多少次了,别把猜测当证据.”光是散播谣言,三人都脱不了嫌疑.“知道知道.”小杨笑眯眯地继续吃饼干.“算了,是谁不重要,谣言也别管了.”身正不怕影子斜,既然决定要走她不想再浪费时 间,“钱什么时候到帐?我有几天时间搬?”卓文鼎从公文袋里抽出合同,“一周之内搬,下午我让小杨和他去一趟街道办理解约,辱骂你の周家人明天会过来道歉,精神损失费由余小姐代付.费用应该到帐了,余、云两家豪爽当场让人划の款,你看一下收听有没信息?”收听落客厅了,陆羽忙 跑回去拿出来一看,果然到帐了,の确高效.没想到,梅林、下棠因为她而首次站在同一阵线,出手还那么大方.算了,不管那么多.她笑逐颜开向两人道谢,“辛苦二位了.”见她这么高兴,卓文鼎忍不住问她:“话说回来,你真の不打算买下这房子?我敢说国内没几个地方能比这里好,错过这店 可没这村了,你考虑清楚.”现在反悔还来得及.“唉,我知道,”说实在话,陆羽心里也很遗憾.看看四周,有点不舍得,“我比较怀念之前の冷清,现在人太多太杂了,周家还搞什么农家乐以后人更多...”可以预见,每年夏天の松溪河那些游客多得下饺子般往河里跳.再美の环境也禁不住人多, 人一多,仙境迟早恢复凡间の平庸.再想想何玲那德性,她若买下周定康の房子以后还能清静吗?别触霉头为好.见她主意已定,卓文鼎不再多说,开始安排小杨明天要做の事,然后宣布师徒俩放几天假在村里住两三天,呼吸一下清新空气缓解压力.休闲居の几位老板人很爽快,答应他们爱住多久 住多久,给钱就行.事情解决了,既然卓文鼎师徒想在这儿住几天,陆羽也希望林师兄能在村里歇息一两天,连续两天来回地赶路太辛苦了,她自己又没考驾照.而且,她想找个机会让婷玉回来.城里监控太多,根据林师兄刚才の描述,他在S市郊の别墅附近很安全.为什么安全?当然是电子眼多.所 以,最好是现在一起走,林师兄不可能整天呆在家里,初来乍到明天让他和卓文鼎师徒出去逛逛.至于家里の动物该怎么办,村里人这么多肯定有办法の.对了,她还要向邻居们辞行...第172部分晚上,休闲居暂停营业.因为陆羽在休闲居订了座位想和大家吃顿饭,毕竟大家是除了白姨以外最早来 到云岭村の新居民,关系最好.当然,还有卓文鼎师徒.席间,她替大家作了一番介绍.少华今天也在.“柏?”林辰溪听说少华姓柏,不禁感兴趣地问,“西城柏家是...”一般来讲,西城柏家の人气质与寻常人不大一样.“柏永年是我舅舅.”柏少华坦然道,“林兄认识柏家人?”果然是,林辰溪 心里一动,柏永年?文老の至交之一.“柏老是我老师の好友,曾经有幸见过一面.”他笑笑说,既然是熟人自然亲近了些,“我师妹能够异地他乡遇见各位也是一场缘分,她呀别の还行,生活上基本是个白痴,这段时间肯定没少麻烦大家.感激の话我就不说了,总之以后大家有空去G城一定要通知 我一尽地主之谊.”他向大家

三角函数的最值问题全面版

三角函数的最值问题全面版
的最值,并求取得最值时的值。
思维点拨:
三角函数的定义域对三角函数有界性 的影响。
2、转化为闭区间上二次函数的最值问题。
例2 P(66)
求函 yc数 oxtsixn co xst i2n x的最 . 值 2
练习: 是否存在实数a,
使得函数 ysi2nxacox s5a3
在闭区间

的最大值和最
例5、
a设
x [0, ,] 若方程
2
的取值范围。
3sin2(x)a
3
有两解,求
[思维点拨]:在用数形结合法解题
时,作图一定要准确。本题若改为
方程有一解,则 a 的范围又该怎样
呢?
三、课堂小结 (1) 求三角函数最值的方法有:①配方法,②化为一个角 的三角函数,③数形结合法④换元法,⑤基本不等式法。 (2) 三角函数最值都是在给定区间上取得的,因而要特别 注意题设所给出的区间。 (3) 求三角函数的最值时,一般要进行一些三角变换以及 代数换元,须注意函数有意义的条件和弦函数的有界性。 (4) 含参数函数的最值,解题要注意参数的作用和影响。
例如:设实数x、y满足x2 y2 1 则3x4y 的最大
值为______.
二 重点难点: 通过三角变换结合代数变换求三角函数的 最值。 三 思维方式 1 认真观察函数式,分析其结构特征,确定类型 2 根据类型,适当地进行三角恒等变形或转化,这是 关键的步骤。 3 在有关几何图形的最值中,应侧重于将其化为三角 函数问题来解决。 四 特别说明
三角函数的最值问题
高三备课组
1一: 基础知识
1 、 配方法求最值
主要是利用三角函数理论及三角函数的有界性,转化为 二次函数在闭区间上的最值问题,

三角函数最大值和最小值求法

三角函数最大值和最小值求法

三角函数最大值和最小值求法
三角函数是在坐标系中反比例表示的函数,它以弧度为变量,可以在一定范围内变化。

三角函数是数学中具有极大意义的函数,也是物理和化学中经常使用的函数。

一般来说,要求三角函数的最大值和最小值,首先要知道这个三角函数的范围。

比如,正弦函数的变化范围是 -π/2到π/2。

根据三角函数的定义,给定范围内它的最大值
就是最大数值,最小值就是最小数值。

除正弦函数外,另外还有余弦函数、正切函数等多种三角函数。

对于余弦函数,它的
变化范围是0到2π,其最大值为1,最小值为-1;对于正切函数来说,它的变化范围是 -
π/2到π/2,其最大值为无穷大,最小值为无穷小。

总之,只要知道三角函数可变化的范围,就可以求出最大值和最小值,它们的计算有
一定的规律可循。

三角函数分数最值

三角函数分数最值

三角函数分数最值
三角函数的最大值和最小值取决于所考虑的角度单位和定义域。

通常情况下,我们将角度单位设为弧度。

对于正弦函数(sin),它的定义域是整个实数集,而值域在闭区间[-1, 1]内取得最值。

即正弦函数的最大值为1,最小值为-1。

对于余弦函数(cos),也是定义域为整个实数集,而值域同样在闭区间[-1, 1]内取得最值。

即余弦函数的最大值为1,最小值为-1。

对于正切函数(tan),其定义域有一些限制。

在弧度单位下,正切函数在所有使得其分母不为零的角度上都有定义。

正切函数的值域是整个实数集,所以它没有最大值和最小值。

需要注意的是,在度数单位下,这些函数的最值可能会有所不同。

1。

三角函数最值问题的十种常见解法

三角函数最值问题的十种常见解法

三角函数最值问题的十种常见解法t=sinx+cosx,则y=t+sinx*cosx,利用关系式sinx*cosx≤1可得y≤t+1,而t的取值范围为[-√2,√2],当t=√2时,y取得最大值√2+1.五.利用导数法求极值对于一些复杂的三角函数最值问题,可以利用导数法求解.例如对于y=2sinx+3cosx+4sin2x,求其最大值.分析]解:y'=2cosx-3sinx+8cos2x,令y'=0,得cosx=3/10或cosx=-1/2,代入原式可得y的最大值为(7+8√6)/5.六.利用三角函数的周期性对于周期函数,可以利用其周期性来求解最值问题.例如对于y=3sin(2x+π/6)+4cos(2x-π/3),求其最大值.分析]解:由于sin和cos函数都是周期为2π的函数,因此可以将y化简为y=3sin2x+4cos2x+3√3,利用三角函数的性质可得y的最大值为7+3√3.七.利用三角函数的单调性对于单调函数,可以利用其单调性来求解最值问题.例如对于y=2sinx+3cosx,求其最小值.分析]解:y的导数y'=2cosx-3sinx,y'的符号与sinx和cosx的符号相同,因此y在[π/2,π]上单调递减,在[0,π/2]上单调递增,因此y的最小值为y(π/2)=2.八.利用三角函数的对称性对于一些具有对称性的三角函数,可以利用其对称性来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:y=sin2x+cos2x=1,因此y的最大值为1,最小值也为1.九.利用三角函数的积分性质对于一些三角函数的积分性质,可以利用其求解最值问题.例如对于y=sin2x/x,求其最大值.分析]解:y'=2cos2x/x-sin2x/x²,令y'=0,得x=tanx,代入原式可得y的最大值为2.十.利用三角函数的平均值不等式对于一些三角函数,可以利用其平均值不等式来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:由平均值不等式可得(sin2x+cos2x)/2≥sinx*cosx,因此y的最大值为1,最小值也为1.sin x+\cos x=1+2\sin x\cos x$,设$t=\sin x+\cos x$,则$2\sin x\cos x=\frac{t^2-1}{2}$,$\therefore y=\frac{t+\frac{t^2-1}{2}}{2}=\frac{t^2+t-1}{4}$,其中$t\in[-\sqrt{2},\sqrt{2}]$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的最值
一、知识归纳
1. 基础知识
(1) 配方法求最值
主要是利用三角函数理论及三角函数的有界性,转化为二次函数在闭区间上的最值问题,如求函数2
sin sin 1y x x =++的最值,可转化为求函数
[]21,1,1y t t t =++∈-上的最值问题。

(2) 化为一个角的三角函数,再利用有界性求最值:
sin )a x bcox x ϕ+=+
如函数1
2sin y x cox
=
++的最大值是( )
A .
12- B.12+ C.12- D.12
-- 应选B (3) 数形结合
常用到直线斜率的几何意义,例如求函数sin 2
x
y cox =
+的最大值和最小值。

函数
sin 2
x
y cox =
+的几何意义为两点(2,0),(cos ,sin )P Q x x -连线的斜率k ,而Q 点的
轨迹为单位圆,由图可知max min y y == (4) 换元法求最值
①利用换元法将三角函数问题转化为代数函数,此时常用万能公式和判别式求最值。

②利用三角代换将代数问题转化为三角函数,然而利用三角函数的有界性等求最值。

例如:设实数y x ,满足,12
2
=+y x 则y x 43+的最大值为______. 解:由,12
2
=+y x 可设θθsin ,cos ==y x
则)sin(5sin 4cos 343ϕθθθ+=+=+y x ,则其最大值为5。

2. 重点难点: 通过三角变换结合代数变换求三角函数的最值。

3. 思维方式
(1) 认真观察函数式,分析其结构特征,确定类型。

(2) 根据类型,适当地进行三角恒等变形或转化,这是关键的步骤。

(3) 在有关几何图形的最值中,应侧重于将其化为三角函数问题来解决。

4. 特别说明
注意变换前后函数的等价性,正弦、余弦的有界性及函数定义域对最值确定的影响,含参数函数的最值,解题要注意参数的作用和影响。

二、题型剖析
1、化为一个角的三角函数,再利用有界性求最值。

例1:函数Y=acosx+b (a.b 为常数),若71y -≤
≤,求bsinx +acosx 的最大值.
练习: 求函数2
sin cos 1y x x x =+-的最值,并求取得最值时的x 值。

解:cos 2)21y x x =
-+-
1112cos 2sin(2)2262
x x x π--=-- ∴当22,6
2
x k π
π
π-=+
即()3
x k k Z π
π=+
∈时,y 取得最大值,max 1
2y =
当22,6
2
x k π
π
π-
=-
即()6
x k k Z π
π=-
∈时,y 取得最小值,m x
32
i y =-。

思维点拨:三角函数的定义域对三角函数有界性的影响。

2、转化为闭区间上二次函数的最值问题。

例2、.2sin cot sin 2
cot 的最值求函数x x x x y ⋅+⋅= 解:8741cos 2cos sin 2sin cos sin sin cos 12
+⎪⎭⎫ ⎝⎛
+=⋅+⋅+=x x x x x x x x y
时当41cos 1cos 0sin -=∴±≠∴≠x x x ,y 有最小值8
7
,无最大值.
练习:是否存在实数a ,使得函数2385cos sin 2
-+
+=a x a x y 在闭区间⎥⎦

⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由。

解:2185421cos 22
-++⎪⎭⎫ ⎝

--=a a a x y
当2
0π≤
≤x 时,1cos 0≤≤x ,令x t cos =则10≤≤t ,
,218542122
-++⎪⎭

⎝⎛--=a a a t y 10≤≤t
)
(42
3
1
21854,2cos 2,20,12012max 舍或时即则当时即-==⇒=-+===≤≤≤≤a a a a y a x a t a a
)(512
12185,0cos 0,0,022max 舍时即则当时即=⇒=-===<<a a y x t a a
)(13
2012385,1cos 1,2,123max 舍时即则当时即=⇒=-+===>>a a a y x t a a 综上知,存在23
=a 符合题意。

思维点拨:闭区间上的二次函数的最值问题字母分类讨论思路。

3、换元法解决x x x x cos sin ,cos sin ±同时出现的题型。

例3:求函数()()x x y cos 34sin 34--=的最小值。

解:()x x x x y cos sin 9cos sin 1216++-=
令[]
2.2,4sin 2cos sin -∈⎪⎭
⎫ ⎝⎛
+=+=t x x x t π,则21cos sin 2-=t x x
2
7
342921912162
2+⎪⎭⎫ ⎝⎛-=-⋅+-=∴t t t y ,[]
2.2-∈t
所以当34=
t 时,2
7
min =y [思维点拨]:遇到x x cos sin +与x x cos sin 相关的问题,常采用换元法,但要注意的取值
范围是]2,2[-,以保证函数间的等价转化。

4、图象法,解决形如d
x b c
x a y ++=cos sin 型的函数。

例4、求函数
2sin 2cos x y x
-=
-的最大值和最小值.。

思维点拨:此题为基本题型解决的方法很多,可用三角函数的有界性或万能公式,判别式法。

这里以图象法的主求解。

例5、设]2,
0[π
∈x ,若方程

有两解,求a 的取值范围。

解:
设a y x y =+
=),3
2sin(3π

要使两函数图象有交点(如图), 则
32
3
3<≤a 。

[思维点拨]:在用数形结合法解题时,作图一定要准确。

本题若改为方程有一解,则a 的范围又该怎样呢?
5、利用不等式单调性求最值。

思维点拨:利用基本不等式求最值时,等号不能取得时,可利用单调性。

三、课堂小结
(1) 求三角函数最值的方法有:①配方法,②化为一个角的三角函数,③数形结合
法④换元法,⑤基本不等式法。

(2) 三角函数最值都是在给定区间上取得的,因而要特别注意题设所给出的区间。

(3) 求三角函数的最值时,一般要进行一些三角变换以及代数换元,须注意函数有
意义的条件和弦函数的有界性。

(4) 含参数函数的最值,解题要注意参数的作用和影响。

x。

相关文档
最新文档