(完整版)《锐角三角函数》基础练习题
锐角三角函数练习卷(含答案)
锐角三角函数练习卷(含答案)
一、选择题
1. 设角A为锐角,且sin(A) = 0.6,那么A的近似值是多少?- A)36.87°
- B)45°
- C)53.13°
- D)64.04°
答案:C)53.13°
2. 三角函数tan(A)的值是斜边长与________的比值。
- A)对边长
- B)邻边长
- C)斜边长
- D)角A的弧度
答案:B)邻边长
3. 三角函数cot(A)的值是邻边长与________的比值。
- A)对边长
- B)斜边长
- C)角A的弧度
- D)斜边长的倒数
答案:A)对边长
二、填空题
4. 已知角B是锐角,且cos(B) = 0.8,那么角B的近似值是________度。
答案:37°
5. 已知角C是锐角,且tan(C) = 0.5,那么角C的近似值是________度。
答案:26.57°
三、计算题
6. 已知三角形的两边分别为5和12,夹角为60°,求第三边的长度。
答案:13
7. 已知一个角的弧度为π/3,求sin和cos的值。
答案:sin(π/3) = (√3) / 2, cos(π/3) = 1 / 2
四、证明题
请证明:sin^2(A) + cos^2(A) = 1,其中A是任意角。
证明:
由三角恒等式sin^2(A) + cos^2(A) = 1可得:
sin^2(A) + cos^2(A) = (1 - cos^2(A)) + cos^2(A) = 1
证毕。
锐角三角函数基础题
A BCD (第7题)锐角三角函数练习一、正弦练习1.三角形在正方形网格纸中的位置如图所示,则sinα的值是﹙ ﹚A .43 B .34 C .53 D .542. 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43D . 53.如图,已知点P 的坐标是(a ,b ),则sinα等于( )A .a bB .ba CD 4.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( )AB .23CD5.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= .第1题 第3题 第4题 第5题 6.在ABC Rt ∆中,︒=∠90C ,B A ∠∠,所对的边分别为b a ,,若23sin sin =B A ,则bba +的值( ) .A135 B132 C213D25 7.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为 半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的 值为( )A .43B .34 C .45D .358.已知:在⊿ABC 中,∠C=90°,sinA=31,AC=,24求 AB 和sinB 二、余弦、正切 1.在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C的对边,则有( )A ....2.在中,∠C =90°,如果cos A=45 那么的值为( ) A .35B .54C .34D .433.在正方形网格中,ABC △的位置如图2所示,则cos B ∠的值为( )B αA .12B.2C.2D.34.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( ) A .247BC .724D .135.如图,在Rt △ABC 中,∠C=90°,AB=6,AD=2, 求CD 的长及sinA 、tgB 的值.6.已知:如图,在ABC ∆中,AC AB =,AC BD ⊥于D ,AD DC BC 2,4==求A cos 和AB .三、特殊角的函数值1.下列各式中不正确的是( ) A .sin 260°+cos 260°=1 B .sin30°+cos30°=1 C .sin35°=cos55° D .tan45°>sin45°2.已知∠A 为锐角,且cosA≤12,那么( )A .0°<∠A≤60°B .60°≤∠A<90°C .0°<∠A≤30°D .30°≤∠A<90°3.在△ABC 中,∠A 、∠B 都是锐角,且sinA=12 ,cosB= 32,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定 4.如图Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BC=3,AC=4, 设∠BCD=a ,则tana •的值为( ).A .34 B .43 C .35 D .455.当锐角a>60°时,cosa 的值( )A .小于12B .大于12C .大于 32D .大于16.在△ABC 中,三边之比为a:b :c=12,则sinA+tanA 等于( )A .1.2B C D7.已知梯形ABCD 中,腰BC 长为2,梯形对角线BD 垂直平分AC ,则∠CAB 等于( ) A .30° B .60° C .45°D .以上都不对8.若( 3 tanA-3)2+│2cosB - 3 │=0,则△ABC ( )68CEABD(第4题)DCBAA .是直角三角形B .是等边三角形C .是含有60°的任意三角形D .是顶角为钝角的等腰三角形 9.因为1sin 302=,1sin 2102=-,所以sin 210sin(18030)sin30=+=-;因为2sin 45=,sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )A .12-B .2-C .2-D .10.sin30°+cos60°+tan45° = 11.2 sin30°·cos30°= 12.(sin45°+ cos45°)2 =13.45cos 130cos 22- = 14. (1+ sin45°)(1-cos45°) = 15.60sin 3345cos 22-= 16.在△ABC 中,∠C=90°,a + b = 2,∠A = 60°,求a ,b ,c . 四、用计算器求函数相关值1. 用计算器求下列锐角三角函数值.=10sin =33cos ='2442tan="23'157sin , ="28'4560tan .2. 已知下列锐角三角函数值,用计算器求其相应的锐角.(1)=A sin 0.7083, =∠A . =B sin 0.9371, =∠B . (2)=A cos 0.2996, =∠A . =B cos 0.829, =∠B . (3)=A tan 2.22, =∠A . =B tan 31.80 , =∠B . 3.如图,厂房屋顶人字架(等腰三角形)的跨度为12m ,五、灵活运用用三个函数值解决问题1.在⊿ABC 中,若∠B+∠C=2∠A,则tanA 的值为( )A.21 B.23 C.33 D.3 2.在Rt ⊿ABC 中,∠C=90°,CD 是斜边AB 上的高,若BC=5, DC=3,则A sin 的值是( )跨度柱26 C (第3题)A .43B .34C .53D .54 3. 在△ABC 中,若∠C= 90°,AC =1,BC=2,则下列结论中正确的是( )A. sin B =B. 2cos 5B =C. tan 2B =D. 21tan =A4. 如图1,矩形ABCD 中,若AD = 1,AB = 3,则该矩形的两条对角线所夹的锐角是( )A. 30°B.45°C.60°D. 75°5.如图2,CD 是 Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处, 则∠A 等于( ) A. 25° B. 30° C. 45° D. 60° 6.在菱形ABCD 中,∠ABC=60°,AC =4,求BD 的长. 7.已知:在⊿ABC 中, ∠A=120°, AB=5, AC=3, 求tanC 的值. 8.已知如图在Rt ⊿ABC 中, ∠C=90°, ∠ABC 的平分线BD 交AC 于点D ,,38,12cm BD cm BC == 求⊿ABD 的面积9.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,求其底边上的高. 10.如图,已知在⊿ABC 中,∠B=60°,∠C=30°,BC=),33(10+求AB 、AC 的长.第8题第10题六、解直角三角形(一)1.Rt ⊿ABC 中,∠C=90°,若AC=22, AB=4, 则∠A= ,BC= . 2.Rt ⊿ABC 中,∠C=90°,若∠A= 45°, AB=5, 则BC= , AC= . 3. Rt ⊿ABC 中,∠C=90°,若∠A=60°, AC =2, 则AB= , BC= . 4.已知Rt ⊿ABC 中,∠C=90°,S ⊿ABC =5, AB=29.求B A tan tan +的值. 5.在四边形ABCD 中,∠B=∠D=90°,AB=BC ,AD=7,tanA=2,求CD 的长; 6.在菱形ABCD 中,AE BC ⊥于E ,1EC =,5sin 13B =,求四边形AECD 的周长.七、解直角三角形(二) 1.已知如图,从山顶A 点测得一建筑物B 的俯角为30°,若山的高度AC 为1500米,山坡的倾斜角∠ADC=60°, 求建筑物到山脚D 的距离BD.2.如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30,测得岸边点D 的俯角为45,又知 河宽CD 为50米。
锐角三角函数练习题
锐角三角函数练习题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.已知cos α<,锐角α的取值范围是()A .60°<a <90B .0°<a <60°C .30°<a <90°D0°<a <30°2.2sin60°-cos30°·tan45°的结果为( )A 、 3 33.B C D .0 3.等腰直角三角形一个锐角的余弦为( ) A 、12 32B C D .l4.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C=90°,则a 3 cosA+b 3 cosB 等于( ) A .abc B .(a+b )c 3 C .c 3 D ().abc a b c+ 5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )1111.(3,); 3,); .(3,) .(3,)2222A B C D ----6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c2-4ac+4a 2= 0,则sinA+cosA 的值为( ) 131223. 2 B C D +++7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )3sin(90°-B )3,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形8.sin35°·cos55°十cos35°·sin55°=_______ 9. 已知0°<a <4512sin cos =__αα-10.在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______. 11 .在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________12.计算|2|4sin 6012--+1||245(20041)2O O -+- ×(-12 )-3+(4)tan 60πO O -+1301()16(2)(2004)36033π-O +÷-+- )()013222sin 60-︒+-(结果保留根号......)2(tan301)____-=1360|2|2-+-+ sin 30(1tan 60)tan 45sin 60---13 已知:如图 l -1-2,在△ABC 中,BC =8,∠B =60°,∠C =45°, 求BC 边上的高AD.14如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.15 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45 ,求S ΔABD :S ΔBCD16 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD 的值。
锐角三角函数练习题及答案
锐角三角函数(一)1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2.如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34 B.43 C.45 D .35图 1 图 2 图3 图4图53.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确4.在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35 B.53 C.255 D.525.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,•tanA=_______.6.如图2,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.7.如图3,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.8.如图4,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.9.已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.10.在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值为10.如图5,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.12.如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.解直角三角形一、填空题1. 已知cosA=23,且∠B=900-∠A ,则sinB=__________.2. 在Rt △ABC 中,∠C 为直角,cot(900-A)=1.524,则tan(900-B)=_________.3. ∠A 为锐角,已知sinA=135,那么cos (900-A)=___________.4. 已知sinA=21(∠A 为锐角),则∠A=_________,cosA_______,tanA=__________.5. 用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6. 若cot α=0.3027,cot β=0.3206,则锐角α、β的大小关系是______________. 7. 计算: 2sin450-3tan600=____________. 8. 计算: (sin300+tan450)·cos600=______________.9. 计算: tan450·sin450-4sin300·cos450+6cot600=__________.10. 计算: tan 2300+2sin600-tan450·sin900-tan600+cos 2300=____________. 二、选择题:1. 在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( )A . 43;B . 34;C .53;D . 54.2. 在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( )A .21;B .23;C .1;D .223. 在Rt △ABC 中,∠C 为直角,∠A=300,则sinA+sinB=( )A .1;B .231+;C .221+;D .414. 当锐角A>450时,sinA 的值( )A .小于22; B .大于22; C .小于23; D .大于235. 若∠A 是锐角,且sinA=43,则( )A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<9006. 当∠A 为锐角,且tanA 的值大于33时, ∠A( )A .小于300; B .大于300; C .小于600; D .大于6007. 如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( )A .43;B .34;C .53;D .548. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( )A . sinA=135; B .cosA=1312; C . tanA=1213;D . cotA=1259. 已知α为锐角,且21<cos α<22,则α的取值范围是( )A .00<α<300;B .600<α<900;C .450<α<600;D .300<α<450.三、解答题1、 在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、在△ABC 中,∠C 为直角,直角边a=3cm ,b=4cm ,求sinA+sinB+sinC 的值.3、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知b=3, c=14. 求∠A 的四个三角函数.4、在△ABC 中,∠C 为直角,不查表解下列问题: (1)已知a=5,∠B=600.求b ; (2)已知a=52,b=56,求∠A .5、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .6、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1) 已知a =156, b =56,求c; (2) 已知a =20, c =220,求∠B ; (3) 已知c =30, ∠A =60°,求a ;(4) 已知b =15, ∠A =30°,求a .7、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.8、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度DCAB9、会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度。
2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)
2022--2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.三角函数sin30°、cos16°、cos43°之间的大小关系是()A.sin30°<cos16°<cos43°B.cos43°<sin30°<cos16°C.sin30°<cos43°<cos16°D.sin16°<cos30°<cos43°3.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于sin A 的是()A.B.C.D.4.如果锐角A的度数是25°,那么下列结论中正确的是()A.0<sin A<B.0<cos A<C.<tan A<1D.1<cot A<5.在Rt△ABC中,如果各边长度都扩大为原来的3倍,则锐角∠A的余弦值()A.扩大为原来的3倍B.没有变化C.缩小为原来的D.不能确定6.在Rt△ABC中,∠C=90°,AB=4,AC=2,则sin A的值为()A.B.C.D.7.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°8.在Rt△ABC中,∠B=90°,cos A=,则sin A=()A.B.C.D.9.若tan B=,则∠B的度数为()A.30°B.60°C.45°D.15°10.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8 11.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.二.填空题12.在Rt△ABC中,∠C=90°,若c=5,sin B=,则AC=.13.在△ABC中,∠C=90°,如果tan∠A=2,AC=3,那么BC=.14.如图,在Rt△ABC中,∠ACB=90°,D为AB上异于A,B的一点,AC≠BC.(1)若D为AB中点,且CD=2,则AB=.(2)当CD=AB时,∠A=α,要使点D必为AB的中点,则α的取值范围是.15.若∠A为锐角,且cos A=,则∠A的取值范围是.16.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.三.解答题17.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5.求sin A,cos A和tan A.19.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.20.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2﹣mx+2m﹣2=0的两个根,求Rt△ABC中较小锐角的正弦值.21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.在△ABC中,BC=2AB=12,∠ABC=α,BD是∠ABC的角平分线,以BC为斜边在△ABC外作等腰直角△BEC,连接DE.(1)求证:CD=2AD;(2)当α=90°时,求DE的长;(3)当0°<α<180°时,求DE的最大值.参考答案一.选择题1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:∵sin30°=cos60°,又16°<43°<60°,余弦值随着角度的增大而减小,∴cos16°>cos43°>sin30°.故选:C.3.解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=,故选:D.4.解:A.∵sin30°=,∴0<sin25°<,故A符合题意;B.∵cos30°=,∴cos25°>,故B不符合题意;C.∵tan30°=,∴tan25°<,故C不符合题意;D.∵cot30°=,∴cot25°>,故D不符合题意;故选:A.5.解:设原来三角形的各边分别为a,b,c,则cos A=,若把各边扩大为原来的3倍,则各边为3a,3b,3c,那么cos A==,所以余弦值不变.故选:B.6.解:在Rt△ABC中,∠C=90°,AB=4,AC=2,∴BC===2,∴sin A===,故选:D.7.解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.8.解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.10.解:∵tan B=,∴∠B=60°.故选:B.11.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题12.解:在Rt△ABC中,∠C=90°,若c=5,sin B=,所以sin B===,所以AC=4,故答案为:4.13.解:在△ABC中,∠C=90°,tan∠A=2,AC=3,∴BC=AC tan∠A=3×2=6,故答案为:6.14.解:(1)∵∠ACB=90°,D为AB中点,∴AB=2CD=2×2=4;故答案为:4;(2)当以C点为圆心,CD为半径画弧与线段AB只有一个交点(点A、B除外),则点D必为AB的中点,∴CB≤CD或CA≤CD,∵CD=AB,∴CB≤AB或CA≤AB∵sin A=≤或sin B=≤,即sinα≤sin30°或sin B≤sin30°,∴α≤30或∠B≤30°,∴α≤30°或α≥60°,∴α的取值范围为0°<α≤30°或60°≤α<90°.故答案为:0°<α≤30°或45°或60°≤α<90°.15.解:∵0<<,又cos60°=,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cos A=时,60°<∠A<90°.故答案为:60°<∠A<90°.16.解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.三.解答题17.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.18.解:在Rt△ABC中,∠C=90°,AC=12,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.19.解:(1)在图中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC 于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>,∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴>>.即cos∠B3AC<cos∠B2AC<cos∠B1AC;结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)可知:sin88°>sin62°>sin50°>sin34°>sin18°;cos88°<cos62°<cos50°<cos34°<cos18°.(3)若α=45°,则sinα=cosα;若0°<α<45°,则sinα<cosα;若45°<α<90°,则sinα>cosα.故答案为:=,<,>.20.解:∵a,b是方程x2﹣mx+2m﹣2=0的解,∴a+b=m,ab=2m﹣2,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:m2﹣2(2m﹣2)=25解得,m1=7,m2=﹣3,∵a,b是Rt△ABC的两条直角边的长.∴a+b=m>0,m=﹣3不合题意,舍去.∴m=7,当m=7时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,不妨设a=3,则sin A==,∴Rt△ABC中较小锐角的正弦值为21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.(1)证明:如图,过点D作DO∥BC交AB于点O,∴∠ODB=∠CBD,∵BD是角平分线,∴∠OBD=∠CBD,∴∠OBD=∠ODB,∴OB=OD,∵OD∥BC,∴=,△AOD∽△ABC,∴=,∴===,∴=,∴CD=2AD;解:(2)如图,过点D作DO∥BC交AB于点O,当α=90°时,BD平分∠ABC,∴∠DBC=∠OBD=45°,∠DOB=90°,∵△BEC为等腰直角三角形,BC=12,∴∠EBC=45°,BE=6,∴∠DBE=90°,由(1)可得AB=6,==,∴OB=4,∴BD=4,∴DE==2;(3)如图,过点D作DO∥BC交AB于点O,DE交BC于点F,设BC中点为点G,连接EG,∴BG=6,当α变化时,OB的长度不变,∴点O在以点B为圆心,半径为4的圆弧上,令圆弧与BC交于点F,∴BF=4,此时,点D在以点F为圆心,半径为4的圆弧上,当点D,E,F三点共线时,DE最大,∴GF=BG﹣BF=2,∴EF==2,∴DE的最大值=DF+FE=2+4.。
《锐角三角函数》知识点及练习3篇
《锐角三角函数》知识点及练习3篇知识框架知识概念1.Rt△ABC(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边斜边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边斜边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边2.特殊值的三角函数1.求出下图中sinD ,sinE 的值.2.把Rt △ABC 各边的长度都扩大2倍得Rt △A ′B ′C ′,那么锐角A 、A ′的正弦值的关系为( )A .sinA =sinA ′B .sinA =2sinA ′C .2sinA =sinA ′D .不能确定 3.在Rt △ABC 中,∠C=90°,若AB =5,AC =4,则sinB 的值是( )A . 35B . 45C . 34D . 434.如图,△ABC 中,AB=25,BC=7,CA=24.求sinA 的值.25247C BA5.计算:sin30°·sin 60°+sin45°6.如图,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线上取一点P ,连接AP 、PB ,使sin ∠APB=12,则满足条件的点P 的个数是( ) A .1个 B .2个 C .3个 D .不存在7.如图,△ABC 中,∠A 是锐角,求证:1sin 2ABC S AB AC A ∆=⋅⋅8.等腰△ABC 中,AB=AC=5,BC=6,求sinA 、sinB .lCBA (第7题图)85F E D1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,若b=3a,则tanA= .2.在△ABC中,∠C=90°,cosAc=4,则a=_______.3.如果a∠是等腰直角三角形的一个锐角,则cosα的值是()A.12B.2C.1D.4.如图,P是∠α的边OA上一点,且P点坐标为(2,3),则sinα=_______,cosα=_________,tanα=______ _.5.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=AB=tan∠ACD的值为()A.B. C D6.已知α是锐角,且cosα=34,求sinα、tanα的值.7.若α为锐角,试证明:sintancosααα=.8.如图,在Rt△ABC中,CD、CE分别为斜边AB上的高和中线,BC=a,AC=b(b>a),若tan∠DCE=12,求ab的值.9.如图,Rt△ABC中,∠C=90°,D为CA上一点,∠DBC=30°,DA=3,AB=,试求cosA与tanA的值.b aE DCBACBAD1.计算:(1)计算:()013sin 452007tan 30-+-(2) 先化简,再求值:()2221x xx x+-÷+1,其中,tan 60x = .2.如图,小明利用一个含60°角的直角三角板测量一栋楼的高度,已知他与楼之间的水平距离BD 为10m ,眼高AB 为1.6m (即小明的眼睛距地面的距离),那么这栋楼的高是( )A .(8105)m B .21.6m C ..85⎫+⎪⎪⎝⎭m3.已知AB 是半圆O 的直径,弦AD 、BC 相交于点P ,若∠DPB=α,那么CDAB等于( ) A .sin α B .COS α C .tan α D .1tan α4.如图,⊙O 的半径为3,弦AB 的长为5.求cosA 的值.5.如图,∠C=90°,∠DBC=45°,AB=DB ,利用此图求tan22.5°的值.E D CBA 第2题图第3题图。
锐角三角函数练习题(含答案)
锐角三角函数练习题一、选择题(本大题共10小题,每小题3分,共30分)1.一段公路的坡度为1︰3,某人沿这段公路路面前进100米,那么他上升的最大高度是(D)A.30米B.10米C. 米D. 米2.如图,坡角为的斜坡上两树间的水平距离AC为,则两树间的坡面距离AB为(C)A.B.C.D.3.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是(A)A.250mB.mC.mD.m4.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是(C)A.2 3 B. 3 2 C. 3 4 D. 4 3(第2题)(第3题)(第4题)5.如果∠A是锐角,且,那么∠A=(B)A. 30°B. 45°C. 60°D. 90°6. 等腰三角形的一腰长为,底边长为,则其底角为(A)A. B. C. D.7.若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是(B)A.150 B.C.9 D.78.在△ABC中,∠C=90°,BC=2,,则边AC的长是(A)A.B.3 C.D.9.如图,两条宽度均为40 m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( A )A. (m2)B. (m2)C.1600sinα(m2)D.1600cosα(m2)10.如图,延长Rt△ABC斜边AB到D点,使BD=AB,连结CD,若tan∠BCD=,则tanA =(C)A.1B.C.D.(第9题)(第10题)二、填空题(本大题共4小题,每小题3分,共12分)11.已知为锐角, sin( )=0.625, 则cos =___ 0.625 。
12.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC= ,则梯子长AB = 4 米。
锐角三角函数练习题
锐角三角函数练习题一、填空题:1、在Rt △ABC 中,∠C 为直角,若sinA=53,则cosB=_________. 2、在Rt △ABC 中,∠C 为直角,cot(900则tan(900-B)=_________. 3、∠A 为锐角,已知sinA=12,那么cos(900-A)=___________. 4、若00<α<900,sin α=cos600,则tan α=_________.5、用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6、计算:2sin450-21cos600=____________.7、在ABC △中,12,60,45a b A B +=== ,则a =____________8、△ABC 中,∠C=90°,斜边上的中线CD=6,sinA=31,则S △ABC=______。
9、如图,在菱形ABCD 中, AE ⊥BC 于E ,已知EC=l, cosB=513则这个 菱形的面积是 .10、菱形的两条对角线长分别为23和6,则菱形较小的内角为______度。
11、如图4,如果△APB 绕点B 按逆时针方向旋转30°后得到△A'P 'B ,且BP=2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°=,)二、选择题:1、如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 坐标为(-2,0),点B 在x 轴上方,设AB=a,那么点B 的横坐标为( ) A 、2-2a ; B 、2+2a ; C 、-2-2a ; D 、-2+2a 2、在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( ). A.21; B. 23; C.1; D. 22. 4、如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D,已知BACDAC=3,AB=5,则tan ∠BCD 等于( ).C A.43; B. 34; C. 53; D. 54.A DB 5、已知α为锐角,且21<cos α<22,则α的取值范围是( ) A. 00<α<300; B. 600<α<900; C. 450<α<600; D. 300<α<450.6、AE 、CF 是锐角△ABC 的两条高,如果AE :CF=3:2,则sinA :sinC 等于( ) (A )3:2 (B )2:3 (C )9:4 (D )4:97、在ABC △中,60,16,A b == 面积3220=S ,则c =( ) A 、610 B 、75 C 、55 D 、498、某水库大坝的横断面是梯形,坝内斜坡的坡度3:11=i ,坝外斜坡的坡度1:12=i ,则两个坡角的和为( )A 、090 B 、060 C 、075 D 、0105 9、在ABC ∆中,若2cos 2sinB A B +=,则ABC ∆为 ( ) (A )等腰三角形 (B )直角三角形 (C )等边三角形 (D )正三角形 三、1、)21sin 4520066tan 302-+2、2sin 30cos 45tan 60-⋅+45tan 30cos 60sin -3、在海岸A 处,发现北偏东45方向,距A 为)13(-km 的B 处有一艘走私船,在A 处北偏西75方向,距A 为2km 的C 处的缉私船奉命以310km/h 的速度追截走私船,此时走私船正以10km/h 的速度从B 处向北偏东30方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间.4、如图,已知测速站P 到公路L 的距离PQ 为40米,一辆小轿车在公路L 上行驶, 测得此车从点A行驶到点B 所用的时间为2秒,并测得∠APQ=60°,∠BPQ=30°. (1)计算此车从A 到B 的平均速度为每秒多少米?(结果保留三个有效数字) (2)判断此车是否超过了每小时80千米的限制速度.QlPBA5、如图,在一个坡角为30°的斜坡上有一棵树,高为AB .当太阳光与水平线成50°角时,测得该树在斜坡上的树影BC 的长为8m.⑴求树影顶端C 到树AB 所在直线的距离(结果保留根号); ⑵求这棵树的高度(精确到0.01m) .(备用数据:Sin300=0.5000,cos300=0.8660,tan300=0.5773,Sin500=0.7660,cos500=0.6427,tan500=1.1917)6、如图,小刘在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC 为 米(用根号表示).7、小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上, 量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为 2米,求电线杆的高度。
锐角三角函数练习题
1.已知cos α<,锐角α的取值范围是()A .60°<a <90B .0°<a <60°C .30°<a <90°D0°<a <30°2.2sin60°-cos30°·tan45°的结果为( )A 、 3 .B C .03.等腰直角三角形一个锐角的余弦为( ) A 、12 B C .l 4.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C=90°,则a 3cosA+b 3cosB 等于( ) A .abc B .(a+b )c3C .c3D ().abc a b c+5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )1111.(); ); ) .()2222A B C D -- 6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c2-4ac+4a 2= 0,则sinA+ cosA 的值为( )B C D7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )sin(90°-B ),则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 8.sin35°·cos55°十cos35°·sin55°=_______9. 已知0°<a <4510.在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______. 11 .在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________12.计算|2|4sin 60--+o 1||451)2O O -- ×(-12 )-3+(4)tan 60πO O -+1301()16(2)(2004)6033π-O +÷-+- ()012sin 60-︒+-(结果保留根号......)____= 1tan 60|2|2-+-+o sin 30tan 45sin 60-o o o13 已知:如图 l -1-2,在△ABC 中,BC =8,∠B =60°,∠C =45°, 求BC 边上的高AD.14如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.15 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45,求S ΔABD :S ΔBCD16 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD 的值。
锐角三角函数的基础训练题(北师大版九年级数学下册)
1 / 4锐角三角函数的基础训练题班级 姓名一、基础知识1、在△ABC 中,∠C=90°,∠B=30°,则cosA= ( )。
A .23B .22C .23D .212、在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( ).A. 43;B. 34; C. 53; D. 54. 3、在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( ). A. 21; B. 23; C.1; D. 22.4、已知在Rt ABC △中,90C ∠=,1sin 2A =,AC =BC 的值为( )A .2B .4C.D .65、在Rt ABC △中,90C ∠=,BC =AC =A ∠=( ) A .90B .60C .45D .306、在Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( ).A. sinA=135;B.cosA=1312;C. tanA=1213;D. ctgA=125.7、已知,在Rt △ABC 中,∠C =900,25tan =B ,那么cosA ( ) A 、25 B 、35 C 、552 D 、32 8、在Rt △ABC 中,∠C =90°,下列各式中正确的是( )A 、sinA =sinB B 、sinA =cosBC 、tanA =tanBD 、c0tA =cotB9、sin cos(90)a a =-。
tan cot(90)a a =-;已知:∠α是锐角,︒=36cos sin α,则α的度数是10、一个斜坡的坡度为1=ι︰3,那么坡角α的余切值为2 / 411、已知cosA=23,且∠B=900—∠A,则sinB=__________.12、若α为锐角,tan α=33,则α=__________,sin α=_______, cos α= .13、已知:∠α是锐角,︒=36cos sin α,则α的度数是 14、等腰△ABC 中,AB =AC =5,BC =6,则sinA =________ 15、已知Rt △ABC 中,若,900=∠C cos 24,135==BC A ,则._______=AC 二、基础训练16、1sin 30π+32-0°+() 17、1012)4cos30|3-⎛⎫++- ⎪⎝⎭°.18、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c,已知a=25,b=215,求c 、∠A 、∠B.19、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c,已知b=3, c=14. 求sin ∠A 、cos ∠A 、tan ∠A 的三角函数值.20、如图所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD=1.5米,求旗杆AB 的高3 / 421、如图,某军港有一雷达站P ,军舰M 停泊在雷达站P 的南偏东60°方向36海里处,另一艘军舰N 位于军舰M 的正西方向,与雷达站P相距 (1)军舰N 在雷达站P 的什么方向? (2)两军舰M N 、的距离.(结果保留根号)22、如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.23、如图所示,A 、B 两城市相距100km .现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?1.732 1.414)ABCDABF E P45°30°4 AD45°30°24题图24、今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B处接到报告:有受灾群众被困于一座遭水淹的楼顶A处,情况危急!救援队伍在B处测得A在B的北偏东600的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A处就人,同时第二组从陆地往正东方向奔跑120米到达C处,再从C处下水游向A处救人,已知A在C的北偏东300的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A处?请说明理由(参考数据3≈1.732)25、某风景区内有一古塔AB,在塔的北面有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与墙角C 有15米的距离(B、E、C在一条直线上),求塔AB的高度(结果保留根号).4 /。
初中锐角三角函数习题及详细答案
锐角三角函数一、选择题1. sin30°的值为〔 〕 A .32B .22C .12D .332.如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是〔 〕 A . 3sin 2A =B .1tan 2A = C .3cos 2B = D .tan 3B =3.三角形在方格纸中的位置如图所示,则tan α的值是〔 〕 A .34B .43 C .35 D .454.如图,在平地上种植树木时,要求株距〔相邻两树间的水平距离〕为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为〔 〕 A .5m B .6m C .7m D .8m5.菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为〔 〕A .(21),B .(12),C .(211)+,D .(121)+,6.如图,直线AB 与⊙O 相切于点A ,⊙O 的半径为2,若∠OBA = 30°,则OB 的长为〔 〕 A .43.4C .23.27.图是某商场一楼与二楼之间的手扶电梯示意图.其中AB .CD 分别表示一楼.二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是〔 〕A 833m B .4 mC .43 mD .8 m8)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为〔 〕米.A .25B .253C .10033D .253+9.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是〔〕A .23 B .32C .34D .4310.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是〔〕A .233cmB .433cmC .5cmD .2cm 11.如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是〔〕 A .3B .5C .25D .225 12.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是〔 〕A .172B .52C .24D .713.如图4,在Rt ABC △中, 90=∠ACB ,86AC BC ==,,将ABC △绕AC 所在的直线k 旋转一周得到一个旋转体,则该旋转体的侧面积为〔 〕 A .30π B .40πC .50π D .60π14.在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A .C 两地的距离为〔 〕 〔A 〕km 3310 〔B 〕km 335〔C 〕km 25 〔D 〕km 35 15.如图,在梯形ABCD 中,AD//BC ,AC ⊥AB ,AD =CD ,cos ∠DCA=54,BC =10,则AB 的值是〔 〕 A .3B .6C .8D .916.如图,AB 是O ⊙的直径,弦CD AB ⊥于点E ,连结OC ,若5OC =,8CD =,则tan COE ∠=〔 〕A .35 B .45 C .34 D .4317.为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据(单位:米),则该坡道倾斜角α的正切值是〔 〕 A .14B .4C .117D .41718.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为〔 〕 A. αcos 5 B.αcos 5 C. αsin 5 D. αsin 519. 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确的个数为〔 〕 ①DE=3cm ; ②EB=1cm ; ③2ABCD 15S cm =菱形.A .3个B .2个C .1个D .0个20.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ〔如图所示〕,则sinθ的值为〔 〕 〔A 〕125 〔B 〕135 〔C 〕1310 〔D 〕131221.如图,已知RtΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是〔 〕. A .π5168 B .π24C .π584D .π12 22.如图,在ABC △中,C ∠9060B D =∠=°,°,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为〔 〕A .2B .433C .23D .4323.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角〔梯子与地面的夹角〕不能大于60°,否则就有危险,那么梯子的长至少为〔 〕 A .8米B.CD.3米 24.〕已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为〔 〕 A .43B .45C .54D .3425. 2sin 30°的值等于〔 〕A .1 BCD .2 26.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为〔 〕 A .43B .45C .54D .3427.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角〔梯子与地面的夹角〕不能大于60°,否则就有危险,那么梯子的长至少为〔 〕 A .8米B.CD米 28.一根电线杆的接线柱部分AB 在阳光下的投影CD 的长为1米,太阳光线与地面的夹角60ACD ∠=°,则AB 的长为〔 〕 A .12米B米C.2米 D.3米 二、计算题〔每小题3分,共12分〕 1.计算:()1200911sin 602-⎛⎫-+-- ⎪⎝⎭°2.10120094sin 3022⎛⎫--+-- ⎪⎝⎭-(3.计算:0200912sin 603tan 30(1)3⎛⎫-++- ⎪⎝⎭°°.4.先化简.再求值.22 ()2111a a a a a ++÷+-- 其中a =tan60°-2sin30°.三、解答题1.〕如图,AC 是O ⊙的直径,PA ,PB 是O ⊙的切线,A ,B 为切点,AB =6,PA =5.求〔1〕O ⊙的半径;〔2〕sin BAC ∠的值.2.〔4分〕〔20XXXX 〕如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.〔结果保留根号〕CDBA北60°30°CCAB60° 45°北北3.〕为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A 北偏西45︒并距该岛20海里的B 处待命.位于该岛正西方向C 处的某外国商船遭到海盗袭击,船长发现在其北偏东60︒的方向有我军护航舰〔如图9所示〕,便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该据:2 1.43 1.7≈,≈〕商船所在的位置C 处?〔结果精确到个位.参考数4.如图,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角为α,若测得飞机到目标B 的距离AB 约为2400米,已知sin 0.52α=,求飞机飞行的高度AC 约为多少米?5.如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒60,看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m ,这栋高楼有多高?〔结果精确到0.1 m ,参考数据:73.13≈〕BC AαC AB1.C 2. D 3。
锐角三角函数 (1)
锐角三角函数一.选择题(共10小题)1.在正方形网格中,△ABC在网格中的位置如图,则cosB的值为()A.B.C.D.22.在Rt△ABC中,∠C=90°,a=3,c=4,则sinA=()A.B.C.D.3.己知Rt△ABC中,∠C=90°,tanA=2.则cosA的值是()A.B.C.D.4.在Rt△ABC中,∠C=90°,∠B=35°,AB=3,则BC的长为()A.3sin35°B.C.3cos35°D.3tan35°5.在Rt△ABC中,∠C=90°,AB=6,AC=b,下列选项中一定正确的是()A.b=6sinA B.b=6cosA C.b=6tanA D.b=6cotA6.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=4,BC=3,则cosA的值为()A.B.C.D.8.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A的余切值()A.扩大为原来的两倍B.缩小为原来的C.不变D.不能确定9.如图,四边形ABCD,A1B1BA,…,A5B5B4A4都是边长为1的小正方形.已知∠ACB=a,∠A1CB1=a1,…,∠A5CB5=a5.则tana•tana1+tana1•tana2+…+tana4•tana5的值为()A.B.C.1 D.10.当A为锐角,且<cos∠A<时,∠A的范围是()A.0°<∠A<30°B.30°<∠A<60°C.60°<∠A<90°D.30°<∠A<45°二.填空题(共10小题)11.如图,在Rt△ABC中,∠ACB=90°,CD是高,如果∠A=α,AC=4,那么BD=.(用锐角α的三角比表示)12.如图,在Rt△ABD中,∠A=90°,点C在AD上,∠ACB=45°,tan∠D=,则=.13.将∠BAC放置在5×5的正方形网格中,顶点A在格点上.则sin∠BAC的值为.14.正方形网格中,∠AOB如图放置,则tan∠AOB的值为.15.已知∠α,∠β如图所示,则tan∠α与tan∠β的大小关系是.16.如图,在Rt△ABC,∠C=90°,sinB=,AB=15,则AC的值是.17.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC 的正切值是.18.已知Rt△ABC中,∠C=90°,AC=3,∠B=37°,则BC的长为(注:tan ∠B=0.75,sin∠B=0.6,cos∠B=0.8)19.在△ABC中,∠C=90°,AB=10,BC=8,则cosA=.20.如图所示在直角三角形ABC中,∠ACB=90°,CD⊥AB于D,已知AC=,AB=3,那么sin∠ACD=.三.解答题(共20小题)21.如图,在Rt△ABC中,∠C=90°,AB=10,tan∠A=,求BC的长和sin∠B 的值.22.在△ABC中,∠C=90°,BC=8cm,tanA=,求AC的长.23.如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)ctan30°=;(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.24.学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解下列问题:(1)sad60°的值为A.B.1 C.D.2(2)对于0°<A<180°,∠A的正对值sadA的取值范围是.(3)已知sinα=,其中α为锐角,试求sadα的值.25.在Rt△ABC中,∠C=90°,已知AC=8,AB=10,求∠B的三个三角函数值.26.矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,使点D正好落在AB边上,求tan∠AFE.27.已知α,β均为锐角,且tanα=,tanβ=,求α+β的度数.28.如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A的坐标为(m,0).将正方形OABC绕点O逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M与B、C不重合.(1)请判断线段CD与OM的位置关系,其位置关系是;(2)试用含m和α的代数式表示线段CM的长:;α的取值范围是.29.如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC中点,点E为边AB 上一动点,点F为射线BC上一动点,且∠FDE=90°.(1)当DF∥AB时,连接EF,求∠DEF的余切值;(2)当点F在线段BC上时,设AE=x,BF=y,求y关于x的函数关系式,并写出x的取值范围;(3)连接CE,若△CDE为等腰三角形,求BF的长.30.如图,在△ABC中,∠C=90°,BC=1,AB=2,则sinA=.31.已知:如图,在Rt△ABC中,∠C=90°,tanA=,求∠B的正弦、余弦值.32.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AC=8,AB=10,求cos∠BCD 的值.33.在直角三角形ABC中,已知∠C=90°,AB=15,AC=9,分别求出sinA和tanB 的值.34.如图,在△ABC中,∠C=90°,AB=13,BC=5,求sinB和tanB的值.35.在△ABC中,∠C=90°,BC=3,AB=5,求sinA,cosB,tanA的值.36.在Rt△ABC中,∠BCA=90°,CD是中线,BC=8,CD=5.求sin∠ACD,cos∠ACD和tan∠ACD.37.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.38.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5(1)求AB的长;(2)求sinA,cosA,tanA,sinB,cosB,tanB的值.39.如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tanB 的值.40.如图,在△ABC中,∠C=90°,点D在BC上,AD=BC=5,cos∠ADC=,求:sinB的值.锐角三角函数参考答案一.选择题(共10小题)1.A;2.B;3.D;4.C;5.B;6.A;7.B;8.C;9.A;10.B;二.填空题(共10小题)11.4sinαtanα;12.;13.;14.2;15.tan∠α<tan∠β;16.12;17.;18.4;19.;20.;三.解答题(共20小题)21.;22.;23.;24.;0<sadA<2;25.;26.;27.;28.垂直;CM=m•tan;0°<α<90°;29.;30.;31.;32.;33.;34.;35.;36.;37.=;<;>;38.;39.;40.;。
人教版九年级数学下《第二十八章锐角三角函数》单元练习题含答案
第二十八章锐角三角函数一、选择题1.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A. 4B. 2C.D.2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sin A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,a=1,b=,则∠A等于()A. 30°B. 45°C. 60°D. 90°4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A. 5米B. 6米C. 6.5米D. 12米6.Rt△ABC中,∠C=90°,AB=13,AC=5,则sin B的值为()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,AC=4,则cos A的值是()A.B.C.D.8.如图,在一笔直的海岸线l上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A 测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则AB的长()A. 2 kmB. (2+)kmC. (4-2) kmD. (4-) km9.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是() A. 100tanα米B. 100cotα米C. 100sinα米D. 100cosα米10.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦函数值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定二、填空题11.若2cosα-=0,则锐角α=____________度.12.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A=;④tan B=,其中正确的结论是__________(只需填上正确结论的序号)13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin ∠BAC=____________.14.已知∠A的补角是120°,则tan A=________.15.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是____________.16.汽车沿着坡度为1∶7的斜坡向上行驶了50米,则汽车升高了____________米.17.已知0°<θ<30°,且sinθ=km+(k为常数且k<O),则m的取值范围是__________.18.在Rt△ABC中,∠C=90°,BC=3,sin A=,那么AB=__________.19.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)三、解答题21.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为(即AB∶BC=),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos 75°=0.2588,sin 75°=0.9659,tan 75°=3.732,=1.732,=1.414)23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)(参考数据:sin 15°≈0.259,cos 15°≈0.966,tan 15°≈0.268,≈1.414)24.小明周日在广场放风筝,如图,小明为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为20米,小明的身高AB为1.75米,请你帮小明计算出风筝离地面的高度.(结果精确到0.1米,参考数据≈1.41,≈1.73)25.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin 53°=0.80,cos 53°=0.60,tan 53°=0.33,=1.41)26.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cos B的值.27.如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)28.在△ABC中,∠C=90°,AC=7,BC=24,求sin A,sin B的值.答案解析1.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.2.【答案】B【解析】sin A==,故选B.3.【答案】A【解析】如图所示:∵在Rt△ABC中,∠C=90°,a=1,b=,∴tan A==.∴∠A=30°,故选A.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】A【解析】在如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5 m.故选A.6.【答案】A【解析】∵Rt△ABC中,∠C=90°,AB=13,AC=5,∴sin B==.故选A.7.【答案】B【解析】cos A===.故选B.8.【答案】C【解析】在CD上取一点E,使BD=DE,可得∠EBD=45°,AD=DC=2,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC.设AB=x,则DE=BD=AD-AB=2-x,∴EC=BE=BD=(2-x),∵DE+EC=CD,∴2-x+(2-x)=2,解得x=4-2,即AB=4-2.故选C.9.【答案】B【解析】∵∠BAC=α,BC=100 m,∴AB=BC·cotα=100cotαm.故选B.10.【答案】A【解析】因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,故锐角A的余弦函数值也不变.故选A.11.【答案】45°【解析】∵2cosα-=0,∴cosα=,又∵cos 45°=,∴锐角α=45°.12.【答案】②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sin A==,故①错误;∴∠A=30°,∴∠B=60°,∴cos B=cos 60°=,故②正确;∵∠A=30°,∴tan A=tan 30°=,故③正确;∵∠B=60°,∴tan B=tan 60°=,故④正确.故答案为②③④.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,由勾股定理,得OC==,∴在Rt△AOC中,sin ∠OAC=sin ∠BAC==.14.【答案】【解析】∵∠A的补角是120°,∴∠A=180°-120°=60°,∴tan A=tan 60°=.15.【答案】5∶12【解析】如图所示,由题意可知,PM=13 m,MC=5米,∴PC==12,∴MC∶PC=5∶12,故答案为5∶12.16.【答案】5【解析】∵坡度为1∶7,∴设坡角是α,则sinα==,∴上升的高度是50×=5(米).17.【答案】<m<【解析】∵0°<θ<30°,∴sin 0°<sinθ<sin 30°,即0<km+<,∴<km<,∴<m<.18.【答案】18【解析】在Rt△ABC中,∵∠C=90°,sin A==,∴AB=3×6=18.19.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.20.【答案】208【解析】由题意可得:tan 30°===,解得:BD=30,tan 60°===,解得DC=90,故该建筑物的高度为BC=BD+DC=120≈208(m).21.【答案】解∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE-EF=x-2,∴AF===(x-2),∵AF=BE=BC+CE.∴(x-2)=2+x,解得x=6.答:树DE的高度为6米.【解析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC+CE 即可求出x的长.22.【答案】解过B作BD⊥AC,∵∠BAC=75°-30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理,得BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【解析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.23.【答案】解过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO·sin 15°≈30×0.259≈7.77(cm)AD=AO·co s 15°≈30×0.966≈28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈36.8(cm).答:AB的长度为36.8 cm.【解析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO·sin 15°,AD=AO·cos 15°,在Rt△BDO中根据∠OBC=45°可知,BD=OD,再根据AB=AD+BD即可得出结论.24.【答案】解∵在Rt△CBE中,sin 60°=,∴CE=BC·sin 60°=20×≈17.3 m,∴CD=CE+ED=17.3+1.75=19.05≈19.1 m.答:风筝离地面的高度是19.1 m.【解析】先根据锐角三角函数的定义求出CE的长,再由CD=CE+ED即可得出结论.25.【答案】解(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA·sin ∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里.【解析】(1)根据方向角的定义结合已知条件在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA·sin ∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113;(2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且距离B处约113海里.26.【答案】解∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,∴∠A+∠B=90°,∠A+∠AMN=90°,∴∠B=∠AMN,又AN=3,AM=4,∴MN==,∴cos B=cos ∠AMN==.【解析】根据“同角的余角相等”,可得∠B=∠AMN,又AN=3,AM=4,由勾股定理得MN=,故 cos B=cos ∠AMN.27.【答案】解作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos 70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.【解析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.28.【答案】解在△ABC中,∠C=90°,AC=7,BC=24,由勾股定理,得AB===25,sin A==,sin B==.【解析】根据勾股定理,可得AC的长,根据锐角的正弦为对边比斜边,可得答案.。
《锐角三角函数》习题(含答案)正确无误版
《锐角三角函数》一、选择题1. 4sin tan 5ααα=若为锐角,且,则为 ( ) 933425543A B C D . . . . 2.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( )A .sinA = sinB B .cosA=sinBC .sinA=cosBD .∠A+∠B=90° 3.直角三角形的两边长分别是6,8,则第三边的长为( )A .10B .22C .10或27D .无法确定4.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( ) A .c =sin a A B .c =cos a A C .c = a ·tanA D .c = tan aA5、οο45cos 45sin +的值等于( )A.2B.213+ C.3D. 16.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( )A. 3B. 300C. 503 D. 1507.当锐角α>30°时,则cos α的值是( ) A .大于12 B .小于12C .大于3D .小于38.小明沿着坡角为30°的坡面向下走了2米,那么他下降( ) A .1米 B .3米 C .23 D .2339.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( )(A )4 (B )5 (C )23 (D )83310.已知Rt △ABC 中,∠C=90°,tanA=43,BC=8,则AC 等于( ) A .6 B .323C .10D .12 二、填空题11.计算2sin30°+2cos60°+3tan45°=_______. 12.若sin28°=cos α,则α=________.13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______.14.某坡面的坡度为1:3,则坡角是_______度. 15.在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则BC 的长为_______cm . 16.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为A.82米B.163米C.52米D.70米17.如图,小鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的高度CD =1m ,测得旗杆顶端B 的仰角α=60°,则旗杆AB 的高度为 .(计算结果保留根号)(16题) (17题) 三、解答题18.由下列条件解直角三角形:在Rt △ABC 中,∠C=90°:(1)已知a=4,b=8,求c (2)已知b=10,∠B=60°.(3)已知c=20,∠A=60°. (4) (2)已知a=5,∠B=30°19.计算下列各题.(1)s in 230°+cos 245°+2sin60°·tan45°; (2)22cos 30cos 60tan 60tan 30︒+︒︒⨯︒+ sin45°(45︒30︒BAD C四、解下列各题20.如图所示,平地上一棵树高为5米,两次观察地面上的影子,•第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长多少米?21.如图,AB是江北岸滨江路一段,长为3千米,C为南岸一渡口,•为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A在C北偏西30°方向,B在C的东北方向,从C处连接两岸的最短的桥长多少?(精确到0.1)22. 如图,点A是一个半径为300米的圆形森林公园的中心,在森林公园附近有B、C两个村庄,现要在B、C两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC=45o,∠ACB=30o,问此公路是否会穿过该森林公园?请通过计算进行说明。
初中—锐角三角函数(锐角三角函数的增减性)基础题及答案
初中—锐角三角函数(锐角三角函数的增减性)基础题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中—锐角三角函数(锐角三角函数的增减性)基础(1)试题一.选择题(共30小题)1.(2014秋•余姚市期末)在Rt△ABC中,若各边的长度同时都扩大2倍,则锐角A的正弦值与余弦值的情况()A.都扩大2倍B.都缩小2倍C.都不变D.正弦值扩大2倍,余弦值缩小2倍2.(2014秋•福田区期末)比较tan20°,tan50°,tan70°的大小,下列不等式正确的是()A.tan70°<tan50°<tan20°B.tan50°<tan20°<tan70°C.tan20°<tan50°<tan70°D.tan20°<tan70°<tan50°3.(2013秋•文登市期末)若α为锐角,,则()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°4.(2014秋•昆明校级期末)若0°<α<90°,则下列说法不正确的是()A.sinα随α的增大而增大B.cosα随α的减小而减小C.tanα随α的增大而增大D.sinα=cos(90°﹣α)5.(2014秋•滨江区期末)已知sinα<0.5,那么锐角α的取值范围是()A.60°<α<90°B.30°<α<90°C.0°<α<60°D.0°<α<30°6.(2014秋•莱州市期中)随着锐角α的增大,cosα的值()A.增大B.减小C.不变D.增大还是减小不确定7.(2014秋•锦江区校级期中)如果角α为锐角,且sinα=,那么α在()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°8.(2014秋•怀化校级月考)如果∠A为锐角,sinA=,那么()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°9.(2014秋•慈溪市校级月考)当角度在0°到90°之间变化时,函数值随着角度的增大而增大的三角函数是()A.正弦和余弦B.正弦和正切C.余弦和正切D.正弦、余弦和正切10.(2014秋•江阴市校级月考)如图,A(0,8),B(0,2),点E为x轴正半轴上一动点,设tan∠AEB=m,则m的取值范围是()A.0<m≤B.0<m≤ C.<m<D.0<m≤11.(2013•清远校级一模)在直角三角形中,各边的长度都扩大3倍,则锐角A的三角函数值()A.也扩大3倍B.缩小为原来的C.都不变D.有的扩大,有的缩小12.(2013秋•松北区校级期中)在Rt△ABC中,各边都扩大5倍,则角A的三角函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定13.(2013•遂宁模拟)已知,则锐角α的取值范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°14.(2013春•聊城期中)下列各式正确的是()A.cos60°<sin45°<tan45°B.sin45°<cos60°<tan45°C.sin45°<tan45°<cos60 D.cos60°<tan45°<sin45°15.(2013秋•龙凤区校级期中)已知α为锐角,下列不等式中正确的是()①tanα>1;②0<sinα<1;③cotα<1;④0<cosα<1.A.②B.①,②,③C.②,④D.①,②,③,④16.(2013秋•海阳市期中)在Rt△ABC中,∠C=90°,下列结论:(1)sinA<1;(2)若A>60°,则cosA>;(3)若A>45°,则sinA>cosA.其中正确的有()A.0个B.1个C.2个D.3个17.(2013秋•平江区校级期中)若∠A=41°,则cosA的大致范围是()A.0<cosA<1 B.<cosA<C.<cosA<D.<cosA<118.(2012•常德模拟)已知α、β都是锐角,且sinα<sinβ,则下列关系中,正确的是()A.α>βB.tanα>tanβC.cosα>cosβD.α=β19.(2012•天山区校级模拟)当45°<θ<90°时,下列各式中正确的是()A.tanθ>cosθ>sinθB.sinθ>cosθ>tanθC.tanθ>sinθ>cosθD.cosθ>sinθ>tanθ20.(2012秋•安次区校级期末)下列式子正确的是()A.sin66°>sin68°B.tan66°>tan68°C.cos66°>cos68°D.cot66°<cot68°21.(2012秋•大兴区期末)已知∠A为锐角,且sinA<,那么∠A的取值范围是()A.0°<A<30°B.30°<A<60°C.60°<A<90°D.30°<A<90°22.(2012春•冠县校级期中)若α是锐角,且cosα=0.7,则()A.0°<α<30°B.30°≤α<45°C.45°<α<60°D.60°≤α<90°23.(2012秋•下城区校级月考)若α=40°,则α的正切值h的范围是()A.<h<B.<h<C.1<h<D.<h<24.(2011•茂名)如图,已知:45°<∠A<90°,则下列各式成立的是()A.sinA=cosA B.sinA>cosA C.sinA>tanA D.sinA<cosA25.(2009秋•莆田校级期末)在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A.都扩大2倍B.都扩大4倍C.没有变化D.都缩小一半26.(2011秋•信州区期末)已知90°<∠A<180°,90°<∠B<180°,甲、乙、丙、丁四个同学计算的结果依次为28°、48°、60°、88°,其中只有一个同学计算结果是正确的,那么计算正确的同学是()A.甲B.乙C.丙D.丁27.(2011秋•西湖区校级月考)已知:∠A为锐角,且cosA≥,则()A.0°<∠A≤60°B.60°≤∠A<90° C.O°<∠A≤30°D.30°≤∠A<90°28.(2011秋•巴东县校级月考)下列各式正确的是()A.sin46°<cos46°<tan46°B.sin46°<tan46°<cos46°C.tan46°<cos46°<sin46°D.cos46°<sin46°<tan46°29.(2010•山西)在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的2倍,则∠A的正弦值()A.扩大2倍B.缩小2倍C.扩大4倍D.不变30.(2010•黔东南州)设x为锐角,若sinx=3K﹣9,则K的取值范围是()A.K<3 B.C.D.考点卡片1.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.2.锐角三角函数的增减性(1)锐角三角函数值都是正值.(2)当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).(3)当角度在0°≤∠A≤90°间变化时,0≤sinA≤1,1≥cosA≥0.当角度在0°<∠A<90°间变化时,tanA>0.3.特殊角的三角函数值(1)特指30°、45°、60°角的各种三角函数值.sin30°=; cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=; tan60°=;(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.28.1.2初中—锐角三角函数(锐角三角函数的增减性)基础(1)参考答案与试题解析一.选择题(共30小题)1.(2014秋•余姚市期末)在Rt△ABC中,若各边的长度同时都扩大2倍,则锐角A的正弦值与余弦值的情况()A.都扩大2倍B.都缩小2倍C.都不变D.正弦值扩大2倍,余弦值缩小2倍【考点】锐角三角函数的增减性.【分析】根据相似三角形的性质及锐角三角函数的定义解答即可.【解答】解:∵Rt△ABC中,若各边的长度同时都扩大2倍,∴扩大后形成的三角形与原三角形相似,锐角A的正弦与余弦的比值不变.故选C.【点评】此题比较简单,解答此题的关键是熟知三角函数值是一个比值,与角的边长无关.2.(2014秋•福田区期末)比较tan20°,tan50°,tan70°的大小,下列不等式正确的是()A.tan70°<tan50°<tan20°B.tan50°<tan20°<tan70°C.tan20°<tan50°<tan70°D.tan20°<tan70°<tan50°【考点】锐角三角函数的增减性.【分析】根据正切函数随锐角的增大而增大,可得答案.【解答】解:由正切函数随角增大而增大,得tan20°<tan50°<tan70°,故C符合题意,故选:C.【点评】本题考查了锐角三角函数的增减性,利用了正切函数随锐角的增大而增大.3.(2013秋•文登市期末)若α为锐角,,则()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°【考点】锐角三角函数的增减性.【分析】先求出sin30°=0.5,sin45°=≈0.707,sin60°=≈0.866,即可得出答案.【解答】解:∵sin30°=0.5,sin45°=≈0.707,sin60°=≈0.866,sinα==0.8,∴45°<α<60°,故选C.【点评】本题考查了特殊角的三角函数值和锐角三角函数的增减性的应用,注意:当0°<α<90°,sinα随角度的增大而增大.4.(2014秋•昆明校级期末)若0°<α<90°,则下列说法不正确的是()A.sinα随α的增大而增大B.cosα随α的减小而减小C.tanα随α的增大而增大D.sinα=cos(90°﹣α)【考点】锐角三角函数的增减性.【分析】根据锐角三角函数的增减性及互余两角的三角函数的关系即可作答.【解答】解:若0°<α<90°,则正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小);sinα=cos(90°﹣α);所以A、C、D正确,B错误.故选B.【点评】本题考查了锐角三角函数的增减性:当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).也考查了互余两角的三角函数的关系:sinα=cos(90°﹣α),cosα=sin(90°﹣α).5.(2014秋•滨江区期末)已知sinα<0.5,那么锐角α的取值范围是()A.60°<α<90°B.30°<α<90°C.0°<α<60°D.0°<α<30°【考点】锐角三角函数的增减性.【分析】根据锐角函数的正弦值随锐角的增大而增大,可得答案.【解答】解:由sinα=0.5,得α=30°,由锐角函数的正弦值随锐角的增大而增大,得0°<α<30°,故选:D.【点评】本题考查了锐角三角函数的增减性,利用了锐角函数的正弦值随锐角的增大而增大.6.(2014秋•莱州市期中)随着锐角α的增大,cosα的值()A.增大B.减小C.不变D.增大还是减小不确定【考点】锐角三角函数的增减性.【分析】当角度在0°~90°间变化时,余弦值随着角度的增大而减小,依此求解即可.【解答】解:随着锐角α的增大,cosα的值减小.故选B.【点评】本题考查了锐角三角函数的增减性:当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).7.(2014秋•锦江区校级期中)如果角α为锐角,且sinα=,那么α在()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°【考点】锐角三角函数的增减性.【分析】根据特殊角的三角函数值及锐角三角函数的增减性即可求解.【解答】解:∵sin0°=0,sinα=,sin30°=,又0<<,∴0°<α<30°.故选A.【点评】本题考查了锐角三角函数的增减性:当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).同时考查了特殊角的三角函数值.8.(2014秋•怀化校级月考)如果∠A为锐角,sinA=,那么()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【考点】锐角三角函数的增减性.【分析】首先明确sin30°=,再根据一个锐角的正弦值随着角的增大而增大,进行分析.【解答】解:∵sin30°=,0<<,∴0°<∠A<30°.故选A.【点评】熟记特殊角的三角函数值,了解锐角三角函数的增减性是解题的关键.9.(2014秋•慈溪市校级月考)当角度在0°到90°之间变化时,函数值随着角度的增大而增大的三角函数是()A.正弦和余弦B.正弦和正切C.余弦和正切D.正弦、余弦和正切【考点】锐角三角函数的增减性.【分析】当角度在0°到90°之间变化时,正弦和正切函数值随着角度的增大而增大.【解答】解:当角度在0°到90°之间变化时,函数值随着角度的增大而增大的三角函数是正弦和正切.故选B.【点评】本题考查了锐角三角函数的增减性的应用,主要考查学生的理解能力.10.(2014秋•江阴市校级月考)如图,A(0,8),B(0,2),点E为x轴正半轴上一动点,设tan∠AEB=m,则m的取值范围是()A.0<m≤B.0<m≤ C.<m<D.0<m≤【考点】锐角三角函数的增减性;坐标与图形性质.【分析】点E为x轴正半轴上一动点,设tan∠AEB=m,则m>0,再求出m的最大值即可.过A、B、E三点的圆O′与x轴相切时,∠AEB最大,m的值最大.作O′D⊥AB于D,由垂径定理得出AD=DB=AB=3,OD=OA﹣AD=5,那么⊙O′的半径为5.在直角△O′AD中,由勾股定理得出O′D==4,则AE===4,再作BC⊥AE于C.由S△AOE=OA•OE=S△BOE+S△ABE,求出BC=,CE==,那么m的最大值为==.【解答】解:如图,过A、B、E三点的圆O′与x轴相切时,∠AEB 最大.作O′D⊥AB于D,则AD=DB=AB=3,∵OA=8,∴OD=OA﹣AD=5,∴O′E=O′A=OD=5,即⊙O′的半径为5.在直角△O′AD中,由勾股定理得O′D==4,∴OE=O′D=4,∴AE===4,作BC⊥AE于C.∵S△AOE=OA•OE=S△BOE+S△ABE,∴×8×4=×2×4+×4×BC,∴BC=,∵BE2=OB2+OE2=22+42=20,∴CE==,∴m的最大值为==,又∵m>0,∴0<m≤.故选A.【点评】本题主要考查了三角函数的定义,垂径定理,勾股定理,三角形的面积,有一定难度,理解过A、B、E三点的圆与x轴相切时,m的值最大是解题的关键.11.(2013•清远校级一模)在直角三角形中,各边的长度都扩大3倍,则锐角A的三角函数值()A.也扩大3倍B.缩小为原来的C.都不变D.有的扩大,有的缩小【考点】锐角三角函数的增减性.【分析】理解锐角三角函数的概念:锐角三角函数值即为直角三角形中边的比值.【解答】解:根据锐角三角函数的概念,可知在直角三角形中,各边的长度都扩大3倍,锐角A的三角函数值不变.故选C.【点评】理解锐角三角函数的概念,明白三角函数值与边的长度无关.12.(2013秋•松北区校级期中)在Rt△ABC中,各边都扩大5倍,则角A的三角函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定【考点】锐角三角函数的增减性.【分析】易得边长扩大后的三角形与原三角形相似,那么对应角相等,相应的三角函数值不变.【解答】解:∵各边都扩大5倍,∴新三角形与原三角形的对应边的比为5:1,∴两三角形相似,∴∠A的三角函数值不变,故选A.【点评】用到的知识点为:三边对应成比例,两三角形相似;相似三角形的对应角相等.三角函数值只与角的大小有关,与角的边的长短无关.13.(2013•遂宁模拟)已知,则锐角α的取值范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°【考点】锐角三角函数的增减性.【分析】分别求出tan30°=≈0.644,tan45°=1,tan60°=≈1.732,tanα==1.2,得出tan45°<tanα<tan60°,根据根据正切值随角度的增大而增大即可得出答案.【解答】解:∵tan30°=≈0.644,tan45°=1,tan60°=≈1.732,又∵tanα==1.2,∴tan45°<tanα<tan60°,∵锐角的正切值随角度的增大而增大,∴45°<α<60°,故选C.【点评】本题考查了特殊角的三角函数值和锐角三角形函数的增减性的应用,主要考查学生的理解能力和判断能力,注意:锐角的正切值随角度的增大而增大.14.(2013春•聊城期中)下列各式正确的是()A.cos60°<sin45°<tan45°B.sin45°<cos60°<tan45°C.sin45°<tan45°<cos60 D.cos60°<tan45°<sin45°【考点】锐角三角函数的增减性.【分析】先根据特殊角的三角函数值分别得出cos60°=,sin45°=,tan45°=1,再比较大小即可.【解答】解:∵cos60°=,sin45°=,tan45°=1,又∵<<1,∴cos60°<sin45°<tan45°.故选A.【点评】本题考查了特殊角的三角函数值,实数的大小比较,熟记特殊角的三角函数值是解题的关键.15.(2013秋•龙凤区校级期中)已知α为锐角,下列不等式中正确的是()①tanα>1;②0<sinα<1;③cotα<1;④0<cosα<1.A.②B.①,②,③C.②,④D.①,②,③,④【考点】锐角三角函数的增减性.【分析】根据锐角三角函数的增减性,可得答案.【解答】解:α为锐角,①tanα>0,故①错误;②0<sinα<1,故②正确;③cotα>0,故③错误;④0<cosα<1,故④正确;故选:C.【点评】本题考查了锐角三角函数的增减性,掌握锐角三角函数的增减性是解题的关键.16.(2013秋•海阳市期中)在Rt△ABC中,∠C=90°,下列结论:(1)sinA<1;(2)若A>60°,则cosA>;(3)若A>45°,则sinA>cosA.其中正确的有()A.0个B.1个C.2个D.3个【考点】锐角三角函数的增减性.【分析】由Rt△ABC中,∠C=90°,根据三角形内角和定理可知∠A与∠B都是锐角,再根据特殊角的三角函数值及锐角三角函数的增减性即可求解.【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A与∠B都是锐角,∴sinA<1,(1)正确;∵cos60°=,锐角余弦值随着角度的增大而减小,∴若A>60°,则cosA<,(2)错误;∵cos(90°﹣A)=sinA,锐角正弦值随着角度的增大而增大,∴若A>45°,则sinA>cosA,(3)正确.故选C.【点评】本题主要考查了锐角三角函数的增减性,特殊角的三角函数值,是基础题,比较简单.17.(2013秋•平江区校级期中)若∠A=41°,则cosA的大致范围是()A.0<cosA<1 B.<cosA<C.<cosA<D.<cosA<1【考点】锐角三角函数的增减性.【分析】根据特殊角的三角函数值及余弦函数随角增大而减小解答.【解答】解:∵cos30°=,cos45°=,余弦函数函数值随角度的增大而减小,∴<cosA<.故选C.【点评】本题考查了特殊角的三角函数值,以及三角函数的增减性,熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键.18.(2012•常德模拟)已知α、β都是锐角,且sinα<sinβ,则下列关系中,正确的是()A.α>βB.tanα>tanβC.cosα>cosβD.α=β【考点】锐角三角函数的增减性.【专题】计算题.【分析】先根据锐角三角函数的增减性由sinα<sinβ得到α<β,然后再根据锐角三角函数的增减性进行判断即可.【解答】解:∵α、β都是锐角,且sinα<sinβ,∴α<β,∴tanα<tanβ,cosα>cosβ,所以A、B、D选项都是错误的,C选项是正确的.故选C.【点评】本题考查了锐角三角函数的增减性:当0<α<90°,sinα随α的增大而增大;cosα随α的增大而减小;tanα随α的增大而增大.19.(2012•天山区校级模拟)当45°<θ<90°时,下列各式中正确的是()A.tanθ>cosθ>sinθB.sinθ>cosθ>tanθC.tanθ>sinθ>cosθD.cosθ>sinθ>tanθ【考点】锐角三角函数的增减性.【分析】本题可以根据θ的取值范围,从中找到一个特殊值,然后求出其三角函数值比较即可.【解答】解:∵45°<θ<90°,∴可令θ=60°,∴tanθ=,sinθ=,cosθ=,∴tanθ>sinθ>cosθ.故选C.【点评】本题考查了锐角三角函数的增减性,在解决填空或选择时,特殊值也是一种很好的方法.20.(2012秋•安次区校级期末)下列式子正确的是()A.sin66°>sin68°B.tan66°>tan68°C.cos66°>cos68°D.cot66°<cot68°【考点】锐角三角函数的增减性.【分析】根据锐角三角函数值的变化规律:正弦值和正切值都是随着角的增大而增大,余弦值和余切值都是随着角的增大而减小即可判断.【解答】解:根据锐角三角函数的变化规律,知sin66°<sin68°,tan66°<tan68°,cos66°>cos68°,cot66°>cot68°.故A、B、D错误,C正确.故选C.【点评】本题考查了锐角三角函数的增减性,当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).④余切值随着角度的增大(或减小)而减小(或增大).21.(2012秋•大兴区期末)已知∠A为锐角,且sinA<,那么∠A的取值范围是()A.0°<A<30°B.30°<A<60°C.60°<A<90°D.30°<A<90°【考点】锐角三角函数的增减性.【分析】根据特殊角的三角函数值求出sin30°=,根据当∠A是锐角时,其正弦随角度的增大而增大,【解答】解:∵∠A为锐角,且sin30°=,又∵当∠A是锐角时,其正弦随角度的增大而增大,∴0°<A<30°,故选A.【点评】本题考查了特殊角的三角函数值和锐角三角函数的增减性的应用,注意:当角是锐角时,其正弦和正切随角度的增大而增大,余弦和余切随角度的增大而减小.22.(2012春•冠县校级期中)若α是锐角,且cosα=0.7,则()A.0°<α<30°B.30°≤α<45°C.45°<α<60°D.60°≤α<90°【考点】锐角三角函数的增减性.【分析】在锐角三角函数中,余切值都是随着角的增大而减小.cos30°=,cos45°=,故知α的范围.【解答】解;:∵在锐角三角函数中,余切值都是随着角的增大而减小,又知cos60°=,cos45°=,故45°<α<60°.故选C.【点评】本题主要考查锐角三角形的增减性,在一个单调区间里,正弦函数和正切函数随角度增大而增大,余弦和余切反之.23.(2012秋•下城区校级月考)若α=40°,则α的正切值h的范围是()A.<h<B.<h<C.1<h<D.<h<【考点】锐角三角函数的增减性;特殊角的三角函数值.【分析】根据特殊角的三角函数值及余弦函数随角增大而减小解答即可.【解答】解:∵tan30°=,tan60°=,一个角的正切值随角的增大而增大,∴tan30°<tan40°<tan60°,即<h<,故选D.【点评】本题考查了锐角三角函数的增减性,熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键.24.(2011•茂名)如图,已知:45°<∠A<90°,则下列各式成立的是()A.sinA=cosA B.sinA>cosA C.sinA>tanA D.sinA<cosA【考点】锐角三角函数的增减性.【专题】计算题.【分析】根据锐角三角函数的增减性sinA随角度的增大而增大,cosA随角度的增大而减小,直接得出答案即可.【解答】解:∵45°<A<90°,∴根据sin45°=cos45°,sinA随角度的增大而增大,cosA随角度的增大而减小,当∠A>45°时,sinA>cosA.故选:B.【点评】此题主要考查了锐角三角函数的增减性,正确利用锐角三角函数的增减性是解决问题的关键.25.(2009秋•莆田校级期末)在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A.都扩大2倍B.都扩大4倍C.没有变化D.都缩小一半【考点】锐角三角函数的增减性.【分析】明确概念:在Rt△ABC中,锐角A的正切值等于其对边和邻边的比.【解答】解:根据锐角三角函数的定义,知各边的长度都扩大2倍,那么锐角A的大小不变,所以其正切值不变.故选C.【点评】本题考查三角函数的定义与性质:三角函数的大小只与角的大小有关,与角的两边长度无关.26.(2011秋•信州区期末)已知90°<∠A<180°,90°<∠B<180°,甲、乙、丙、丁四个同学计算的结果依次为28°、48°、60°、88°,其中只有一个同学计算结果是正确的,那么计算正确的同学是()A.甲B.乙C.丙D.丁【考点】锐角三角函数的增减性.【分析】根据90°<∠A<180°,90°<∠B<180°,得出360°>∠A+∠B>180°,进而得出30°<<60°即可得出答案.【解答】解:∵90°<∠A<180°,90°<∠B<180°,∴360°>∠A+∠B>180°,∴30°<<60°,∴甲、乙、丙、丁四个同学计算的结果依次为28°、48°、60°、88°,中只有48°符合要求,故选:B.【点评】此题主要考查了不等式的性质,根据已知得出30°<<60°是解题关键.27.(2011秋•西湖区校级月考)已知:∠A为锐角,且cosA≥,则()A.0°<∠A≤60°B.60°≤∠A<90° C.O°<∠A≤30°D.30°≤∠A<90°【考点】锐角三角函数的增减性.【分析】首先明确cos60°=,再根据余弦函数值随角增大而减小进行分析.【解答】解:∵cos60°=,余弦函数值随角增大而减小,∴当cosA≥时,∠A≤60°.又∠A是锐角,∴0°<A≤60°.故选A.【点评】熟记特殊角的三角函数值,了解锐角三角函数的增减性是解题的关键.28.(2011秋•巴东县校级月考)下列各式正确的是()A.sin46°<cos46°<tan46°B.sin46°<tan46°<cos46°C.tan46°<cos46°<sin46°D.cos46°<sin46°<tan46°【考点】锐角三角函数的增减性.【分析】根据三角函数的增减性:当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小);以及互余的两个角之间的关系:sinA=cos(90°﹣A);当角度在0°≤∠A≤90°间变化时,0≤sinA≤1,1≥cosA≥0,当角度在0°<∠A<90°间变化时,tanA>0即可作出判断.【解答】解:A、cos46°=sin44°<sin46°故此选项错误;B、sin46°=cos44°>cos46°,故此选项错误;C、cos46°=sin44°<sin46°,∵tan46°>tan45°>1,cos44°<1,∴cos46°<sin46°<tan46°,故此选项错误;D、由C选项的分析可知此选项正确;故选;D.【点评】本题主要考查了三角函数的增减性熟记锐角三角函数的增减性是解题的关键.29.(2010•山西)在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的2倍,则∠A的正弦值()A.扩大2倍B.缩小2倍C.扩大4倍D.不变【考点】锐角三角函数的增减性.【分析】根据三角函数的定义解答即可.【解答】解:∵Rt△ABC中,∠C=90°,将各边长度都扩大为原来的2倍,其比值不变,∴∠A的正弦值不变.故选:D.【点评】此题比较简单,解答此题的关键是熟知三角函数值是一个比值,与角各边长度的变化无关.30.(2010•黔东南州)设x为锐角,若sinx=3K﹣9,则K的取值范围是()A.K<3 B.C.D.【考点】锐角三角函数的增减性.【专题】应用题.【分析】根据锐角x正弦的取值范围0<sinx<1作答即可.【解答】解:根据三角函数的增减性得:0<sinx<1,即0<3K﹣9<1,解得:3<K<,故选:B.【点评】此题考查的知识点是锐角三角函数的增减性,关键是明确锐角x有0<sinx<1.。
必刷基础练【28.1 锐角三角函数】(解析版)
2022-2023学年九年级数学下册考点必刷练精编讲义(人教版)基础第28章《锐角三角函数》28.1 锐角三角函数知识点01:锐角三角函数的定义1.(2022秋•钢城区期中)已知在Rt△ABC中,∠C=90°,tan A=2,BC=8,则AC等于( )A.6B.16C.12D.4解:∵∠C=90°,∴tan A==2,∴AC=BC=×8=4.故选:D.2.(2022秋•晋州市期中)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.3.(2022秋•浦东新区期中)在Rt△ABC中,∠C=90°,BC=9,AC=6,下列等式中正确的( )A.tan A=B.sin A=C.cot A=D.cos A=解:∵AB2=BC2+AC2,∴AB2=62+92=117,∴AB=3;A、tan A===,故A不符合题意;B、sin A===,故B不符合题意;C、cot A===,故C符合题意;D、cos A===,故D不符合题意,故选:C.4.(2022秋•杨浦区期中)在Rt△ABC中,∠C=90°,BC=1,AB=3,下列各式中,正确的是( )A.sin A=B.cos A=C.tan A=D.cot A=解:∵∠C=90°,BC=1,AB=3,∴AC===2,∴sin A==,cos A==,tan A===,cot A==2.故选:A.5.(2022秋•黄浦区期中)在Rt△ABC中,∠C=90°,BC=3,AB=4,那么下列各式中正确的是( )A.sin A=B.cos A=C.tan A=D.cot A=解:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin A==,cos A==.tan A===,cot A==.故选:A.6.(2022•睢宁县模拟)如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,则sin B的值是 .解:∵∠C=90°,AC=3,BC=4,∴AB==5,∴sin B==,故答案为:.7.(2021秋•牡丹江期末)在△ABC中,∠A,∠C都是锐角,cos A=,sin C=,则∠B= 60° .解:∵∠A,∠C都是锐角,cos A=,sin C=,∴∠A=60°,∠C=60°,∴∠B=180°﹣∠A﹣∠C=60°,故答案为:60°.8.(2022春•衡阳月考)如图,在△ABC中,∠C=90°,AB=13,AC=12,则tan B= .解:∵∠C=90°,AB=13,AC=12,∴BC==5,∴tan B==.故答案为:.9.(2022秋•惠山区校级期中)在Rt△ABC中,∠ACB=90°,∠A、∠B、∠C的对边分别是a、b、c,(1)a=5,c=2a,求b、∠A.=9,求△ABC的周长.(2)tan A=2,S△ABC解:(1)∵a=5,c=2a=10,∴b===5,∵sin A===,∴∠A=30°;(2)∵tan A==2,∴a=2b,∵S=9,△ABC∴=9,∴=9,解得:b=3(负数舍去),即a=6,由勾股定理得:c===3,∴△ABC的周长为a+b+c=6+3+3=9+3.10.(2022•湖州)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.知识点02:锐角三角函数的增减性11.(2022•五通桥区模拟)若锐角α满足cosα<且tanα<,则α的范围是( )A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.12.(2022•路南区二模)梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A.sin A的值越大,梯子越陡B.cos A的值越大,梯子越陡C.tan A的值越小,梯子越陡D.陡缓程度与∠A的函数值无关解:根据锐角三角函数值的变化规律,知sin A的值越大,∠A越大,梯子越陡.故选:A.13.(2022秋•晋江市期中)比较大小:tan50° < tan60°.解:∵50°<60°,∴tan50°<tan60°,故答案为:<.14.(2021秋•淮阴区期末)比较大小:sin50° < sin60°(填“>”或“<”).解:由于50°<60°,根据一个锐角的正弦值随着角度的增大而增大可得,sin50°<sin60°,故答案为:<.15.用锐角α的三角函数的定义去说明(1)0<sinα<1(2)0<cosα<1(3)tanα>sinα解:(1)sinα=,0<a<c,0<1,即0<sinα<1;(2)cosα=,0<b<c,0<<1,即0<cosα<1;(3)tanα=,sinα=,由0<b<c,得>,即tanα>sinα.16.(2019春•西湖区校级月考)如图,半径为4的⊙O内一点A,OA=.点P在⊙B上,当∠OPA最大时,求PA的长.解:如图,作OE⊥PA于E,∵sin∠OPA=,∴OE的值取最大值时,sin∠OPA的值最大,此时∠OPA的值最大,∵OE≤OA,∴当OE与OA重合时,即PA⊥OA时,∠OPA的值最大.如图,∵在直角△OPA中,OA=2,OP=4,∴PA==2.知识点03:同角三角函数的关系17.(2022春•巴东县期中)x为锐角,,则cos x的值为( )A.B.C.D.解:∵sin2x+cos2x=1,,∴cos x===.故选:B.18.(2021秋•舟山期末)在直角△ABC中,已知∠C=90°,sin A=,求cos A=( )A.B.C.D.2解:∵sin2A+cos2A=1,∴cos A==.\故选:C.19.(2021•温江区校级开学)计算:(cos230°+sin230°)×tan60°= .解:原式=[()2+()2]×=,故答案为:.20.(2021秋•金牛区校级期中)在△ABC中,∠C=90°,tan A=2,则sin A+cos A= .解:如图,∵tan A=2,∴设AB=x,则BC=2x,AC==x则有:sin A+cos A=+=+=.故答案为:.21.(2020秋•万州区校级期中)计算:sin225°+cos225°﹣tan60°= 1﹣ .解:∵sin225°+cos225°=1,tan60°=,∴sin225°+cos225°﹣tan60°=1﹣,故答案为:1﹣.22.(2021秋•鄞州区校级月考)计算:(1)4sin260°﹣3tan30°;(2)+cos245°+sin245°.解:(1)4sin260°﹣3tan30°=4×=3﹣;(2)+cos245°+sin245°==4+1=5.23.(2021秋•绥宁县月考)计算:(1)sin230°+tan60°﹣sin245°+cos230°;(2)+(1+π)0﹣2cos45°﹣|1﹣|.解:(1)原式=()2+﹣()2+()2=+﹣+=+;(2)原式=2+1﹣2×﹣+1=2+1﹣﹣+1=2.24.(2022秋•蓬莱区期中)计算:(1)﹣4cos30°+20220;(2)已知α为锐角,sin(α+15°)=,计算﹣4cosα+tanα+()﹣1的值.解:(1)原式=|1﹣|﹣4×+1=﹣1﹣2+1=﹣;(2)∵sin60°=,sin(α+15°)=,∴α+15°=60°,∴α=45°,∴﹣4cosα+tanα+()﹣1=2﹣4×+1+3=4.知识点04:互余两角三角函数的关系25.(2022秋•芝罘区期中)在Rt△ABC中,∠C=90°,下列等式成立的是( )A.sin A=sin B B.cos A=cos B C.sin A=cos B D.tan A=tan B 解:∵∠C=90°,∴∠A+∠B=90°,∴sin A=cos B.故选:C.26.(2021秋•怀化期末)已知锐角α,且sinα=cos38°,则α=( )A.38°B.62°C.52°D.72°解:∵锐角α,且sinα=cos38°,sin A=cos(90°﹣∠A),∴sinα=cos(90°﹣α)=cos38°,∴90°﹣α=38°,解得:α=52°.故选:C.27.(2021秋•怀宁县期末)在Rt△ABC中,∠C=90°,cos A=,则sin B= .解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.28.(2020秋•肥东县期末)已知α为锐角,则sinα﹣cos(90°﹣α)= 0 .解:∵α为锐角,∴sinα=cos(90°﹣α),∴sinα﹣cos(90°﹣α)=0.故答案为0.29.(2019秋•双流区期末)已知,在Rt△ABC中,∠C=90°,若sin A=,则tan B= .解:如图.在Rt△ABC中,∵sin A==,∴设BC=x,AB=3x,则AC==2x,故tan B===.故答案为:.30.(2017•吴兴区校级二模)已知cos45°=,求cos21°+cos22°+…+cos289°的值.解:原式=(cos21°+cos289°)+(cos22°+cos288°)+…+(cos244°+cos246°)+cos245=(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+cos245=44+()2=44.31.化简下列各式:(1)4cos2(90°﹣θ)+4sin2(90°﹣θ)+4(2).解:(1)原式=4sin2θ+4cos2θ+4=4(sin2θ+cos2θ)+4=4+4=8;(2)原式=﹣1=﹣1=1+tan2θ﹣1=tan2θ.知识点05:特殊角的三角函数值32.(2022秋•巨野县期中)∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°解:∵∠β为锐角,且2cosβ﹣1=0,∴cosβ=,∴∠β=60°.故选:B.33.(2021秋•梁平区期末)式子2cos30°﹣tan45°﹣的值是( )A.0B.2C.2D.﹣2解:原式=2×﹣1﹣(﹣1)=﹣1﹣+1=0.故选:A.34.(2022秋•乳山市校级月考)在△ABC中,∠A=105°,∠B=45°,sin C的值是( )A.B.C.1D.解:∵∠A=105°,∠B=45°,∴∠C=180°﹣∠A﹣∠C=30°,∴sin C=sin30°=.故选:A.35.(2022秋•虎丘区校级期中)已知∠α为锐角,且sinα=,则∠α= 60° .解:∵∠α为锐角,sinα=,∴∠α=60°.故答案为:60°.36.(2022秋•东平县校级月考)若(3tan A﹣)2+|2sin B﹣|=0,则以∠A、∠B为内角的△ABC的形状是 直角三角形 .解:∵(3tan A﹣)2+|2sin B﹣|=0,∴3tan A﹣=0,2sin B﹣=0,则tan A=,sin B=,∴∠A=30°,∠B=60°,∴以∠A、∠B为内角的△ABC的形状是直角三角形.故答案为:直角三角形.37.(2022秋•铁西区期中)在△ABC中,若sin A=,∠A,∠B都是锐角,则∠C的度数是 75° .解:∵,∠A,∠B都是锐角,∴∠A=45°,∠B=60°,∴∠C=180°﹣45°﹣60°=75°,故答案为:75°.38.(2022秋•垦利区期中)在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 105° .解:∵|sin A﹣|+(﹣cos B)2=0,∴sin A﹣=0,﹣cos B=0,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.39.(2022秋•黄浦区期中)计算:.解:原式=﹣=cot30°﹣1﹣=﹣1﹣=﹣1﹣(+1)=﹣1﹣﹣1=﹣2.40.(2022秋•莱西市期中)计算:(1);(2)cos60°﹣2sin245°+tan230°﹣sin30°.解:(1)原式===﹣1﹣=﹣;(2)原式=﹣2×()2+×()2﹣=﹣1+﹣=﹣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《
锐角三角函数》 A 姓名_____________ 一、
填空
二、 练习
1、在Rt △ABC 中,∠C =900,AB =13,BC =5,求A sin , A cos ,A tan ,
2.在Rt △ABC 中,sin A =5
4,AB =10,则BC =______,cos B =_______. 3.在△ABC 中,∠C =90°,若cos A =21,则sin A =__________. 4. 已知在△ABC ,∠C =90°,且2BC =AC ,那么sin A =_______.
5、=︒⨯︒45cos 2
260sin 21 . 6、∠B 为锐角,且2cosB - 1=0,则∠B = .
7、等腰三角形中,腰长为5,底边长8,则底角的正切值是 .
8、如图,在距旗杆4米的A 处,用测角仪测得旗杆顶端C 的仰角为60,已知测角仪AB 的高为1.5米,则旗
杆CE 的高等于 米. 三、选择题
9、在Rt △ABC 中,各边都扩大5倍,则角A 的三角函数值( )
A .不变
B .扩大5倍
C .缩小5倍
D .不能确定
10.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( )
A .sinA = sin
B B .cosA=sinB
C .sinA=cosB
D .∠A+∠B=90°
11
.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )
A .
c =sin a A B .c =cos a A C .c = a ·tanA D .c = tan a A
12、 45cos 45sin +的值等于( )
A. 2
B. 213+
C. 3
D. 1
13.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( ) A. 3 B. 300 C. 503 D. 15 14.当锐角α>30°时,则cos α的值是( ) A .大于12 B .小于12 C .大于32 D .小于32
15.小明沿着坡角为30°的坡面向下走了2米,那么他下降( )
A .1米
B .3米
C .23
D .233
16.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( )
(A )4 (B )5 (C )23 (D )833
17.已知Rt △ABC 中,∠C=90°,tanA=43
,BC=8,则AC 等于( ) A .6 B .323
C .10
D .12 18、计算
(1)tan30°sin60°+cos 230°-sin 245°tan45°
(2)23tan 303cos 302sin 30︒
︒-︒
19、如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,
(1) 求证:AC=BD ;
(2)若12sin 13
C =,BC =12,求A
D 的长. 20.如图,点
E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,
点F 落值.
在AD 上.(1)求证:⊿ABF ∽⊿DFE;(2)若sin ∠DFE=31,求tan ∠EBC 的21.一副直角三角板如图放置,点C 在FD 的延长线上,
AB ∥CF ,∠F =∠ACB =90°, ∠E =45°,∠A =60°,A C=10,试求
CD 的
长.
22.如图,直角梯形纸片ABCD 中,AD ∥BC ,∠A =90°,
C F
E D
B A
∠C=30°.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF= CF =8.
(l)求∠BDF的度数;(2)求AB的长.
23.如图,AB是江北岸滨江路一段,长为3千米,C为南岸一渡口,•为了解决两岸交通困难,拟在渡口C处架桥.经测量得A在C北偏西30°方向,B在C的东北方向,从C处连接两岸的最短的桥长多少?
24、如图,在矩形ABCD中,E是BC边上的点,AE BC
⊥,垂足为F,连接DE.
=,DF AE
(1)求证:ABE
≌△;
△DFA
(2)如果10
∠的值.
=,=6,求sin EDF
AD AB
A
D
F
B C
E。