三角形的相关性质及判定定理

合集下载

初三数学直角三角形性质、相关定理和推论

初三数学直角三角形性质、相关定理和推论

第2次课:直角三角形性质、相关定理和推论一、考点、热点回顾1、基本知识点:勾股定理 直角三角形两条直角边的平方和等于斜边的平方。

勾股定理的逆定理 如果三角形两边的平方等于第三边的平方,那么这个三角形就是直角三角形。

应用:由边的关系判定三角形是直角三角形定理 斜边和一条直角边对应相等的两个直角三角形全等。

(HL ) 应用:判定直角三角形全等的方法 2、互逆定理如果两个角是对顶角,那么它们相等。

如果两个角相等,那么它们是对顶角。

如果小明患了肺炎,那么他一定会发烧。

如果小明发烧,那么他一定患了肺炎。

全等三角形中相等的边所对的角相等。

全等三角形中相等的角所对的边相等。

逆命题: 互逆命题: 逆定理: 互逆定理:三角形三边长与三角形形状之间的关系设三角形的三边长分别为a 、b 、c ,其中c 为最大边的长(1)若222+=a b c ,则三角形为直角三角形; (2)若222+<a b c ,则三角形为钝角三角形; (3)若222+>a b c ,则三角形为锐角三角形;二、典型例题例如图,在△ABC 中,∠ACB=900,AB=5,BC=3,CD ⊥AB 于点D ,求CD 的长。

DABC例如图,在△ABC 中,D 是BC 上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD 的长.例右图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m,∠A =30 °, 立柱BC 、DE 要多长?例将下面的空补充完整。

如图所示,已知△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∠A=30°.求证:AB=4BD解:∵△ABC 中,∠ACB=90°,∠A=30°∴ BC= AB ∠B=又∵△BCD 中,CD ⊥AB ∴∠BCD= ∴BD= BC ∴BD= AB 即例:说出下列命题的逆命题,并判断每对命题的真假;(1)四边形是多边形;(2)两直线平行,内旁内角互补; (3)如果ab =0,那么a =0, b =0AB CD1.如图,CD ⊥AD,CB ⊥AB,AB=AD. 求证:CD=CB.2.如图,一架2.5m 长的梯子AB ,斜靠在一坚直的墙上AC 上,这时梯足B 到墙底端C 的距离为0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯足将向外移动多少米?3.如图,AD 是△ABC 的高,E 为AC 上一点,BE 交高AD 于点F ,且BF=AC ,FD=CD 。

直角三角形常考的10个易错点浅析

直角三角形常考的10个易错点浅析

直角三角形常考的10个易错点浅析1. 直角三角形的性质性质1:直角三角形两锐角互余.性质2:直角三角形斜边上的中线等于斜边的一半.性质3:直角三角形中30o所对的直角边等于斜边的一半.2. 直角三角形的判定判定1:有两个角互余的三角形是直角三角形.判定2:一边上的中线等于这边的一半的三角形是直角三角形.3. 直角三角形的性质勾股定理:如果直角三角形的两直角边为a 和b ,斜边为 c ,那么222c b a =+.4. 直角三角形的判定勾股定理逆定理:如果三角形三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.5. 直角三角形全等的判断:斜边和一直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边公理”或“H L ”)6. 角平分线的性质定理:角平分线上的点到角的两边的距离相等.7. 角平分线的性质定理的逆定理:角平分线性质定理: 角平分线上的点到角的两边的距离相等. 易错点1 忽略了运用直角三角形的性质的前提条件在运用直角三角形的性质时,它的前提是在直角三角形中.如果三角形不是直角三角形,那么这些性质就不存在了,所以运用时要注意前提条件。

例题1 如图,在△ABC 中,CD 是AB 边上的高,∠A =60°,则∠BCD 的度数为( )A .30°B .60°C .90°D .无法确定【错解】B【错因】在本题中没有指明△ABC 是直角三角形,故不能利用直角三角形的性质进行计算。

错解中想当然地认为△ABC 是直角三角形,然后利用了直角三角形的性质,进而造成错解。

【正解】D例题2 如图,在△ABC 中,∠ABC =75°,从顶点B 引射线BD 与CA 交于D 点,使∠CDB =30°,BD =AD 。

求证:AD =2BC 。

【错解】在△BCD 中,∵∠CDB =30°,∴BC =12BD 。

∵BD =AD ,∴BC =12AD ,即AD =2BC 【错因】在本题中没有指明∠C =90O,故不能直接利用直角三角形的性质进行计算。

初二常靠的数学热点:三角形的性质

初二常靠的数学热点:三角形的性质

初二常靠的数学热点:三角形的性质初二常靠的数学热点:三角形的性质春蚕到死丝方尽,人至期颐亦不休。

一息尚存须努力,留作青年好范畴。

下面是小编为大家整理,数学知识点,希望对大家有所帮助,欢迎阅读,仅供参考!等腰三角形1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)理解:已知等腰三角形的一线就可以推知另两线。

2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)等边三角形1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。

2、等边三角形的判定:①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

全等三角形定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变通过上面对全等三角形知识点的讲解学习,相信同学们对全等三角形的知识已经能很好的掌握了吧,后面我们进行更多知识点的巩固学习。

拓展:初中数学三角形全等的性质定理公式句全等三角形指的就是两个全等的三角形,全等三角形是几何中全等的一种。

三角形全等的性质1.全等三角形的对应角相等。

2.全等三角形的对应边相等。

3.全等三角形的对应边上的高对应相等。

4.全等三角形的对应角的角平分线相等。

5.全等三角形的对应边上的中线相等。

6.全等三角形面积相等。

7.全等三角形周长相等。

8.全等三角形的对应角的三角函数值相等。

正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。

正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。

三角形的全等性质

三角形的全等性质

三角形的全等性质三角形是几何学中的基本形状之一,它有许多重要的性质和定理。

其中,全等性质是三角形的重要性质之一,指的是具有相等边长和相等内角的两个三角形是全等的。

本文将介绍三角形全等性质的定义、判定方法,以及全等性质的应用。

一、全等性质的定义对于两个三角形ABC和DEF,如果它们的对应边长相等,即AB=DE,BC=EF,AC=DF,并且对应角度也相等,即∠A=∠D,∠B=∠E,∠C=∠F,那么我们可以说三角形ABC与三角形DEF是全等的。

全等性质可以用符号≌表示,即ABC≌DEF。

二、全等性质的判定为了判断两个三角形是否全等,我们可以利用下列常用的判定方法:1. SSS判定法(边-边-边)如果两个三角形的三条边分别相等,那么它们是全等的。

2. SAS判定法(边-角-边)如果两个三角形的一条边和与其相邻的两个角分别相等,那么它们是全等的。

3. ASA判定法(角-边-角)如果两个三角形的两个角和它们的夹边分别相等,那么它们是全等的。

4. RHS判定法(斜边-直角边-斜边)如果两个直角三角形的斜边和一个直角边分别相等,那么它们是全等的。

通过以上四种判定方法,我们可以准确地判断两个三角形是否全等。

三、全等性质的应用全等性质在解决几何问题中有广泛的应用,以下是一些常见的应用场景:1. 三角形的构造利用全等性质,我们可以根据已知条件构造全等的三角形。

例如,已知两条边和夹角大小,我们可以通过SAS判定法构造出全等的三角形。

2. 证明几何定理在证明几何定理时,我们常常利用全等性质来推导结论。

通过证明两个全等三角形的对应边和对应角相等,可以得到一些重要的几何定理。

3. 求解三角形的未知量当我们已知一些三角形的边长和角度大小时,利用全等性质可以求解出三角形其他未知量,如另外两个角度的大小、三角形的面积等。

4. 判定图形的全等除了三角形,全等性质在判定其他图形的全等时也是十分有用的。

我们可以利用全等性质来判断两个四边形、两个多边形甚至其他更复杂的图形是否全等。

三角形知识点总结完

三角形知识点总结完

三角形知识点全面总结1、三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、HL (RtA^RtA)2、等腰三角形的判定及性质性质:①两腰相等②等边对等角(即“等腰三角形的两个底角相等”)③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)判定:①有两边相等的三角形是等腰三角形②有两个角相等的三角形是等腰三角形(等角对等边)结论总结:等腰三角形底边上的任意一点到两腰的距离之和等于一腰【即:DE+DF=CP,(D为BC上的任意一点)】3、等边三角形的性质及判定定理性质:①三条边都相等②三个角都相等,并且每个角都等于60度③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)④等边三角形是轴对称图形,有3条对称轴。

判定:①三条边都相等的三角形是等边三角形②三个角都相等的三角形是等边三角 形。

③有一个角是60度的等腰三角形是等边三角形。

结论总结:①高二亘边【即: AD =巨AB 】 2 2②面积二三3边2【即:S=三3AB 2】4 A ABC 4 4、直角三角形的性质及判定 性质:①两锐角互余②勾股定理③30°角所对的直角边等于斜边的一半。

④斜边中 线等于斜边一半判定:①有一个内角是直角的三角形是直角三角形②勾股定理的逆定理(即“如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

”)5、线段的垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:①定义法②到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质③一边中线等于这边一半的三角形是直角三角形结论总结:直角三角形斜边上的高二 直角边的乘积 斜边(1)线段垂直平分线的性质及判定【即:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线:分别以线段的两个端点人、B 为圆心, 以大于AB 的一半长为半径作弧,两弧交于点乂、N ;作直线MN ,则直线MN 就是线段 AB 的垂直平分线。

(完整版)直角三角形的判定和性质

(完整版)直角三角形的判定和性质

直角三角形全等的判定【知识点总结】直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)【典型例题讲解】例1:已知:如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE 求证:OB=OC.例2:已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE:例3:已知△ABC中,CD⊥AB于D,过D作DE⊥AC,F为BC中点,过F作FG⊥DC求证:DG=EG。

【随堂练习】1.选择:(1)两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,真命题的个数是()个①这两个三角形全等; ②相等的角为锐角时全等③相等的角为钝角对全等; ④相等的角为直角时全等A.0 B.1 C.2 D.3(2)在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形(3)如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC则AC:BD=()A.1:1 B.3:1 C.4:1 D.2:3(4)如图,在Rt△ABC中,∠ACB=90°,CD、CE,分别是斜边AB上的高与中线,CF 是∠ACB的平分线。

则∠1与∠2的关系是()A.∠1<∠2 B.∠1=∠2; C.∠1>∠2 D.不能确定(5)在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB 的度数是()A.30°B.60°C.120°D.150°2.解答:(1已知:如图AB⊥BD,CD⊥BD,AB=DC求证:AD//BC.(2)如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F 求证:CE=DF.B MC【课后习题】一、填空题:(每题5分,共20分)1.有________和一条________对应相等的两个直角三角形全等,简写成“斜边直角边”或用字母表示为“___________”. 2.如图,△ABC 中,∠C=90°,AM 平分∠CAB,CM= 20cm, 那么M 到AB 的距离是____cm.3.已知△ABC 和△A ′B ′C ′,∠C=∠C ′=90°,AC=A ′C ′,要判定△ABC ≌△A ′B ′C ′,必须添加条件为①________或②________或③________或④_________. 4.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F,DE ⊥BC 于E,AB=DC,BE=CF, 若要说明AB ∥CD,理由如下:∵AF ⊥BC 于F,DE ⊥BC 于E(已知)∴△ABF,△DCE 是直角三角形∵BE=CF(已知)∴BE+_____=CF+_______(等式性质) 即_______=___________(已证)∴Rt △ABF ≌Rt △DCE( )二、选择题:(每题5分,共25分) 5.两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等 6.要判定两个直角三角形全等,需要满足下列条件中的()①有两条直角边对应相等; ②有两个锐角对应相等; ③有斜边和一条直角边对应相等; ④有一条直角边和一个锐角相等; ⑤有斜边和一个锐角对应相等; ⑥有两条边相等. A.6个 B.5个 C.4个 D.3个7.如图,AB ∥EF ∥DC,∠ABC=90°,AB=DC,那么图中有全等三角形( ) A.5对; B.4对; C.3对; D.2对8.已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF9.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A.AASB.SASC.HLD.SSS三、解答题:(共55分)10.如图,△ABC 中,∠C=90°,AB=2AC,M 是AB 的中点,点N 在BC 上,MN ⊥AB.求证:AN 平分∠BAC.(7分)BA21N MCB A E FC B AEF C D11已知:如图,AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.(8分)B AE F D12知如图,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE ⊥AE于E,求证:BD=DE+CE.(8分)BAE CD13已知如图,在△ABC中,∠BAC=2∠B,AB=2AC,求证:△ABC是直角三角形?( 8分)C14已知如图,在△ABC中,以AB、AC为直角边, 分别向外作等腰直角三角形ABE、ACF,连结EF,过点A作AD⊥BC,垂足为D,反向延长DA交EF于点M.(1)用圆规比较EM与FM的大小.(2)你能说明由(1)中所得结论的道理吗?(8分)B AE MFC D直角三角形的性质【知识点精讲】直角三角形的性质定理及其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半; ②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,则这条直角边所对的角为30°.【典型例题讲解】例1:已知,Rt △ABC 中,∠ACB=90°,AB=8cm ,D 为AB 中点,DE ⊥AC 于E ,∠A=30°,求BC ,CD 和DE 的长例2:已知:△ABC 中,AB=AC=BC (△ABC 为等边三角形)D 为BC 边上的中点, DE ⊥AC 于E.求证:AC CE 41.例3:已知:如图AD ∥BC ,且BD ⊥CD ,BD=CD ,AC=BC. 求证:AB=BO.【随堂练习】1.△ABC 中,∠BAC=2∠B ,AB=2AC ,AE 平分∠CAB 。

初二数学知识点三角形的性质

初二数学知识点三角形的性质

初二数学知识点:三角形的性质三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示三角形有下面三个特性: (1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形 (3)首尾顺次相接三角形用符号“”表示,顶点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。

5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形) 斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

直角三角形的性质与判定

直角三角形的性质与判定

直角三角形的性质与判定直角三角形是一种特殊的三角形,具有独特的性质和判定条件。

本文将介绍直角三角形的定义、性质以及判定方法。

一、直角三角形的定义直角三角形是指其中一个角为直角(90度)的三角形。

三角形的三个内角之和为180度,因此直角三角形的其他两个角的度数之和为90度。

二、直角三角形的性质1. 斜边、直角边和对角线的关系在直角三角形中,斜边是直角三角形的最长边,对应直角边是直角三角形的次长边,而对角线是直角三角形的最短边。

这是由勾股定理所决定的,即斜边的长度等于直角边长度的平方和的平方根。

例如,对于直角边长分别为a和b的直角三角形,斜边的长度为√(a^2 + b^2)。

2. 直角三角形的角度关系直角三角形中,直角边与斜边的夹角为90度,而直角边与非直角的两个角之和为90度。

这意味着直角三角形中的两个非直角角度互为余角,即一个角的余角等于另一个角本身。

例如,如果一个角为30度,则另一个角为60度,它们互为余角。

三、直角三角形的判定方法在给定三条边的长度时,我们可以通过以下方法判断是否为直角三角形:1. 勾股定理勾股定理是判定一个三角形是否为直角三角形的重要方法。

根据勾股定理,如果一个三角形的最长边的平方等于其他两边的平方和,则该三角形为直角三角形。

2. 角度判定在一个三角形中,如果两个角的度数之和为90度,则该三角形为直角三角形。

通过测量三角形的角度可以判断是否为直角三角形。

3. 边长关系在一个三角形中,如果两条边的长度满足a^2 + b^2 = c^2,则该三角形为直角三角形。

其中,a、b表示两个直角边的长度,c表示斜边的长度。

四、直角三角形的应用直角三角形的性质和判定方法在实际生活中有广泛的应用。

例如,在建筑领域中,直角三角形的性质被用于测量和确定建筑物的角度和边长。

在航海和航空领域中,直角三角形的性质被用于计算飞行器和船只的航向和位置。

总结:直角三角形是一种具有独特性质的三角形,其中一个角为90度。

三角形的性质与定理(整理)

三角形的性质与定理(整理)

三角形的定义:由三条不在同一直线上的线段首尾顺次连接所组成的封闭图形叫做三角形。

其中,三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。

在小学和初中的教材中,所学的三角形都是平面三角形。

以下所涉及的相关性质定理也都是平面三角形的。

三角形的内角和外角:内角:(1)所有三角形的内角和都是180°。

(2)在三角形中最少有2个锐角。

(3)在三角形中至少有一个角大于等于60°,也至少有一个角小于等于60°。

(包括等边三角形)(4)在同一个三角形内,大边对大角,大角对大边。

证明三角形内角和等于180°的方法:方法1:将三角形的三个角撕下来拼在一起,可求出内角和为180°。

方法2:在三角形任意一个顶点处做辅助线,可求出内角和为180°。

例1:已知一△ABC,求证∠ABC+∠BAC+∠BCA=180°证明:做BC的延长线至点D,过点C作AB的平行线至点E ∵AB∥CE(已知)∴∠ABC=∠EC D(两直线平行,同位角相等)∠BAC=∠ACE(两直线平行,内错角相等)∵∠BCD=180°∴∠ACB+∠ACE+∠ECD=∠BCD=180°∴∠ABC+∠BAC+∠BCA=180°外角:(1)定义:三角形的一边与另一边延长线的夹角叫做三角形的外角。

(2)三角形的一个外角等于与它不相邻的两个内角之和;(3)三角形的一个外角大于与它不相邻的任一个内角;(4)三角形的外角和等于360°。

多边形的内角和外角:(1)定义:在平面内,由一些线段首尾顺次连接组成的图形叫多边形。

(2)多边形的内角和:(n-2)·180°(n代表边数,n≥3)(3)任意多边形的外角和都等于360°(4)多边形的对角线数目:23-nn)((n代表边数,n≥3)平面镶嵌:(1)符合镶嵌的条件:围绕一点拼在一起的几个多边形的内角的和等于360°(2)任意一种正三角形、正方形或正六边形都可以镶嵌平面例2:如图1,AB ∥CD ,∠1=110°,∠ECD=70°,∠E 的度数为( ) A.30° B.40° C.50° D.60°〔解析〕∵AB ∥CD ∴∠A=∠ECD=70° 又∵∠1是△AB E 的外角 ∴∠A+∠E=∠1∴∠E=∠1-∠A=110°-70°=40°〔答案〕B例3:一个三角形三个内角度数的比是1︰5︰6,则其最大内角的度数为( ) A.60° B.75° C.90° D.120°〔解析〕任意三角形的内角和都是180° 又∵此三角形三个内角度数的比是1︰5︰6 ∴最大内角的度数是:180°×6516++=90° 〔答案〕C例4:若一个正多边形的每一个外角都是30°,则这个多边形的内角和等于 度。

直角三角形-的性质判定(HL)

直角三角形-的性质判定(HL)

直角三角形的性质、判定(HL )1、如果一个△ABC 有一个角是直角,则它是直角三角形,记作Rt △ABC 。

直角三角形两锐角互余。

2、直角三角形的判定定理:如果两个直角三角形的斜边和一条直角边对应相等,则这个两个直角三角形全等,简称HL 。

3、直角三角形性质定理(一):在直角三角形中,斜边上的中线等于斜边的一半.4、直角三角形性质定理(二):在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;5、直角三角形性质的逆定理(1):如果一个三角形一边上的中线,等于这条边的一半,则这个三角形式直角三角形.(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.二、知识运用典型例题例1:已知:△ABC 中,∠ACB=90°,CD 是高, ∠A=30°.求证:BD=14AB.例2:已知:如图, △ABC 中,AB=AC,BD ⊥AC 于D 点,BD=12AC. 则∠A=_____.例3:已知:如图,AD 为△ABC 的高,E 为AC 上的一点,BE 交AD 于F,且有BF=AC,FD=CD, 求证:BE ⊥AC.例4:如图3,AD 是ΔABC 的中线,DE ⊥AB 于E ,DF ⊥AC 于F ,且BE=CF , 求证:(1)AD 是∠BAC 的平分线AD CBAE DC BF 12 A12(2)AB=AC例5:已知如图,AE ⊥ED ,AF ⊥FD ,AF=DE ,EB ⊥AD ,FC ⊥AD ,垂足分别为B 、C.试说明EB=FC.例6:如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.三、知识运用课堂训练1、△ABC 中各角的度数之比如下,能够说明△ABC 是直角三角形的是( ) A.1:2:3 B.2:3:4 C.3:4:5 D.3:2:52、直角三角形中,两锐角的角平分线相交所成的角的度数为 .3、等腰三角形一腰上的高等于该三角形一条边长度的一半,则其顶角为 .4、如图,CD 为△ABC 的中线,∠ACB=90°,CE ⊥AB 于E, AE=ED,则图中30°的角有 个.ABCD FEABCD E5、如图,AC=BD,AD ⊥AC,BC ⊥BD,求证:AD=BC.6、如图所示,D 是△ABC 的边BC 上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,且BF =CE 。

三角形的所有性质

三角形的所有性质

三角形的性质1.三角形的任何两边的和一定大于第三边,由此亦可证明得三角形的任意两边的差一定小于第三边。

2.三角形内角和等于180度3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。

4.直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。

直角三角形斜边的中线等于斜边的一半。

5.三角形共有六心:三角形的内心、外心、重心、垂心、欧拉线内心:三条角平分线的交点,也是三角形内切圆的圆心。

性质:到三边距离相等。

外心:三条中垂线的交点,也是三角形外接圆的圆心。

性质:到三个顶点距离相等。

重心:三条中线的交点。

性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。

垂心:三条高所在直线的交点。

性质:此点分每条高线的两部分乘积旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点性质:到三边的距离相等。

界心:经过三角形一顶点的把三角形周长分成1:1的直线与三角形一边的交点。

性质:三角形共有3个界心,三个界心分别与其对应的三角形顶点相连而成的三条直线交于一点。

欧拉线:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。

6.三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的内角之和。

7.一个三角形最少有2个锐角。

8.三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线9.等腰三角形中,等腰三角形顶角的平分线平分底边并垂直于底边。

10.勾股定理逆定理:如果三角形的三边长a,b,c有下面关系那么a??+b??=c??那么这个三角形就一定是直角三角形。

三角形的边角之间的关系(1)三角形三内角和等于180°;(2)三角形的一个外角等于和它不相邻的两个内角之和;(3)三角形的一个外角大于任何一个和它不相邻的内角;(4)三角形两边之和大于第三边,两边之差小于第三边;(5)在同一个三角形内,大边对大角,大角对大边.(6)三角形中的四条特殊的线段:角平分线,中线,高,中位线.(7)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等.(8)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等.(9)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。

全等三角形及基本判定定理

全等三角形及基本判定定理

全等三角形全等三角形【知识要点】1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等 (2)全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于” 如DEF ABC ∆∆与全等,记作ABC ∆≌DEF ∆ (2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等三角形的判定1:SSS三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”.如图,在ABC ∆和DEF ∆中⎪⎩⎪⎨⎧===DF AC EF BC DEABABC ∆∴≌DEF ∆【典型例题】例1.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点,︒=∠26BAC ,且︒=∠20B ,1=∆ABC S ,求A C D D C A D ∠∠∠,,的度数及ACD ∆的面积.A BC DEFABDC例2.如图,ABC ∆≌DEF ∆,cm CE cm BC A 5,9,50==︒=∠,求ED F ∠的度数及CF 的长.例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠例4.如图AB=DE ,BC=EF ,AD=CF ,求证:(1)ABC ∆≌DEF ∆ (2)AB//DE ,BC//EFA B E C FD A BE CD ABCDFE例5.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠ (角平分线的相关证明及性质)全等三角形判定定理2:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”。

直角三角形的性质及勾股定理

直角三角形的性质及勾股定理

直角三角形的性质及勾股定理一、直角三角形的定义与性质1.1 直角三角形的定义:一个三角形如果有一个角是直角(即90度),那么这个三角形就被称为直角三角形。

1.2 直角三角形的特征:直角三角形有一个直角和两个锐角,直角所对的边叫做斜边,其余两边叫做直角边。

1.3 直角三角形的分类:根据直角所在的位置,直角三角形可以分为锐角直角三角形、钝角直角三角形和等腰直角三角形。

1.4 直角三角形的性质:(1)直角三角形的三个内角之和为180度;(2)直角三角形的两个锐角的乘积等于直角边的乘积;(3)直角三角形的斜边长度大于任何一条直角边的长度;(4)在直角三角形中,斜边上的高将斜边平分,且等于直角边的乘积除以斜边长度。

二、勾股定理的定义与证明2.1 勾股定理的定义:在一个直角三角形中,斜边的平方等于两个直角边的平方和,即a² + b² = c²,其中c为斜边长度,a和b为直角边长度。

2.2 勾股定理的证明:(1)几何证明:通过构造直角三角形ABC,其中∠C为直角,AC和BC为直角边,AB为斜边,再构造两个相似的直角三角形ADE和BCF,利用相似三角形的性质可以证明勾股定理;(2)代数证明:通过设直角三角形ABC的直角边为a和b,斜边为c,然后根据三角形内角和定理和直角三角形的性质列出方程,最后通过代数变换证明勾股定理。

三、勾股定理的应用3.1 直角三角形的边长求解:已知直角三角形的两个直角边长度,可以通过勾股定理求出斜边长度;已知直角三角形的斜边和其中一个直角边长度,也可以通过勾股定理求出另一个直角边长度。

3.2 直角三角形的面积计算:直角三角形的面积可以通过两条直角边的长度计算得出,面积=1/2 * a * b,其中a和b为直角边长度。

3.3 实际应用:勾股定理在工程、建筑、物理等领域有广泛的应用,例如在测量土地面积、计算建筑物的稳定性等方面都需要运用勾股定理。

四、直角三角形的判定4.1 利用勾股定理的逆定理判定:如果一个三角形的三边长度满足a²+ b²= c²,那么这个三角形是直角三角形。

数学中考总复习(一轮复习)第17讲全等三角形

数学中考总复习(一轮复习)第17讲全等三角形

第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。

(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。

2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。

微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。

二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。

2•判定:角的内部到角的两边的距离相等的点在 ____________ 。

3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。

2•角的平分线的性质定理和判定定理互为逆定理。

注意分清题设和结论。

高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。

(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形
附:相关概念
1、三角形的内角(三角形的角)
2、(锐角、直角、钝角)三角形
3、三角形的角平分线
4、三角形的中线
5、三角形的高线
三角形的相关性质及判定定理
性质
判定定理
三角形
1、三角形三个内角的和等于180°
2、三角形任何两边的和大于第三边
等腰三角形
1、等腰三角形的两个底角相等(在同一个三角形中,等边对等角)
2、等腰三角形的顶角平分线、底边上的中线和高线互相重合(等腰三角形三线合一)
1、如果一个三角形有两个角相等,那么这个三角形是等腰三角形。(在同一个三角形中,等角对等边)
等边三角形
1、等边三角形的各个内角都等于60°
1、三个角都相等的三角形是等边三角形
2、有一个角是60°的等腰三角形的两个锐角互余
2、直角三角形斜边上的中线等于斜边的一半
3、直角三角形两条直角边的平方和等于斜边的平方。a²+b²=c²
1、有两个角互余的三角形是直角三角形
相关文档
最新文档