固体矿产资源储量计算基本公式

合集下载

固体矿产资源储量估算方法

固体矿产资源储量估算方法
之间的矿产资源量称为: • 预可采储量:Provable Extractable Reserve • 基础储量:Basic Reserve
一、资源储量估算的一般概念
• 3、矿石类型与矿石品级边界线 • 4、储量级别边界线 • 据不同储量级别条件所圈定的界线 • 5、内边界线 • 由见矿工程联接的矿体边缘线 • 6、外边界线 • 没有工程控制,外推的矿体边界线 • 7、零点边界线 • 矿体厚度趋近零的各点的连线,即矿体尖灭点的
提纲
一、资源储量估算的一般概念 二、资源储量估算方法的选择 三、工业指标 四、资源储量估算参数的确定 五、矿体圈定 六、资源储量类型和块段划分 七、伴生组分的资源储量估算
一、资源储量估算的一般概念
• (一) 在地壳内或地表由地质作用形成具有经 济意义的固体自然富集物,根据产出形式、数量 和质量可以预期最终开采是技术上可行、经济上 合理的。其位置、数量、品位/质量、地质特征 是根据特定的地质依据和地质知识计算和估算的。 按照地质可靠程度,可分为已发现的矿产资源和 未发现的矿产资源。修订标准采用经济轴二分、 可行性轴三分、地质轴四分方案,共定义了7 个 基本类型,在结构上更简单明晰,在定义上更科 学合理,更具有与国际标准的互融互通性。
三、工业指标
• (1)边界品位 ➢ 边界品位是在圈定矿体时对单个样品的最低质量
要求,是划分矿石与废石的标准。对一般需要选 矿的有色或稀有金属矿产而言,其边界品位一般 是尾矿品位的1.5至2倍以上,以便有利于最大限 度的利用国家资源。 ➢ 用边界品位圈定的矿体达不到最低工业指标时, 即为低品位矿(即老规范中的表外矿)。 ➢ 边界品位也是划分低品位矿石与工业矿石不同矿 石品级的界线。
对矿石质量的要求;是圈定矿体、估算资源储量的基准参数,也是评估矿床工业价值 的依据。 ➢ 矿产普查阶段的工业指标,可根据矿床情况采用规范中一般工业指标;详查—勘探阶 段的工业指标 一般由地勘单位提出工业指标建议书,经设计部门进行技术经济论证, 由矿山企业确定。 ➢ 生产矿山资源储量核实工业指标,可采用矿山设计中确定的指标,矿山生产一定阶段 后,随着市场价格、采矿规模、选、冶工艺指标等生产实际条件的变化,原工业指标 己不符合生产情况,应调整工业指标使其符合实际。 ➢ 国务院[2002]24号文撤销“矿床工业指标审批”管理规定后。关于矿床工业指标 的管 理或使用的规定有: 1、《固体矿产地质勘查规范总则》中规定:“预查、普查时,可用一般工业指标进行 圈定和估算。详查、勘探所用指标通常应结合预可行性研究或可行性研究,依据当时 的市场价格论证、确定的工业指标圈定和估算。” 2、国土资发[2007] 26号文规定:“选取不同于规范推荐的一般工业指标或改变工业指 标应提供由具有设计资质单位编写的工业指标推荐书或论证报告。涉及向国家交纳价 款的资源储量核实,按一般工业指标估算资源量。”

固体矿产资源储量计算基本公式

固体矿产资源储量计算基本公式

固体矿产资源/储量计算基本公式一、矿体厚度计算1、单工程矿体厚度a 、真厚度m :m =L(sinα·sinβ·cosγ±cosα·cos β)或 m =L(cosθsinβcos γ±sinθcosβ)式中:m ——矿体真厚度;L ——在工程中测量的矿体假厚度; β——矿体倾角;α——切穿矿体时工程的天顶角(工程与铅垂线的夹角);θ——工程切穿矿体时的倾角或坡度(工程与水平线的夹角)。

γ——工程方位角与矿体倾斜方向的夹角。

注:上列两式中,凡工程倾斜方向与矿体倾斜方向相反时,此处用“+”号,反之用“-”号。

b 、水平厚度m s : m s =m/sinβ c 、铅垂厚度m v : m v = m/cosβ2、平均厚度a 、算术平均法如果揭露矿体的勘探工程分布均匀、或者勘探工程分布不均匀,但其厚度变化无一定规律时,块段或矿体的平均厚度可用算术平均法计算:nm nm m m n∑=++=21cp M式中:M cp ——平均厚度;m 1、m 2……m n ——各工程控制的矿体厚度。

n ——控制工程数目。

b 、加权平均法当厚度变化稳定并有规律的情况下,如果勘探工程不均匀时,平均厚度应用各工程控制的长度对厚度进行加权平均:nm l l l l m l m l m nn n ∑=++++= 212211cpM式中L 1、L 2……L n ——各工程控制长度(相邻工程间距离各一半之和)。

二、平均品位的确定1、单项工程平均品位计算a 、算术平均法在坑道、探槽或钻孔中连续取样的情况下,若样品长度相等,或不相等,但参予计算的样品较多,且样品分割长度与品位间无一定的依存关系时,应尽可能的使用算术平均法计算平均品位:nn∑=+++=C C C C C n21cp式中:C cp ——平均品位;C 1、C 2……C n ——各样品的品位; n ——样品数目。

b 、长度对品位进行加权平均在坑道、探槽或钻孔中连续采样的情况下,若样品分割长度不等,且样品数量不多或分割长度与品位之间呈一定的依存关系时,应以取样长度对品位进行加权平均:∑∑=++++++=LCL L L L L C L C L C C 212211cp nnn 式中:C 1、C 2、……C n ——各个样品的品位;L 1、L 2、……L n ——各个样品的分割长度。

矿产资源储量计算表 平行断面法适用

矿产资源储量计算表 平行断面法适用

平均值s
h
15025.5
10
6724
25
块段体积(m3)
v
150255.00 168100.00
662664.46
溶洞率(%) f
0 0
原始数据
318355.00 计算结果
原始数据
实际矿体体积(万立 方米) V 15.29 1.31 46.10 134.10
矿石体重(吨/ 立方米) d 2.6 2.6 2.6 2.6
16.6727
原始数据
42.4056 计算结果
溶洞裂隙率(%)
f
8 8 0
矿体体积(万 m3)
V1
60.71 0.15 0.12
矿石体重 (t/m3)
d
2.6 2.6 1.97
资源储量(万t)
Q
157.84 0.38 0.24
60.97
158.46
块段矿体体积(m3) 矿石体重(t/m3)
V-1
d
150255.00
溶洞裂隙率 (%) f 0.00 0.00 0.00 0.00
始数据
1968024 计算结果
断面相对面积误差<40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积之和
S2
S1+S2
32348.00
58405.00
1246.32
2301.60
611.40
1537.56
10954.00
22443.00
原始数据
剖面法-斜楔形尖灭块段体积、矿石量计算式
尖灭端边长(米) 有矿端边长(米)
h1 197.40 315.80
h2 150.17 296.63

固体矿产地质勘查资源/储量估算的几种方法

固体矿产地质勘查资源/储量估算的几种方法
2 几 何 法 2 1 断 面法 .
式 中 : —— 各块 段矿 石 资源量 。 Q
全 矿 区 共 统 计 + 3 m、 5 m、 8 m、 1 0 0 +水平断面进行资源/ 储量估 算, 断面标高 的选择参照 了地表宕 口分布、 地形起伏情 况 和 估算高 级别 资源/ 量的规 范要 求 间距 。水 平 断 面 储 法 估算 对应 断 面如 图 2 示 。 所
1 4 36
l8 l
西 部探 矿工 程
21 0 2年第 5 期
H— — 块段 平均 厚 度 , m。 块段 资源 量 :
Q—V× D
呈线 尖 灭时 , 采用 锲形 体体 积 、一12 / /S×L。 r . 块段 中一 断 面有 面积 , 另一 面根据 地形 等高 线形 态 构成 近 似锥体 , 采用 锥 体公式 计算 一13 /S×L。 2 12 块段 矿石 资源 量计算 ..
延到 断 面面积 和块 段体 积 上 去 , 因而 有 外 延误 差 , 是 这 难 以克服 的缺点 , 对此 有相 当 的认识 。 应 ( 下转 第 1 1 ) 2页
式 中 : —— 断 面间距 。 L 块段 中一 断 面有 面 积 , 一 断 面无 面 积 ( 尖 灭 ) 另 点
相邻 断 面上矿 层能 对应 , 积相对 差 : 面 () ( z/ 4 时 , 用 截 锥 体 体 积 公 1 当 S 一S )S > 0/ 采 9 6
式 :

只要 勘查 工程 是 大致 沿 直 线 或水 平 面有 系统 的布 置 , 编出一 系列 断面 图 ( 面 图) , 能 剖 时 均可 采用 断 面 ( 剖 面) , 法 因而 断面 法几 乎 适 用 于任 何 类 型 矿 床 。勘 查 断 面 图 即可用来 作 为资源 / 量估算 图 。不必 编 制更 多 的 储

资源、储量估算、统计、管理细则

资源、储量估算、统计、管理细则

资源/储量估算、统计、管理细则一、矿产资源/储量估算的意义㈠、矿产资源/储量是反映矿床中有用矿产的数量和级别,它是矿山生产的重要依据,矿产资源/储量估算的目的是对勘查阶段、矿量增减变化提出计算资料,提供计划、开采部门,合理的开采利用矿产资源。

㈡、储量估算方法的选择是依据矿体产状、形态变化的特点,以及勘查程度而定。

倾角大于45°的陡倾矿体采用垂直纵投影法,小于45°的缓倾矿体采用水平投影法进行估算。

二、矿产资源/储量分类及分级的规定㈠、根据DZ/T0205—2002《岩金矿地质勘查规范》,划分矿产资源/储量类别和级别。

㈡、矿产资源/储量分级的条件及工业用途由于本矿床多数矿体规模小、脉岩切割破坏严重,因此将矿床勘查类型确定为Ⅲ—Ⅳ类(原Ⅳ—Ⅴ类型)。

1、111b、121b级——矿块回采设计的依据。

其条件:⑴、对矿体进行了全面勘查,按规定的勘查程度用坑探工程进行了四面控制圈定的。

⑵、对矿体的厚度、形态、品位、体重进行了全面分析、测定。

⑶、对构造特点基本了解清楚。

⑷、对夹石、破坏矿体的岩体(穿插矿体的后期岩脉)、岩性、产状、分布情况已基本确定。

2、122b级——作为进一步生产探矿计划的依据,配合一定比例的111b、121b级储量可做为矿山总体设计的依据,若矿脉规模小,可做为开拓和矿块回采设计的依据。

其条件是:⑴、虽四面圈定尚有原因仍不能达111b、121b级储量的,降为122b级。

⑵、用坑道结合钻探按40~50×40~50m(走向×斜深)勘查网度对矿块进行三边或两边圈定。

⑶、对破坏和影响矿体的较大断层、褶皱、破碎带的性质和产状已基本控制。

对夹石和后期岩脉的岩性、产状、分布已大致了解。

3、333级——可为探矿设计、计划及矿山生产远景计划的依据。

其条件是:⑴、矿块用80~100×80~100m(走向×斜深)勘查网度进行控制,或111b、121b、122b级储量的外推部分。

矿产资源储量估算方法

矿产资源储量估算方法

几种常见的矿产资源储量估算方法固体储量估算方法主要是几何法和统计分析法。

一、几何法(一)断面法(剖面法)原理就是当矿体被一系列勘查断面横切为若干块段,就可以以这些断面图为基础,估算相邻两断面间的矿块储量乃至整个矿床储量。

分为垂直断面法和水平断面法。

第一步:计算体积1、当相邻两断面的矿体形状相似,且其相对面积差(S1-S2)÷S1小于40%时,用梯形体积公式V=(S1+S2)×L÷2。

其中V为两断面间的矿体体积;L为相邻两剖面间的距离;S1、S2为相邻两端面上的矿体面积。

2、当相邻两断面的矿体形状相似,且其相对面积差(S1-S2)/S1大于40%时,选用截锥体积公式,即V=(S1+S2+√S1×S2)×L÷3。

其中V为两断面间的矿体体积;L为相邻两剖面间的距离;S1、S2为相邻两端面上的矿体面积。

3、当相邻两断面的矿体形状不同,不论面积相差多少,除油一对应边相等时,可用梯形体积公式外,其余均应选用似角柱体(辛浦生)公式,即V=[(S1+S2)÷2+2S m]×L÷3 =(S1+S2+4S m)×L÷6。

其中V为两断面间的矿体体积;L为相邻两剖面间的距离;S1、S2为相邻两端面上的矿体面积。

S m为似角柱体的平均断面面积。

4、当在相邻的两剖面中只有一个剖面有面积,而另一剖面上矿体已尖灭,或矿体两段边缘部分的块段只有一个断面控制时,其体积计算可根据剖面上的矿体面积形状或矿体尖灭特点不同选择不同公式。

(1)当矿体作楔尖灭时,块段体积用楔形公式计算。

V=L×S÷2(2)当矿体作锥形尖灭时,块段体积可用锥形公式计算。

V=L×S÷3第二步,计算两剖面间块段的矿石储量Q=V×d。

其中Q为块段矿石储量,V为块段的矿体体积,d为块段矿石平均体重。

第三步,计算出两剖面间块段的金属储量P=Q×C。

矿产资源储量计算表(平行断面法适用)

矿产资源储量计算表(平行断面法适用)

16.6727
原始数据
42.4056 计算结果
溶洞裂隙率(%)
f
8 8 0
矿体体积(万 m3)
V1
60.71 0.15 0.12
矿石体重 (t/m3)
d
2.6 2.6 1.97
资源储量(万t)
Q
157.84 0.38 0.24
60.97
158.46
块段矿体体积(m3) 矿石体重(t/m3)
V-1
d
150255.00
溶洞裂隙率 (%) f 0.00 0.00 0.00 0.00
始数据
1968024 计算结果
断面相对面积误差<40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积之和
S2
S1+S2
32348.00
58405.00
1246.32
2301.60
611.40
1537.56
10954.00
22443.00
块段体积(立方米)
V 292025.0000 192759.0000 128770.6500 1879601.2500
溶洞裂隙率 (%) f 0.0000 5.0000 5.0000 5.0000
始数据
2493155.9000 计算结果
法-锥体(点状尖灭)块段体积、矿石量计算式
块段体积(立方 米)
溶洞裂隙率(%)
合 计
原始数据
断面相对面积误差≥40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积乘积平方根值
S2
√S1×S2
11192.00
14883.6573
1981.00
1214.8436

2_矿山常用的传统的储量计算方法

2_矿山常用的传统的储量计算方法

V = L⋅a⋅m
⑤开采块段 法
= L ⋅ h ⋅ m'
Q =V ⋅D
方法名称
计算公式
V = S ⋅m = L⋅a⋅m
简要说明
Q:矿石储量 V:块段体积 S:块段矿体的面积 m:块段矿体平均真厚度 a:块段宽度 b:两等高线的水平平均间距 h:两等高线的高程差 D:矿石体重
④等高线法
= L ⋅ m ⋅ b2 + h2 Q =V ⋅D
方法名称
计算公式
简要说明
L:块段长度 h :块段垂直方向宽度 a:块段倾向面的宽度 m :块段矿体真厚度 m' :块段平均水平厚度 Q:矿石储量 V:块段体积 D:矿石体重
方法名称
计算公式
简要说明
用于面积差>40%时 Q:矿石储量 1 V:矿体体积 V = (S1 + S 2 + S1 ⋅ S 2 )L ②截锥公式法 3 S1、S2:断面上矿体的面积 Q =V ⋅D L:两断面之间的距离 D:矿石体重
方法名称
计算公式
简要说明
用于相邻剖面形状不相似, 面积相差悬殊情况下 Q:矿石储量 1 V = ( S 1 + S 2 + 4 Sm) L V:矿体体积 ③似柱体公式 6 S1、S2:断面上矿体的面积 法a Q =V ⋅D Sm:断面之间的断面积,由 内插法求得 L:两断面之间的距离 D:矿石体重
计算公式
简要说明
用于矿体呈楔形尖灭的情 况 Q:矿石储量 V:矿体体积 S:矿体底面积 L:矿体沿走向长度 D:矿石体重

⑤楔形公式法
1 V = S⋅L 2 Q =V ⋅D
方法名称
计算公式
简要说明
用于矿体呈圆锥形尖灭时 Q:矿石储量 V:矿体体积 S:矿体底面积 L:矿体沿走向长度 D:矿石体重

固体矿产资源、储量计算方法介绍(PPT59张)

固体矿产资源、储量计算方法介绍(PPT59张)
(2)推断的:是指对普查区按照普查的精度大致查明矿产 的地质特征以及矿体(矿点)的展布特征、品位、质量, 也包括那些由地质可靠程度较高的基础储量或资源外推 的部分。由于信息有限,不确定因素多,矿体(点)的 连续性是推断的,矿产资源数量的估算所依据的数据有 限,可信度较低。
8
(3)控制的:是指对矿区的一定范围依照详查的精 度基本查明了矿床的主要地质特征、矿体的形态、 产状、规模、矿石质量、品位及开采技术条件,矿 体的连续性基本确定,矿产资源数量所依据的数据 较多,可信度较高。
该阶段提交的332资源量必须在30%以上。
6
(4)勘探:是对已知具有工业价值的矿床或经详 查圈出的勘探区,通过加密各种采样工程,其间 距足以肯定矿体(层)的连续性,详细查明矿床 地质特征,确定矿体的形态、产状、大小、空间 位置和矿石质量特征,详细查明矿体开采技术条 件,对矿产的加工选冶性能进行实验室流程试验 或实验室扩大连续试验,必要时应进行办工业试 验,为可行性研究或矿山建设设计提供依据。
5
(3)详查:是对普查圈出的详查区通过大比例尺 地质填图及各种勘查方法和手段,比普查阶段 密的系统取样,基本查明地质、构造、主要矿 体形态、产状、大小和矿石量质量,基本确定 矿体的连续性,基本查明矿床开采技术条件, 对矿石的加工选冶性能进行类比或实验室流程 试验研究,做出是否具有工业价值的评价。必 要时,圈出勘探范围,并可供预可行性研究、 矿山总体规划和矿山项目建议书使用。对直接 提供开发利用的矿区,其加工选冶性能实验程 度,应达到可供矿山建设设计的要求。
10
(2)预可行性研究:是指对矿床开发经济意义的初 步评价。其结果可以为该矿床是否进行勘探或可行性 研究提供决策依据。进行这类研究,通常应有详细或 勘探后采用参考工业指标求得的矿产资源/储量数, 实验室规模的加工选冶试验资料,以及通过价目表或 类似矿山开采对比所获数据估算的成本。预可行性研 究内容与可行性研究相同,但详细程度次之。当投资 者为选择拟建项目而进行预可行性研究时,应选择适 合当时市场价格的指标及各项参数,且论证会项目尽 可能齐全。

矿产资源储量计算方法

矿产资源储量计算方法

矿产储量计算矿产储量计算是指确定工业上有用的地下矿产的数量。

根据地质勘查工作获得的矿床资料,通过计算,以确定有用矿产的数量。

这是矿产勘查工作的一项重要任务,是估算矿床经济价值、确定矿山生产规模和服务年限等的基本依据。

根据地质勘查工作获得的矿床资料,通过计算,以确定有用矿产的数量。

这是矿产勘查工作的一项重要任务,是估算矿床经济价值、确定矿山生产规模和服务年限等的基本依据。

根据地质勘查工作获得的矿床资料,通过计算,以确定有用矿产的数量。

这是矿产勘查工作的一项重要任务,是估算矿床经济价值、确定矿山生产规模和服务年限等的基本依据。

矿产储量计算步骤是:①在地质勘探或矿山生产勘探过程中,通过地表露头、探槽、浅井、坑道中和钻孔编录取样,以及地球物理测井结果,求得储量计算中需要的各种地质图件及各种数据资料;②将勘探工程中各项数据资料,按3维空间坐标位置,投放到相应比例尺的地质图件上,并按地质构造规律和工业指标的要求,圈定矿体;③根据矿体形态和矿石质量分布的特征,考虑勘探工程分布的格局,或采矿场的布局,将矿体分割成大小不同的几何形矿块,用体积公式计算每一矿块的储量,然后汇总而成全矿体和全矿床的储量。

固体矿产固体矿产与液体、气体矿产储量计算的方法和参数不完全相同。

固体矿产储量计算传统的方法是以每一几何形矿块中见矿工程的平均厚度,乘以矿块面积(垂直于矿体厚度),得出矿块的体积;用矿块体积乘以平均体重,得出矿块矿石量;用矿石量乘以平均品位,得出矿块有用组分或金属的储量。

大部分黑色金属矿产(如铁、锰、铬),一部分非金属矿产(如磷、硫铁矿、水泥灰岩)以及煤、油页岩等,只计算原料的矿石储量;绝大多数有色金属(如铜、铅、锌),贵金属(如金、银、铂族元素),稀有金属(如铌、钽),分散元素(如镓、铟、镉、锗)以及放射性铀等矿产计算有用组分(多为氧化物)或金属的储量。

计算方法:按照矿块体积几何形状的不同,储量计算方法可分为:①多角形法,又称最近地区法,以每一勘探工程见矿厚度为中心,推向各相邻工程距离的二分之一处,形成一多棱柱形体矿块;②三角形法,以每3个相邻勘探工程见矿的平均厚度为三角棱柱体矿块的高;③开采块段法,以坑道工程为界,把矿体切割成若干板形矿块;④地质块段法,按地质构造和开采条件相同的原则划分矿块;⑤断面法,又称剖面法,是将每两条相邻勘探线剖面间的矿体作为一个矿块;⑥等高线法,对产状和厚度稳定的沉积矿床,以矿层顶板或底板等高线图为基础,将矿层倾角相近的地段划分为一个矿块;⑦等值线法,利用矿体等厚线图或矿体厚度与品位乘积等值线图,将两等值线间的矿体划为一个矿块。

矿产资源量与储量计算方法

矿产资源量与储量计算方法

资源量与储量计算方法储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD 法等等。

(一) 地质块段法计算步骤:1. 首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等; 2. 然后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段的体积和储量;3. 所有的块段储量累加求和即整个矿体(或矿床)的总储量。

地质块段法储量计算参数表格式如表下所列。

表 地质块段法储量计算表块段 编号 资源储量级别 块段 面积 (m 2)平均厚度(m ) 块段 体积 (m 3)矿石体重(t/m 3) 矿石储量(资源量) 平均品位(%) 金属储量(t ) 备注123 45678910需要指出,块段面积是在投影图上测定。

一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S 需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算:①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。

图在矿体垂直投影图上划分开采块段(a)、(b)—垂直平面纵投影图; (c)、(d)—立体图1—矿体块段投影; 2—矿体断面及取样位置②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。

优点:适用性强。

地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。

当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。

SD法资源类储量计算方法

SD法资源类储量计算方法

SD法,什么是SD储量计算法2008/12/09 14:07[矿业 ]1997年在北京通过国家级评审鉴定,鉴定委员会认为" SD法在储量计算领域,SD法理论和方法均达到国际领先水平,完全适用于地质、矿山等生产领域的应用,为国际储量计算学科理论方法方面的发展做出了重大贡献" 。

1997年10月,国土资源部矿产资源储量司发函" 同意培训和推广应用SD矿产资源储量计算方法" 。

2002年,SD法被正式列入国家标准GB/T13908-2002和相应的全部行业标准及各大院校正规教材。

一、什么是SD储量计算法SD法是20世纪末在中国诞生的一种全新的矿产资源储量计算法及储量审定法。

SD法是动态分维几何学储量计算及储量审定法的简称,也是结构曲线积分储量计算及动态分维储量审定法的简称为什么叫“SD”?“SD”是用中国汉字拼音得来的词,有三种含义。

a.理论方法方面:SD是结构曲线(Structure curve)积分计算和动态分维审定的矿产资源储量方法,取结构曲线中的Spline函数的字头“S”和动态分维的汉音字头“D”,即“S D”。

b.方法原理方面:以搜索递进为主,取“搜索”“递进”的汉语拼音字头,亦即“SD”。

c.方法功能方面:具有从定量角度审定矿产资源储量的功能。

取“审定”一词汉语拼音第一个字母,即“SD”。

以“SD”命名,既符合中国人的习惯,也符合西方人的习惯,不仅称谓简单,而且具有理论、原理、方法和功能几个方面的含义。

SD法是一种全新的矿产资源储量计算方法及系统。

既不同于过去由前苏联引入并在中国沿用了数十年的传统方法,也区别于由克立格教授和马特隆教授创立的地质统计学克立格法。

二、SD法的构成:SD法是一套全新的储量方法体系,它的体系是由SD理论、原理、SD系列方法及其SD软件应用系统构成。

即:一套理论、四条原理、两大方法、八组公式、系列软件SD法产生的背景从地质勘探评价到矿床开采的整个工作过程,各个阶段都需要根据不同任务的要求,对矿床进行多次储量计算。

储量级别储量分类及计算

储量级别储量分类及计算

储量级别、储量分类及计算一、储量级别1、地质可靠程度地质可靠程度反映了矿产勘查阶段工作成果的不同精度,分为预测的、推断的、控制的和探明的四种。

(1)预测的:是指对具有矿化潜力较大的地区经过预查得出的结果。

在有足够的数据并能与地质特征相似的已知矿床类比时,才能估算出预测的资源量。

(2)推断的:是指对普查区按照普查的精度大致查明矿产的地质特征以及矿体(矿点)的展布特征、品位、质量,也包括那些地质可靠程度较高的基础储量或资源量外推的部分。

由于信息有限,不确定因素多,矿体(点)的连续性是推断的,矿产资源数量的估算所依据的数据有限,可信程度较低。

(3)控制的:是指对矿区的一定范围依照详查的精度基本查明了矿床的主要地质特征、矿体的形态、产状、规模、矿石质量、品位及开采技术条件,矿体的连续性基本确定,矿产资源数量估算所依据的数据较多,可信度较高。

(4)探明的:是指在矿区的勘探范围依照勘探的精度详细查明了矿床的地质特征、矿体的形态、产状、规模、矿石质量、品位及开采技术条件,矿体的连续性已经确定,矿产资源数量估算所依据的数据详尽,可信度高。

2、可行性评价阶段可行性评价分为概略研究、预可行性研究、可行性研究三个阶段。

(1)概略研究:是指对矿床开发经济意义的概略评价。

所采用的矿石品位、矿体厚度、埋藏深度等指标通常是我国矿山几十年来的经验数据,采矿成本是根据同类矿山生产估计的。

其目的是为了由此确定投资机会。

由于概略研究一般缺乏准确参数和评价所必需的详细资料,所估算的资源量只具内蕴经济意义。

(2)预可行性研究:是指对矿床开发经济意义的初步评价。

其结果可以为该矿床是否进行勘探或为可行性研究提供决策依据。

进行着类研究,通常应有详查或勘探后采用参考工业指标求得的矿产资源/储量数,实验室规模的加工选冶试验资料,以及通过价目表或类似矿山开采对比所获数据估算的成本。

预可行性研究内容与可行性研究相同,但详细程度次之。

当投资者为选择拟建项目而进行预可行性研究时,应选择适合当时市场价格的指标及个项参数,且论证项目尽可能齐全。

固体矿产资源量储量计算方法

固体矿产资源量储量计算方法

固体矿产资源量储量计算方法储量是指探明和已经被证实的固体矿产资源中能够经济开采的部分。

储量的计算是对已知矿产资源中可供开采的数量进行估算,通常包括证实储量和潜在储量。

证实储量是指在有关地质、矿产和经济条件的基础上,通过勘探和采样等工作已经被证明存在的矿石数量。

证实储量计算方法主要包括:(1)地质勘探法:通过地质勘探工作,包括地质调查、钻探、采样等,确定矿床的规模、品位以及矿石的分布等信息,进而推算矿床的储量。

(2)矿石评估法:通过对矿石进行取样测试,分析其成分、品位等信息,结合已有的地质调查数据,利用统计学方法,计算出矿石的储量。

(3)神经网络模型法:利用神经网络模型对已有的矿石样本数据进行训练,通过预测和模拟,推算出未知区域的矿石储量。

潜在储量是指尚未被证明的、但根据地质和勘探证据可以推测存在的矿石数量。

潜在储量的计算方法主要包括:(1)地质潜力评价法:通过综合考虑地质构造、矿石赋存条件以及已有勘探数据,对未知区域的地质潜力进行评价,进而推测出潜在储量的数量。

(2)地质统计法:通过统计已有矿床的规模、品位等信息,结合地质条件和勘探数据,利用概率分析方法,预测出未知区域的潜在储量。

(3)综合指标法:通过构建合理的指标体系,综合考虑矿床周围的地质条件、地质勘探信息等多种因素,对潜在储量进行定量评估,得出其数量。

资源量是指地壳中存在的固体矿产总量,包括已探明的储量和未探明的潜在储量。

资源量计算方法主要包括完全勘探法和传递因子法。

1.完全勘探法完全勘探法是指针对其中一特定地区,通过全面地进行地质勘探工作,包括地质调查、钻探、采样等,对所有地质构造和各个层次进行深入细致的勘探。

通过对全面勘探区域内已探明储量的估算,再结合周边同类地质构造的勘探数据,推算出该特定地区的资源量。

2.传递因子法传递因子法是指将已探明的储量数据应用到类似的未勘探区域,通过确定相似地质条件和控制因素,按比例将已知资源量扩展到未知区域,得出资源量的估算值。

地质块段法在固体矿产资源储量估算的应用探讨

地质块段法在固体矿产资源储量估算的应用探讨

地质块段法在固体矿产资源储量估算的应用探讨曹建洲;赵远由;谢环宇【摘要】地质块段法是现在固体矿产勘查工作中最常用的方法.地质块段法一般是用块段的平均倾角和块段投影面积换算得真面积,用块段真面积和块段矿体平均真厚度计算矿体的体积,再与矿石体重相乘而得矿石量.块段的平均倾角是统计得来的,在矿体产状变化极大,平均倾角误差大,甚至无法统计的情况下,会导致资源储量估算误差很大.建议用块段平均铅重厚度与投影面积计算矿体体积,这样估算的资源储量误差相对更可靠.【期刊名称】《矿产勘查》【年(卷),期】2015(006)004【总页数】5页(P466-470)【关键词】固体矿产资源;储量估算;地质块段法【作者】曹建洲;赵远由;谢环宇【作者单位】贵州省有色金属和核工业地质勘查局三总队,遵义563000;贵州省有色金属和核工业地质勘查局三总队,遵义563000;贵州省有色金属和核工业地质勘查局三总队,遵义563000【正文语种】中文【中图分类】P624.7现行规范中的固体矿产资源/储量估算工作,在之前称之为储量计算,两者有共同之处,亦有不同的地方。

储量泛指矿产的蕴藏量,没有经济意义的内涵。

资源量是指查明矿产资源的一部分和潜在矿产资源的总和。

中国《固体矿产资源/储量分类》规定资源量包括经可行性研究或预可行性研究证实为次边界经济的矿产资源以及经过勘查而未进行可行性研究和预可行性研究的内蕴经济的矿产资源,以及经过预查后预测的矿产资源,共计7种类型。

区别在于储量计算无经济的含义而有结果较精确的含义,资源量估算含有经济意义且有误差的含义。

共同之处是计算和估算的方法和使用的参数均相同。

资源储量估算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法(剖面法)、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD法等等[1-2]。

虽然估算方法有很多种,但现在勘查工作中,最常用的还是地质块段法。

估算矿产资源储量的方法

估算矿产资源储量的方法

估算矿产资源/储量的方法
一、几何图形法
1、断面法:
(1)平行断面法
①梯形公式 V=L/2(S1+S2)
②截锥公式
③锥体公式 V=SL/3
④楔形公式 V=SL/2
⑤似柱体公式 V=L/6(2a1b1+b1a2)
(2)不平行断面法
2、算术平均法
3、地质断面法
4、开采块段法
5、等高线法
二、SD法
以最佳结构地质变量为基础,以断面构形替代空间构形为核心,以 spline函数及分维几何学为工具的估算方法,立足于传统的断面法。

它适用于不同矿床类型、矿体规模、产状、不同矿产勘查阶段,还可对估算的成果作精度预测。

三、地质统计学法
是以区域化变量理论作为基础,以变异函数作为主要工具,对既具有随机性、又具有结构性的变量进行统计学研究,估算时能充分考虑品位的空间变异性和矿化强度在空间的分布特征,使估算结果更加符合地质规律,置信度高,但需有较多的样本个体为基础。

勘查过程中,针对矿床的地质特征,运用这种方法,还能制定或检验合理的勘探工程间距。

有距离加权法、相关分析法、克里格法。

内蕴经济资源量是矿产资源勘查工作自普查至勘探,地质可靠程度达到了推断的至探明的,但可行性评价工作只进行了概略研究,由于技术经济参数取值于经验数据,未与市场挂钩,区分不出其真实的经济意义,统归为内蕴经济资源量。

可细分为3个类型:
探明的内蕴经济资源量(331)
控制的内蕴经济资源量(332)
推断的内蕴经济资源量(333)。

资源储量计算方法

资源储量计算方法

资源储量计算方法固体矿产资源储量计算方法地质找矿,矿产资源勘查目的是找到符合当前工业要求的矿产资源,并通过勘查手段、选冶实验以及工业指标来确定矿体边界(即矿与非矿),并圈出达到经济技术指标的工业矿体,估算资源/储量。

矿产资源/储量是地质勘查报告的核心内容,是矿山建设的依据,是矿政管理的基础,是矿权交易的标的物。

本文以最简单的层状固体矿床——煤炭为例,谈一下关于储量计算的东西。

本文的采用的案例为XX省XX县XX镇XX煤矿,数据也来源此。

1、资源储量估算范围和工业指标资源储量估算必须在有效的矿权范围内进行。

矿权范围分为采矿许可范围、勘查许可范围、划定矿区范围或矿业权设置方案。

采矿许可范围、划定矿区范围或矿业权设置方案是三维的,其范围用拐点坐标和标高表示,勘查许可范围是二维的,只有平面范围。

资源储量估算范围都是三维的,包括平面范围和标高范围,平面范围用拐点表示,以矿权证上载明的拐点和标高为准。

探矿许可证上没有载明标高,以实际估算煤层赋存标高为准。

关于资源储量估算的垂深,中、高山区以含煤地层或主要含煤段出露的平均标高起算,垂深为1000m。

根据《中国煤炭分类》GB5751矿区范围内煤种主要为无烟煤,煤层一般倾角5-16°,平均8°依据《煤、泥炭地质勘查规范》DZ/T0215—2002的规定,确定的煤层最低可采厚度为0.80m,煤层最高原煤灰分(Ad)40%,原煤全硫(St.d)≤3%,原煤全硫(St.d)>3%,最低发热量小于Qnet,d22.1MJ/kg的单独估算。

2、资源量估算方法的选择及依据经过勘探所获得的资料分析研究验证,有可采煤层6层(17、18、19、22、24、26煤层)。

可采煤层参与资源储量的估算,可采煤层分为全区可采煤层、大部可采煤层、局部可采煤层。

不可采煤层,是指在评价范围内其可采部分面积小于三分之一,或者虽然占有一定的面积,但分布零星,不便或不能被开采利用的煤层,过去通常不估算其资源储量。

固体矿产储量计算

固体矿产储量计算

固体矿产储量计算矿体的自然形态是复杂的,且深埋地下,各种地质因素对矿体形态的影响也是多种多样的,因此,我们在储量计算中只能近似地用规则的几何体来描述或代替真实的矿体,求出矿体的体积。

由于计算体积的方法不同,以及划分计算单元方法的差异,因而形成了各种不同的储量计算方法。

比较常用的方法有:算术平均法,地质块段法,开采块段法,多角形法(或最近地区法)断面法(包括垂直剖面法和水平断面法)及等值线法等。

其中以算术平均法、地质块段法、开采块段法和断面法最为常见。

现将常用的几种方法简要说明如下。

1.1 算术平均法是一种最简单的储量计算方法。

其实质是将整个形状不规则的矿体变为一个厚度和质量一致的板状体,即把勘探地段内全部勘探工程查明的矿体厚度、品位、矿石体重等数值,用算术平均的方法加以平均,分别求出其算术平均厚度、平均品位和平均体重,然后按圈定的矿体面积,算出整个矿体的体积和矿石的储量。

算术平均法应用简便,适用于矿体厚度变化较小、工程分布比较均匀,矿产质量及开采条件比较简单的矿床。

1.2 地质块段法它是在算术平均法的基础上加以改进的储量计算法,此方法原理是将一个矿体投影到一个平面上,根据矿石的不同工业类型、不同品级、不同储量级别等地质特征将一个矿体划分为若干个不同厚度的理想板块体,即块段,然后在每个块段中用算术平均法 (品位用加权平均法)的原则求出每个块段的储量。

各部分储量的总和,即为整个矿体的储量。

地质块段法应用简便,可按实际需要计算矿体不同部分的1储量,通常用于勘探工程分布比较均匀,由单一钻探工程控制,钻孔偏离勘探线较远的矿床。

地质块段法按其投影方向的不同又分为垂直纵投影地质块段法,水平投影地质块段法和倾斜投影地质块段法。

垂直纵投影地质块段法适用于矿体倾角较陡的矿床,水平投影地质块段法适用于矿体倾角较平缓的矿床,倾斜投影地质块段法因为计算较为繁锁,所以一般不常应用。

1.3 开采块段法是以坑道为主要勘探手段的矿床中常用的储量计算方法。

矿山地质储量计算方法

矿山地质储量计算方法

露天开采储量计算公式
1、各分段矿体体积计算公式:
(1)当上、下两水平层矿体面积相差<40%时
S 1+S 2 Ⅴ= .H 2
(2)当上、下两水平层矿体面积相差>40%时
S 1+S 2+√S 1.S 2 Ⅴ= .H 3
当矿体作楔形尖灭时
S Ⅴ= .H 2
当矿体作锥形尖灭时
S Ⅴ= .H 3
式中:V :分段矿体体积(m 3)
S 1、S 2:分段上下两水平层矿体面积(m 2)
H :分段高(m )
2矿体各矿石类型体积计算以该矿石类型上、下水平层的面积和占分段矿体上、上两水平总面积的比例乘以分段矿体总体积求得。

S 1i +S 2i Ⅴi = .V S 1+S 2
式中:V i :分段某矿石类型体积
S 1i :S 2i :分段某矿石类型上、下两水平层面积
S 1、S 2:分段矿体上、下两水平层总面积
V :分段矿体总体积
3矿石储量计算公式
Q=V .(1-G ).D
式中:Q :矿石储量
V :某矿石类型体积(m 3)
G: 矿体平均夹石率(%)(≤0.5~1.99m 夹石厚度占矿体总厚度比例) D :矿石类型体重值(t /m 3)。

固体矿产资源量储量计算方法

固体矿产资源量储量计算方法

固体矿产资源量储量计算方法
22
(2)基础储量:有6种类型。
①探明的(可研)经济基础储量(111b); ②探明的(预可研)经济基础储量(121b); ③控制的(预可研)经济基础储量(122b); ④探明的(可研)边际经济基础储量(2M11); ⑤探明的(预可研)边际经济基础储量(2M21); ⑥控制的(预可研)边际经济基础储量(2M22)。
3、勘查类型的划分: (1)第Ⅰ勘查类型(简单型):
(2)第Ⅱ勘查类型(中等型):
(3)第Ⅲ勘查类型(复杂型)
固体矿产资源量储量计算方法
26
(二)工程间距的确定 1、定义: 工程间距是指相邻勘查工程控制矿体的实际距离 。 2、工程间距的确定原则:根据反映矿床地质条件复杂程度的勘 查类型来确定。 (1)首先要看矿体的整体规模,并结合其主要因素确定工程间 距,即使是分段勘查,也要从整体规模入手; (2)不同地质可靠程度、不同勘查类型的勘查工程间距,视实 际情况而定,不限于加密或放稀一倍; (3)当矿体沿走向和倾向的变化不一致时,工程间距要适应其 变化; (4)矿体出露地表时,地表工程间距应比深部工程间距适当加 密。
14
8、储量:是指基础储量中的可采部分。在预可行性研 究、可行性研究或编制年度采掘计划当时,经过了对经 济、开采、选冶、环境、法律、市场、社会和政府等诸 因素的研究及相应修改,结果表明在当时是经济可采或 已经开采的部分。用扣除了设计、采矿损失的可实际开 采数量表述,依据地质可靠程度和可行性评价阶段不同, 又可分为可采储量和预可采储量。
可用三维形式和矩阵形式表示(EFG)。
固体矿产资源量储量计算方法
18
可行性轴 F
地质轴G

(EFG)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体矿产资源/储量计算基本公式一、矿体厚度计算1、单工程矿体厚度a 、真厚度m :m =L(sinα·sinβ·cosγ±cosα·cos β)或 m =L(cosθsinβcos γ±sinθcosβ)式中:m ——矿体真厚度;L ——在工程中测量的矿体假厚度; β——矿体倾角;α——切穿矿体时工程的天顶角(工程与铅垂线的夹角);θ——工程切穿矿体时的倾角或坡度(工程与水平线的夹角)。

γ——工程方位角与矿体倾斜方向的夹角。

注:上列两式中,凡工程倾斜方向与矿体倾斜方向相反时,此处用“+”号,反之用“-”号。

b 、水平厚度m s : m s =m/sinβ c 、铅垂厚度m v : m v = m/cosβ2、平均厚度a 、算术平均法如果揭露矿体的勘探工程分布均匀、或者勘探工程分布不均匀,但其厚度变化无一定规律时,块段或矿体的平均厚度可用算术平均法计算:nm nm m m n∑=++=21cp M式中:M cp ——平均厚度;m 1、m 2……m n ——各工程控制的矿体厚度。

n ——控制工程数目。

b 、加权平均法当厚度变化稳定并有规律的情况下,如果勘探工程不均匀时,平均厚度应用各工程控制的长度对厚度进行加权平均:nm l l l l m l m l m nn n ∑=++++= 212211cpM式中L 1、L 2……L n ——各工程控制长度(相邻工程间距离各一半之和)。

二、平均品位的确定1、单项工程平均品位计算a 、算术平均法在坑道、探槽或钻孔中连续取样的情况下,若样品长度相等,或不相等,但参予计算的样品较多,且样品分割长度与品位间无一定的依存关系时,应尽可能的使用算术平均法计算平均品位:nn∑=+++=C C C C C n21cp式中:C cp ——平均品位;C 1、C 2……C n ——各样品的品位; n ——样品数目。

b 、长度对品位进行加权平均在坑道、探槽或钻孔中连续采样的情况下,若样品分割长度不等,且样品数量不多或分割长度与品位之间呈一定的依存关系时,应以取样长度对品位进行加权平均:∑∑=++++++=LCL L L L L C L C L C C 212211cp nnn 式中:C 1、C 2、……C n ——各个样品的品位;L 1、L 2、……L n ——各个样品的分割长度。

c 、取样点矿体厚度对品位进行加权平均在沿脉工程中,当样品的平均品位与矿体厚度有一定的依存关系,但取样间距相等时,应用取样点矿体厚度对品位进行加权平均:∑∑=++++++=mm m m m m m m nnn C C C C C 212211cp 式中:C 1、C 2、……C n ——各取样点的平均品位;m 1、m 2、……m n ——各取样点的矿体厚度。

d 、取样点的控制长度对品位进行加权平均在沿脉工程中,当矿体厚度变化很小,如果取样间距不等且品位变化较大时, 应用取样点的控制长度对品位进行加权(参照公式9-12): 式中:C 1、C 2、……C n ——各取样点的平均品位;L 1、L 2、……L n ——各取样点的矿体控制长度(相邻工程取样点间距各一半之和)。

e 、取样点控制面积对品位进行加权在沿脉工程中,如果取样间距不等,且品位与厚度有一定的依存关系时,则应 用取样点矿体控制长度及矿体厚度之乘积即控制面积对品位进行加权:∑∑=++++++=LL C L L L L C L C L C C 2211222111cp m m m m m m m m nn nn n 式中:C 1、C 2、……C n ——各取样点样品的平均品位;m 1、m 2、……m n ——各取样点的矿体厚度; L 1、L 2、……L n ——各取样点的矿体控制长度。

2.面积平均品位计算面积平均品位计算是由控制该面积的勘探工程平均品位求得。

当有下列情况之一时,均应用加权平均计算平均品位:(1)当矿体厚度与组分含量有相关关系,其相关系数r >0.5时; (2)当各工程中的矿体厚度相差悬殊或组分含量变化很大时; (3)当参加平均的工程数量较少,且组分含量变化甚大时。

∑∑=++++++=mm m m m m m m nnn C C C C C 212211cp 式中:C cp ——面积平均品位;C 1、C 2、……C n ——各工程的平均品位;m 1、m 2、……m n ——各工程截穿的矿体厚度。

在计算面积上的加权平均品位时,一般采用取样长度与品位加权。

有时也用影响面积进行加权,特别是当勘探工程分布不均匀时,但不能用影响长度进行加权。

3.体积或块段平均品位的计算体积或块段平均品位的计算,则是由构成该体积的面积平均品位求得,有时(如用地质块段法计算储量时)也可以不经过面积平均品位计算而直接由控制该体积的各单项工程平均品位求得,其计算方法及原则与面积平均品位相同。

无论面积或体积的平均品位计算,在使用加权平均法计算平均品位时,必须处于上述三种情况之一时,才比较精确,否则,加权平均法计算的误差将比算术平均法更大。

如果一个矿床内只有部份面积或块段属于上述情况之一。

需要加权平均,其余面积或块段仍用算术平均。

4.全矿体或全矿床的平均品位通常使用加权平均。

5.平均品位计算的一般步骤(1)按各勘探工程进行品位加权(或算术)平均;(2)按各面积进行品位加权(或算术)平均;(3)按各块段的体积进行品位加权(或算术)平均;(4)按矿体及全矿床的平均品位计算。

6.耐火粘土矿不计算平均品位。

7.特高品位处理在某些情况下,遇到一些样品品位高出一般样品品位很多倍时,称为特富样品。

这种样品多半是在分布不均匀或很不均匀的矿床中出现。

若将它和其他样品用同样的方法计算,可能引起平均品位的剧烈增高,特别是在样品较少的情况下,对平均品位的精确性有很大的影响,因此处理时必须慎重。

区分特富样品的标准,对于不同类型的矿床是不一样的,因为它是由所计算的组分在矿床上分布的性质来决定。

一般认为,当样品品位大于工程或块段平均品位的下表所列倍数时,应视为特高品位并加以处理:(1)重新检查采样质量,是否有人为的误差。

(2)根据需要和可能重新取样。

如第二次取样证明为非特高品位时,以第二次分析结果为准。

(3)进行现场观察,详细研究取样点是否符合于该地段组分含量的高度集中程度,再考虑其应用或废弃。

如确系巨大富矿巢,应参予平均品位计算;如系特富的小矿脉造成,此样品不参予平均品位计算。

(4)当重新取样已不可能,又没有任何资料证实特高品位具有代表性的情况下,此样品应当废弃。

(5)如查明确系特高品位样品,应以包括特富样品在内的工程或块段平均品位来代替特富样品的品位;也可用该矿床一般品位的高值代替;有时用特高品位样品两侧相邻样品的平均品位来代替。

然后再计算工程或块段的正常平均品位。

(6)如特高品位出现的频率很高,表现为矿床的地质特征之一时,可不以特高品位论处。

三、面积测定1.解析法即利用平面直角座标计算矿体或矿块的几何面积,这种计算方法适用于用水平投影图计算储量的矿床,也可用于垂直投影图计算储量的矿床。

计算面积的矿块折点座标是在矿体投影图上直接测量的。

用解析法求面积值的计算必须依据折点座标按逆时针或顺时针方向一个 接着一个的计算(如图Ⅸ-4)。

在运算过程中一律以代数和相加,最终取面积的绝对值。

计算公式如下:)]()()[(21S 1123321221n n y x y x y x y x y x y x -++-+-=将上式转变为行列式则得: ⎥⎥⎦⎤⎢⎢⎣⎡+++=1144333322221121S y x y x y x y x y x y x y x y x n n 依据上式,其运算过程举例如下表:S =21(603405-375897)=113754 在垂直投影图上用解析法计算面积,其折点座标取自该图的某一点的假定座标为基点,此基点最好设在图幅的左下角。

列入储量计算表格的面积值,其有效数一般采用整数值。

2、计算机自动处理利用MAPGIS 、AUTOCAD 等图形处理软件计算投影面积。

四、常用的公式:各种方法的储量计算,均应通过以下公式计算其矿石量和金属量:1.矿石量计算公式:Q =V ×D式中:Q ——矿石量V ——体积 D ——体重2.金属量或氧化物的储量计算公式:P=Q ×C式中:P ——金属量或氧化物量C ——金属品位或氧化物品位五、储量计算方法—地质块段法适用范围很广泛,但在下列矿床上应用时,各有不同程度的局限性;1.构造复杂,特别是因构造破坏而矿体局部重叠或缺失的情况较多,或成褶曲构造的矿床(舒缓波状或成开阔盆形构造者,例外);2.形态复杂的矿床,特别是筒状、囊状、巢状、等轴状、串珠状及其他形态复杂的矿床;3.斑岩铜(钼)矿床或构造复杂的网脉状矿床、分带构造明显的岩株状或柱状及伟晶岩矿床。

4.岩溶地形沉积矿床,古河道沉积矿床、岩溶矿床、一部分漂砾矿床、品位变化很附表Ⅸ-7(正页)储量计算综合表 单位⎪⎪⎭⎫⎝⎛矿石量:万吨金属量:吨第 页矿体号 矿石 种类 储量 品位(%)备 注B C B+C D B+C+D B C B+C D B+C+D 1234567891O111213合计合计总计合计大的砂矿。

5.矿体厚度大,或矿体厚度较大同时厚度变化亦大的矿床,因厚度大或厚度变化愈大,则换算厚度时的误差或然率也愈大,但勘探工程垂直于储量计算平面图、矿体厚度不需换算者例外。

本法的优缺点与剖面法适得其反。

此外,此法还有计算方法较简便,能确定出设计开采层的储量而不需另制图纸等优点。

地质块段法实际上是算术平均法的一种,其不同之处在于将矿体划分成数个块段,其划分的主要原则是:矿体的厚度变化、矿石的品级、矿体的产状变化、勘探研究程度、储量级别及工程种类、矿床的开采顺序。

根据矿体的产状和勘探工程,可选择不同性质的投影图,垂直投影与水平投影圈定矿体的面积,划分各个块段。

对于地质构造及勘探的如下特点,必需加以考虑:1.当矿体的品位与矿体厚度之间存在相关关系时,平均品位不应按照算术平均法计算,而应该以各工程切穿矿体的厚度按加权平均计算。

各种加权平均品位的计算的表格式见附表(Ⅸ-8)附表Ⅸ-8(封面)___________地质队___________分队___________矿区第______号各工程各面积加权平均品位计算表各块段(页数自________至________计________页)编表人_____________检查人_____________区段地质技术负责人_____________分队地质技术负责人_____________分队长_____________20____年_____月于_______各探矿工程加权平均品位计算表附表Ⅸ-8-1第页顺序号剖面号工程名称及编号样品号样品长度(m)样品品位(%)品位乘长度(5×6)平均品位(%)矿体号备注1 2 3 4 5 6 7 8 9 10注:1.第一栏之顺序号是按各计算单位顺序排列的。

相关文档
最新文档