甲壳素、壳聚糖材料
甲壳素与壳聚糖
壳聚糖具有良好的水溶性、生物相容性和生物活性,能够 被生物体内的酶降解。
总结
甲壳素和壳聚糖在性质上的差异主要表现在水溶性和生物降解 性上,甲壳素不易溶于水且不易被生物降解,而壳聚糖具有良
好的水溶性和生物降解性。
应用比较
甲壳素
甲壳素在医学、环保、农业等领域有广泛应用,如制备人工皮肤、药物载体和生物材料 等。
食品工业
02
03
环保领域
甲壳素和壳聚糖在食品工业中的 应用将更加广泛,如食品添加剂、 保鲜剂、食品包装材料等。
甲壳素和壳聚糖在环保领域的应 用将得到发展,如污水处理、土 壤修复等。
甲壳素与壳聚糖的环境影响
减少环境污染
随着提取技术的发展,甲壳素和壳聚糖的生产过程将 更加环保,减少对环境的污染。
资源化利用
甲壳素和壳聚糖的废弃物将得到有效利用,实现资源 化利用,减少浪费。
生态平衡
合理利用甲壳素和壳聚糖资源将有助于维护生态平衡, 促进可
抗菌性
壳聚糖具有广谱抗菌活性,能够抑制多种细菌的 生长繁殖。
生物降解性
壳聚糖可被微生物分解为低分子物质,最终分解 为水和二氧化碳,具有良好的生物降解性。
壳聚糖的应用
食品添加剂
壳聚糖可用于食品保鲜、增稠、稳定等功能, 提高食品品质和口感。
医疗领域
壳聚糖在医疗领域可用于制作止血纱布、药 物载体、组织工程支架等。
02 壳聚糖简介
壳聚糖的来源
甲壳素
壳聚糖是甲壳素经过脱乙酰化反应后 得到的,甲壳素广泛存在于虾、蟹等 甲壳动物的外壳以及菌类、昆虫等节 肢动物的外骨骼中。
提取过程
通过酸碱处理、脱钙、脱蛋白等步骤 ,将甲壳素脱去乙酰基,得到壳聚糖 。
甲壳素与壳聚糖
2 制成医学功能性纤维 壳聚糖具有一定的流延性及成丝性.可制成纤维形 式。在大分子结构上,甲壳质和壳聚糖与人体内存 在的氨基葡萄糖构成相同及具有类似于人体骨胶原 组织的结构,这赋予了它们极好的生物医药特性, 它具有理想的生物相溶性和生物活性,具有抑菌、 止血、抑制胃酸、抗溃疡、降血脂、降胆固醇、凝 集L。白血病细胞、消炎、镇痛、促进伤口愈合等 作用。甲壳质和壳聚糖纤维可做成手术缝合线、止 血棉、纱布、药布、绷带、创可贴、薄膜等各种医 用敷料,用混式纺丝法还可将壳聚糖制成无纺布的 人造皮肤。
3 用作无纺布粘合剂
壳聚糖溶解在其溶剂中形成溶液后.得到稠 厚、高粘度粘液,可作为粘合剂.但阳荷性 的壳聚糖溶液易与阴荷性物质如海藻酸钠浆 或电荷相反的染料凝结形成沉淀或沾色.因 此在涂料印花粘合剂中较少应用,但它作为 无纺布粘合剂则具有优良的粘合能力。
在化妆品中的应用
壳聚糖在酸性条件下可成为带正电荷的高分 子聚电解质而直接用于香波、洗发精等的配 方中,使乳胶稳定化以保护胶体;壳聚糖本 身的带电性使其具有抑制静电荷的蓄积与中 和负电荷的作用,这种带电防止的效能可以 防止脱发;壳聚糖能在毛发表面形成一层有 润滑作用的覆盖膜,因此可减少摩擦,避免 洗发所引起的对毛发的伤害。
❖ 由于它主要存在于低等动物中,特别是节肢动物的 甲壳中.始称甲壳素。又名甲壳质、几丁质、壳多 糖、壳蛋白、明角质。化学上命名为[(1,4)一2一
乙酰氨基一2一脱氧一β-D一葡萄糖]或【β-(1—4)
一2一乙酰氨基一2一脱氧一D一葡萄糖】,是N一 乙酰基一葡萄糖通过3一(1,4)甙糖键联接而成的直 链状多糖。
制备流程图
甲壳素/壳聚糖制备工艺的细化
❖ 甲壳素的提取过程主要是用酸脱碳酸钙,用 碱脱蛋白质,这个过程中产生一定量的酸碱 废液,对环境有一定的污染,研究人员在甲 壳素的提取工艺方面作了改进。
壳聚糖
文献综述钟士亮 041511130壳聚糖(chitosan)是甲壳素N-脱乙酰基的产物,是由β-(1,4)-2-氨基-2-脱氧-D-葡萄糖单元和β-(1,4)-2-乙酰胺基-2-脱氧-D-葡萄糖单元组成的共聚体[1]。
而甲壳素是地球上最丰富的高分子化合物之一,每年的天然产量达上百亿吨,仅次于纤维素。
甲壳素与Ca2+是虾、蟹、昆虫的外壳、藻类、菌类细胞壁的主要构成成分[2]。
壳聚糖是迄今发现的唯一具有明显碱性、带正电荷的天然多糖类有机高分子。
壳聚糖分子结构中含有氨基、羟基、氧桥以及富含电子的吡喃环活性基团,通常在生物体内表现出极强的亲和性,同时具有抗菌活性等,但是,壳聚糖结构上大量的羟基和氨基,使得壳聚糖分子间与分子内有强烈的氢键作用,所以壳聚糖不溶于一般溶剂和水,但可以溶解于稀酸,如醋酸,盐酸等,这使得壳聚糖的推广应用受到很大程度上的限制,因此改善壳聚糖的溶解性能特别是改善其水溶性,是壳聚糖改性研究中最重要的方向之一[3-4]。
壳聚糖在生物学和医学上都具有潜在的应用价值。
据报道壳聚糖单体,有许多独特的生理活性,促进脾脏抗体生长,抑制肿瘤细胞[5];强化肝脏功能,降低血压,吸附胆固醇;在微酸环境中具有较强的抗菌作用和显著的吸湿保湿力;活化植物细胞,促进植物快速生长[6]。
壳聚糖能促进血液凝固,可用作止血剂。
它还可用于伤口填料物质,良好的生物相容性和生物可降解性,还具有消炎、减少创面渗出和促进创伤组织再生、修复和愈合的作用。
壳聚糖结构如下图1.1:图 1.1 壳聚糖的结构式它分子链上的胺基和羟基都是很好的配位基团。
1 壳聚糖的性质1.1壳聚糖物理化学性质1811年法国科学家Braconno提取得到的甲壳素,甲壳素通过脱乙酰化得到壳聚糖,从此人们对它的研究越来越多。
壳聚糖呈白色或灰白色,略有金属光泽,为透明且无定形固体。
在185 ℃下开始分解,不溶于水和稀碱,可溶于大多数有机酸和部分无机酸中,壳聚糖分子中同时存在大量的氨基和羟基,因此可以进行相应的修饰、接枝、以及活化等[7]壳聚糖以其氢键相互交联成网状结构,利用适当的溶剂,可制成透明的的薄膜,壳聚糖的溶液具有粘性是一种理想的成膜物。
第4章-甲壳素和壳聚糖-天然高分子材料资料讲解
-甲壳素是聚N-乙酰胺基-D-葡萄糖胺的螺旋型物,每个
单元晶胞含有两条旋向相反的链,每条链均由两个卷曲相
连的N-乙酰胺基-D-葡萄糖胺单元构成。
14
Biopolymers: Chitin & Chitosan
• 型结晶中,两个相连的葡萄糖胺的C3及C5原子以及 乙酰胺基的N、H原子间存在着氢键,使甲壳素型结 晶的结构紧密。
7
Biopolymers: Chitin & Chitosan
• 二级结构:甲壳素分子链上的羟基、N-乙酰胺基和氨
基形成的各种分子内和分子间氢键。 • 这些氢键的存在,阻抑了邻近的糖残基沿糖苷键的旋
转,同时,相邻糖环之间的空间位阻降低了糖残基旋 转的自由度,从而限制了旋转角的大小,这样就构成 了刚性长链分子。
16
• 在从甲壳素制备壳聚糖时,在相同的碱浓度和相同的温度下 制备同样脱乙酰度的壳聚糖,在相同的反应时间下,-甲壳 素的脱乙酰度远远高于-甲壳素。说明-甲壳素结晶度很高, 分子间具有非常强的作用。
• 在相同的脱乙酰度下, -壳聚糖具有很高的结晶度,但是壳聚糖主要表现为无定型结构。
虾-甲壳素和-甲壳素在30% NaOH中100ºC下的脱乙酰化反应
Biopolymers: Chitin & Chitosan
在1600-1500 cm-1之间是C=O的 氨基的伸缩振动区,此处-甲壳 素和-甲壳素的峰位有区别:
•对-甲壳素,酰胺I带被分成两个 峰,分别为1656cm-1和1621cm-1; 而对-甲壳素,只有1626cm-1这一 个峰。
•-甲壳素的酰胺II带峰在1556cm1,-甲壳素的酰胺II带峰在 1560cm-1。
1 甲壳素与壳聚糖
1 甲壳素与壳聚糖甲壳素(chitin)又名甲壳质、壳蛋白、几丁、几丁质,广泛存在于昆虫和甲壳动物(虾、蟹等)的甲壳中,少数真菌和绿藻等低等植物的细胞壁中也含有甲壳素。
在天然高分子中,其数量仅次于纤维素。
甲壳素是由N-乙酰-2-氨基-2-脱氧-D-葡萄糖经由β-1,4糖苷键聚合而成的线型高分子,分子量100万以上。
甲壳素和壳聚糖有不同的化学结构,甲壳素分子链上存在羟基和乙酰基,壳聚糖分子链上还含有游离的氨基可以通过各种化学改性,获得多种功能和用途。
甲壳素和壳聚糖可以与一氯乙酸、环氧乙烷、丙烯腈等醚化剂进行羧甲基化、羟乙基化、氰乙基化反应,生成相应的离子型醚和非离子型醚。
例如,在碱性(NaOH)条件下,以异丙醇为溶剂,加入一氯乙酸与甲壳素或壳聚糖反应,经中和、洗涤、干燥得到羧甲基甲壳素或羧甲基壳聚糖,是一类水溶性离子型醚。
2 甲壳素和壳聚糖的应用甲壳素、壳聚糖及其多种多样的化学改性产品具有种种功能,在纺织、印染、造纸、生化、食品、医疗、日用化工、农业和环境保护等方面都得到了广泛应用。
壳聚糖是一种阳离子聚电解质,对固体悬浮物有很好的凝聚作用,壳聚糖本身无毒性,所以可作为絮凝剂应用。
例如:用于水质净化和饮料(果汁、果酒)的除浊澄清;仪器工业下脚废水处理及对淀粉、蛋白质的回收;活性污泥的凝集及脱水;印染废水染料的凝集等。
根据美国商业部估计,目前全世界甲壳素的工业用量每年约15万t,主要用作环保处理剂及净水剂、约占50%。
它涉及的行业有食品业、屠宰业、染整业、电镀业。
甲壳素本身是天然材料,在发达国家环保管理机构均鼓励业界优先考虑使用,因对于其凝集之沉淀物不需考虑“二次污染”问题。
以甲壳素为主的滤材目前已使用于游泳池及其他大型水池除污及饮水净化。
甲壳素和壳聚糖及其衍生物在农业、纺织、造纸、生化、化学分析、重金属富集回收等方面还有多种用途。
甲壳素及其衍生物由于分子中羟基、氨基及其他基团的存在,对许多金属离子具有螯合作用,所以能有效地吸附或捕集溶液中的重金属离子,但不吸附水中的K+、Na+、Ca2+、Mg2+、Cl-、SO42-、CO32-、HCO3-等离子,因而不影响天然水的本底浓度。
第五节甲壳素和壳聚糖
壳聚糖: 葡萄糖胺为基本单位, 脱乙酰度由60%~100%不等。 脱乙酰度55-70%(低脱乙酰度壳聚糖),
70-85%(中~),85-95%(高~) 95-100%(超高~),不能达到100%
分子量10-50万
略带珍珠般的光泽
不溶于水、乙醇、酮和碱溶液,可溶于大多数稀酸 (如醋酸、环烷酸和苯 甲酸) 。在pH低于6.5时,可得到黏稠的溶液。
u 应用 手术线,人工透析膜,非纺造织物,纺织原料
6. 甲壳素和壳聚糖的应用
u 生物医用材料 相关性能:
(1) 抑菌抗感染 壳聚糖形成质子化铵盐,吸附带负电的细胞壁,改变细胞膜的选择透过性, 扰乱了细菌正常的新陈代谢,导致细胞质壁分离,抑菌杀菌。 (2) 抗病毒和抑制肿瘤 促进巨噬细胞活性,影响非杀伤性细胞(NK)活性IL22的分泌,提高机体的 非特异性免疫功能 (3) 降脂和防治动脉硬化 (4)止血作用 壳聚糖被质子化,可和许多带负电生物大分子如黏多糖、磷脂及细胞外基 质蛋白发生静电作用而形成血栓,起到止血作用。
(3)制造人造血管 内壁光滑不会凝集血球、抑制人成纤维细胞生长
(4)固定化酶载体
(5)药物辅料和载体
u 水处理材料 (1)吸附金属离子:
-NH2 和-OH与Pb2+、Cr6+、Cu2+等重金属离子形成稳定的五环状螯合物
交联微球+磁铁,去除率达98%
(2)絮凝剂、络合剂、吸附剂处理废水和饮用水 酸性条件,静电作用 碱性条件,化学吸附和物理吸附 高效絮凝剂,无毒副作用,易降解
u 聚乙二醇 PEG400交联壳聚糖,pH7条件下,对Pb吸附容量为20mg/g
5. 甲壳素纤维的成形加工
u 工艺路线 甲壳素(壳聚糖)-->(改性处理)--> 溶解--> 纺丝原液--> 过滤--> 脱 泡--> 计量--> 纺丝--> 一浴 -->拉伸--> 二浴--> 定型--> 后处理--> 干燥--> 纤维 u 制备方法 (1)甲壳素纤维
甲壳质与壳聚糖纤维
发 展 概 况
1811年,法国人Braconnot发现甲壳素。
1859年,Roughet发现壳聚糖以后,世界各国的科学家对甲壳素与 壳聚糖的结构、性质和生物医药特性等开展了多方面的研究。
1926年,Von Weimarn考虑用甲壳素纺制纤维。 1936年,G.W.Rigby得到了用于生产壳聚糖及从壳聚糖生产薄膜 和纤维的专利。 1977年,在美国召开了有关甲壳素、壳聚糖开发研究的第一次国际学 术会议,迄今,对甲壳素的研究已形成了一门独立的学科—甲壳素化学, 并成为当今世界七大前沿学科领域之一。 因为甲壳素与壳聚糖的溶液具有优良的可纺性,各国研究人员通过不 同的溶剂和生产生产工艺制取甲壳素及壳聚糖纤维。
5
一、甲壳素与壳聚糖的结构
甲壳素又称甲壳质、壳质、几丁质,是一种带正电荷的天然多糖 高聚物。它是由2-乙酰氨基-2-脱氧-D-葡萄糖通过β (1-4)糖甙连接 起来的直链多糖,它的化学名称是(1-4)-2-乙酰氨基-2-脱氧-β -D葡聚糖,或简称聚乙酰氨基葡糖。
CH2 CH2OH H OH H OH H O H NH C O CH2 H O H H OH H C NH H O H O O CH2OH H O H OH H H NH C O CH2 H O H H OH H CH2OH (n-2)/2 CH2 C O NH H H O OH
第四节 甲壳素与壳聚糖纤维
甲壳素纤维(Chitin Fiber)与壳聚糖纤维(Chitosan Fiber)是用甲壳素或壳聚糖溶液纺制而成的纤维,是继纤 维素纤维之后的又一种以天然高聚物为原料的纤维。 甲壳素(Chitin)是由虾、蟹、昆虫的外壳及菌类、藻 类的细胞壁中提炼出的一种天然生物高聚物。壳聚糖 (Chitosan)是甲壳素经浓碱处理后脱去乙酰基的产物。 在自然界中,甲壳素的年生物合成量在1 000亿吨以上, 是一种仅次于纤维素的蕴藏量极为丰富的有机再生资源。
甲壳素与壳聚糖综述
二、壳聚糖的制备方法
二步碱液法 ( 传统法)
改进碱液法
该工艺具有制备周期短、节约能源; 节约烧碱用量, 降低成本, 省去漂白, 确保产品质量的优点。
微波法
该工艺的特点不仅作用时间短, 能耗低, 而且比常 规加热碱液处理效率提高 11 倍多, 同时反应重复性好。
三、甲壳素、壳聚糖的应用
功能 材料
存在状态:
甲壳素的结构因氢键类型不同而有 三种结晶体: ➢α-甲壳素,由两条反向平行的糖链组成 ➢β-甲壳素,由两条同向平行的糖链组成 ➢γ-甲壳素,由三条糖链组成,其中两条 同向,一条反向。
壳聚糖: 也称几丁聚糖(chitosan),它是由甲壳素在 碱性条件下加热,脱去N—乙酰基后生成的。其学名为(1, 4)—2—氨基—2—脱氧—β—D—葡聚糖。壳聚糖外观是 白色或淡黄色半透明状固体,略有珍珠光泽。
8.在功能材料中的应用
膜材料:
(1)反渗透膜:具有较高的脱盐率和透水率,还 具有强耐碱性,交链后的膜有耐酸性。 (2)渗透蒸发膜:用甲壳素制成的分离水和乙醇 的高性能功能分离膜,与蒸馏法分离水和乙醇相 比,能耗降低。 (3)超过滤膜:甲壳素制成的壳质膜,改变成膜 温度及用丙酮等有机溶剂浸处理,可调整分离膜 的强度及透过性能,可用作超过滤膜。
1.在农业上的应用
植物病害的防治:
壳聚糖可诱导植物产生广谱抗性, 增强植物自身的防卫能力,抑制多种 病源微生物的生长。
低聚壳聚糖可以诱导植物产生抗 性蛋白,具有明显的抗微生物活性, 在体外抑制真菌的生长。
2.在化妆品原料上的应用
1)洗发香波、头发调理剂:甲壳素粉沫比表面积 大,孔隙率高,吸收皮脂类油脂远大于淀粉或其 他活性物质,是洗发剂理想的活性物质。
一是通过电荷中和而使胶体颗粒脱稳并形成细小 的絮凝体;
甲壳素及壳聚糖的制备与利用
甲壳素及壳聚糖的制备与利用
甲壳素和壳聚糖是生物多糖,具有广泛的应用。
它们主要来源于海洋生物,如海藻、海参、单细胞藻类等,也可以从非海洋生物中分离纯化而来,如硅藻中的甲壳素,以及禾谷科植物的壳聚糖。
甲壳素和壳聚糖的制备方法包括离子交换法、溶剂萃取法、乳化-凝胶法、气相法、水解法等,但以水解法为主,因其简便性、成本低廉、效率高、成品纯度高等优势。
在水解中,一般采用酶进行水解,如α-葡萄糖苷酶、β-葡萄糖苷酶等,也可以采用酸性碱性溶液进行水解。
利用甲壳素和壳聚糖可以制备各种复合材料,如复合膜、复合无纺布、复合涂料等,具有良好的抗水蚀性能、抗紫外线性能、耐腐蚀性能等,可用于食品包装、水处理、生物医学等领域。
此外,它们还可以用于制备含有药物的纳米粒子、纳米复合材料、纳米纤维素以及药物输送体系等,以及制备生物活性物质、抗菌剂、抗炎剂、抗癌剂等。
甲壳素(经脱乙酰化后称为)壳聚糖
甲壳素——(经脱乙酰化后称为)壳聚糖中文名称:甲壳质英文名称:chitin其他名称:壳多糖,几丁质;几丁质、甲壳素定义1:由N-乙酰基-D-吡喃葡糖胺聚合而成的直链多糖,是虾、蟹外壳的主要有机成分。
应用学科:海洋科技(一级学科);海洋技术(二级学科);海洋生物技术(三级学科)定义2:由虾、蟹甲壳提取的含有氨基的多糖类物质。
Chitin.甲壳质是1811年由法国学者布拉克诺(Braconno)发现,1823年由欧吉尔(()dier)从甲壳动物外壳中提取,并命名为CHITIN,译名为几丁质。
外观及性质:淡米黄色至白色,溶于浓盐酸/磷酸/硫酸/乙酸,不溶于碱及其它有机溶剂,也不溶于水。
甲壳质的脱乙酰基衍生物(Chitosan derivatives)可溶于水。
甲壳素具有抗癌抑制癌、瘤细胞转移,提高人体免疫力及护肝解毒作用。
尤其适用于糖尿病、肝肾病、高血压、肥胖等症,有利于预防癌细胞病变和辅助放化疗治疗肿瘤疾病。
甲壳质(Chitin)的概念甲壳质存在于自然界中的低等植物菌类、藻类的细胞,甲壳动物虾、蟹、昆虫的外壳,高等植物的细胞壁等,是从蟹、虾壳中应用遗传基因工程提取的动物性高分子纤维素,被科学界誉之为"第六生命要素"!因此被欧美中日政府认定为机能性免疫物质。
在灵芝、冬虫夏草等植物中也含有微量"几丁聚糖",但含量只在2%-7%之间。
甲壳素是宇宙中唯一带正电的阳性食物纤维,地球上存在的天然有机化合物中,数量最大的是纤维素,其次是甲壳素,估计自然界每年生物合成的甲壳素将近100亿吨。
甲壳素是地球上数量最大的含氮有机化合物,其次才是蛋白质仅此两点,就足以说明甲壳素的重要性。
蟹壳中含有40%的蛋白质、30%的钙、30%的几丁质。
提取甲壳质(几丁质)的工艺是:首先用稀的氢氧化钠液除去蛋白质,然后,用盐酸除去钙盐,剩下的就是几丁质。
为了从这些几丁质中除去乙酰基,用长时间的高温,使之在浓的氢氧化钠中发生反应,就可制成含有氨基的甲壳质。
水溶性甲壳素,甲壳素天然抗菌剂,壳聚糖整理剂,甲壳素,壳聚糖
甲壳素又称甲克质、几丁质,是重要的天然抗菌整理剂之一。
它来自天然贝壳、蟹壳、虾壳、鱼骨及昆虫等动物的客体。
当甲壳素脱乙酰度达到55%时,则成为甲壳素最重要的抗菌衍生物壳聚糖。
甲壳素整理剂SAL6680是以壳聚糖、活性添加剂为主要成分,是安全性很高的集保湿、美肤、抗菌为一体的整理剂。
它具有良好的粘合性、生物相容性、生物降解性、无毒性及特殊的吸附性。
适用于各种纤维织物,包括棉、毛等天然纤维和聚酯、尼龙、粘胶等化学纤维纺织品,经其处理后的织物具有优良的耐洗性。
SGS、Intertek 等全球多家权威检测机构一致证明: SAL6680的抗菌性能符合美国AATCC100标准及日本JIS L 1902-2002标准等。
韩笑壳聚糖衍生物抗菌剂的应用王阳(西安工程大学,陕西西安710048)摘要:概述了纺织品抗菌防臭整理的重要性,介绍了抗菌整理剂的种类,重点阐述了改性壳聚糖的抗菌防臭整理剂的应用工艺,采用日本JIS标准测试证明Herst ATB抗菌整理纺织品具有高效、耐久的抗菌防臭效果,并且Herst ATB成本低廉,安全环保,适合于工业化生产。
关键词:甲壳素;抗菌防臭整理剂;抗菌纺织品;抗菌整理工艺The application of chitosan antibacterial agentAbstract: This paper covers the development and the important of antibacterial finishing, as well as the kinds of antibacterial agent, mainly the finishing method by chitosan. Based on American standard JIS, result show that cotton fabric treated with Herst ATB has not only the excellent antibacterial effect, durable to washing, but also safe to body and environmental friendly. It is suitable for manufactory.Key words: chitosan; antibacterial agent; antibacterial textile; antibacterial finishing1前言随着人们卫生保健意识的增强,特别是安全、舒适、健康、清洁、环保等“绿色”观念的形成,对于纺织品要求越来越高,使纺织品的抗菌、防霉、防臭后整理加工更加受到人们的重视。
甲壳素、几丁质、壳聚糖的区别
甲壳素、几丁质、壳聚糖的区别甲壳素:又称甲壳多糖、几丁质。
甲壳动物(虾、蟹)等的骨骼和菌类(地衣)等的细胞膜的重要成分。
白色半透明固体。
不溶于水、乙醇和乙醚。
是由N-乙酰α-氨基-D-葡萄糖胺以β(1→4)糖苷键连结而成的含氮多糖。
溶于浓无机酸和无水甲酸。
在浓酸或浓碱中发生水解而成α-氨基葡萄糖。
可用于纺织品的防皱和防缩处理;直接染料或硫化染料的固色;涂料印花的固着;木材的胶合以及防雨篷布的上浆等。
也可用作制人造纤维和塑料等的原料。
由含有甲壳质的物质如虾壳、蟹壳等提取制得。
壳聚糖是甲壳素的脱乙酰化产物,又称可溶甲壳素、壳多糖、甲壳胺,是一种天然生物高分子聚合物,白色结品性扮末。
有很强的吸湿性,仅次于甘油,高于聚乙二醇、山梨醇。
在吸湿过程中,分子中的羟基、胺基等极性基团与水分子作用而水合,分子链逐渐膨胀,随着pH值的变化,分子够从球状胶束变成线状。
具有很好成膜性、透气性和生物相容性。
无毒,且可生物降解。
甲壳素(几丁聚糖)俗称壳聚糖、几丁质,也称壳胺糖或救多善,学名为几丁聚糖(chitosan)。
广泛存在于蟹、虾等甲壳动物的外壳及各种昆虫的表皮和贝类等软体动物的骨骼、外壳中,以及蘑菇和灵芝等的细胞壁中,是自然界中唯一带正电荷的动物性膳食纤维素。
甲壳素的用途广泛,除工业、农业、轻纺、环境保护、化妆品等领域外,它的医疗保健作用更令人刮目相看,因为它完全不同于一般的营养保健品。
它对于人体具有调节免疫功能,有活化细胞、抑制老化、预防疾病、调节人体生理功能等作用,被欧美学术界誉为与蛋白质、脂肪、糖类、维生素、矿物质并列的第六大生命要素。
是功能最全面、效果最显著的第三代机能性健康食品。
(一)甲壳素的特点:“五个一”1.甲壳素是目前唯一天然的含有正电荷阳离子基团的可食性动物纤维;2.甲壳素是糖类中唯一的碱性多糖;3.甲壳素保健食品是日本政府批准的唯一允许宣传疗效的机能性保健食品;4.甲壳素资源是自然界里含氮量最高的天然资源;5.日本国际健康研究所所长金子今朝夫在其著作《七种最佳抗癌食品》一书中把甲壳素摆在灵芝、刺五加、螺旋藻、蜂胶、啤酒糟、半藻类之冠;上海胸科医院廖美琳教授在第六届全国肺癌会议报告中,把甲壳素摆在三种抗癌细胞特种的物质(甲壳素、多肽、肝素)之首。
甲壳素与壳聚糖的制备原理与工艺流程
甲壳素与壳聚糖的制备原理与工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!甲壳素与壳聚糖的制备原理与工艺流程1. 概述甲壳素与壳聚糖是从甲壳类动物的外壳中提取的重要生物高分子材料,具有广泛的应用价值。
甲壳素与壳聚糖
甲壳素和壳聚糖具有调节植物生长、增强植物抗逆性等作用,在农业领域具有潜在的应 用价值。
甲壳素与壳聚糖的未来展望
提高产量与质量
通过优化提取和制备工艺,提高甲壳素和 壳聚糖的产量与质量,以满足市场需求。
A 拓展应用领域
随着研究的深入,甲壳素和壳聚糖 的应用领域将进一步拓展,如在新 材料、新能源等领域的应用探索。
多元化提取
未来将开发出更多元化的提取方法,满足不同来源和性质的甲壳素 与壳聚糖的提取需求。
甲壳素与壳聚糖的应用领域拓展
生物医学领域
随着研究的深入,甲壳素与壳聚 糖在生物医学领域的应用将更加 广泛,如药物载体、组织工程、 生物材料等。
环保领域
由于甲壳素与壳聚糖具有优异的 生物降解性,未来在环保领域的 应用将更加广泛,如污水处理、 土壤修复等。
甲壳素和壳聚糖都具有抗菌、抗 炎、抗肿瘤等生物活性,可应用 于伤口愈合、抗炎治疗、抗肿瘤 药物载体等方面。
04 甲壳素与壳聚糖的未来发 展
甲壳素与壳聚糖的提取技术发展
高效提取
随着科技的不断进步,甲壳素与壳聚糖的提取技术将更加高效, 提高产量和纯度,降低生产成本。
环保提取
在提取过程中,将更加注重环保,减少对环境的污染,开发出更加 环保的提取方法。
循环利用
03
研究甲壳素与壳聚糖的循环利用技术,实现资源的有效利用,
降低生产成本和环境负担。
05 结论
甲壳素与壳聚糖的重要地位
生物医用材料
甲壳素和壳聚糖具有良好的生物相容性和生物降解性,在生物医用材料领域具有广泛的 应用前景,如药物载体、组织工程和创伤敷料等。
环保领域
甲壳素和壳聚糖可降解,对环境友好,可用于环保领域,如污水处理、重金属离子吸附 等。
甲壳素和壳聚糖的化学性质和应用
甲壳素和壳聚糖的化学性质和应用普拉迪普·库马尔·杜塔,乔伊迪普格杜塔和特里帕蒂阿拉哈巴德,莫逖尼赫鲁国家技术研究所,化学系211004。
甲壳素和壳聚糖是相当灵活和有前途的生物材料。
脱乙酰甲壳素和壳聚糖衍生物,更加有用和有趣的生物活性聚合物。
尽管它的生物降解性,它有许多反应性氨基酸侧链基团,其中提供化学修饰,形成了大量的各种有用的衍生物,是市售的可能性或者可以通过接枝反应和离子相互作用。
本研究着眼于当代研究甲壳素和壳聚糖对在各种工业和医学领域的应用。
关键词:甲壳素,生物降解性,壳聚糖,生物材料介绍甲壳素是第二个最普遍的物质,地球上仅次于纤维素和多糖:它是由(1→4)组成的联-2 - 乙酰氨基-2 - 脱氧- - glucose1(D-N-乙酰葡糖胺)(图1)。
它通常被认为是纤维素衍生物,甚至不会发生在生产纤维素的生物中。
它与纤维素结构上是相同的,但它在C-2位置上具有乙酰胺的组(NHCOCH3)。
同样的衍生物甲壳素,壳聚糖线型聚合物(1→4) - 连接的2 - 氨基-2 - 脱氧--D-吡喃葡萄糖,很容易推导出N-脱乙酰化,其特征在于,不同程度上的脱乙酰度,因此它是一个的N-乙酰葡糖胺和葡糖胺的共聚物(图2)。
估计甲壳素每年待产几乎与纤维素一样多。
它已成为极大的研究热点,不仅是一个可利用的资源,也可作为一个新的高功能的生物材料,潜在于各个领域中的最新进展,化学作用是相当显著的。
图1 - 甲壳素结构图2 - 部分脱乙酰甲壳素甲壳素是一种白色,坚硬,无弹性,在含氮多糖中的外骨骼中发现,以及在内部结构的无脊椎动物中发现。
这些天然聚合物表面的一个主要来源在沿海地区。
作为食品工业中获得的甲壳类的壳进行脱乙酰壳多糖的生产,在经济上是可行的,特别是如果它包括恢复类胡萝卜素。
贝壳含有相当数量的虾青素,迄今尚未合成,类胡萝卜素是作为鱼类食品添加剂销售水产养殖,特别是鲑鱼。
印度的平均降落的固体废物分数贝类介乎60,000至8万吨。
甲壳素和壳聚糖
甲壳素和壳聚糖 The pony was revised in January 2021备注第7章甲壳素和壳聚糖甲壳素和壳聚糖的结构、性能甲壳素的存在状态与提取方法甲壳素与壳聚糖的改性甲壳素与壳聚糖及其改性产物的应用掌握甲壳素和壳聚糖的基本结构和反应性能了解甲壳素和壳聚糖的结构改性和应用甲壳素和壳聚糖的结构、性能甲壳素的发现与命名1、1811年温热的稀碱溶液反复处理蘑菇,提取甲壳素,命名Fungine,真菌纤维素。
2、1823年甲壳类昆虫翅鞘中分离,命名Chitin3、4、1878年从Chitin水解反应液中检出氨基葡萄糖和乙酸5、1894年进一步证明Chitin中含有氨基葡萄糖,后来研究证明,Chitin是由N-乙酰基葡萄糖缩聚而成的。
二、结构特征研究证实,甲壳素与其他多糖一样,其分子链也是螺旋形,XRD照片给出的螺距为,一个螺旋平面由6个糖残基组成。
测定方法:红外、核磁共振三、壳聚糖的主要特性1. 不能完全溶解于水和碱溶液中,但可溶于稀酸(pH<6),游离氨基质子化促进溶解。
溶于稀酸呈黏稠状,在稀酸中壳聚糖的β-1,4糖苷键会慢慢水解,生成低相对分子质量的壳聚糖。
2. 壳聚糖在溶液中是带正电荷多聚电解质,具有很强的吸附性。
3. 壳聚糖的溶解性与脱乙酰度、相对分子质量、黏度有关,脱乙酰度越高,相对分子质量越小,越易溶于水.4. 壳聚糖具有很好的吸附性、成膜性、通透性、成纤性、吸湿性和保湿性N-脱乙酰度和黏度(平均分子量)是壳聚糖的两项主要性能指标脱乙酰度(1)脱乙酰度(.)的高低,直接关系到它在稀酸中的溶解能力、黏度、离子交换能力、絮凝性能和与氨基有关的化学反应能力。
(2)测定的方法有酸碱滴定法、电位滴定法、氢溴酸盐法、胶体滴定法、苦味酸分光光度法、UV、IR法等5、黏度黏度反应了高分子物质的分子量大小,在壳聚糖的生产上,常用旋转黏度计来测定其黏度,这是表观黏度,其数值可大体反映出壳聚糖分子量的大小。
甲壳素及壳聚糖在纺织工业中的应用
甲壳素及壳聚糖在纺织工业中的应用1 概述甲壳素(Chitin)又名甲壳质、几丁质等,是一种丰富的自然资源,每年生物合成近10亿吨之多,是继纤维素之后地球上最丰富的天然有机物。
甲壳素的结构与纤维素极其相似,是一种天然多糖,可命名为(l,4)-2-乙酸氨基-2-脱氧-β-D-葡萄糖。
甲壳素兼有高等动物组织中胶原质和高等植物组织中纤维素两者的生物功能,对动、植物都具有良好的适应性,同时还具有生物可降解性和口服无毒性,因此近年来它已成为一种用途广泛的新型材料。
壳聚糖(Chitosan)是甲壳素脱乙酸化的产物,能溶于低酸度的水溶液中,因其含有游离氨基,能结合酸分子,故具有许多特殊的物理化学性质和生物功能。
壳聚精是甲壳素最重要的衍生物,是甲壳素脱乙酸度达到70%以上的产物,也是迄今为止发现的唯一天然碱性多糖,具有无毒性、可生物降解性、良好的生物兼容性等特性。
另外,壳聚糖分子中存有大量的氨基和羟基,可以通过化学反应在其上引入各种功能性基团进行化学修饰作为低等动物组织中的纤维成分,所以表现出了极高的应用价值和广泛的发展前景,是一种新型的多功能织物整理剂,在印染、抗折皱、防毡缩、抗菌和纤维滤嘴等方面应用广泛。
此外,将甲壳素或壳聚糖纺成纤维,进而加工成外科用的可吸收手术缝合线、伤口敷料、人造皮肤等医用材料则是近年来科学家们研究的重要课题。
2 在纺织领域中的应用壳聚糖具有许多天然的优良性质,如吸湿透气性、反应活性、生物活性、吸附性、粘合性、抗菌性等,人们利用这些性能来提高棉、毛、丝绸等天然纤维织物的染色、抗菌、防皱、防缩等性能,并可应用于纺织领域的污水处理。
2.1 手术缝合线用壳聚糖纤维制成的缝合线,在预定时间内有很强的抗张强度,在血清、尿、胆汁、胰液中能保持良好的强度,在体内有良好的适应性,尤其是经过一定时间,壳聚糖缝合线能被溶菌西每解,被人体自行吸收。
因此,当伤口愈合后,不必再拆线。
理想的外科缝合线应满足:愈合前与组织兼容;愈合时所有缝合线不拆除,逐渐被人体吸收而消失;缝合线不破坏愈合。
壳聚糖的实验报告(3篇)
第1篇一、实验目的1. 学习壳聚糖的提取方法。
2. 探究壳聚糖的性质及其应用。
3. 了解壳聚糖在食品、医药等领域的应用前景。
二、实验原理壳聚糖是一种天然的高分子多糖,由甲壳素经过脱乙酰化反应得到。
壳聚糖具有良好的生物相容性、生物降解性、抗菌性、成膜性等特性,广泛应用于食品、医药、环保等领域。
三、实验材料与仪器1. 材料:虾壳、稀盐酸、氢氧化钠、无水乙醇、氯仿、硫酸铜、硫酸锌、硫酸钠等。
2. 仪器:电子天平、恒温加热器、电热鼓风干燥箱、研钵、烧杯、滴定管、移液管、容量瓶、锥形瓶、玻璃棒等。
四、实验步骤1. 壳聚糖的提取(1)将虾壳洗净,晾干,剪碎。
(2)将虾壳放入烧杯中,加入适量的稀盐酸,加热煮沸,搅拌,使虾壳中的甲壳素溶解。
(3)过滤,取滤液,用氢氧化钠调节pH值至7-8。
(4)将调节pH值后的溶液加热煮沸,使壳聚糖析出。
(5)过滤,取滤饼,用无水乙醇洗涤,去除杂质。
(6)将洗涤后的滤饼放入电热鼓风干燥箱中,干燥至恒重。
2. 壳聚糖的性质研究(1)溶解性:将干燥后的壳聚糖加入适量的氯仿中,观察壳聚糖在氯仿中的溶解情况。
(2)成膜性:将壳聚糖溶液滴在玻璃板上,待溶液蒸发后,观察壳聚糖薄膜的形成情况。
(3)抗菌性:将壳聚糖溶液滴在含有细菌的培养基上,观察细菌的生长情况。
(4)生物降解性:将壳聚糖溶液滴在土壤中,观察壳聚糖在土壤中的降解情况。
五、实验结果与分析1. 壳聚糖的提取经过实验,成功提取出壳聚糖,干燥后的壳聚糖呈白色粉末状。
2. 壳聚糖的性质研究(1)溶解性:壳聚糖在氯仿中溶解度较低,说明其具有一定的溶解性。
(2)成膜性:壳聚糖溶液在玻璃板上形成薄膜,说明其具有良好的成膜性。
(3)抗菌性:壳聚糖溶液对细菌具有一定的抑制作用,说明其具有良好的抗菌性。
(4)生物降解性:壳聚糖在土壤中逐渐降解,说明其具有良好的生物降解性。
六、结论1. 成功提取出壳聚糖,干燥后的壳聚糖呈白色粉末状。
2. 壳聚糖具有良好的溶解性、成膜性、抗菌性和生物降解性。
甲壳素和壳聚糖的结构式
甲壳素和壳聚糖的结构式甲壳素是一种多糖类物质,主要存在于甲壳动物的外壳和外骨骼中。
它是由N-乙酰葡萄糖胺和N-乙酰半乳糖胺通过β-1,4-糖苷键连接而成的。
甲壳素具有坚硬、耐磨、耐腐蚀等特性,因而被广泛应用于工业和医药领域。
壳聚糖是一种天然的多糖类物质,主要存在于甲壳动物的外壳和软骨中。
它是由葡萄糖分子通过β-1,4-糖苷键连接而成的。
壳聚糖具有生物相容性、生物可降解性、抗菌性等特性,因而被广泛应用于医药、食品和化妆品等领域。
甲壳素和壳聚糖在结构上非常相似,都是由葡萄糖分子通过糖苷键连接而成的多糖类物质。
它们的差异主要体现在两个方面:首先,在甲壳素中,葡萄糖分子中的羟基被乙酰基取代,而在壳聚糖中,葡萄糖分子中的羟基没有被取代;其次,在甲壳素中,葡萄糖分子的连接方式为β-1,4-糖苷键,而在壳聚糖中,葡萄糖分子的连接方式也是β-1,4-糖苷键。
甲壳素和壳聚糖的这些结构特点赋予了它们不同的性质和应用领域。
甲壳素具有坚硬、耐磨、耐腐蚀等特性,因而被广泛应用于工业领域,如制造汽车零部件、船舶构件等。
此外,甲壳素还具有一定的药理活性,可以用于治疗骨质疏松症、关节炎等疾病。
壳聚糖具有生物相容性、生物可降解性、抗菌性等特性,因而被广泛应用于医药领域。
壳聚糖可以用于制备药物缓释系统,可以将药物包裹在壳聚糖微球中,通过控制微球的降解速度和释放速度,实现药物的缓慢释放,提高药效。
此外,壳聚糖还可以用于制备生物质载体,用于组织工程和再生医学等领域。
甲壳素和壳聚糖作为天然多糖类物质,具有良好的生物相容性和生物可降解性,因而在医药领域具有广阔的应用前景。
随着人们对健康和环保意识的提高,甲壳素和壳聚糖的应用前景将会更加广阔。
但同时也需要加强对甲壳素和壳聚糖的研究和开发,以进一步发挥它们在医药和工业领域的作用,为人类的生活带来更多的便利和福祉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) 酯化反应
——甲壳素或壳聚糖的羟基与酸反应生成酯 硫酸酯 试剂:浓硫酸、氯磺酸、二氧化硫、三氧化硫
特点:非均相反应;浓硫酸具有降解作用;
改进:主要为SO3—有机胺的络合物
如SO3-吡啶、 SO3-甲酰胺、 SO3-DMF
有机溶剂:DMF、甲酰胺、DMSO 特点:价格贵、保存苛刻
发展——氯磺酸-甲酰胺磺化试剂
第二种方法:
基本原理:甲壳素或壳聚糖与乙醛酸或丙酮酸反应,醛基
或酮基与壳聚糖上的氨基形成Schiff碱,再通过还原亚胺形成 C-N-C键,得到羧甲基化壳聚糖。 特点:反应活性高、N-取代; 制备过程:
(1) 将壳聚糖用蒸馏水溶胀;
(2) 加入一定量的丙酮酸,室温搅拌1 h,得透明的粘性溶液; (3) 用玻璃纤维过滤,滤液用稀NaOH溶液调pH为4~5;
第5章 甲壳素、壳聚糖材料
Chapter 5 Chitin and Chitosan Materials
甲壳素
壳聚糖
甲壳素是地球上仅次于纤维素的第二大可再生资源,
总产量100亿吨/年,水产加工废弃物中100万吨/年。 主要来源:虾壳、蟹壳、昆虫壳等;广泛存在于节肢 动物、软体动物、环节动物、原生动物、腔肠动物及真菌
高于或低于50 %,水溶性低
应用: N-酰化水溶性壳聚糖可进一步衍生化或用作医用材料 如N-马来酰化壳聚糖与丙烯酰胺共聚,得水凝胶。 O-酰化壳聚糖——氨基保护法
Shiff碱
(2) 醚化反应
——甲壳素或壳聚糖的羟基与羟基化试剂反应生成醚 常用产物:O-甲基化、O-乙基化、O-苄基化 羧甲基甲壳素/壳聚糖制备方法: 第一种方法——碱化甲壳素或壳聚糖与2-氯乙酸在异丙醇中反应
(4) 搅拌一段时间后缓慢加入硼氢化钠溶液,用稀HCl调
pH=6~7,再反应24 h; (5) 最后用乙醇沉淀。
应用:醚化制备壳聚糖季铵盐
制备方法:
(1)将壳聚糖加入异丙醇溶液中,升温至60 °C ;
(2)加入20 mL 37 %缩水甘油三甲基氯化铵溶液,升温至 80 °C ; (3)反应一段时间后过滤,并经异丙醇洗涤和真空干燥 后得产品。体系pH=9~10
C2的-NH2、 C6上-OH 可形成一列的分子内和分子间氢键
(3)三级结构
糖链之间以氢键结合形成的各种聚集体,只
与甲壳素分子主链的构象有关 由一级结构和非共价相互作用造成的有序的二级结构使甲 壳素在空间形成有规则而宏大的构象;但一级和二级结构中较 大不规则的分支结构阻碍三级结构的形成。 (4)四级结构 甲壳素长链间以非共价结合规整排列和堆砌在
可降低反应温度和碱度,但其脱乙酰度范围小。
二、甲壳素和壳聚糖的化学改性及其衍生物
1. 壳聚糖降解
超声波降解 射线照射下的辐射降解
(1)物理降解法
光降解
(2) 酶降解法
酶法降解是用专一性的甲壳素酶和壳聚糖酶,以及非 专一性的其它酶种来对甲壳素或壳聚糖进行生物降解。
(3) 化学降解法 Ⅰ—酸降解: 盐酸、磷酸、氢氟酸。 壳聚糖在酸性溶液中不稳定,会发生长链的部分水解, 即糖苷键的断裂,形成许多相对分子质量大小不等的片段 , 严重水解变成单糖。
六氟异丙醇 六氟丙酮倍半水合物 1,2-二氯乙醇 + H2SO4
稀甲酸
稀乙酸 稀乳酸
壳聚糖的两项主要性能指标——N-脱乙酰度、黏度 黏度 标准:1 %壳聚糖乙酸溶液
高黏度—>1000 ×10-3 Pa•S
中黏度—(1000~100)×10-3 Pa•S 低黏度—< 100 ×10-3 Pa•S 脱乙酰度(DD)——甲壳素分子链上脱乙酰基的程度(%)
高碘酸盐的氧化—高碘酸盐氧化邻位二醇或邻位氨基醇形成
二醛,断裂C-C键。
用高碘酸盐氧化纤维素,除失水葡萄糖环在C2-C3处裂开 外,在适当的条件下可发生纤维素分子还原端的“过度氧 化”。不过,产物的收率过低,可能是由于“剥皮反应”所 致。 次卤酸盐氧化剂—次氯酸钠同样可以降解壳聚糖,得到水溶 性产物。反应过程中,壳聚糖的氨基含量下降。
乙酰化产物 (1)甲壳素的乙酰化 反应体系:乙酸酐和盐酸/甲磺酸 反应特点:优先发生在游离氨基上,其次是羟基 反应混合物初期呈非均相,随乙酰化程度增加,逐渐
演变成均相;
(2)壳聚糖的乙酰化
反应体系:乙酸酐水溶液/吡啶溶液
反应特点:先溶胀,然后进行N-乙酰化反应 可获得50 % N-乙酰化、溶于水
N-酰化程度—50 %壳聚糖,水溶性好
一起形成的聚集体
3. 结晶结构
甲壳素:
α —甲壳素(虾蟹)
由两条反向平行的糖链排列而成
β —甲壳素(乌贼) 由两条平行的糖链排列而成 γ —甲壳素 由三条糖链组成,两条糖链同向、一条糖链反 向且上下排列
4.物理性质
甲壳素
颜色状态 白色或灰白色无定形 态、半透明固体
壳聚糖
白色或灰白色无定形态、 半透明且略有珍珠光泽 的固体
甲壳素的提取,两步法:
(1)4~6 wt% HCl溶液重复浸泡,脱钙24 h以上去除矿物质
可以用溶剂萃取或氧化剂(如NaClO、H2O2) (2)40 wt%NaOH溶液在115°C保温6 h,通过离心和洗涤 脱除蛋白 反复循环过程。
壳聚糖的制备——甲壳素脱乙酰的产物
常用方法——异相反应
反应条件: 强碱—40 wt%NaOH 温度—135°C 其它方法——酶催化脱乙酰 特点: (1)脱乙酰过程中,C2位上的乙酰基和羟基重排,阻隔碍反应的 进行; (2)分子链断裂降解。 如有体系中加入与溶于水的有机溶剂(如异丙醇、丙酮),
改变NaNO2的加入量和反应时间来控制。该方法虽然端基结
构有所改变,但对于制备较高分子量的低聚糖的性质应无较大 影响。不过对于寡糖生物活性尚需进一步研究,因还原端基单 元无氨基。
Ⅲ—氧化降解 过氧化氢法—过氧化氢是一种很强的氧化剂,在酸、碱 和中性条件下都可以使壳聚糖主链发生断裂,得到低分子量 壳聚糖。过氧化氢无残毒,易处理。 O3法—在均相或非均相条件下,O3可使壳聚糖发生氧 化降解。-糖苷键的氧化断裂是一个基础反应,反应过程无 杂质引入,后处理简单。但氧化断裂时,在还原端残基产生 了羧基,未保护的氨基也存在脱氨反应。
和藻类的细胞壁。
主要特性:生物相容性
一、甲壳素和壳聚糖的结构、性质
1. 分子结构
甲壳素:N-乙酰-2-氨基2-脱氧-D-葡萄糖以β-1,4糖苷键连接的线性多糖 壳聚糖:甲壳素脱去55 % 以上的N-乙酰基的产物
纤维素
甲壳素
壳聚糖
甲壳素和壳聚糖可认为是纤维素C-2羟基பைடு நூலகம்乙酰氨基或氨基所取代
甲壳素:C-2位并非100%的是乙酰氨基,约1/8的是氨基。
同的。氯化钠的分子量是58.5,这个也可称作为式量氯化钠摩
尔质量就为58.5g/mol。 道尔顿就是原子质量单位,在生物化学、分子生物学和蛋 白组学中经常用Da或KDa,其分子量就是将分子中所有原子按 个数求原子量的代数和。蛋白质是大分子,所以常用kDa(千 道尔顿)来表示。
5. 甲壳素和壳聚糖的提取
制备方法: (1)将壳聚糖与NaI加入1-甲基-2-吡咯烷酮 ; (2) 60 °C下加NaOH后,再加CH3I,继续反应1~4 h;
(3)加NaCl静置,用乙醇沉淀。体系pH=9~10
主要醚化产物:羟乙基、羟丙基壳聚糖
制备方法: ①将壳聚糖加入50 %NaOH溶液,置于冰 箱中冷冻碱化; ②然后,解冻后,挤压除去过剩碱液; ③加入异丙醇溶胀; ④最后加环氧乙烷/环氧丙烷反应;
2. 水解
水解产物——单糖和低聚糖 低分子量甲壳素和壳聚糖具有不同的物理性质和生物活性: 植物抗生素、抗菌活性、免疫促进活性 (1)酸水解 碱性条件下——甲壳素和壳聚糖较稳定
酸性条件下——水解
(2)酶水解
特点:
高度选择性 不发生副反应
3. 甲壳素和壳聚糖的化学改性及其衍生物
化学改性的目的:
一解决在水中或有机溶剂中的溶解性; 二通过化学改性引入基团和侧链并进行各种分子设计; 甲壳素和壳聚糖的糖残基上两个活性羟基:
Ⅱ—NaNO2降解:
在壳聚糖酸性溶液中滴加NaNO2,使-NH2发生重氮化反 应,脱去一分子N2,引起-糖苷健断裂。 每摩尔的氨基反应需消耗1摩尔的HONO,在断裂聚合物 的还原端生成1摩尔的2, 5-脱水-D-甘露糖单元。还原端基可以
用NaBH4还原。
这是传统的化学降解方法,降解产物的分子量可以通过
一个是C6位-OH——一级羟基,空间位阻小,活性大;
一个是C3位-OH——二级羟基,空间位阻大,活性小; 壳聚糖——氨基
(1) 酰化反应
甲壳素和壳聚糖 有机酸
羟基
+ —NH2 酰 三类酰化反应体系: 第一类:甲磺酸酰化 氯 酸 酐
O-酰化 N-酰化
(酯) (酰胺)
甲磺酸——催化剂、溶剂
温度——0 °C,温度高易降解 体系——均相 产物——O-长链酰基壳聚糖、N-芳酰基化壳聚糖产物
取代度高——高于50 %
第三类:甲/乙醇、有机酸和水组成的体系
体系——均相体系(有机醇的含量高达80 %)
特点——先在C2氨基上进行(选择性),通过酸酐的用量控制 产物的酰化程度。
制备方法:
(1)将壳聚糖溶于10 %乙酸水溶液中, 再加甲醇稀释;
(2)在搅拌条件下按氨基物质的量的0.5倍加入正已酸酐; (3)室温放置24h后加入400 mL丙酮作为沉淀剂; (4)沉淀物经甲醇或乙醚洗涤后得N-酰化壳聚糖衍生物。
在生产过程中用稀碱除蛋白质时又有部分乙酰基被脱掉,
故商品甲壳素实际上有15-20%的脱乙酰度。
壳聚糖: 一般将N-脱乙酰度大于70 %的甲壳素称为壳聚糖。 事实上,得到100%脱乙酰度的壳聚糖是很困难的。