最新部编版人教数学七上3.4 第1课时产品配套问题和工程问题导学案及反思精品

合集下载

七年级数学上册 3.4 实际问题与一元一次方程 第1课时 产品配套问题与工程问题导学案 (新版)新人教版

七年级数学上册 3.4 实际问题与一元一次方程 第1课时 产品配套问题与工程问题导学案 (新版)新人教版

3.4 实际问题与一元一次方程第1课时 产品配套问题与工程问题1. 进一步熟悉一元一次方程的解法.2. 会用一元一次方程解决配套问题和工程问题.自学指导看书学习第101、102页例1、例2的内容,思考下列问题.1. 前面学习的解一元一次方程的步骤有哪几步?2. 解决配套问题和工程问题应注意什么?知识探究1. 解一元一次方程的一般步骤为:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.2. 解决配套问题的关键是找出参加配套的两个量之间的比例关系进而列方程求解.3. 解决工程问题的关键:(1) 把总的工作量看作1;(2)工作量=人均效率×人数×时间;(3)三者之间的关系:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率.自学反馈1.某车间每天能生产甲种零件120个,或者乙种零件80个.甲、乙两种零件分别取3个、2个才能配成一套.要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解:设安排生产甲种零件x 天,由题意,得120x ∶80(30-x )=3∶2.解得:x=15.30-x=30-15=15(天).答:安排生产甲种零件15天,生产乙种零件15天.2.一件工作由一个人做要50小时,现在计划由一部分人先做5小时,再增加2人和他们一起做10小时,完成了这项工作,问:先安排多少人工作?解:设先安排x 人工作,由题意,得:501×5x+501(x+2)×10=1.解得,x=2. 答:先安排2人工作.活动1:小组讨论1.某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?解:设挖土x 人,由题意得5x=3(48-x).解得,x=18.48-x=48-18=30(人).答:挖土18人,运土30人.2.某工程要按时完工,甲队独做6天可以完工,乙队独做12天可以完工,现由两队合作2天后,余下的由乙队独做,刚好按期完工,问该工程的工期几天?解:设工程的工期x 天,由题意,得:2(61+121)+121(x-2)=1.解得,x=8. 答:该工程的工期8天.活动2:活学活用1.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁片,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?解:设x 张做盒身,由题意,得:16x ∶48(100-x )=1∶2.解得,x=60.100-x=100-60=40(张).答:用60张制盒身,40张制盒底.2.一本稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成,现在由两人合打7小时,余下部分由乙完成,还需多少小时?解:设还需x 小时,由题意,得:121×7+(121-201)x=1.解得,x=12.5. 答:还需12.5小时.3.整理一批图书,由一个人做要40小时完成.现在,计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?解:设应先安排x 人工作,由题意,得:401×4x+401(x+2)×8=1.解得,x=2.答:应先安排2人.配套问题和工程问题的解题关键.。

人教版七年级数学上册3.4《实际问题与一元一次方程(1)-配套问题和工程问题》教案

人教版七年级数学上册3.4《实际问题与一元一次方程(1)-配套问题和工程问题》教案
总体来说,今天的课堂教学取得了一定的效果,但也暴露出了一些问题。我会在反思和总结的基础上,针对学生的实际情况,调整教学策略,以期在下一节课中取得更好的教学效果。同时,我也会关注学生的个体差异,尽可能给予每个学生个性化的指导,帮助他们克服学习中的困难。
最后,我觉得自己在课堂上的语言表达和引导方式还有待改进。在今后的教学中,我将努力提高自己的教学水平,用更生动、更贴近学生生活的例子来讲解知识,使课堂氛围更加活跃,让学生在轻松愉快的氛围中学习数学。
人教版七年级数学上册3.4《实际问题与一元一次方程(1)-配套问题和工程问题》教案
一、教学内容
人教版七年级数学上册3.4节《实际问题与一元一次方程(1)-配套问题和工程问题》主要包括以下内容:
1.配套问题:通过实际生活情境,引入配套问题的概念,让学生理解并掌握如何建立一元一次方程解决配套问题。
-例如:某一个乙产品需要4个A零件和1个B零件。若工厂现有A零件20个,B零件18个,求甲、乙两种产品各能生产多少个?
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了如何运用一元一次方程解决配套问题和工程问题。通过实践活动和小组讨论,我们加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在小组讨论环节,学生们表现得积极主动,能够围绕实际问题展开讨论,并提出自己的观点。但在引导讨论时,我发现部分学生对于开放性问题的思考还不够深入,这可能是因为他们对问题的理解不够透彻。为此,我将在以后的课堂中尝试用更多实例和问题引导学生,帮助他们深入思考。
实践活动环节,学生们通过分组讨论和实验操作,加深了对一元一次方程的理解。但从实验结果来看,部分学生对实验操作还不够熟练,这可能影响他们对知识的掌握。因此,我考虑在接下来的课程中增加实践活动的时间,让学生有更多的机会动手操作,提高他们的实践能力。

3.4产品配套问题与工程问题(教案)2023-2024学年七年级上册数学人教版(安徽)

3.4产品配套问题与工程问题(教案)2023-2024学年七年级上册数学人教版(安徽)
案例分析的时候,我尽量选择了贴近学生生活的例子,这样他们能够更容易地理解问题,并参与到解决问题的过程中。但是,我也观察到一些学生在将实际问题转化为数学模型时遇到了困难。这告诉我,在讲解重点难点时,需要更加细致和耐心,可以多用一些图表和实物辅助教学,让学生更直观地感受数学模型。
实践活动和小组讨论环节,学生们的参与度很高,他们能够在小组内进行有效的沟通和合作。不过,我也注意到有些小组在讨论时偏离了主题,这可能是因为他们对问题的理解还不够深入。在未来的教学中,我需要更加明确讨论的主题和目标,适时给予指导和反馈。
3.重点难点解析:在讲授过程中,我会特别强调如何建立等量关系和列出方程这两个重点。对于难点部分,比如多个变量之间的关系,我会通过实际案例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与产品配套或工程问题相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,模拟分配物品,让学生通过实际操作体验如何建立等量关系。
3.通过实例分析,让学生掌握如何从实际问题中抽象出等量关系,列出方程,并求解。
-产品配套问题:例如,生产某种产品需要A、B两种零件,A零件每件重2千克,B零件每件重3千克,若A、B两种零件配套使用,问有若干重量时,如何分配A、B两种零件?
-工程问题:例如,某项工程由甲、乙两人合作完成,甲单独完成需要10天,乙单独完成需要15天,若甲、乙合作,几天可以完成该工程?
三、教学难点与重点
1.教学重点
-理解并掌握产品配套问题与工程问题的特点,能从实际问题中抽象出等量关系,建立方程模型。
-学会运用方程解决实际问题,包括分析问题、列出方程、求解方程等步骤。
-掌握如何在实际问题中合理分配和优化资源,体会数学在生活中的应用。

人教版七年级数学上册 导学案:3.4 第1课时 产品配套问题和工程问题【精品】

人教版七年级数学上册 导学案:3.4 第1课时 产品配套问题和工程问题【精品】
议一议
工程问题中,涉及哪些量?它们之间有什么数量关系? (1)工程问题中,涉及的量有工作量、_________________________________________; (2)请写出这些量之间存在的数量关系: _________________________________________________________________________________________ _________________________________________________________________. 典例精析 例 2 加工某种工件,甲单独作要 20 天完成,乙只要 10 就能完成任务,现在要求二人在 12 天内完成任 务.问乙需工作几天后甲再继续加工才可正好按期完成任务? 【提示:可运用表格列出题中存在的各种量.】
B 部件. 现要用 6 立方米钢材制作这种仪器,应用多少钢材做 A 部件,多少钢材做 B 部
件,才能恰好配成这种仪器?共配成多少套?
3.探究点 2 新 知讲授 (见幻灯片 13-22)
探究点 2:工程问题 填一填 一件工作,甲独做需要 6 天完成,乙独做需要 5 天完成. (1)若把工作总量设为 1,则甲的工作效率(甲一天完成的工作量)是 ,乙的工作效率 是. (2)甲做天完成的工作量是 ,乙做天完成的工作量是 ,甲乙合做天完成的工作量 是.
课堂探究
配套 PPT 讲 授
1.情景引入 (见幻灯片 3) 2.探究点 1 新 知讲授 (见幻灯片 4-12)
一、要点探究
探究点 1:产品配套问题
填一填:
1.某厂欲制作一些方桌和椅子,1 张方桌与 4 把椅子刚好配成一套,为了使桌椅刚好配
套,商家应制作椅子的数量是桌子数量的 倍. 方桌与椅子的数量之比是

《3.4 第1课时 产品配套问题和工程问题》教案、同步练习、导学案(3篇)

《3.4 第1课时 产品配套问题和工程问题》教案、同步练习、导学案(3篇)

3.4 实际问题与一元一次方程《第1课时产品配套问题和工程问题》教案【教学目标】1.以“探究”的形式讨论如何用一元一次方程解决实际问题;(重点,难点) 2.体会一元一次方程与实际生活的密切联系,加强数学建模思想的应用意识;(重点)3.培养运用一元一次方程分析和解决实际问题的能力.(重点)【教学过程】一、情境导入近来我们市要修一条公路,公路大约长120千米,今天一早,有两个工程队找到了局长,甲工程队说:“包给我们,保证30天完成”;乙工程队说:“包给我们,保证20天就完成”.如果你是局长,会怎么办呢?二、合作探究探究点一:产品配套问题某车间有工人660名,生产一种由一个螺栓和两个螺母组成的配套产品,每人每天平均生产螺栓14个或螺母20个.如果你是这个车间的车间主任,你应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?解析:本题找出等量关系为:生产的螺栓数×2=生产的螺母数,把相关的代数式代入即可列方程.解:设分配x人生产螺栓,(660-x)人生产螺母,依题意得14x×2=(660-x)×20,解得x=275,∴660-x=385.答:应分配385人生产螺母,275人生产螺栓.方法总结:此题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解决本题的关键.探究点二:工程问题一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.解:设乙队还需x天才能完成,由题意得1 9×3+124(3+x)=1,解得x=13.答:乙队还需13天才能完成.方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.三、板书设计1.配套问题:找出等量关系2.工程问题:(1)工程总量=效率×时间.(2)各部分的工程和=工作总量=1.【教学反思】本节课以生活中常见的一个问题展开,提高学生的兴趣,让学生们认识到数学知识与我们的实际生活息息相关.然后通过例题教学,为学生提供了探索空间,通过猜测、验证、质疑、讨论、解疑等一系列活动,充分调动学生学习的积极性.让学生在实践中获得解决问题的方法,得到学习的乐趣.3.4实际问题与一元一次方程《第1课时实际问题与一元一次方程(1)》同步练习能力提升1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x元,那么下面所列方程正确的是( )A.5(x-2)+3x=14B.5(x+2)+3x=14C.5x+3(x+2)=14D.5x+3(x-2)=142.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个.现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1∶2配套,为求x列出的方程是( )A.12x=18(28-x)B.12x=2×18(28-x)C.2×18x=18(28-x)D.2×12x=18(28-x)3.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( )A.54B.27C.72D.454.一项工程,甲单独做需10天完成,乙单独做需6天完成,现由甲先做2天,乙再加入合作,完成这项工程共需多少天?若设完成这项工程共需x天,依题意可得方程( )A.=1B.=1C.=1D.=15.敌我两军相距14 km,敌军于1 h前以4 km/h的速度逃跑,现我军以7 km/h 的速度沿敌军逃跑路线追击,几小时后可追上敌军?若设x h后可追上敌军,则可列方程为.6.已知三个连续奇数的和是51,则中间的数是.7.一水池装有甲、乙、丙三个水管,甲、乙是进水管,丙是出水管,单开甲管需要16分钟注满,单开乙管需要10分钟注满,单开丙管20分钟可将全池水放完.现在先开甲、乙两管4分钟后,接着关上甲管,开丙管,再过几分钟能将水池注满?设再经过x分钟能将水池注满,则根据题意,列方程得.8.李大叔购买了一台彩电和一台洗衣机,根据商场的促销返还标准:每购买一件家电,将按每件家电售价的13%进行现金返还.因此李大叔从商场领到了390元现金.若彩电的售价比洗衣机的售价高1 000元,求彩电和洗衣机的售价各是多少元?9.某工厂接受了加工一批零件的任务,按原来每天加工的定额,预计30天可以完成,由于进行了技术革新,工作效率比原来提高了50%,结果提前8天完成任务,并且多加工了24件,那么原来接受的加工任务是多少?原来每天加工的定额是多少?★10.在一本日历上,用一个长方形竖着圈住6个数(长方形的长为竖直方向),且它们的和为129,则这六个数分别为多少?创新应用★11.数学活动课上,李老师布置了这样一道题,“学校校办工厂需制作一块广告牌,请来2名工人师傅.已知师傅单独完成需3天,徒弟单独完成需6天,请你补充一个问题并解答.”(1)调皮的小明说:“让我试一试,”上去添了“两人合做需要几天完成?”请你就小明的补充进行解答;(2)小红说:“我也来试一试,”她添了“现由徒弟先做3天,再由两人合做,两人再需要合做几天完成?”请你就小红的补充进行解答.★12.已知一个由50个偶数排成的数阵.(1)如图,框内的四个数有什么关系?(2)在数阵中任意作一类似于(1)中的框,设左上角的数为x,那么其他三个数应怎样表示?(3)如果框内四个数的和是172,能否求出这四个数?(4)框内四个数的和可能是322吗?请说明理由.参考答案能力提升1.A2.D 因为螺栓和螺母按1∶2配套,所以螺栓的个数是螺母个数的一半,即相等关系为螺栓的个数×2=螺母的个数.3.D 设原来两位数的个位上的数字为x,则十位上的数字为(9-x),由题意列方程,得10x+(9-x)-[10(9-x)+x]=9,解得x=5,所以原来的两位数为45.4.C5.7x=4(x+1)+146.17 设中间的数为x,则x-2+x+x+2=51,3x=51,x=17.即中间的数是17.7.=1 根据相等关系“甲、乙两管4分钟注入的水+乙管x 分钟注入的水-丙管x分钟放出的水=1”,列方程=1.8.解:设洗衣机的售价是x元,则彩电的售价是(1000+x)元.根据题意,得13%x+13%(1000+x)=390,解得x=1000.所以1000+x=1000+1000=2000(元).答:彩电和洗衣机的售价分别是2000元、1000元.9.解:设原来接受的加工任务为x件,列方程,得(1+50%).整理,得2x=480.解得x=240.则原来每天加工的定额为=8(件).答:原来接受的加工任务是240件,原来每天加工的定额是8件.10.解:设最小的一个数是x,那么其他的5个数分别是x+1,x+7,x+8,x+14,x+15,根据题意,得x+x+1+x+7+x+8+x+14+x+15=129,解得x=14,x+1=15,x+7=21,x+8=22,x+14=28,x+15=29.答:这六个数分别是14,15,21,22,28,29.创新应用11.解:(1)设两人合做需要x天完成,列方程,得x=1,解得x=2.答:两人合做需要2天完成.(2)设两人再需要合做y天完成,列方程,得×3+y=1.解得y=1.答:两人再需要合做1天完成.12.解:(1)答案不唯一,如:对角上两个数的和相等.(2)x+2,x+12,x+14.(3)x+x+2+x+12+x+14=172,解得x=36,则这四个数为36,38,48,50.(4)不可能.由x+x+2+x+12+x+14=322,解得x=73.5.因为x为整数,所以x=73.5不合题意.所以框内四个数的和不可能为322.第三章一元一次方程3.4 实际问题与一元一次方程《第1课时产品配套问题和工程问题》导学案【学习目标】:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.【重点】:掌握用一元一次方程解决实际问题的基本过程.【难点】:能够准确找出实际问题中的等量关系,并建立模型解决问题.【课堂探究】一、要点探究探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是 .2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x生产圆形铁片x生产长方形铁片等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典例精析例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若每天每天生产的螺栓螺母刚好配套,设安排x人生产螺栓,可列方程为 .2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A 部件或240个B部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?探究点2:工程问题填一填一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是 .(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是 .议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、____________________________;(2)请写出这些量之间存在的数量关系:_________________________________________________________________ ________________________________________________________.典例精析例2加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1. 三个基本量:工作量、工作效率、工作时间. 它们之间的关系是: 工作量 = 工作效率×工作时间;合作的工作效率 =工作效率之和.2. 相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间. 3. 通常在没有具体数值的情况下,把工作总量看作1. 针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题实际问题的答案 一元一次方程的解 (x =a ) 【当堂检测】1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 .2. 一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做x 天完成,那么所列方程为 .3. 某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)设未知数,列方程 检验4.一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?。

新人教版七年级数学上册3.4实际问题与一元一次方程(一)——配套问题和工程问题教案

新人教版七年级数学上册3.4实际问题与一元一次方程(一)——配套问题和工程问题教案
22-x=12
答:应安排10名工人生产螺钉,12名工人生产螺母
把总重量设为1,则人均效率(一个人做1 h完成的工作量)为多少?
由x人先做4 h,完成的工作量为多少?
再增加2人和前一部分人一起做8 h,完成的工作量为多少?
这项工作分两段完成任务,两段完成任务的工作量之和为多少?
或1
解:设安排x人先做4 h.
新人教版七年级数学上册3.4实际问题与一元一次方程(一)——配套问题和工程问题教案
教学目标
1、培养学生数学建模能力,分析问题、解决问题的能力。
2、会通过列方程解决“配套题”问和“工程问题”
3、掌握列方程解决实际问题的一般步骤
重点
建立模型解决实际问题的一般方法
难点
通过列方程解决实际问题的过程,体会建模思想。
使用多媒体
多媒体课件
教学过程
教师活动
学生活动
说明或
设计意图









创设情境,引入新课
问题1:之前我们通过列方程解应用问题的过程中,大致包含哪些步骤?
在实际问题中,大家常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这类问题的方法是抓住配套关系,设出未知数,根据配套关系列出方程,通过解方程来解决问题.
练习2:一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?
学生独自完成




1、解配套问题的方法规律:
2、怎样解决有关工程问题
3、用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?

实际问题与一元一次方程 第1课时 产品配套问题和工程问题 教案2024-2025学年人教版数学

实际问题与一元一次方程 第1课时 产品配套问题和工程问题 教案2024-2025学年人教版数学

七年级上册5.3.1产品配套问题和工程问题 教案【学习目标】1.理解配套问题、工程问题的背景;2.会运用一元一次方程解决物品配套问题和工程问题;3.掌握用一元一次方程解决实际问题的基本过程.【学习重难点】重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.【学习内容】温故知新填一填:1.配套问题某车间工人生产螺柱和螺母,一个螺柱要配两个螺母,要使生产的产品刚好配套,则应生产的螺母数量恰好是螺柱数量的____倍.2.工程问题工作时间、工作效率、工作量之间的关系:①工作量=_______________________.②工作时间=_______________________.③工作效率=_______________________.探究点1:产品配套问题典例精析例1.某车间有22名工人,每人每天可以生产1 200个螺栓或2 000个螺母.1个螺螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,应安排生产螺栓吧和螺母的工人各多少名?想一想:本题需要我们解决的问题是什么?题目中哪些信息能解决人员安排的问题?螺母和螺栓的数量关系如何?如果设x名工人生产螺栓,怎样列方程?分析:每天生产的螺母数量是螺栓数量的2倍时,它们刚好配套.等量关系:螺母总量=螺栓总量×2解:设应安排x名工人生产螺栓,(22-x)名工人生产螺母依题意,得2000(22-x) =2×1200x解方程,得x=10.所以22-x=12.答:应安排10名工人生产螺柱,12名工人生产螺母.如果设x名工人生产螺母,怎样列方程?解:设应安排x名工人生产螺母,(22-x)名工人生产螺栓.根据螺母数量是螺栓数量的2倍,列方程得2×1200(22-x) =1200x .解方程,得x=12.所以22-x=10.答:应安排10名工人生产螺栓,12名工人生产螺母.还有其它方法吗?分析:从螺栓的角度来看,螺栓数等于套数;从螺母的角度来看,螺母数等于套数的2倍.可以根据生产的套数是一样的建立方程解决.解:设应安排x 名工人生产螺栓,(22-x)名工人生产螺母.依题意,得2000(22-x)2= 1200x.解方程,得x =10. 所以22-x =12.答:应安排10名工人生产螺栓,12名工人生产螺母. 归纳总结解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据. 配套问题中的基本关系: 若m 个A 和n 个B 配成一套,则A 的数量B 的数量=m n,可得相等关系:m × B 的数量=n × A 的数量.巩固练习1.如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?由图可得,一块白皮(六边形)中,有三边与黑皮(五边形)相连,因此白皮边数是黑皮边数的2倍.等量关系:白皮边数=黑皮边数×2解:设足球上黑皮有x块,则白皮为(32-x)块,五边形的边数共有5x条,六边形边数有6(32-x)条.依题意,得2×5x=6(32-x),解得x=12,则32-x=20.答:白皮20块,黑皮12块.2.某防护服厂有54人,每人每天可加工防护服8件或防护面罩10个,已知一件防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排多少人生产防护服?解:设需要安排x人生产防护服,则安排(54-x)人生产防护面罩.由题意,得8x=10(54-x),解得x=30.答:需要安排30人生产防护服.探究点2:工程问题典例精析例2.整理一批图书,由一个人整理需要40 h 完成. 现计划由一部分人先整理 4 h,然后增加2人与他们一起整理8 h,完成这项工作. 假设这些人的工作效率相同,应先安排多少人进行整理?在工程问题中:工作量=人均效率×人数×时间;工作总量=各部分工作量之和.点拨:“工程问题”中,通常把总工作量表示为1,这可使相关量的数学关系式简单化.并利用“工作量=人均效率×人数×时间”的关系考虑问题。

人教版数学七上3.4 第1课时《 产品配套问题和工程问题》精品教学设计1

人教版数学七上3.4 第1课时《 产品配套问题和工程问题》精品教学设计1

人教版数学七上3.4 第1课时《产品配套问题和工程问题》精品教学设计1一. 教材分析人教版数学七上3.4第1课时《产品配套问题和工程问题》是本册教材中的一个重要内容,主要让学生通过解决实际问题,掌握配套问题和工程问题的解决方法。

本节课通过具体的案例,引导学生理解并掌握配套问题的两个步骤:首先找出成套产品中的关键部分,然后根据实际需要确定购买方案。

同时,让学生学会通过列表或画图的方法,找出问题的最优解。

二. 学情分析学生在进入七年级之前,已经掌握了基本的算术运算和方程解法,但对于解决实际问题,尤其是涉及到多个条件的问题,可能会感到困惑。

因此,在教学过程中,需要引导学生将实际问题转化为数学问题,并通过列表或画图的方式,找出解决问题的方法。

三. 教学目标1.让学生理解配套问题的概念,并掌握解决配套问题的基本方法。

2.让学生通过解决实际问题,提高分析问题和解决问题的能力。

3.培养学生团队合作的精神,提高学生的口头表达能力。

四. 教学重难点1.重点:让学生掌握解决配套问题的基本方法。

2.难点:如何引导学生将实际问题转化为数学问题,并通过列表或画图的方式,找出解决问题的方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决实际问题,掌握配套问题的解决方法。

2.利用多媒体辅助教学,通过动画和图片,使抽象问题形象化,提高学生的学习兴趣。

3.分组讨论,让学生在团队合作中,提高口头表达能力和解决问题的能力。

六. 教学准备1.准备相关的实际问题案例,用于引导学生解决配套问题。

2.准备多媒体教学材料,包括动画和图片,用于辅助教学。

3.准备分组讨论的素材,让学生在讨论中,提高解决问题的能力。

七. 教学过程1.导入(5分钟)通过一个实际问题案例,引导学生进入本节课的主题。

例如:某商店有一批成套的学习用品,包括一个文具盒、一支铅笔和一本笔记本,现在商店需要进货,问如何确定购买方案,才能使文具盒、铅笔和笔记本的数量相等。

人教版七年级数学上册 3.4 第1课时 产品配套问题和工程问题 教案设计

人教版七年级数学上册 3.4 第1课时 产品配套问题和工程问题 教案设计

第三章一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1.理解配套问题、工程问题的背景.2.分清有关数量关系,能正确找出作为列方程依据的主要等量关系.(重点)3.掌握用一元一次方程解决实际问题的基本过程.(重点)学习重点:1.配套问题:某车间工人生产螺钉和螺母,一个螺钉要配两个螺母,要使生产的产品刚好配套,则应生产的螺母数量恰好是螺钉数量的2倍2.工程问题:(1)工作时间、工作效率、工作量之间的关系:①工作量=工作时间×工作效率.②工作时间=工作量÷工作效率.③工作效率=工作量÷工作时间.(2)通常设完成全部工作的总工作量为1,如果一项工作分几个阶段完成,那么各阶段工作量的和=总工作量,这是工程问题列方程的依据..(3)一项工作,甲用a小时完成,若总工作量可看成1,则甲的工作效率是1/a .若这项工作乙用b小时完成,则乙的工作效率是1/b .(4)人均工作效率:人均工作效率表示平均每人单位时间完成的工作量.例如,一项工作由m个人用n小时完成,那么人均工作效率为1/mn ,a个人b小时完成的工作量=人均工作效率×a×b.一、自主学习判断(打“√”或“×”)(1)用纸板折无盖的纸盒,则一个盒身与两个盒底配套.( )(2)一件工作,某人5小时单独完成,其工作效率为( )(3)一项工程,甲单独做4小时能完成,乙单独做3小时能完成,则两人合作1小时完成全部工作的( )二、合作探究知识点1 用一元一次方程解决配套问题【例1】用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,1个盒身与2个盒底配成1个罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?【解题探究】1.设x张铁皮制盒身,则36-x张铁皮制盒底.2.用x怎样表示所制盒身、盒底的个数?提示:由题意可知制盒身25x个,盒底40(36-x)个.3.制成的盒身与盒底有什么数量关系?提示:盒身个数的2倍=盒底的个数.4.所以可列方程:2×25x=40(36-x)5.解方程,得:x=166.用16张制盒身,20张制盒底.配套问题的两个未知量及两个等量关系1.两个未知量:这类问题有两个未知数,设其中哪个为x 都可以,另一个用含x 的代数式表示,两种设法所列方程没有繁简或难易的区别.2.两个等量关系:例如本题,一个是“制盒身的铁皮张数+制盒底的铁皮张数=36”,此关系用来设未知数.另一个是制成的盒身数与盒底数的倍数关系,这是用来列方程的等量关系.知识点 2 用一元一次方程解决工程问题【例2】一本稿件,甲打字员单独打20天可以完成,甲、乙两打字员合打,12天可以完成,现由两人合打7天后,余下部分由乙打,还需多少天完成?【思路点拨】先求出甲一天的工作效率,甲、乙合作一天的工作效率及甲乙合打7天的工作量,再求出乙一天的工作效率,设乙还需x 天完成,用含x 的代数式表示乙x 天的工作量,根据“两人合打7天的工作量+乙x 天的工作量=1”,列出方程,求解并作答.【自主解答】设乙还需x 天完成,根据题意,得解这个方程,得x=12.5.答:乙还需12.5天完成.【总结提升】解决工程问题的思路1.三个基本量:工程问题中的三个基本量:工作量、工作效率、工作时间,它们之间的关系是:工作量=工作效率×工作时间.若把工作量看作1,则工作效率=2.相等关系: (1)按工作时间,各时间段的工作量之和=完成的工作量.(2)按工作者,若一项工作有甲、乙两人参与,则甲的工作量+乙的工作量=完成的工作量. 711()x 1.121220+-=1.工作时间。

人教版数学七上3.4 第1课时《 产品配套问题和工程问题》精品教学设计2

人教版数学七上3.4 第1课时《 产品配套问题和工程问题》精品教学设计2

人教版数学七上3.4 第1课时《产品配套问题和工程问题》精品教学设计2一. 教材分析人教版数学七上3.4第1课时《产品配套问题和工程问题》是本册教材中的一个重要内容,主要让学生通过解决实际问题,掌握配套问题和工程问题的解决方法。

本节课通过具体的案例,引导学生理解并掌握配套问题的解法——成套配套和成组配套,以及工程问题的解法——工作效率和合作效率。

二. 学情分析学生在学习本节课之前,已经掌握了二元一次方程组的解法,具备了一定的数学思维能力。

但对于实际问题的解决,尤其是涉及到配套和工程问题,还缺乏一定的理解和应用能力。

因此,在教学过程中,需要教师通过具体的案例,引导学生将理论知识与实际问题相结合,提高解决问题的能力。

三. 教学目标1.知识与技能目标:让学生掌握配套问题和工程问题的解决方法,能够运用成套配套和成组配套解决实际问题。

2.过程与方法目标:通过解决实际问题,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,让学生感受数学与生活的紧密联系。

四. 教学重难点1.教学重点:配套问题和工程问题的解决方法。

2.教学难点:如何将理论知识与实际问题相结合,提高解决问题的能力。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过具体的案例,引导学生理解并掌握配套问题和工程问题的解决方法,同时运用小组合作的方式,培养学生的团队协作能力。

六. 教学准备1.教师准备:准备相关的案例和教学素材,制作PPT。

2.学生准备:预习教材,了解配套问题和工程问题的基本概念。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何解决配套问题。

例如:某商店购进了一批相同的商品,其中有电视、冰箱和洗衣机。

如果每台电视需要一个遥控器,每台冰箱需要一个冰箱贴,每台洗衣机需要一个进水管,那么如何将这些配套产品合理地分配给顾客?2.呈现(10分钟)教师通过PPT呈现配套问题的具体案例,引导学生分析并解决问题。

七年级数学上册(人教版)配套教学教案34第1课时产品配套问题和工程问题.doc

七年级数学上册(人教版)配套教学教案34第1课时产品配套问题和工程问题.doc

全新修订版(教案)七年级数学上册老师的必备资料家长的帮教助手学生的课堂再现人教版(RJ)3・4实际问题与一元一次方程第1课时产品配套问题和工程问题1.以“探究”的形式讨论如何用一元一次方程解决实际问题;(重点,难点)2.体会一元一次方程与实际生活的密切联系,加强数学建模思想的应用意识;(重点)3 .培养运用一元一次方程分析和解决实际问题的能力.(重点)生产螺母,依题意得14^X2= (660—方X20,解得/=275,.*.660-^=385.答:应分配385人生产螺母,275人生产螺栓.方法总结:此题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解决本题的关键.探究点二:工程问题天完成,乙队亘独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的—、情境导入近来我们市要修一条公路,公路大约长120千米,今天一早,有两个工程队找到了局长,甲工程队说:“包给我们,保证30 天完成”;乙工程队说:“包给我们,保证20天就完成”・如果你是局长,会怎么办呢?二、合作探究探究点一:产品配套问题某车间有工人660名,生产一种由一个螺栓和两个螺母组成的呪套产品,每人每天平均生产螺栓14个或螺母20个.如果你是这个车间的车间主任,你应分配多少人生产螺栓,多少人主产螺母,才能使生产出的螺栓和螺母刚好配套?解析:本题找出等量关系为:生产的螺工程由乙队完成,问乙队还需儿天才能完成?解析:首先设乙队还需x天才能完成, 由题意可得等量关系:甲队干三天的工作量 +乙队干匕+3)天的工作量=1,根据等量关系列出方程,求解即可.解:设乙队还需x天才能完成,由题意得*X3+寺(3+0 =1,解得x=13.答:乙队还需13天才能完成.方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率X工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.三、板书设计1.配套问题:找出等量关系2.工程问题:(1)工程总量=效率X时间.(2)各部分的工程和=工作总量=1.栓数乂2=生产的螺母数,把相关的代数式代入即可列方程.解:设分配x人生产螺栓,(660—力人提高学生的兴趣,让学生们认识到数学知识与我们的实际生活息息相关.然后通过例题教学,为学生提供了探索空间,通过猜一个道路工程,甲队单独施工9本节课以生活中常见的一个问题展开,测、验证、质疑、讨论、解疑等一系列活动,充分调动学生学习的枳极性.让学生在实践中获得解决问题的方法,得到学习的乐趣.。

3.4配套问题与工程问题(教案)-2023-2024学年七年级上册数学(人教版)

3.4配套问题与工程问题(教案)-2023-2024学年七年级上册数学(人教版)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了配套问题和工程问题的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对这些问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在教学过程中,教师应当针对这些难点和重点,采用不同的教学策略和方法,如使用图表、实物操作、小组讨论等,以确保学生能够透彻理解和掌握本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《配套问题与工程问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或搭配资源的情况?”比如,你们如何决定用多少钱买多少文具?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索如何用数学解决配套和工程问题。
二、核心素养目标
1.培养学生的逻辑推理能力,使其能够通过分析问题,发现数量关系,建立方程或比例关系,解决实际问题。
2.提升学生的数学建模素养,学会将实生活中的问题抽象为数学模型,并用数学方法进行求解。
3.增强学生的数据分析能力,通过解决配套问题和工程问题,培养学生对数据的敏感性和处理能力。
4.培养学生的应用意识,使学生能够将所学知识应用于解决实际生活中的数学问题,体会数学在生活中的重要性。
-例题:一辆汽车以60km/h的速度行驶,行驶了3小时,计算行驶的距离。
-习题:设计有关速度、浓度等比例问题的练习,巩固所学知识。
4.学会分析问题,找出数量关系,建立方程或比例关系解决问题。

产品配套与工程问题教学反思

产品配套与工程问题教学反思

产品配套与工程问题教学反思
作为一名职业写手,我深入分析了产品配套与工程问题在教学过程中的重要性,并针对这些问题进行了反思。

在此基础上,我提出了一系列改进措施,以期为我国教育教学改革提供有益借鉴。

首先,我们要认识到产品配套问题在教学过程中的严重性。

一方面,产品与配套资料不匹配,导致学生在学习过程中难以找到合适的学习资源。

另一方面,配套资料的质量参差不齐,甚至有些资料陈旧、过时,无法满足当前教学需求。

更为关键的是,配套服务不到位,学生在遇到问题时难以得到及时解答和指导。

其次,工程问题也是教学中的一大难题。

工程实践与理论教学脱节,使得学生在实际操作中难以将理论知识运用到实践中。

工程案例不足,使得学生缺乏实际操作的经验。

与此同时,工程实践教学资源匮乏,导致学生在实践过程中难以得到充分锻炼。

针对这些问题,我们需要进行深入的教学反思,并采取切实可行的改进措施。

首先,我们要优化产品配套资源,确保教材、讲义等资源的质量和适用性。

其次,要加强工程实践教学环节,通过增加工程案例、实践课程等方式,让学生在实际操作中掌握专业知识。

此外,提高教师工程实践能力也至关重要。

教师应主动参加相关培训,提升自身的工程实践水平,从而为学生提供更好的教学服务。

最后,加强校企合作,充分利用外部资源,为教学提供有力支持。

总之,产品配套与工程问题是影响教学质量的重要因素。

人教版数学七上3.4第1课时《产品配套问题和工程问题》精品说课稿2

人教版数学七上3.4第1课时《产品配套问题和工程问题》精品说课稿2

人教版数学七上3.4 第1课时《产品配套问题和工程问题》精品说课稿2一. 教材分析教材是数学七年级上册的第三章第四节,本节主要介绍产品配套问题和工程问题。

产品配套问题主要涉及成套产品的配套关系,如家电、文具等;而工程问题主要涉及工作效率、工作总量、工作时间的关系。

这部分内容是学生在学习了简单方程和不等式的基础上,进一步解决实际问题,培养学生的解决问题的能力。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和解决实际问题的能力。

他们在学习过程中,需要将已学的知识与实际问题相结合,通过解决实际问题,提高自己的数学素养。

但是,学生在解决复杂实际问题时,可能会遇到理解不深、解决问题的方法不够多样等问题。

三. 说教学目标1.知识与技能:理解产品配套问题和工程问题的概念,掌握解决这类问题的基本方法。

2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 说教学重难点1.教学重点:理解产品配套问题和工程问题的概念,掌握解决这类问题的基本方法。

2.教学难点:如何引导学生将实际问题转化为数学模型,并运用恰当的数学方法解决问题。

五. 说教学方法与手段本节课采用情境教学法、案例教学法和小组合作学习法。

通过情境和案例的引入,激发学生的学习兴趣,引导学生主动参与课堂。

同时,利用小组合作学习,培养学生的团队合作意识,提高学生的解决问题的能力。

六. 说教学过程1.导入:通过展示一些实际问题,如家电套餐、工程队施工等,引导学生思考如何解决这些问题。

2.产品配套问题的讲解:通过分析实际问题,引导学生理解产品配套问题的概念,并讲解解决产品配套问题的基本方法。

3.工程问题的讲解:同样通过分析实际问题,引导学生理解工程问题的概念,并讲解解决工程问题的基本方法。

4.实践环节:让学生分组讨论,选取一些实际问题进行解决,巩固所学知识。

5.总结:对本节课的内容进行总结,强调解决实际问题的关键步骤。

人教版七年级上册数学3.4第1课时产品配套问题和工程问题优质教案

人教版七年级上册数学3.4第1课时产品配套问题和工程问题优质教案

人教版七年级上册数学3.4第1课时产品配套问题和工程问题优质教案第一篇:人教版七年级上册数学 3.4 第1课时产品配套问题和工程问题优质教案3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题教学目标:1.掌握产品配套问题、工程问题中常见的数量关系.2.掌握用一元一次方程解决实际问题的基本过程.教学重点:弄清题意,用列方程解决实际问题.教学难点:寻找实际问题中的等量关系,建立数学模型.教学过程:一、复习巩固解下列方程(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);(2)3(2-3x)-3[3(2x-3)+3]=5;(3)(x+1)+(x+2)-3=-(x+3).二、提出问题,探究新知问题1(课本P100例1):某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该安排多少名工人生产螺钉,多少名工人生产螺母?练习1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?问题2:要用20张白卡纸做包装盒,每张白卡纸可以做盒身两个或者做盒底盖3个.如果一个盒身和两个盒底盖可以做成一个包装盒,那么能否把这白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请设计一种分法.(想一想:如果一张白卡纸可以适当的剪裁出一个盒身和一个盒底盖,那么,怎样分这些白卡纸,才能既使做出的盒身和盒底盖配套,又能充分地利用白卡纸?)练习2:(1)用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?(2)某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套.要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数? 教学过程: 问题3:课本P100例2:整理一批图书:由一个人做要40 h完成.现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?1.逐句阅读题目,熟悉题中已知条件,回答问题:(1)由一个人要做40小时完成,这句话的作用?(2)根据题意,整项工作分成几部分?(3)借助线段图进一步理解题意.2.根据线段图,题目反映的相等关系是什么?3.设未知数,列方程解答.4.例题变式练习:(1)整理一批图书,由一个人做要40 h完成,现计划由一部分人先做4 h,然后增加2人与他们一起做6 h,完成这项工作的,假设这些人的工作效率相同,具体应先安排多少人工作?(2)整理一批图书,由一个人做要40 h完成,现计划由2人先做4 h,然后增加若干人与他们一起又做4 h完成了这项工作,问增加了多少人?三、归纳总结1.归纳:用一元一次方程解决实际问题的基本过程.2.学生独立练习:(有困难的个别指导)(1)课本P101练习第2题(2)货车早上6:40从A城出发,15:40到达B城,一辆客车上午8:00从A城出发,14:00到达B城.求客车追上货车是什么时刻?提示:①由已知条件如何表示出货车与客车的速度?②当客车在途中追上货车时,两车的行驶时间有什么关系?行驶路程有什么关系? ③以什么量为未知数,什么量为相等关系列方程,求出方程的解后又如何求解题目问题.强调:弄清货车与客车出发时间的先后,与到达时间的先后,以理解题意.四、课时小结通过以下问题引导学生反思小结:1.通过这节课的学习,你有什么收获?2.在解决配套、分配等问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?五、课堂作业课本P101练习第1题,P106习题3.4第2、3题.课本P106第4、5题.第二篇:苏科版数学七年级上册3.4合并同类项(第2课时)教案课题:3.4 合并同类项(第2课时)教学目标:1.了解同类项的概念,能识别同类项.2.会合并同类项,并将数值代入求值.3.知道合并同类项所依据的运算律.教学重点:会合并同类项,并将数值代入求值.教学难点:知道合并同类项所依据的运算律.教学过程:一、创设情境1.所含字母相同,并且相同字母的指数相同,向这样的项是同类项.2.把同类项合并成一项叫做合并同类项.3.合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.二、探索新课: 1.例2 合并同类项5m3-3m2n-m3+2nm2-7+2m3中的同类项.解:5m3-3m2n-m3+2nm2-7+2m3=(5m3-m3+2m3)+(-3m2n+2m2n)-7=(5-1+2)m3+(-3+2)m2n-7=6m3-m2n-7 2.做一做:求代数式2x3-5x2+x3+9x2-3x3-2的值,其中x=1.与同学交流你的做法.解:2x3-5x2+x3+9x2-3x3-2=2x3+x3-3x3-5x2+9x2-2=(2+1-3)x3+(-5+9)x2-2=4x2-2 当x=1时原式=4×12-2=4-2=2 3.总结:求代数式的值时,如果代数式中含有同类项,通常先合并同类项再代入数值进行计算.4.练一练: P97 练一练1、2 P98 1.合并同类项:(1)a2-3a+5+a2+2a-1(2)-2x3+5x2-0.5x3-4x2-x3(3)5a2-2ab+3b2+ab-3b2-5a2(4)5x3-4x2y+2xy2-3x2y-7xy2-5x3 2.求下列各式的值:(1)6y2-9y+5-y2+4y-5y2,其中y=-3 51 2(2)3a2+2ab-5a2+b2-2ab+3b2,其中a=-1,b=三、小结本节课你学到了哪些知识?四、布置作业 P98 习题3.4 3、5五、教后反思第三篇:五年级上册数学第3课时植树问题第7单元数学广角——植树问题第2课时植树问题(3)教学目标:1.运用转化的方法,使学生理解在一条首尾封闭的曲线上植树所需棵数与间隔数“一一对应”的数学模型。

七年级数学上册(人教版)3.4实际问题与一元一次方程(第1课时)产品问题和工程问题优秀教学案例

七年级数学上册(人教版)3.4实际问题与一元一次方程(第1课时)产品问题和工程问题优秀教学案例
2.设计小组合作任务,让学生共同探究实际问题,提高学生的实践能力。
3.创设竞争机制,激发小组之间的合作竞争力,促进学生的积极参与。
4.引导学生总结小组合作成果,培养学生的表达能力和团队意识。
(四)反思与评价
1.让学生在解决问题的过程中,不断进行自我反思,发现自己的优点和不足。
2.鼓励学生相互评价,培养学生的批判性思维和自我改进能力。
(二)讲授新知
1.介绍一元一次方程的概念,解释一元一次方程在解决实际问题中的应用。
2.通过示例,讲解一元一次方程的解法,包括步骤和技巧。
3.引导学生理解实际问题中的数量关系,并将其转化为一元一次方程。
4.利用数学软件或板书,展示解一元一次方程的过程,让学生跟随步骤进行运算。
(三)学生小组讨论
1.将学生分成小组,每个小组分配一个实际问题,要求学生运用一元一次方程进行解决。
4.通过对实际问题的分析,培养学生运用方程解决问题的方法,提高学生的数学思维能力。
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体会数学的价值和魅力,培养学生的数学兴趣。
2.培养学生积极思考、勇于探索的精神,使学生树立自信心,相信自己能够解决实际问题。
3.通过对实际问题的解决,培养学生珍惜劳动成果、诚实守信的价值观。
3.通过归纳总结,帮助学生建立完整的知识体系,提高学生的数学思维能力。
(五)作业小结
1.布置相关的作业题目,要求学生独立完成,巩固所学知识。
2.提醒学生在作业中注意解题步骤的规范性和运算的准确性。
3.鼓励学生在完成作业后进行自我检查,培养学生的自我反思能力。
4.教师及时批改作业,给予学生反馈和指导,帮助学生提高解题能力。
五、案例亮点

第1课时 产品配套问题和工程问题 导学案(含答案) 2024—2025学年人教版数学七年级上册

第1课时 产品配套问题和工程问题  导学案(含答案)  2024—2025学年人教版数学七年级上册

第五章一元一次方程5.3 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 探究产品配套问题中的等量关系.2. 掌握工程问题中的工作总量、工作时间、工作效率三者之间的关系.重点:根据题意分析各类问题中的数量关系,会熟练地列方程解应用题.难点:从实际问题中抽象出数学模型.一、新课导入小优与同学一起完成为教室设计了创意书架,在购买书架材料时,发现1 个横板需要配2 个竖板.销售商出了如下问题,考考同学们:一个材料厂有56 名工人加工横板和竖板,平均每小时每名工人能够加工横板90 块或竖板100 块,为了使得横板和竖板刚好配套,工人们应如何分配?一、要点探究知识点1:配套问题思考思考1 它的等量关系是什么?思考2请列出合适的未知数,并求解.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.例1 某车间有22 名工人,每人每天可以生产1 200 个螺栓或2 000 个螺母. 1 个螺栓需要配2 个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?方法总结配套问题:甲产品总量=n 倍的乙产品总量工作总量=工作______×工人人数×工作时间知识点2:工程问题填一填例2 整理一批图书,由1 个人做要40 h 完成. 现计划由一部分人先做4 h,然后增加2 人与他们一起整理8 h,完成这项工作. 假设这些人的工作效率相同,应先安排多少人进行整理?议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:__________________________________________________________________________.要点归纳:解决工程问题的基本思路:1. 三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量 = 工作效率×工作时间;合作的工作效率 =工作效率之和. 2. 相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间. 3. 通常在没有具体数值的情况下,把工作总量看作“1”.二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题一元一次方程的解(x =a )1.(黄陂区期末)一套仪器由一个A 部件和三个B 部件构成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言:
该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的教学设计(教案)是高效课堂的前提和保障。

(最新精品教学设计)
3.4 实际问题与一元一次方程
第1课时产品配套问题和工程问题
教学目标:
1.掌握产品配套问题、工程问题中常见的数量关系.
2.掌握用一元一次方程解决实际问题的基本过程.
教学重点:弄清题意,用列方程解决实际问题.
教学难点:寻找实际问题中的等量关系,建立数学模型.
教学过程:
一、复习巩固
解下列方程
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
(2)3(2-3x)-3[3(2x-3)+3]=5;
(3)(x+1)+(x+2)-3=-(x+3).
二、提出问题,探究新知
问题1(课本P100例1):某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该安排多少名工人生产螺钉,多少名工人生产螺母?
练习1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?
问题2:要用20张白卡纸做包装盒,每张白卡纸可以做盒身两个或者做盒底盖3个.如果一个盒身和两个盒底盖可以做成一个包装盒,那么能否把这白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请设计一种分法.
(想一想:如果一张白卡纸可以适当的剪裁出一个盒身和一个盒底盖,那么,怎样分这些白卡纸,才能既使做出的盒身和盒底盖配套,又能充分地利用白卡纸?)
练习2:
1。

相关文档
最新文档