常用逻辑用语ppt课件

合集下载

集合与常用逻辑用语PPT优秀课件

集合与常用逻辑用语PPT优秀课件

1
1
∵q≠1,∴q=-2 .综上所述,q=-2 .
2.(1)若集合P={x|x2+x-6=0},S={x|ax+1=0},且SP ,
求a
(2)若集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
且B
A,求由m的可取值组成的集合.
解 (1)P={-3,2}.当a=0时,S= ,满足S P
的集合,而后根据已知条件求参数.
解 由x2-3x+2=0得x=1或x=2,故集合A={1,2}.
(1)∵A∩B={2},∴2∈B,代入B中的方程,
得a2+4a+3=0,∴a=-1或a=-3.
1分
当a=-1时,B={x|x2-4=0}={-2,2},满足条件;
当a=-3时,B={x|x2-4x+4=0}={2},满足条件;
失误与防范 1.解答集合题目,认清集合元素的属性(是点集、数集或其他
情形)和化简集合是正确求解的两个先决条件. 2.韦恩图示法和数轴图示法是进行集合交、并、补运算的常
用方法,其中运用数轴图示法要特别注意端点是实心还是 空心.
3.要注意A B、A∩B=A、A∪B=B、UAUB、A∩( UB) =
1
当a≠0时,方程ax+1=0的解为x=-a

1
1
为满足S P,可使- a =-3或- a =2
1
1
即a=
3
2
或a=-
.
1
1
故所求集合为{0,3 ,- 2 }.
(2)当m+1>2m-1,即m<2时,B = ,满足 B A
若B≠ ,且满足B A,如图所示,
m+1≤2m-1

常用逻辑用语课件PPT

常用逻辑用语课件PPT
解析答案
12345
5.若“x<m”是“(x-1)(x-2)>0”的充分不必要条件,求m的取值范围. 解 由(x-1)(x-2)>0可得x>2或x<1, 由已知条件,知{x|x<m} {x|x>2或x<1}. ∴m≤1.
解析答案
课堂小结
1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进行判断. (2)等价法:利用逆否命题的等价性判断,即要证p⇒q,只需证它的逆否 命题綈q⇒綈p即可;同理要证q⇒p,只需证綈p⇒綈q即可. (3)利用集合间的包含关系进行判断. 2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、 必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系, 然后建立关于参数的不等式(组)进行求解.
答案
思考 (1)数学中的判定定理给出了结论成立的什么条件? 答案 充分条件. (2)性质定理给出了结论成立的什么条件? 答案 必要条件.
答案
返回
题型探究
题型一 充分条件、必要条件 例1 给出下列四组命题: (1)p:两个三角形相似,q:两个三角形全等; 解 ∵两个三角形相似⇏两个三角形全等, 但两个三角形全等⇒两个三角形相似, ∴p是q的必要不充分条件. (2)p:一个四边形是矩形,q:四边形的对角线相等; 解 ∵矩形的对角线相等,∴p⇒q, 而对角线相等的四边形不一定是矩形,∴q⇏p. ∴p是q的充分不必要条件.
知识梳理
自主学习
知识点 充分条件与必要条件 一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们 就说,由p可推出q,记作p⇒q,并且说p是q的 充分条件,q是p的 必要条件 . (1)p是q的充分条件与q是p的必要条件表述的是同一个逻辑关系,只是说法 不同.p是q的充分条件只反映了p⇒q,与q能否推出p没有任何关系. (2)注意以下等价的表述形式:①p⇒q;②p是q的充分条件;③q的充分条 件是p;④q是p的必要条件;⑤p的必要条件是q. (3)“若p,则q”为假命题时,记作“p⇏q”,则p不是q的充分条件,q不 是p的必要条件.

常用逻辑用语课件

常用逻辑用语课件

模态逻辑的应用
哲学领域
模态逻辑被广泛应用于哲学推理和论证,特别是关于必然性和可 能性的问题。
人工智能领域
模态逻辑在人工智能领域也有广泛的应用,用于表示和推理不确定 性,例如在专家系统和决策支持系统中。
法律领域
模态逻辑在法律领域的应用主要涉及法律论证和法律解释,例如在 法律推理和法律解释中需要考虑必然性和可能性等问题。
危害
导致思维混乱、判断失误、决策失误 等。
如何避免逻辑错误
01
02
03
04
明确概念
准确理解概念的含义,避免混 淆和偷换概念。
全面分析
对问题进行分析时,要全面考 虑各种可能性,避免以偏概全

充分论证
在进行推断时要充分论证,避 免基于不充分的信息做出错误
判断。
客观分析
对信息进行客观分析,不带有 个人偏见和情感色彩。
模态推理规则
必然推理规则
如果p是必然的,那么¬p是不可能的。例如:如果明天必然下雨,那么明天不可能不下雨 。
可能推理规则
如果p是可能的,那么¬p是不确定的。例如:如果明天可能下雨,那么明天不确定不下雨 。
互为对偶的模态命题推理规则
如果p是必然的,那么¬p是不可能的;如果p是不可能的,那么¬p是必然的。例如:如果 明天必然下雨,那么明天不可能不下雨;如果明天不可能不下雨,那么明天必然下雨。
归纳方法及其应用
01
02
归纳方法:包括简单枚 举归纳、排除归纳、概 率归纳等。
归纳方法的应用
03
04
05
科学发现:科学家通过 观察实验数据,运用归 纳方法得出科学规律。
数据分析:在商业、社 会科学等领域,归纳方 法用于分析数据,发现 潜在规律。

高中数学新人教A版选修2-1课件:模块复习课第1课时常用逻辑用语

高中数学新人教A版选修2-1课件:模块复习课第1课时常用逻辑用语
则1-m≥0,即m≤1;
命题q:“不等式x2-4x+1-m≤0无解”,
则Δ=16-4(1-m)<0,即m<-3.
如果命题p∨q为真,命题p∧q为假,则命题p,q一真一假,
若p真,q假,则-3≤m≤1,
若p假,q真,则不存在满足条件的m值,
∴-3≤m≤1.
∴实数m的取值范围是[-3,1].
课堂篇专题整合
④已知p,q为两个命题,若“p∨q”为假命题,则“( p)∧( q)”为真命
题.
其中所有真命题的序号是
.
思路分析对于②③要注意四种命题及其关系,对于④涉及含逻辑
联结词的命题,要根据真值表与逻辑联结词的含义判断.
课堂篇专题整合
专题归纳
高考体验
自主解答①∵x-3=0⇒x-3≤0,∴为真命题.
②逆命题:“若a⊥b,则a·b=0”为真命题.
的必要不充分条件.
答案B
课堂篇专题整合
专题归纳
高考体验
4.(2019 北京高考)设点 A,B,C 不共线,则“与的夹角为锐角”是
“| + |>||”的(
)
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析∵A,B,C 三点不共线,∴| + |>||⇔| + |>| −
当a>1时,由(x-1)(x-a)≤0得1≤x≤a,
若p是q的必要不充分条件,则a>3,
即实数a的取值范围是(3,+∞).
答案(3,+∞)
课堂篇专题整合
专题归纳
高考体验
专题三 全称命题与特称命题
例3 判断下列命题是特称命题还是全称命题,用符号写出其否定

高中数学集合与常用逻辑用语知识点总结PPT课件

高中数学集合与常用逻辑用语知识点总结PPT课件

【注意】 (1)从集合的观点看,全称量词命题是陈述某集合中所有元素都具有某种 性质的命题; (2)一个全称量词命题可以包含多个变量; (3)有些全称量词命题中的全称量词是省略的,理解时需要把它补出来。 如:命题“平行四边形对角线互相平行”理解为“所有平行四边形对角线 都互相平行”。
2、存在量词与存在量词命题 (1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在 量词,并用符号“图片”表示. 【注意】常见的存在量词还有“有些”、“有一个”、“对某些”、“有 的”等; (2)存在量词命题:含有存在量词的命题,叫作存在量词命题。
2、集合运算中的常用二级结论(1)并集的性质:A∪∅=A;A∪A=A;A∪B= B∪A;A∪B=A⇔B⊆A. (2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B. (3)补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅.∁U(∁UA)=A;∁U(A∪B)= (∁UA)∩(∁UB);∁U(A∩B)=(∁UA)∪(∁UB).
【注意】 (1)从集合的观点看,存在量词命题是陈述某集合中有一些 元素具有某种性质的命题; (2)一个存在量词命题可以包含多个变量; (3)有些命题虽然没有写出存在量词,但其意义具备“存 在”、“有一个”等特征都是存在量词命题
3、命题的否定:对命题p加以否定,得到一个新的命题,记作“图片”, 读作“非p”或p的否定.
知识点5 全称量词与存在量词 1、全称量词与全称量词命题 (1)全称量词:短语“所有的”“任意一个”在逻辑中通常 叫作全称量词,并用符号“图片”表示.
【注意】 (1)全称量词的数量可能是有限的,也可能是无限的,由有 题目而定; (2)常见的全称量词还有“一切”、“任给”等,相应的词 语是“都” (2)全称量词命题:含有全称量词的命题,称为全称量词命 题.

高中数学 常用逻辑用语 PPT课件 图文

高中数学 常用逻辑用语 PPT课件 图文
分析 先求出每个命题为真时对应的参数的范围,再由复合 命题的真假区分简单命题的真假.
解析 p:0<c<1. 设 f(x)=x+|x-2c|=22xc-,2x<c,2xc≥,2c, ∴f(x)的最小值为 2c. ∵f(x)>1 的解集为 R,∴2c>1,∴c>12,∴q:c>12. ∵“p∨q”为真且“p∧q”为假, ∴p 真 q 假或 p 假 q 真.
分析全称命题的否定是特称命题;特称命题的否定是全称 命题.
解析 (1)否定形式是:对任意 x∈R,使得 x2+2x+5≠0.真命题. (2)否定形式是:∃x∈R,关于 x 的不等式 x2-ax+2a2<0 成立.假命题. (3)否定形式是:所有四边形都有外接圆.假命题.
【点评】解题的关键在于抓住关键的量词,并改为否定形 式.特称命题的否定为全称命题,“存在”对应“任意”.
Hale Waihona Puke 特称命题:“存在 M 中的一个 x,使 p(x)成立”可用符号 简记为∃x∈M,p(x).
全称命题 p:∀x∈M,p(x),它的否定綈 p:∃__x_∈__M__,__綈___p_(x_)_,
是_特__称__命题. 特称命题 p:∃x∈M,p(x),它的否定綈 p:∀__x_∈__M__,__綈___p_(x_)_,
是全__称__命题.
考点一 复合命题及其真假判断
示范1 已知命题p:若x2+y2=0,x,y∈R,则x=y=0,
q:若a>b,则
1 a

1 b
.给出下列四个复合命题:①p∧q;
②p∨q;③綈p;④綈q.其中真命题的个数为______.
分析 要判断复合命题的真假,首先要判断简单命题的真 假,然后根据复合命题的真假特点来判断.
A.“p∧q”为真 B.“p∨q”为假

新人教版高中数学必修一第一章集合与常用逻辑用语全套ppt课件

新人教版高中数学必修一第一章集合与常用逻辑用语全套ppt课件

2.描述法 (1)定义:一般地,设 A 表示一个集合,把集合 A 中所有具有 共同特征 P(x) 的元素 x 所组成的集合表示为 {x∈A|P(x)} ,这种 表示集合的方法称为描述法.有时也用冒号或分号代替竖线.
(2)具体方法:在花括号内先写上表示这个集合元素的 一般符号及 取值(或变化)范围 ,再画一条竖线,在竖线后写出 这个集合中元素所具有的 共同特征.
[解] (1)方程 x(x-1)2=0 的实数根为 0,1, 故其实数根组成的集合为{0,1}. (2)不大于 10 的非负偶数即为从 0 到 10 的偶数,故不大于 10 的非负偶数集为{0,2,4,6,8,10}. (3)由yy==x2x-1 ,解得xy==11., 故一次函数 y=x 与 y=2x-1 图象的交点组成的集合为 {(1,1)}.
住集合中元素的特征.
[解析] (1)12是实数; 2是无理数;|-3|=3,是自然数;| - 3|= 3,是无理数.故①②③正确,选 C.
(2)当 x=0 时,3-6 0=2; 当 x=1 时,3-6 1=3; 当 x=2 时,3-6 2=6; 当 x≥3 时不符合题意,故集合 A 中元素有 0,1,2. [答案] (1)C (2)0,1,2
温馨提示:集合含义中的“研究对象”指的是集合的元素, 研究集合问题的核心即研究集合中的元素,因此在解决集合问题 时,首先要明确集合中的元素是什么.集合中的元素可以是数、 点,也可以是一些人或一些物.
3.元素与集合的关系 (1)属于:如果 a 是集合 A 的元素,就说 a 记作 a∈A.
属于
集合 A,
2.元素的特性 (1)确定性:给定的集合,它的元素必须是 确定 的.也就 是说,给定一个集合,那么任何一个元素在不在这个集合中就 确定 了.简记为“确定性”. (2)互异性:一个给定集合中的元素是 互不相同 的.也就是 说,集合中的元素是 不重复出现 的.简记为“互异性”. (3)无序性:给定集合中的元素是不分先后, 没有 顺序的.简 记为“无序性”.

常用逻辑用语ppt课件

常用逻辑用语ppt课件

最新课件
28
变式训练 3 (2010·辽宁)为了比较注射 A,B 两种 药物后产生的皮肤疱疹的面积,选 200 只家兔做 试验,将这 200 只家兔随机地分成两组,每组 100 只,其中一组注射药物 A,另一组注射药物 B.表 1 和表 2 分别是注射药物 A 和药物 B 后的试验结 果.(疱疹面积单位:mm2)
所以 p⇒q 但 q⇒p,故 p 是 q 的充分不必要条件.
最新课件
11
题型分类 深度剖析
题型一 含有逻辑联结词命题的真假判断 例 1 写出由下列各组命题构成的“p∨q”、“p∧q”、
“綈 p”形式的复合命题,并判断真假. (1)p:1 是质数;q:1 是方程 x2+2x-3=0 的根; (2)p:平行四边形的对角线相等;q:平行四边形的对 角线互相垂直; (3)p:5≤5;q:27 不是质数.
解析 若 r>0,表示两个相关变量正相关,x 增大时,y
也相应增大,故①正确;r<0,表示两个变量负相关,
x 增大时,y 相应减小,故②错误;|r|越接近 1,表示
两个变量相关性越高,|r|=1 表示两个变量有确定的关
系(即函数关系),故③正确.
最新课件
24
题型分类 深度剖析
题型一 线性回归分析 例 1 假设关于某种设备的使用年限 x(年)与所支出的维修
➢ 难点
(1)2的意义及推导;
(2)相关系数r的意义。
最新课件
15
§10.4 统计案例
基础知识 自主学习
要点梳理
1.回归分析 (1)定义:对具有 相关关系 的两个变量进行统计分析
的一种常用方法.
(2)样本点的中心
对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…, (xn,yn),其回归直线 y=bx+a 的斜率和截距的最小

数学常用逻辑用语(高中数学课件)

数学常用逻辑用语(高中数学课件)
常用逻辑用语
用常 语用
逻 辑
知识网络
命题及其关 系
简单的逻辑联结 词
四种命题
充分条件与必要条件

并集

交集 运算
非或 补集
全称量词与存在 量词
量词
全称表达的,可以判断真假 的陈述句称为命题. 其中判断为真的语句称为真命题,判断为假 的语句称为假命题.
注、等价法(转化为逆否命题)
2:若┐A是┐B的充要条件,┐C是┐B的充 要条
件,则A为C的( )条A件
A.充要
B必要不充分
C充分不必要 D不充分不必要
练习4、
1.已知P:|2x-3|>1;q:1/(x2+x-6)>0,
则┐p是┐q的( A )
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
逆否命题:若 q 则 p
结论1:要写出一个命题的另外三个命 题关键是分清命题的题设和结论(即 把原命题写成“若P则Q”的形式)
注意:三种命题中最难写 的是否命题。
结论2:(1)“或”的否定为“且”, (2)“且”的否定为“或”, (3)“都”的否定为“不
都”。
三、四种命题之间的 关系
原命题
若p则q
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件
4)若A=B ,则甲是乙的充分且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
2.搞清 ①A是B的充分条件与A是B的充分非必要条件之间 的区别与联系; ②A是B的必要条件与A是B的必要非充分条件之间 的区别与联系

常用逻辑用语PPT课件

常用逻辑用语PPT课件

考点二:全称量词与存在量词 1.全称量词与存在量词 (1)全称量词:对应日常语言中的“一切”、 “任意的”、“所有的”、“凡是”、“任给”、 “对每一个”等词,用符号“”表示。 (2)存在量词:对应日常语言中的“存在一个”、 “至少有一个”、“有个”、“某个”、“有 些”、“有的”等词,用符号“”表示。 2.全称命题与特称命题 (1)全称命题:含有全称量词的命题。“对xM, 有p(x)成立”简记成“xM,p(x)”。 (2)特称命题:含有存在量词的命题。“xM,有 p(x)成立” 简记成“xM,p(x)”。

2.条件p: |x|>1,条件q:x < 2,则p是q的( B ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件

.
∵p:x < 1或x >1,q:x < 2, ∴q p但p q, 即p q,但q p, ∴p是q的必要不充分条件.
4.常见词语的否定如下表所示
词语 是 一定是 都是 大于
大于

词语的否定 不是 一定不是 不都是 小于或等于 大于或等于
词语

必有一个
至少有n个 至多有一个
所有x成立
词语的否定

一个也没有 至多有n-1个 至少有两个 存在一个x不成立
考点5、充分条件与必要条件 1、定义:对命题“若p则q”而言,当它是真命题时, 2 、在判断充分条件及必要条件时,首先要分 p是q的充分条件,q是p的必要条件,当它的逆命题 清哪个命题是条件,哪个命题是结论,其 为真时, q是p的充分条件,p是q的必要条件,两种 次,结论要分四种情况说明:充分不必要 命题均为真时,称 p是q的充要条件;
)
(二)、知识要点归纳

常用逻辑用语的应用课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册

常用逻辑用语的应用课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册
(2)若p:x ∈ C是q:x ∈ B的充分条件,则C ⊆ B,如图所示,所以a ≥ 2,故实数a的
取值范围是{a|a ≥ 2}.
[解析] 命题“存在a ∈ ,使不等式ax + 1 ≥ 0成立”的否定是“对任意a ∈ ,不等式
ax + 1 < 0都成立”,故选C.
自主预习
3.设α:m + 1 ≤α 的充分条件,则实数m
1
{m|

≤ m ≤ 0}
的取值范围为_________________.
所以“a = 1”是“a = ±1”的充分不必要条件.
随堂检测
3.已知α: 1 ≤ x < 4;β: x < m.若α 是β 的充分条件,则实数m的取值范围是
{m|m ≥ 4}
___________.
[解析] 令A = {x|1 ≤ x < 4},B = {x|x < m},因为α 是β 的充分条件,所以A ⊆ B,
第一章 集合与常用逻辑用语
习题课2 常用逻辑用语的应用
学习目标
学习目标
1.进一步理解充分条件、必要条件,能熟练判断充分条件、必要条件.(逻辑推理)
2.进一步理解全称量词与存在量词的意义,能正确对含有一个量词的命题进行否
定.(逻辑推理)
3.能利用常用逻辑用语解决一些简单的问题.(逻辑推理)
自主预习
a ≥ b”的( B ) .
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
[解析] 设[a] =< b >= k,由[x]和< x > 的定义得,a ≥ k,b ≤ k,所以a ≥ k ≥ b,
即a ≥ b,故满足充分性;当a = 2.2,b = 2.1时,[a] = 2,< b >= 3,[a] << b > ,

2024届新高考一轮复习人教B版 主题一 第一章 第2节 常用逻辑用语 课件(34张)

2024届新高考一轮复习人教B版 主题一 第一章 第2节 常用逻辑用语 课件(34张)
对于选项 B,命题是全称量词命题,不满足题意;


对于选项 C,∀x∈R,x2+x+>0 的否定为∃x∈R,x2+x+≤0,是存在量词命题,x2+x+


2

2

=(x+) ≥0,当 x=-时,x +x+=0,所以 C 中命题是真命题;

对于选项 D,∃x∈R,-x2+x-2≥0 的否定为∀x∈R,-x2+x-2<0,是全称量词命题,不
对于 C,任何一个圆的圆心到切线的距离都等于半径,故 C 选项是全称量词
命题且为真命题;
对于 D,因为 x2-2x+3=(x-1)2+2≥2,所以
命题且为假命题.


≤<,故 D 选项是存在量词
-+
2.设x∈R,则“x>1”是“|x|>1”的(
A
)
A.充分不必要条件
B.必要不充分条件
p 是 q 的 充分不必要 条件
p⇒q 且 q p
p 是 q 的 必要不充分 条件
p q 且 q⇒p
p 是 q 的 充要 条件
p⇔q
p 是 q 的既不充分也不必要条件
p q且q p
充分、必要条件与对应集合之间的关系
设A={x|p(x)},B={x|q(x)}.
①若p是q的充分条件,则A⊆B;
②若p是q的充分不必要条件,则A⫋B;
①改写量词:确定命题所含量词的类型,若命题中无量词,则要结合命题的含义
量词,用符号“ ∃ ”表示.含有 存在量词 的命题,称为存在量词命题.
3.全称量词命题和存在量词命题的否定

2025年高考数学一轮复习-第一章-集合与常用逻辑用语【课件】

2025年高考数学一轮复习-第一章-集合与常用逻辑用语【课件】

谢谢观赏!!
要条件、数学定义与充要条件的关系.
统计 逻辑用语
Ⅰ卷·T7
2.理解全称量词和存在量词的意义,能正确对
两种命题进行否定.
1.题型设置:主要以选择题、填空题为主. 命题 2.内容考查:集合的基本关系、集合的基本运算、充分必要条件的判断 趋势 和含有一个量词命题的否定.
3.能力考查:运算求解能力及逻辑推理能力.
第一章 集合与常用逻辑用语
【高考研究·备考导航】
三年考情
角度 考查内容
课程标准
高考真题
1.了解集合的含义,了解全集、空集的
含义.
2023年:新高考Ⅰ卷·T1
2.理解元素与集合的属于关系,理解集 2023年:新高考Ⅱ卷·T2
考题
合间的包含和相等关系.
2022年:新高考Ⅰ卷·T1
集合
统计
3.会求两个集合的并集、交集与补集. 2022年:新高考Ⅱ卷·T1
备考策略 根据近三年新高考卷命题特点和规律,复习本章时,要注意以下几个方面: 1.全面系统复习,深刻理解知识本质 (1)理解集合、空集、子集等概念;会根据具体条件求集合的子集的个数;理
解并集、交集、补集的含义,注意符号语言的正确应用. (2)理解充分条件、必要条件、充要条件的含义. (3)理解全称量词、存在量词、全称量词命题、存在量词命题的概念.
2.熟练掌握解决以下问题的方法规律 (1)能准确判断所给集合中元素的特征,会根据问题情境选择恰当的方法表 示集合. (2)掌握集合并集、交集、补集运算,注意与解不等式、解方程和函数基本 概念的交汇问题. (3)能准确判断命题的真假,并能根据具体问题情境判断充分条件、必要条 件和充要条件. (4)能准确地对全称量词命题(或存在量词命题)进行否定.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[小组合作型]
含逻辑联结词命题的构成
分别写出由下列命题构成的“p∨q”“p∧q”“綈 p”形式的命题:
(1)p:π 是无理数,q:e 不是无理数; (2)p:方程 x2+2x+1=0 有两个相等的实数根,q:方程 x2+2x+1=0 的两根 的绝对值相等; (3)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于 与它不相邻的任何一个内角.
题的真假. (1)p:6<6,q:6=6; (2)p:梯形的对角线相等,q:梯形的对角线互相平分; (3)p:函数 y=x2+x+2 的图象与 x 轴没有公共点,q:不等式 x2+x+2<0 无
解; (4)p:函数 y=cos x 是周期函数,q:函数 y=cos x 是奇函数.
【精彩点拨】 命题的构成→p、q 的真假→复合命题的构成






1.2 简单的逻辑联结词

阶 段 二
业 分 层 测

1.了解“或”“且”作为逻辑联结词的含义,掌握“p∨q”、“p∧q”命题的 真假规律.(重点、难点)
2.了解逻辑联结词“非”的含义,能写出简单命题的“綈 p”命题.(易混点)
[基础·初探] 教材整理 1 逻辑联结词及命题的构成形式 阅读教材 P9 例 1 以上部分,完成下列问题. 1.逻辑联结词 命题中的 “或”、“且”、“叫非做逻”辑联结词.
2.构造新命题时,在不引起歧义的前提下,可把命题适当地简化.
[再练一题] 1.分别指出下列命题的构成形式. (1)小李是老师,小赵也是老师; (2)1 是合数或质数; (3)他是运动员兼教练员; (4)这些文学作品不仅艺术上有缺点,而且政治上有错误.
【导学号:24830009】
【解】 (1)这个命题是“p 且 q”的形式,其中,p:小李是老师;q:小赵是 老师.
“綈 p”:方程 x2+2x+1=0 没有两个相等的实数根. (3)“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相 邻的任何一个内角; “p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻 的任何一个内角;
“綈 p”:三角形的外角不等于与它不相邻的两个内角的和.
1. 利 用 逻 辑 联 结 词 “ 或 ”“ 且 ”“ 非 ” 构 造 新 命 题 , 关 键 是 要 理 解 “或”“且”“非”的含义.
判断正误: (1)逻辑联结词“且”“或”只能出现在命题的结论中.( ) (2)“p∨q 为假命题”是“p 为假命题”的充要条件.( )
(3)命题“p∨(綈 p)”是真命题.( ) (4)梯形的对角线相等且平分是“p∨q”的形式命题.( )
【解析】 (1)×.逻辑联结词“且”“或”也可以出现在命题的条件中. (2)×.“p∨q 为假命题”是“p 为假命题”的充分不必要条件.
2.命题的构成形式
(1)用联结词“或”把命题 p 和命题 q 联结起来,就得到一个新命题, 记作“ p∨q”,读作 p或q .
(2)用联结词“且”把命题 p 和命题 q 联结起来,就得到一个新命题, 记作“ p∧q ”,读作 p且q . (3)对一个命题 p 进行否定,就得到一个新命题,记作“ 綈p ”,读作 “ 非p ”或 p的否定.
【精彩点拨】 明确“p∨q”“p∧q”“綈 p”→明确每组命题→分别用逻辑 联结词构造命题
【自主解答】 (1)“p∨q”:π 是无理数或 e 不是无理数;“p∧q”:π 是无 理数且 e 不是无理数;
“綈 p”:π 不是无理数.
(2)“p∨q”:方程 x2+2x+1=0 有两个相等的实数根或两根的绝对值相等; “p∧q”:方程 x2+2x+1=0 有两个相等的实数根且两根的绝对值相等;
(2)这个命题是“p 或 q”的形式,其中,p:1 是合数;q:1 是质数. (3)这个命题是“p 且 q”的形式,其中,p:他是运动员;q:他是教练员. (4)这个命题是“p 且 q”的形式,其中,p:这些文学作品艺术上有缺点;q: 这些文学作品政治上有错误.
பைடு நூலகம்
含逻辑联结词的命题的真 假判断
分别指出下列各组命题构成的“p∧q”“p∨q”“綈 p”形式的命
【自主解答】 (1)∵p 为假命题,q 为真命题, ∴p∧q 为假命题, p∨q 为真命题,綈 p 为真命题. (2)∵p 为假命题,q 为假命题,∴p∧q 为假命题, p∨q 为假命题,綈 p 为真命题. (3)p 为真命题,q 为真命题,∴p∧q 为真命题, p∨q 为真命题,綈 p 为假命题. (4)p 为真命题,q 为假命题,∴p∧q 为假命题, p∨q 为真命题,綈 p 为假命题.
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1:________________________________________________________________ 解惑:_________________________________________________________________ 疑问 2:________________________________________________________________ 解惑:_________________________________________________________________ 疑问 3:________________________________________________________________ 解惑:_________________________________________________________________
(3)√.命题 p 与綈 p 必有一个是真命题,另一个是假命题,故 p∨(綈 p)是真命 题.
(4)×.梯形的对角线相等且平分是“p∧q”的形式命题.
【答案】 (1)× (2)× (3)√ (4)×
教材整理 2 含逻辑联结词的命题的真假判断 阅读教材 P10 例 2 以上部分,完成下列问题. 含逻辑联结词的命题的真假判断
p q p∨q p∧q 綈p
真真 真


真假 真


假真 真


假假 假


命题“35 是 7 的倍数或 15 是 7 的倍数”是________命题(填“真”或“假”). 【解析】 “35 是 7 的倍数”是真命题,“15 是 7 的倍数”是假命题. ∴命题“35 是 7 的倍数或 15 是 7 的倍数”是真命题. 【答案】 真
相关文档
最新文档