电磁学试题库-试题
中考物理总复习《电磁学》专项测试题(附带答案)
中考物理总复习《电磁学》专项测试题(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列说法正确的是( )A .二极管和三极管都是半导体材料,二极管能放大电信号B .核潜艇、核电站都是利用核裂变,而太阳、原子弹、氢弹都是利用核聚变C .军用雷达、倒车雷达、手机信号、北斗导航都应用了电磁波D .低声细语、轻声慢语、声如洪钟、引吭高歌形容的都是响度 2.下列说法错误的是( )A .手机5G 通讯技术是利用电磁波传递信息的B .光纤通信是光在光导纤维中多次反射传递信息C .“北斗三号”导航系统最后一颗组网卫星是一颗地球同步通讯卫星,以地球为参照物,它是运动的D .新能源光伏发电技术是利用太阳能电池把太阳能转化为电能 3.关于家庭电路和安全用电,下列说法或做法中正确的是( ) A .家庭电路中空气开关跳闸,一定是发生了短路 B .使用测电笔时,手千万不要接触笔尾金属体 C .不能用潮湿的手触摸家庭电路中的开关D .发现有人触电时,直接用手将触电者拉开以脱离电源4.如图所示的电路中,1L 和2L 是规格不同的两个灯泡,开关闭合后,电流表的示数是0.4A,则A .通过灯泡1L 的电流是0.4AB .通过灯泡的2L 电流是0.4AC .通过灯泡1L 和灯泡2L 的电流之和是0.4AD .通过灯泡1L 和灯泡2L 的电流相等,都是0.4A5.如图所示电路中,R 1:R 2=2:3,开关闭合后,电路的总功率为P 0.若将R 1的阻值增大2Ω,R 2的阻值减小2Ω,电路的总功率仍为P 0;若将R 1的阻值减小2Ω,R 2的阻值增大2Ω,电路的总功率为P ;则P :P 0等于A .3:2B .4:3C .5:4D .6:56.如图甲所示,在一个电阻均匀的正方形金属线框有A 、B 、C 、D 四点,现把A 、D 两点接入电源电压保持不变的如图乙所示的电路MN 两端时,发现电流表示数为I 0,当换接A 、C 两点,则此时电流表的示数应为( )A .034IB .043IC .I 0D .032I7.为了纪念物理学家对人类的贡献,有些物理量的单位会用物理学家的名字命名,电流的单位以下面哪位科学家的名字命名( ) A .欧姆B .安培C .伏特D .焦耳8.如图是小明设计的高温报警电路,电源两端电压保持不变,R 1是定值电阻,R 2是热敏电阻,热敏电阻的阻值随温度升高而减小,当电流表示数大于某一值I 时,就会触发报警。
高考物理电磁学练习题库及答案
高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。
4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。
4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。
五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。
2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。
3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。
4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。
5. 请简述电阻、电容和电感的区别与联系。
答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。
2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。
(完整版)电磁学题库(附答案)
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
大学电磁学测试题及答案
大学电磁学测试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是多少?A. 300,000 km/sB. 299,792 km/sC. 299,792 km/s(光速)D. 299,792 km/s(电磁波速度)答案:C2. 法拉第电磁感应定律描述了什么现象?A. 磁场对电流的作用B. 电流对磁场的作用C. 变化的磁场产生电场D. 变化的电场产生磁场答案:C3. 根据麦克斯韦方程组,以下哪项不是电磁场的基本方程?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 欧姆定律答案:D4. 电容器的电容与哪些因素有关?A. 电容器的面积B. 电容器的间距C. 电介质材料D. 所有以上因素答案:D5. 以下哪种介质不能增强电场?A. 电介质B. 导体C. 真空D. 磁介质答案:B6. 洛伦兹力定律描述了什么?A. 磁场对运动电荷的作用B. 电场对静止电荷的作用C. 重力对物体的作用D. 摩擦力对物体的作用答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率与波长成正比(错误选项)答案:B8. 根据楞次定律,当线圈中的磁通量增加时,感应电流的方向如何?A. 与磁通量增加的方向相同B. 与磁通量增加的方向相反C. 与磁通量增加的方向垂直D. 与磁通量增加的方向无关答案:B9. 什么是自感?A. 电路中由于电流变化而产生的电磁感应B. 电路中由于电压变化而产生的电流C. 电路中由于电阻变化而产生的电压D. 电路中由于电感变化而产生的电流答案:A10. 以下哪种材料不是超导体?A. 汞B. 铅C. 铜D. 铝答案:C二、填空题(每空1分,共10分)1. 电场强度的国际单位是_______。
答案:伏特/米2. 电容器储存电荷的能力称为_______。
答案:电容3. 磁场强度的国际单位是_______。
答案:特斯拉4. 麦克斯韦方程组包括_______个基本方程。
(完整版)电磁学期末考试试题
电磁学期末考试一、选择题。
1. 设源电荷与试探电荷分别为、,则定义式对、的要求为:[ C ]Q q qFE=Q q (A)二者必须是点电荷。
(B)为任意电荷,必须为正电荷。
Q q (C)为任意电荷,是点电荷,且可正可负。
Q q (D)为任意电荷,必须是单位正点电荷。
Q q 2. 一均匀带电球面,电荷面密度为,球面内电场强度处处为零,球面上面元的一σdS 个带电量为的电荷元,在球面内各点产生的电场强度:[ C ]dS σ(A)处处为零。
(B)不一定都为零。
(C)处处不为零。
(D)无法判定3. 当一个带电体达到静电平衡时:[ D ](A)表面上电荷密度较大处电势较高。
(B)表面曲率较大处电势较高。
(C)导体内部的电势比导体表面的电势高。
(D)导体内任一点与其表面上任一点的电势差等于零。
4. 在相距为2R 的点电荷+q 与-q 的电场中,把点电荷+Q 从O 点沿OCD 移到D 点(如图),则电场力所做的功和+Q 电位能的增量分别为:[ A ](A),。
R qQ06πεR qQ06πε-(B),。
RqQ04πεR qQ 04πε-(C),。
(D),。
RqQ04πε-RqQ 04πεRqQ 06πε-RqQ 06πε5. 相距为的两个电子,在重力可忽略的情况下由静止开始运动到相距为,从相距到1r 2r 1r 相距期间,两电子系统的下列哪一个量是不变的:[ C ]2r(A)动能总和; (B)电势能总和;(C)动量总和; (D)电相互作用力6. 均匀磁场的磁感应强度垂直于半径为的圆面。
今以该圆周为边线,作一半球面,Br s 则通过面的磁通量的大小为: [ B ]s (A)。
(B)。
B r 22πB r 2π(C)。
(D)无法确定的量。
07. 对位移电流,有下述四种说法,请指出哪一种说法正确:[ A ](A)位移电流是由变化电场产生的。
(B)位移电流是由线性变化磁场产生的。
(C)位移电流的热效应服从焦耳—楞次定律。
电磁学考试题库及答案高中
电磁学考试题库及答案高中电磁学是物理学中的一个重要分支,它研究的是电荷、电场、电流、磁场以及它们之间的相互作用。
以下是一份高中电磁学考试题库及答案,供同学们学习和练习。
一、选择题1. 电荷间的相互作用遵循以下哪条定律?A. 牛顿第一定律B. 牛顿第二定律C. 库仑定律D. 欧姆定律答案:C2. 以下哪个单位是用来测量电流的?A. 伏特(V)B. 安培(A)C. 欧姆(Ω)D. 法拉(F)答案:B3. 一个电路中,电阻为10Ω,通过它的电流为0.5A,根据欧姆定律,该电路两端的电压是多少伏特?A. 2VB. 5VC. 10VD. 20V答案:B4. 电磁波的传播速度在真空中是多少?A. 299,792,458 m/sB. 300,000 km/sC. 3×10^8 m/sD. 3×10^11 m/s答案:C5. 法拉第电磁感应定律表明什么?A. 电流的产生与磁场的变化有关B. 电流的产生与电场的变化有关C. 磁场的产生与电流的变化有关D. 电场的产生与磁场的变化有关答案:A二、填空题6. 电场强度的定义式是 \( E = \frac{F}{q} \),其中 \( E \) 表示电场强度,\( F \) 表示电荷所受的电场力,\( q \) 表示电荷量。
答案:电场强度7. 电流的国际单位是安培,用符号 \( A \) 表示。
答案:安培8. 一个闭合电路的总电阻为 \( R \),电源的电动势为 \( E \),电路中的电流 \( I \) 可以通过欧姆定律计算,即 \( I = \frac{E}{R} \)。
答案:欧姆定律9. 电磁波的三个主要特性包括:波长、频率和速度。
答案:波长、频率10. 法拉第电磁感应定律表明,当磁场变化时,会在导体中产生感应电动势。
答案:感应电动势三、简答题11. 简述电磁波的产生原理。
答案:电磁波是由变化的电场和磁场相互作用产生的,它们以波的形式向外传播,不需要介质,可以在真空中传播。
电磁学考试题库及答案详解
电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。
A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。
2. 电场强度的方向是()。
A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。
3. 电势能与电势的关系是()。
A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。
4. 电容器的电容C与板间距离d和板面积A的关系是()。
A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。
5. 磁场对运动电荷的作用力遵循()。
A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。
二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。
2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。
大学电磁学试题及答案
大学电磁学试题及答案一、选择题1. 下列哪个不是电磁场的性质?A. 磁场比电场强B. 磁场可以存储能量C. 磁场的形状与电流的形状无关D. 磁场可以做功2. 下列哪个不是电场的性质?A. 电场是矢量场B. 电场可以存储能量C. 电场的形状与电荷的分布有关D. 电场可以做功3. 以下哪个定理描述了电场的闭合性?A. 麦克斯韦方程组B. 电场强度叠加定理C. 安培环路定理D. 电场能量密度定理4. 以下哪个定理描述了磁场的无源性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理5. 在匀强电场中沿着电场方向移动电荷,电荷所受的力是:A. 垂直于电场方向的力B. 与电场方向相反的力C. 与电场方向相同的力D. 没有受力6. 以下哪个定理描述了磁场的涡旋性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理7. 当通过匀强磁场的导线以垂直于磁场方向的速度运动时,导线中将感应出电动势。
这个现象被称为:A. 法拉第现象B. 洛伦兹力C. 磁通量D. 磁感应强度8. 以下哪个定理描述了电磁感应现象?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 法拉第定律9. 高频交流电的传输会存在什么现象?A. 电流大于电压B. 电流和电压同相C. 电流小于电压D. 电流和电压反相10. 在电磁波中,电场和磁场之间的关系是:A. 电场和磁场互相作用B. 电场和磁场无关联C. 电场和磁场相互垂直D. 电场和磁场相互平行二、解答题1. 描述安培环路定理的表达式以及其含义。
安培环路定理的表达式是:$\oint \mathbf{B}\cdot d\mathbf{l} =\mu_0I_{\text{enc}}$。
该定理表示通过某一闭合回路的磁感应强度的环路积分等于该回路所围绕的电流的总和与真空中的磁导率的乘积。
即磁场的闭合性质。
2. 描述麦克斯韦方程组中法拉第电磁感应定律的表达式以及其含义。
电磁学课本试题及答案
电磁学课本试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^2 m/sD. 3×10^3 m/s答案:A2. 法拉第电磁感应定律表明,感应电动势与什么成正比?A. 磁通量的变化率B. 磁通量C. 磁场强度D. 电流强度答案:A3. 麦克斯韦方程组中描述磁场变化产生电场的方程是?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 麦克斯韦方程答案:B4. 电流通过导线时,导线周围产生的磁场方向与什么有关?A. 电流方向B. 导线长度C. 导线粗细D. 导线材料答案:A5. 电容器的电容与哪些因素有关?A. 板间距离B. 板面积C. 板间介质D. 所有以上因素答案:D6. 根据洛伦兹力定律,带电粒子在磁场中运动时,受到的力与什么成正比?A. 粒子速度B. 粒子电荷量C. 磁场强度D. 粒子质量答案:B7. 电磁波的频率与波长的关系是?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率与波长成正比,但与波速无关答案:B8. 电磁波的传播不需要介质,这是由哪个定律得出的结论?A. 麦克斯韦方程组B. 欧姆定律C. 库仑定律D. 牛顿第二定律答案:A9. 电磁波的波速在真空中是恒定的,这个速度是多少?A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^2 m/sD. 3×10^3 m/s答案:A10. 电磁波的产生与什么现象有关?A. 电磁感应B. 电磁辐射C. 光电效应D. 所有以上现象答案:D二、填空题(每题2分,共20分)1. 电磁波的波速在真空中是______ m/s。
答案:3×10^82. 根据麦克斯韦方程组,变化的磁场可以产生______。
答案:电场3. 电磁波的传播速度等于光速,即______ m/s。
电磁学期末测试试题及答案
学生姓名__________ 学号_________________院系___________ 班级___________-------------------------------密------------------------------封----------------------------线---------------------------------烟台大学 ~ 学年第一学期普通物理(电磁学)试卷A(考试时间为120分钟)题号 1 2 3 4 5 6 7 8 9 10 总分 得分阅卷人合分人一、简答题 (38分)1、 (6分) 长度为L 的圆柱体底面半径为r ,以x 轴为对称轴,电场ˆ200E x=K,写出通过圆柱体全面积的电通量。
2、 (6分) 导体在磁场中运动产生动生电动势,从电源电动势的角度来看,是存在一种非静电力可以将正电荷从低电位处移动到高电位处,表示为:∫+−⋅=l d K GG ε。
试解释动生电动势中这种非静电力K G来源。
3、 (10分) 空间某一区域的磁场为ˆ0.080T B x=K,一质子以55ˆˆ210310v x y =×+×K的速度射入磁场,写出质子螺线轨迹的半径和螺距。
(质子质量271.6710kg p m −=×, 电荷191.610C e −=×)4、 (6分) 如图所示,写出矩形线圈与长直导线之间的互感。
5、 (10分) 写出麦克斯韦方程组的积分形式,并解释各式的物理意义。
二、计算题 (62分)1、 (16分) 球形电容器由半径为1R 的导体球和与它同心的导体球壳构成,壳的内半径为2R ,其间有两层均匀电介质,分界面的半径为r ,介电常数分别为1ε和2ε,求 (1)电容C ;(2)当内球带电Q −时,各个表面上的极化电荷面密度eσ′。
2、(12分) 电缆由一导体圆柱和一同轴的导体圆筒构成。
使用时,电流I 从一导体流去,从另一导体流回,电流都均匀分布在截面上。
大学物理(电磁学部分)试题库及答案解析
大学物理(电磁学部分)试题库及答案解析一、 选择题1.库仑定律的适用范围是()A 真空中两个带电球体间的相互作用; ()B 真空中任意带电体间的相互作用; ()C 真空中两个正点电荷间的相互作用; ()D 真空中两个带电体的大小远小于它们之间的距离。
〔 D 〕2.在等量同种点电荷连线的中垂线上有A 、B 两点,如图所示,下列结论正确的是()A A B E E ,方向相同;()B A E 不可能等于B E ,但方向相同;()C A E 和B E 大小可能相等,方向相同;()D A E 和B E 大小可能相等,方向不相同。
〔 C 〕4.下列哪一种说法正确()A 电荷在电场中某点受到的电场力很大,该点的电场强度一定很大;()B 在某一点电荷附近的任一点,若没放试验电荷,则这点的电场强度为零;()C 若把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电场线运动;()D 电场线上任意一点的切线方向,代表点电荷q 在该点获得加速度的方向。
〔 D 〕5.带电粒子在电场中运动时()A 速度总沿着电场线的切线,加速度不一定沿电场线切线;()B 加速度总沿着电场线的切线,速度不一定沿电场线切线;()C 速度和加速度都沿着电场线的切线;()D 速度和加速度都不一定沿着电场线的切线。
〔 B 〕7.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是A.通过封闭曲面的电通量仅是面内电荷提供的B.封闭曲面上各点的场强是面内电荷激发的C.由高斯定理求得的场强仅由面内电荷所激发的D.由高斯定理求得的场强是空间所有电荷共同激发的〔 D 〕9、下面说法正确的是(A)等势面上各点场强的大小一定相等;(B)在电势高处,电势能也一定高;(C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处〔 D 〕10、已知一高斯面所包围的体积内电量代数和为零,则可肯定:(A )高斯面上各点场强均为零。
(B )穿过高斯面上每一面元的电通量均为零。
大学电磁学试题及答案
大学电磁学试题及答案一、选择题(每题2分,共20分)1. 电场强度的定义式是()。
A. E = F/qB. E = FqC. E = qFD. E = F/Q答案:A2. 电势差的定义式是()。
A. U = W/qB. U = WqC. U = qWD. U = W/Q答案:A3. 电容器的电容与两极板间的距离成()。
A. 正比B. 反比C. 无关D. 无法确定答案:B4. 电容器的电容与两极板的面积成()。
A. 正比B. 反比C. 无关D. 无法确定答案:A5. 电容器的电容与两极板间介质的介电常数成()。
A. 正比B. 反比C. 无关D. 无法确定答案:A6. 电容器的储能公式是()。
A. W = 1/2CU^2B. W = 1/2CV^2C. W = 1/2CQ^2D. W = 1/2CVQ答案:B7. 电流强度的定义式是()。
A. I = dQ/dtB. I = Q/dtC. I = dQ/tD. I = Qd/t答案:A8. 欧姆定律的公式是()。
A. U = IRB. U = R/IC. U = I/RD. U = RI答案:A9. 电阻定律的公式是()。
A. R = ρL/AB. R = ρA/LC. R = L/ρAD. R = A/ρL答案:A10. 电感的定义式是()。
A. L = NΦ/IB. L = Φ/NIC. L = I/NΦD. L = N/IΦ答案:A二、填空题(每题2分,共20分)11. 电场强度的方向是________。
答案:电势降低最快的方向12. 电势差的方向是________。
答案:电势高的指向电势低的13. 电容器两极板间的电场强度是________。
答案:E = U/d14. 电容器两极板间的电势差是________。
答案:U = Ed15. 电容器的储能公式是________。
答案:W = 1/2CU^216. 电流强度的方向是________。
答案:正电荷定向移动的方向17. 欧姆定律的公式是________。
电磁学试题库 试题1及答案
电磁学试题库 试题1一、填空题(每小题2分,共20分) 1、在正q 的电场中,把一个试探电荷由a 点移到b 点如图如示,电场力作的功( ) 2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。
3、导体在静电场中达到静电平衡的条件是( )。
4、电流的稳恒条件的数学表达式是( )。
5、一长螺线管通有电流I ,若导线均匀密绕,则螺线管中部的磁感应强度为( )端面处的磁感应强度约为( )6、设想存在一个区域很大的均匀磁场,一金属板以恒定的速度V 在磁场中运动,板面与磁场垂直。
(1)金属板中( )感应电流。
磁场对金属板的运动( )阻尼作用。
(2)金属板中( )电动势。
(3)若用一导线连接金属两端,导线中()电流。
〔括号内填“无”或“有”〕7、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。
在这个过程中,电场能量的增量是( )。
8、一无限长的载流圆柱体浸在无限大的各向同性的均匀线性的相对磁导率的r μ的磁介质中,则介质中的磁感应强度与真空中的磁感强度之比是( )。
9、电偶极子在外电场中的能量( )。
10、R ,L ,C 串联接到一交流电机上,若发电机的频率增加,将会使感抗( )。
二、选择题(每小题2分,共20分)1、将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有( ) (A )金属导体因静电感应带电,总电量为-Q ;(B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ; (C )金属导体两端带等量异号电荷,且电量q<Q ;(D )当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
2、静电场中P 、Q 两点的电势差( )(A )与试探电荷的正负有关; (B )与试探电荷的电量有关; (C )与零势点的选择有关; (D )与P 、Q 两点的位置有关。
电磁学试题(含答案)
电磁学试题(含答案)⼀、单选题1、如果通过闭合⾯S 的电通量e Φ为零,则可以肯定A 、⾯S 没有电荷B 、⾯S 没有净电荷C 、⾯S 上每⼀点的场强都等于零D 、⾯S 上每⼀点的场强都不等于零2、下列说法中正确的是A 、沿电场线⽅向电势逐渐降低B 、沿电场线⽅向电势逐渐升⾼C 、沿电场线⽅向场强逐渐减⼩D 、沿电场线⽅向场强逐渐增⼤3、载流直导线和闭合线圈在同⼀平⾯,如图所⽰,当导线以速度v 向左匀速运动时,在线圈中A 、有顺时针⽅向的感应电流B 、有逆时针⽅向的感应电C 、没有感应电流D 、条件不⾜,⽆法判断 4、两个平⾏的⽆限⼤均匀带电平⾯,其⾯电荷密度分别为σ+和σ-,则P 点处的场强为 A 、02εσ B 、0εσ C 、02εσ D 、0 5、⼀束α粒⼦、质⼦、电⼦的混合粒⼦流以同样的速度垂直进⼊磁场,其运动轨迹如图所⽰,则其中质⼦的轨迹是A 、曲线1B 、曲线2C 、曲线3D 、⽆法判断 6、⼀个电偶极⼦以如图所⽰的⽅式放置在匀强电场E 中,则在电场⼒作⽤下,该电偶极⼦将A 、保持静⽌B 、顺时针转动C 、逆时针转动D 、条件不⾜,⽆法判断7、点电荷q 位于边长为a 的正⽅体的中⼼,则通过该正⽅体⼀个⾯的电通量为A 、0B 、0εqC 、04εqD 、06εq 8、长直导线通有电流A 3=I ,另有⼀个矩形线圈与其共⾯,如图所⽰,则在下列哪种情况下,线圈中会出现逆时针⽅向的感应电流?A 、线圈向左运动B 、线圈向右运动C 、线圈向上运动D 、线圈向下运动 9、关于真空中静电场的⾼斯定理0εi S q S d E ∑=?? ,下述说确的是:A. 该定理只对有某种对称性的静电场才成⽴;B. i q ∑是空间所有电荷的代数和;C. 积分式中的E ⼀定是电荷i q ∑激发的;σ-P 3ID.积分式中的E是由⾼斯⾯外所有电荷激发的。
10、下列各图为载流电路,其中虚线部分表⽰通向“⽆限远”,弧形部分为均匀导线,点O 磁感强度为零的图是A.B.C. D.11、两个带有同号电荷、形状完全相同的⾦属⼩球A和B,电量均为q,它们之间的距离远⼤于⼩球本⾝的直径。
大学电磁学测试题及答案
大学电磁学测试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是麦克斯韦方程组中描述磁场变化产生电场的方程?A. ∇·E = ρ/ε₀B. ∇×E = -∂B/∂tC. ∇·B = 0D. ∇×B = μ₀J + ε₀μ₀∂E/∂t答案:B2. 在真空中,电磁波的传播速度是多少?A. 2.998×10^8 m/sB. 3.0×10^8 m/sC. 3.3×10^8 m/sD. 3.0×10^5 km/s答案:B3. 以下哪个物理量是标量?A. 电场强度B. 磁场强度C. 电荷D. 电流答案:C4. 根据洛伦兹力公式,当一个带电粒子垂直于磁场方向运动时,它受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与磁场方向垂直D. 与带电粒子运动方向相同答案:C5. 以下哪种情况会导致电磁波的偏振?A. 电磁波在真空中传播B. 电磁波在介质中传播C. 电磁波通过偏振片D. 电磁波通过非均匀介质答案:C6. 电磁感应定律表明,当磁场变化时,会在导体中产生什么?A. 电流B. 电压C. 电阻D. 电场答案:B7. 根据法拉第电磁感应定律,感应电动势与以下哪个因素成正比?A. 磁场强度B. 磁通量的变化率C. 导体长度D. 导体电阻答案:B8. 以下哪个选项不是电磁波的特性?A. 传播速度B. 波长C. 频率D. 质量答案:D9. 电磁波的波速、波长和频率之间的关系是什么?A. v = λfB. v = 1/(λf)C. v = λ/fD. v = f/λ答案:A10. 以下哪种介质对电磁波的传播速度影响最大?A. 真空B. 空气C. 水D. 玻璃答案:D二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。
答案:介质2. 根据麦克斯韦方程组,电场的散度等于电荷密度除以______。
答案:真空电容率3. 电磁波的波长、频率和波速之间的关系可以用公式______表示。
(完整版)电磁学题库(附答案)
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
(完整版)电磁学试题库试题及答案
(完整版)电磁学试题库试题及答案电磁学试题库试题3⼀、填空题(每⼩题2分,共20分)1、带电粒⼦受到加速电压作⽤后速度增⼤,把静⽌状态下的电⼦加速到光速需要电压是()。
2、⼀⽆限长均匀带电直线(线电荷密度为λ)与另⼀长为L ,线电荷密度为η的均匀带电直线AB 共⾯,且互相垂直,设A 端到⽆限长均匀带电线的距离为a ,带电线AB 所受的静电⼒为()。
3、如图所⽰,⾦属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球⼼O 为r 处置⼀电量为q 的点电荷,球⼼O 点的电势(4、两个同⼼的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻()。
(2)若两球壳之间的电压是U ,其电流密度()。
5、载流导线形状如图所⽰,(虚线表⽰通向⽆穷远的直导线)O 处的磁感应强度的⼤⼩为()6、⼀矩形闭合导线回路放在均匀磁场中,磁场⽅向与回路平⾯垂直,如图所⽰,回路的⼀条边ab 可以在另外的两条边上滑动,在滑动过程中,保持良好的电接触,若可动边的长度为L ,滑动速度为V ,则回路中的感应电动势⼤⼩(),⽅向()。
7、⼀个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a⼀圆柱⾯的总位移电流是()。
8、如图,有⼀均匀极化的介质球,半径为R ,极化强度为P ,则极化电荷在球⼼处产⽣的场强是()。
9、对铁磁性介质MB H ρρρ、、三者的关系是())。
10、有⼀理想变压器,12N N =15,若输出端接⼀个4Ω的电阻,则输出端的阻抗为()。
⼀、选择题(每⼩题2分,共20分) 1、关于场强线有以下⼏种说法()(A )电场线是闭合曲线(B )任意两条电场线可以相交(C )电场线的疏密程度代表场强的⼤⼩(D )电场线代表点电荷在电场中的运动轨迹R I O a b v ρPzRLI2、对某⼀⾼斯⾯S ,如果有0=??S S d E ρρ则有()(A )⾼斯⾯上各点的场强⼀定为零(B )⾼斯⾯内必⽆电荷(C )⾼斯⾯内必⽆净电荷(D )⾼斯⾯外必⽆电荷3、将⼀接地的导体B 移近⼀带正电的孤⽴导体A 时,A 的电势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁学试题库-试题————————————————————————————————作者:————————————————————————————————日期:电磁学试题库 试题1一、填空题(每小题2分,共20分)1、在正q 的电场中,把一个试探电荷由a 点移到b 点如图如示,电场力作的功( )2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。
3、导体在静电场中达到静电平衡的条件是( )。
4、电流的稳恒条件的数学表达式是( )。
5、一长螺线管通有电流I ,若导线均匀密绕,则螺线管中部的磁感应强度为( )端面处的磁感应强度约为( )6、设想存在一个区域很大的均匀磁场,一金属板以恒定的速度V 在磁场中运动,板面与磁场垂直。
(1)金属板中( )感应电流。
磁场对金属板的运动( )阻尼作用。
(2)金属板中( )电动势。
(3)若用一导线连接金属两端,导线中()电流。
〔括号内填“无”或“有”〕7、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。
在这个过程中,电场能量的增量是( )。
8、一无限长的载流圆柱体浸在无限大的各向同性的均匀线性的相对磁导率的r μ的磁介质中,则介质中的磁感应强度与真空中的磁感强度之比是( )。
9、电偶极子在外电场中的能量( )。
10、R ,L ,C 串联接到一交流电机上,若发电机的频率增加,将会使感抗( )。
二、选择题(每小题2分,共20分)1、将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有( ) (A )金属导体因静电感应带电,总电量为-Q ;(B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ; (C )金属导体两端带等量异号电荷,且电量q<Q ;(D )当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
2、静电场中P 、Q 两点的电势差( )(A )与试探电荷的正负有关; (B )与试探电荷的电量有关; (C )与零势点的选择有关; (D )与P 、Q 两点的位置有关。
3、关于导体有以下几种说法:( )(A )接地的导体都不带电; (B )接地的导体可带正电,也可带负电;rr r oba ab(C )一导体的电势零,则该导体不带电; (D )任何导体,只要它所带的电量不变,则其电势也是不变的。
4、一电源电动势为ε,内阻为r ,与外电阻R 连接,则:( )(A )在任何情况下,电源端电压都小于ε; (B )断路时,端电压等于ε;(C )短路时,端电压等于ε; (D )在任何情况下,端电压都不等于ε。
5、把一电流元依次放置在无限长的栽流直导线附近的两点A 和B ,如果A 点和B 点到导线的距离相等,电流元所受到的磁力大小:( )(A )一定相等; (B )一定不相等; (C )不一定相等; (D )A 、B 、C 都不正确。
6、如果电容器两极间的电势差保持不变,这个电容器在电介质存在时所储存的自由电荷与没有电介质(即真空)时所储存的电荷相比:( )(A)增多; (B )减少; (C )相同; (D )不能比较。
7、一细导线弯成直径为d 的半圆形状,位于水平面内(如图)均匀磁场B 竖直向上通过导线所在平面,当导线绕过A 点的竖直轴以匀速度ω 逆时针方向旋转时,导体AC 之间的电动势AC ε为:( )(A )B d 2ω。
;(B )22d πω ;(C )1/2B d 2ω ; (D )1/2 B d 2ω 。
8、在一无限长螺线管中,充满某种各向同性的均匀线性介质,介质的磁化率为m χ设螺线管单位长度上绕有N 匝导线,导线中通以传导电流I ,则螺线管内的磁场为:( )(A )NI B 0μ=; (B)NI B 021μ=;(C)()NI B m χμ+=10 ;(D)()NI B m χ+=1。
9、两块无限大平行面上的电荷面密度分别为σ±,图中所示的三个区域的电场强度大小为:( )(A )02εσ=I E 0εσ=I I E 02εσ=I I I E ;(B )02εσ=I E0=I I E02εσ=I I I E ;(C )0εσ=I E 0=I I E 0εσ=I I I E ;(D )0=I Eεσ=I I E0=I I I E 。
BCAσ+σ-I II I I I10、把一电流元依次放置在无限长的载流直导线附近的两点A 和B ,如果A 点和B 点到导线的距离相等,电流元所受到的磁力大小:( )(A )一定相等 ; (B )一定不相等 ; (C )不一定相等 ; (D )A 、B 、C 都不正确。
三、求一均匀带电球体的场强和电势分布,并画出)(r E E =和)(r ϕ=ϕ曲线。
设球的半径是R ,带电量为Q 。
(12分)四、试从电场的能量密度出发计算一均匀带电薄球壳的固有能,设球壳半径为R ,带电量为q 。
(12分)五、 一圆柱形的长直导线,截面半径为R ,稳恒电流均匀通过导线的截面,电流为I ,求导线内和导线外的磁场分布。
(12分)六、一平行的金属导轨上放置一质量为m 的金属杆,导轨间距为L 。
一端用电阻R 相连接,均匀磁场B 垂直于两导轨所在平面(如图所示),若杆以初速度0v 向右滑动,假定导轨是光滑的,忽略导轨的金属杆的电阻,求:(1)金属杆移动的最大距离;(2)在这过程中电阻R 上所发出的焦耳热。
(12分)七、两个相同的空气电容器,电容都是900uF ,分别充电到900V 电压后切断电源,若把一个电容器浸入煤油中,(煤油的介电常数r =2.0),再将两电容并联。
(12分) (1)求一电容器浸入煤油过程中能量的损失; (2)求两电容器并联后的电压; (3)求并联过程中能量的损失。
(4)问上述损失的能量到那里去了?Lv ABR B电磁学试题库 试题1答案一、填空题(每小题2分,共20分) 1.⎪⎪⎭⎫ ⎝⎛--a b r r q 1140πε2.a L a +πεηλln 203. 合场强在导体内部处处为零4.=⋅⎰SS d j5.nI nI 0021μμ;6. 无 有 有 有7.202U Lsr εε8.rμ9.EP W ⋅-=10. 增加二.选择题(每小题2分,共20分)1:C ;2:D;3:B;4:B;5:C;6:A;7:C;8:C;9:D;10:C三.求一均匀带电球体的场强和电势分布,并画出)(r E E =和)(r ϕ=ϕ曲线。
设球的半径是R ,带电量为Q 。
(12分)解:若电球体的电荷休密度为334R Qπ=ρ 根据高斯定理0SqE dS ε⋅=⎰ 图1 当R r <时,在球内取同心球面作高斯面得 33021343414r R Q r E π⋅πε=πre R QrE ˆ4301πε= 图2当R r >时,在球外取同心球面作高斯面得r erQ E ˆ4202πε=()r E E =的曲线如图1所示根据电势与场强的积分关系得 当r<R⎰⎰∞⋅+⋅=ϕRRrrd E r d E 211∞πε-πε=R R r r Q r R Q |1ln 4|2140230R QR Qr R Q 03020488πε+πε-πε=3020883R Qr R Q πε-πε= ⎪⎪⎭⎫⎝⎛-πε=32038R r R Q当r>R∞∞πε-=⋅=ϕ⎰rrr Q r d E |14022r Q 04πε=()r ϕϕ=的曲线如图2所示四、试从电场的能量密度出发计算一均匀带电薄球壳的固有能,设球壳半径为R ,带电量为q 。
(12分)解:带电球壳的场分布在球外,离球心为r 处的场强为rREr r ϕ电场的能量密度为能量分布具有球对称性,取体积元 球壳的固有能为五、 一圆柱形的长直导线,截面半径为R ,稳恒电流均匀通过导线的截面,电流为I ,求导线内和导线外的磁场分布。
(12分)解:假定导线是无限长的,根据对称性,可以判定磁感强度B 的大小只与观察点到圆柱体轴线的距离有关,方向沿圆周的切线,如图3所示。
在圆柱体内部,以r R <为半径作一圆,圆心位于轴线上圆面与轴线垂直。
把安培环路定理用于这圆周,有图3在圆柱体外部,以 为半径作一圆,圆心亦位于轴线上,把安培环路定理用于这一圆周有圆柱体内外磁感强度B 分布规律如图所示。
六、一平行的金属导轨上放置一质量为m 的金属杆,导轨间距为L 。
一端用电阻R 相连接,均匀磁场B 垂直于两导轨所在平面(如图所示),若杆以初速度0v 向右滑动,假定导轨是光滑的,忽略导轨的金属杆的电阻,求:(1)金属杆移动的最大距离;(2)在这过程中电阻R 上所发出的焦耳热。
(12分) 解 1)当杆A 、B 以0v的初速度向历运动,要产生动生电动势,由于它与电阻R 组成闭合回路,有感应电流,即BA BL ευ=vBLi R =载流导体AB 在磁场中受与0v 方向相反的安培力作用,即2041r q E πε=)(R r ≥42022032121r q E E επεω==drr dV 24π=222401432E R q W dV r dr r ωππε∞==⋅⎰⎰2018q R πε=r R >022r B I R μπ=02C B dl B r I πμ⋅=⋅=⎰022rB I R μπ=2200222C I r B dl B r r I R R πμπμπ⋅=⋅=⋅=⎰Lv ABR B2222ˆˆˆB L B L ds F ILBi i i R R dt υ=-=-=-由牛顿第二定律得22B L ds d ma m R dt dt υ-==22mRds dv B L =-金属杆能够移动的最大距离是杆的速度为零,上式积分得22sv mRds dv B l =-⎰⎰0max 22mRv S B l =2)在此过程中回路的焦耳热是2222222B l R B l dSQ i Rdt v dt v dt R R dt ===⎰⎰⎰0022220220212v v B l B l mR vds v dv R R B l m vdv mv ⎛⎫==- ⎪⎝⎭=-=⎰⎰⎰七、两个相同的空气电容器,电容都是900uF ,分别充电到900V 电压后切断电源,若把一个电容器浸入煤油中,(煤油的介电常数r ε=2.0),再将两电容并联。
(12分)(1)求一电容器浸入煤油过程中能量的损失; (2)求两电容器并联后的电压; (3)求并联过程中能量的损失。
(4)问上述损失的能量到那里去了? 解:(1)电容器极板上的电量为620900109008110Q C U C --==⨯⨯=⨯ 电容器在空气中的储蓄的能量为J C Q W 3.18210900210812121642020=⨯⨯⨯==--能量损失为0182.2W W W J '∆=-=-(2)并联后总电容为0001C C C C r r )(ε+=ε+=并联后总电量为Q Q 2=总所以并联后电压为V C Q C Q U r 60010900121081212620=⨯⨯+⨯⨯=+ε==--)()(总(3)并联前的能量:JC Q C Q W r 8.5463.1825.36421210202=+=ε+=前并联后的能量:20212121U C CU W r )(后ε+== J 48660010900212126=⨯⨯⨯+=-)(并联过程中的能量损矢为 J W W W 8.608.546486-=-=-=∆前后4)损失的能量转化为介质的动能,最后通过摩擦转化为热能(内能)。