转炉炼钢脱磷工艺的探讨

合集下载

转炉炼钢过程脱磷和吹氧模型的研究

转炉炼钢过程脱磷和吹氧模型的研究

转炉炼钢过程脱磷和吹氧模型的研究
本文在探讨转炉炼钢过程脱磷和吹氧模型这一课题上,采用相应的理论与方法,进行实质性的研究,以下为研究内容:
一、脱磷原理
1.1 基本原理
脱磷是指通过控制钢水的外部条件,如温度和含氧量,来通过催化、吸收、溶解等捕猎惰性气体硫气、氮气和磷气等来控制钢的含磷量的过程。

1.2产物的特点
脱磷控制的特征表现在钢中:能够改善钢的组织,增强钢各类性能。

此外,在循环利用时能够降低使用成本等,可以节约大量能源,以及节约原材料,节约环境资源。

二、吹氧原理
2.1基本原理
吹氧是指通过在转炉内注入氧气,改变熔炼中炉温、熔炼介质和各种杂质等,从而改变冶炼过程中的微观结构,改善钢液表面及内部性能的一种方法。

它的具体操作有保温、抽渣、预压力氧化等。

2.2产物的特点
吹氧这种技术有以下优点:促进了钢水的清洁化,达到精炼的目的;能够提高钢的物理力学性能;可以增强钢的抗蚀性,延长使用寿命,降低成本,更可以减少污染,改善周围环境。

三、在未来研究方向
未来研究将重点关注以下几个方面:一是通过对转炉炼钢过程脱磷和吹氧模型的进一步研究,完善控制入炉材料和排放检测。

二是将脱磷和吹氧的技术结合在一起,实现高效减污,提高入炉材料和钢水的质量。

三是重点研究不同材料的脱磷和吹氧技术,提高技术水平,以实现更有效的节能降耗、污染减排和优化产品。

转炉炼钢流程中的脱磷工艺

转炉炼钢流程中的脱磷工艺
10 ℃ 、 1 0 ℃ 时 ,K 分 别 为 7 0 x 0 、 50 60 。 8 0 1 3 0 l .× 0 。 因此 ,较 低 的反应 温 5 x 0 、2 1 1 度对 脱 磷有 利 。 2 高 氧 化 性 : 磷 被 熔 渣 氧 化 生 成 ) P0 , 再 与 C O结 合 生 成 稳 定 的 化 合 物 2 a 4 a P0 或 3 a P 0 进 入 渣 中 , 但 C O・25 C O・25 3 a P0 在 高温 下不 稳 定 。熔渣 中 的氧 主 C O・25 要 由( e ) 供 ,增加 熔渣 中的( e ) 量, F O提 FO 畲 ae增 大 、£ 增 大 , 可加 速石 灰 的渣化 ,改 F O 善熔 渣 的流动 性 。利于 睨磷 反瘦 o
磷 在渣. %P

a ̄
7 C . ・ y4 a Q ) ( OP 0 2
欲提 高熔 渣 的脱磷 能力 ,必须增 大K 、 p ae、aa、f]口 F 0 co t 降低1 C .O) 由止 可 失 p , P 5 ( O2 , 4 匕 l J 利 于脱磷 反应 的基 本热 力学 条件 , 即低温 , 高 氧化 性 、高碱度 的炉 渣 【 3 。 1 低温 度 :脱磷 反应 是强 放热 反应 , ) KD 温 度 升 高 而 急 剧 减 小 。 在 10  ̄ 随 4 0C、
3 高碱 度 : 中的酸 性氧化 物如 SO2 ) 渣 i 对脱 磷 不利 , 高熔渣 碱 度是 提 高脱磷 率 的 提 有 效 途 径 ,增 加 渣 中 碱 性氧 化物 C O的 比 a 例 ,可 以增大 a ,降低 丫CO 25 co (a.o) 4 P ,使得三 p 增 大 。 熔渣碱 度 应控 制在 合适 的范 围 , 但 碱 度过 高 时渣 的流 动性差 而 不利 于脱磷 。 4 大 渣 量 :在 钢渣 成 分 一 定 的情 况 ) 下 ,增 大渣 量意 味着稀 释 了P05 2 的浓度 , 所 以增 加渣 量 可增 大脱磷 量 【。 o J 脱 磷 反应 是 典型 的渣 界 面 反应 ,渣 钢 的形 成 速 率对 脱 磷 有 关 键影 响 。熔 渣 形成 后 ,在渣 钢 界面上 的磷 的氧 化速 率很 快 , 脱 磷速 率 由界 面两侧 的传 质控 制 , 即反钢 液 中 【] P 的传 质 和渣相 中 的(2 ) Po5的传质 。 磷反 脱 应 在相 界面 进 行 , 炉渣 的状 态和 流动 性及其 与 铁 水 的接触 时 间 ,搅 拌程 度 等 动 力 学条 件 ,明显地 影响着 传质 速度 , 从而 影 响脱磷 反应 的速度 。 当热 力学条 件 发生 不利 的变化 时 ,如温 度升 高 、(e ) F O 降低 等原 因,都会 发 生 回磷 。在满足 热力 学条 件 的 同时 . 还必 须 创 造 良好 的脱 磷 反 应 的动 力 学 条 件 , 因 此 , 于脱 磷 反应 的动力 学 条件 是确 保脱磷 利 过 程 中渣 有 良好 的流 动性 , 并在 脱磷 前期加 强熔 池 的搅 拌 。

铁水转炉吹氧脱磷工艺-概述说明以及解释

铁水转炉吹氧脱磷工艺-概述说明以及解释

铁水转炉吹氧脱磷工艺-概述说明以及解释1.引言1.1 概述铁水转炉吹氧脱磷工艺是钢铁生产中常用的一种去除磷元素的工艺方法。

在铁水中磷元素的含量对钢铁的性能有着重要影响,因此需要采取相应措施进行去除。

吹氧脱磷工艺通过向铁水中吹入氧气,利用氧气与磷元素的化学反应,在高温条件下将磷元素氧化移除,从而减少磷元素含量,提高钢铁的质量和性能。

本文将详细介绍铁水转炉吹氧脱磷工艺的原理、步骤以及其在钢铁生产中的应用。

通过对该工艺的深入探讨,可以更好地了解吹氧脱磷的作用机制和优势,为钢铁生产提供技术支持和参考。

1.2 文章结构1.3 目的本文旨在深入探讨铁水转炉吹氧脱磷工艺,通过对该工艺的原理、步骤、优势以及应用前景进行分析,旨在说明吹氧脱磷工艺在钢铁生产中的重要性和价值。

同时,通过总结工艺的特点和优势,为相关行业提供参考,促进该工艺的广泛应用,提高生产效率,降低成本,推动钢铁行业的可持续发展。

2.正文2.1 铁水转炉工艺概述:铁水转炉是一种用于炼钢的高炉,它是一种旋转的容器,通常由耐火材料和金属外壳构成。

在钢铁冶炼过程中,铁水转炉扮演着至关重要的角色。

铁水转炉工艺通常用于生产高品质的钢铁,其主要特点是操作简单,生产效率高,并能够满足不同规格和质量要求的钢铁生产。

在铁水转炉中,主要通过向铁水中吹入氧气使其氧化,从而提高炉内温度,促使不同元素的相互作用,达到脱除杂质的目的。

铁水转炉通常配有各种喷嘴和氧气喷嘴,以确保充分的氧化反应和高效的燃烧过程。

铁水转炉工艺的优点包括:1. 生产效率高:铁水转炉可以持续生产,操作简单,生产效率高。

2. 能够生产高品质钢铁:通过吹氧脱磷等工艺,可以去除杂质,生产高品质的钢铁。

3. 适用范围广:铁水转炉可以生产各种规格和质量要求的钢铁,适用性广泛。

总的来说,铁水转炉工艺在钢铁冶炼领域具有重要的地位,其优点包括高效、高质以及适用范围广泛,为钢铁行业的发展做出了重要贡献。

2.2 吹氧脱磷的原理2.3 吹氧脱磷的步骤:吹氧脱磷是铁水转炉炼钢过程中的关键环节之一,其步骤主要包括以下几个方面:1. 吹氧开始: 在铁水转炉底部喷入高纯度氧气,形成氧吹。

转炉脱磷造渣工艺

转炉脱磷造渣工艺

转炉脱磷造渣工艺1. 简介转炉脱磷造渣工艺是一种钢铁生产过程中常用的炼铁工艺,用于将炼钢过程中产生的高磷铁水进行脱磷处理,并同时生成具有一定含铁量的渣。

脱磷是炼钢过程中的一个重要环节,因为高磷含量的钢铁会使钢的力学性能下降,同时还会影响钢的冷加工性能。

因此,通过转炉脱磷造渣工艺,可以有效降低钢铁中的磷含量,提高钢的质量。

2. 工艺原理转炉脱磷造渣工艺的主要原理是利用氧气气体在高温条件下与铁水中的磷发生氧化反应,生成氧化磷(P2O5)。

氧化磷被熔融的渣中吸附,从而实现了脱磷的目的。

具体来说,转炉脱磷造渣工艺分为两个步骤:2.1 碱性补矿在转炉炼钢过程中,通常需要进行钙质或镁质的碱性物料的补矿。

这是因为转炉炼钢过程中消耗了大量的碱质物料,导致炉渣中的碱度下降。

通过补充碱性物料,可以提高炉渣的碱度,为脱磷创造良好的条件。

2.2 硅酸盐造渣在转炉炼钢的末期,废钢或铁水被注入转炉。

同时,掺入含有大量氧化剂的硅酸盐物料,如硅石、硅灰石等。

在高温条件下,硅酸盐物料会与铁水中的磷发生反应,生成氧化磷。

氧化磷被熔融的渣中吸附,从而脱离钢水,实现脱磷的目的。

3. 工艺流程转炉脱磷造渣工艺的流程如下:1.准备碱性物料:根据炉渣的碱度要求,准备钙质或镁质的碱性物料,并进行补充。

常用的碱性物料包括石灰石、白云石等。

2.准备硅酸盐物料:选择合适的硅酸盐物料,如硅石、硅灰石等,并加入适量的氧化剂。

3.开始转炉炼钢:将废钢或铁水注入转炉,并进行炼钢操作。

4.碱性补矿:在适当的时机,通过给炉内注入碱性物料,提高炉渣的碱度。

5.硅酸盐造渣:当转炉炼钢接近末期时,通过给炉内注入硅酸盐物料,利用氧化剂促进磷的氧化反应。

6.淋渣:根据炉内的渣情况,选择合适的时间进行淋渣操作。

淋渣可以通过人工或机械设备进行。

7.渣铁分离:在脱磷过程中,渣中生成的氧化磷会被吸附在渣中,从而脱离钢水。

通过合适的方法,将渣与钢水分离。

8.尾渣处理:处理分离出来的尾渣,并对其进行资源化利用或安全处理。

氧气转炉炼钢的脱磷问题

氧气转炉炼钢的脱磷问题

20
炼铁技术由中东向欧州南部传播
21
埃及古墓墙上的图画
大约公元前1500年
22
16世纪时的木炭炼铁炉 世纪时的木炭炼铁炉
18世纪时的鼓风炼铁炉 世纪时的鼓风炼铁炉
19世纪初时的炼铁炉 世纪初时的炼铁炉
空气底吹炼钢转炉诞生
H.Bessemer(1856), W.Kelly(1857) H.Bessemer(1856), W.Kelly(1857)
铸造生铁可用于生产铸管、机床等设备底座等; 铸造生铁可用于生产铸管、机床等设备底座等; 硬而脆,几乎没有塑性,不能进行轧制、 硬而脆,几乎没有塑性,不能进行轧制、锻压 等塑性变形加工。 等塑性变形加工。
钢材: 钢材:
具有良好塑性,能够进行轧制、锻压、 具有良好塑性,能够进行轧制、锻压、拉拔等 塑性变形加工; 塑性变形加工; 钢制品具有强度高、韧性好、易焊接、耐高温、 钢制品具有强度高、韧性好、易焊接、耐高温、 耐腐蚀等优良特性,因此被广泛利用。 耐腐蚀等优良特性,因此被广泛利用。
成渣较底吹转炉好; 成渣较底吹转炉好; 搅拌较顶吹转炉强; 搅拌较顶吹转炉强; 反应平衡程度高; 反应平衡程度高; 大多数大中型转炉采用了 复吹转炉炼钢。 复吹转炉炼钢。
32Leabharlann 底吹搅拌强度33氧气转炉炼钢主要设备
烟气净化 系统
渣料系统 氧枪系统
主原料装入系统
倾动系统
出钢、 出钢、出渣系统
34
35
3
生铁与钢的成分差别
元素 C P S Si Mn Cr Ni Mo Nb, Nb,V,Ti 生铁 3.5~5.0% 3.5~5.0% 0.06 1.50% 0.06~1.50% 0.015~0.06% 0.015~0.06% 0.25~1.20% 0.25~ 0.25~0.60 0.25~0.60% 钢 0.001~1.2% 0.001~1.2% 0.002~0.04 0.002~0.04% 0.0005~0.04% 0.0005~0.04% 0.01~6.5% 0.01~6.5% 0.12~13.0% 0.12~13.0% ~18% 18% ~10% 10% ~2% ~0.2% 0.2%

精选转炉脱磷少渣炼钢工艺技术发展与现

精选转炉脱磷少渣炼钢工艺技术发展与现

(1) (2)
2[P]+8(FeO)=(3FeO•P2O5)+5Fe
(3)
由于在1400~1600℃时,(3FeO•P2O5)不稳定,为了有效脱磷,则必 须使渣中磷在高碱度下生成更稳定的化合物(4CaO•P2O5),即发生 置换反应:
(3FeO•P2O5)+4(CaO)=(4CaO•P2O5)+3(FeO)
项目
脱磷炉
脱碳炉
炉容量 顶吹氧 底吹搅拌气体及底吹强度
熔剂成分及用量 处理时间 铁水成分
250 t
1.0~1.3 Nm3/t.min CO2: 0.05~0.20
Nm3/t.min 转炉渣-铁矿-石灰-萤石:
30~60 kg/t 8~10 min Si:0.2~0.57 % P:0.090~0.128 %
内容
铁水脱磷基本冶金原理 国外转炉脱磷少渣炼钢技术的发展与现状 宝钢转炉脱磷少渣炼钢工艺技术的研究和开发
铁水脱磷基本冶金原理
第一部分 铁水脱磷基本冶金原理
铁水在氧化性渣下的脱磷反应可表述如下:
2[P]+5(FeO)=(P2O5)+5Fe 3(FeO)+(P2O5)=(3FeO•P2O5) (1)式+(2)式:
铁水包喷吹 脱磷脱硫
铁水包 扒渣
复吹转炉 (LD-OB)
国外转炉脱磷少渣炼钢技术的发展与现状
ORP-M工艺要点
采用混铁车内脱硅,铁水包内脱磷脱硫。 脱硅处理是采用两根喷枪向混铁车铁水喷入CaO、FeO和O2,铁水
[Si]由0.35%降至0.10%; 脱硅铁水倒入铁水包,铁水包吊放置于转盘上(有4个处理工作位
(4)
铁水脱磷基本冶金原理
(3)式+(4)式: 2[P]+5(FeO)+ 4(CaO)=(4CaO•P2O5)+5Fe

顶吹转炉脱磷热力学分析和工艺优化

顶吹转炉脱磷热力学分析和工艺优化

顶吹转炉脱磷热力学分析和工艺优化磷在大多数钢中都是有害元素,脱磷是转炉炼钢的主要任务,本文从热力学角度入手,分析了顶吹转炉炼钢脱磷的影响因素,提出了优化转炉脱磷的措施,对强化顶吹转炉炼钢脱磷、提高钢材质量有重要意义。

标签:顶吹转炉;脱磷;措施1 前言磷在钢中(除炮弹钢、耐蚀钢以外)是有害元素,易使钢发生“冷脆”现象,尤其在高碳钢中更是明显,其原因是由于磷元素富集在铁素体晶界上形成“固溶强化”的作用,造成晶粒间的强度提高,从而产生脆性。

除此之外,磷含量越高越容易在结晶边界析出磷化物,降低钢的冲击值[2]。

因此,控制顶吹转炉炼钢过程中的脱磷反应是控制回磷和提高钢材质量重要而复杂的工作。

2 脱磷的热力学分析2.1 温度由上可知,温度越高。

K值越小,因此,低温对脱磷有利。

但需要指出的是,提高熔池温度,会使磷的分配比降低,对磷从金属向炉渣的转移不利。

但温度升高降低了炉渣的粘度,加速了石灰的熔解,从而有利于磷从金属向炉渣的转移。

理论研究表明,最有效的脱磷有一个最佳的温度范围(1450~1500℃)。

这就要求冶炼初期,要根据铁水温度采用不同的操作制度。

铁水温度低(1250℃以下),要采用低枪位操作以提高熔池温度,加速石灰的熔解,迅速形成初期渣,充分利用前期炉渣FeO高、炉温低的优势,快速脱磷。

若铁水温度特别高(大于1350℃),冶炼初期要适当采用高枪位操作,并加入部分矿石,抑制炉温的快速升高,同时也有利于石狄的溶解,延长冶炼在低温区(1500℃以下)的运行时间。

实践证明,尽管冶炼终点温度高,会降低磷在钢一渣中的分配比,但脱磷的关键仍然是冶炼过程渣特别是终渣的控制。

也就是说温度的影响不如(FeO)和(Cao)显著。

2.2 炉渣碱度因为CaO是使aP205降低的主要因素,增加(CaO)达到饱和含量可以增大aCa0,亦即增加自由CaO(不与酸性氧化物结合)的浓度,会使(P205)提高或鋼中[P]降低。

但渣中(CaO)过高,将使炉渣变稠,同样不利于脱磷。

转炉炼钢脱磷工艺理论与实践

转炉炼钢脱磷工艺理论与实践

转炉炼钢脱磷工艺理论与实践摘要:中国的钢铁生产领先于世界,现在正是处在从钢铁大国到强国的高速发展阶段,许多炼钢技术在国际上拥有领头地位。

判断钢铁品质好坏关键指标就是其中的磷含量。

脱磷效果是否良好决定了产钢是否符合标准。

本文主要介绍转炉炼钢厂脱磷工艺的原理,并融合炼钢实际操作对脱磷工艺中的注意事项进行详细介绍。

关键词:转炉炼钢;磷含量;炉外脱磷前言:全球使用范围最广的金属材料就是钢铁,是现代建筑不可或缺的生产材料。

钢材加工有冷热加工两种,按照途可将钢铁分为结构钢,工具钢,特种钢,专业钢等,加工方法。

因为生产方式的多样化就对非金属元素的要求非常严格,其中主要为磷元素,它的含量是钢材质量是否达标的重要指标。

恰当的磷含量能增加钢的强性,但对于大部分的钢来说,磷都是一个有危害的元素,高磷量会使钢的可塑性减弱,可焊性和冲击韧性变低。

有研究表明,在钢水凝固过程中,磷的偏析集中在晶界,从而引起钢在低温环境下的脆性,将这种现象叫做“冷脆” 。

磷含量对钢的影响是如此之大,以至于即使极少的磷(0.01%)也会引发钢的低温脆性。

所以要求普通钢的磷含量小于0.04%。

像寒冷地区的钻井平台,船舶,钢轨,钢制轴承零件,液化气管道等要求钢的磷含量应小于0.03%。

脱磷反应是转炉炼钢过程中重要的物理化学反应,也是转炉炼钢的基本任务之一。

本文依据最常用的转炉炼钢工艺介绍脱磷工艺原理,并与实际情况相融合表明脱磷工艺中的注意事项。

1磷的来源与存在形式铁矿石含大量磷,磷在高炉炼铁中几乎都进到了铁水里,铁水中磷的含量和铁矿石中磷的含量成正比,冶炼的生铁中磷含量可达2.0%以上。

此外,在炼钢过程中加入铁合金也会带来许多磷。

磷在铁水中大多以元素形式存在,一小部分为磷化物。

2 转炉炼钢脱磷原理与条件2.1 转炉炼钢脱磷原理在转炉吹炼过程中,铁水中的磷被氧化成P2O5变成炉渣。

P2O5是一种酸性含氧物质,能和炉渣中的碱性含氧物质FeO、CaO、MnO、MgO等形成磷酸盐化合物。

转炉炼钢脱磷工艺理论与实践

转炉炼钢脱磷工艺理论与实践

转炉炼钢脱磷工艺理论与实践摘要:适当的磷可以提升钢的强度,但是对于大多数的钢种都是有害元素,磷含量过高会降低钢材的塑性、焊接性以及冲击韧性。

研究表明磷在钢液凝固过程中发生偏析现象比较集中地聚集在晶界处,导致较低温度下钢材性能变脆,通常成为“冷脆”现象。

磷含量对钢铁的影响极大,即使很少量的磷(0.01%)也会导致钢材的低温脆性。

因此对于普通的钢种磷含量要求在0.04%以内,在低温环境下应用的钢种要求含磷低到0.003%以下,如严寒地区的钻井平台、船舶、轨道、钢结构承重件、液化气管道等。

脱磷反应是转炉炼钢过程重要的物理化学反应,也是转炉炼钢的基本任务之一。

结合实践进行说明脱磷过程注意事项。

关键词:转炉炼;钢脱磷;工艺1转炉炼钢脱磷原理与条件1.1转炉炼钢脱磷原理转炉吹炼过程铁水中的磷被氧化生成P2O5进入炉渣中,P2O5是酸性氧化物,能与炉渣中的碱性氧化物FeO、CaO、MnO、MgO等生成磷酸盐化合物,更稳定的存在渣中,随炉渣一起除掉。

炉渣碱度较低时磷多以磷酸铁(3FeO•P2O5)的形式存在,炉渣碱度较高时磷多以磷酸钙(3CaO•P2O5或4CaO•P2O5)的形式存在。

1.1.1磷的氧化反应磷的氧化反应在钢—渣界面上进行,反应方程式一般有2种:4/5[P]+2[O]=2/5(P2O5)标准吉布斯能△Gθ=-384953+170.24T(J/mol)。

或者:4/5[P]+2(FeO)=2/5(P2O5)+2Fe(l)标准吉布斯能△Gθ=-142944+65.48T(J/mol)。

1.1.2P2O5在炉渣中的固定氧化生成的P2O5如要在渣中稳定存于炉渣中,必须与炉渣中的CaO等碱性氧化物反应生成稳定的磷酸盐化合物3CaO•P2O5或4CaO•P2O5,反应方程式为:2[P]+5[O]+3(CaO)=(3CaO•P2O5)标准吉布斯能△Gθ=-1486160+6360T。

由反应方程式可以看出,转炉炼钢脱磷原理在于磷的氧化进入渣中和转化为稳定的磷酸盐,脱磷速度主要取决于钢—渣界面磷的氧化反应。

转炉炼钢脱磷工艺分析

转炉炼钢脱磷工艺分析
当铁水中磷含量比较高005或者铁水中的硅06含量比较高时为提高转炉的脱磷率在冶炼时往往采用双渣法即在转炉的冶炼初期高枪位快速造好渣在低温高碱度的情况下快速脱磷然后倒炉放渣再加入一部分白灰保持熔渣的高碱度一直吹炼到拉碳此时钢水中的p含量一般在0010以下取样测温根据判断结果及熔渣情况再加入一部分白灰保持熔渣的高碱度很好的流动性然后确定补吹的时间取样测温出钢
II
第三章 试验方案的设计.............................................................................................................. 27 3.1 沙钢双渣脱磷的现状........................................................................................................ 27 3.1.1 双渣操作的好处......................................................................................................... 27 3.1.2 沙钢双渣脱磷情况.....................................................................................................27 3.1.3 脱磷的效果及回磷问题............................................................................................ 28 3.2 目前存在的问题................................................................................................................. 29 3.2.1 前期脱磷结果............................................................................................................. 29 3.3 影响前期脱磷的主要因素............................................................................................... 30 3.3.1 钢水中硅的氧化......................................................................................................... 30 3.3.2 前期渣碱度的控制.....................................................................................................30 3.3.3 倒前期渣时间的控制................................................................................................ 31 3.4 180t 转炉冶炼终点脱磷情况.......................................................................................... 32 3.4.1 增碳剂加入量的控制................................................................................................ 32 3.4.2 冶炼终点脱磷情况.....................................................................................................32 3.5 180t 转炉冶炼工艺改进方案.......................................................................................... 32 3.5.1 冶炼前期控制............................................................................................................. 33 3.5.2 冶炼终点控制............................................................................................................. 33 结论..............................................................................................................................................35 参考文献..................................................................................................................................... 36 致 谢....................................................................................................................................... 37

转炉脱磷及深脱磷

转炉脱磷及深脱磷

转炉脱磷工艺近年来,随着我国钢材的发展,对低磷钢的生产要求越来越高,对高级别钢特别是低磷钢的需求大大增加,这些产品对钢中磷的质量分数提出了很高的要求,大多要求磷含量低于0.015%;低温用钢管、特殊深冲钢、镀锡板要求钢中磷低于0.010%;一些航空、原子能、耐腐蚀管线用钢要求磷低于0.005%,所以超低磷钢将成为以后发展的主要方向。

下面是关于国内外对超低磷钢的生产研究。

以及现场的一些主要工艺过程。

一国际上对超低磷钢的研究日本发明的转炉脱磷工艺主要方法有:JFE的LD-NRP法,住友金属的SRP法,神户制钢的H炉,新日铁的LD-ORP法和MURC法。

其操作方式住友有两种,第一种是采用两座转炉双联作业,一座是脱磷,另一座接受来自脱磷炉的低磷铁水脱碳,即“双联法”,典型的双联法工艺流程为:高炉铁水—铁水预处理—转炉脱磷—转炉脱碳—二次精炼—连铸;第二种是在同一座转炉上进行铁水脱磷和脱碳,类似传统的“双渣法”。

德国发明的转炉脱磷工艺:TBM工艺(蒂森底吹技术)目前双联法是生产超低磷钢的最先进转炉炼钢法,其主要优势是:炉内自由空间大,允许强烈搅拌钢水,顶吹供氧,高强度底吹,不需要预脱硅,废钢比较高,炉渣碱度比较低,渣量低,处理后铁水温度较高(1350),脱磷效率明显提高。

1转炉脱磷新工艺1.1JFE福山制铁所福山制铁所,有两个炼钢厂(第二炼钢厂和第三炼钢厂)。

该制铁所是日本粗钢产量最好的厂家。

第三炼钢厂有2座320T的顶底复吹转炉,采用LD-NRP工艺(双联法),一座转炉脱磷,另一座转炉脱碳,转炉脱磷能力为450万t/a。

该厂1999年开始全量铁水转炉脱磷预处理。

转炉脱磷指标:吹炼时间为10分钟,废钢比为7%~10%;氧气流量为30000立方米/h,底吹气体为3000立方米/h;石灰消耗为10~15kg/t。

转炉脱碳指标:炉龄低于脱磷转炉,转炉在炉役前期用于脱碳,炉役后期用于脱磷,炉龄约7000炉;石灰消耗5~6kg/t。

转炉炼钢脱磷工艺的探讨

转炉炼钢脱磷工艺的探讨

转炉炼钢脱磷工艺的探讨【摘要】本文从脱磷的热力学分析入手,对冶炼过程中温度、炉渣碱度、渣中(FeO),等对磷含量的影响进行了探讨。

同时探讨了回磷的原因、影响的因素和防止的措施。

【关键词】转炉炼钢;脱磷工艺;探讨磷在钢中是以【Fe3P】或【Fe2P】形式存在,一般以【P】表示。

磷含量高时,会使钢的朔性和韧性降低,即使钢的脆性增加,这种现象低温时更严重,通常把它称为“冷脆”。

且这种影响常常随着氧,氮含量的增加而加剧。

磷在连铸坯中的偏析仅次于硫,同时它在铁固溶体中扩散速度又很小。

不容易均匀化,因而磷的偏析和难消除。

由于炼铁过程为还原性气氛,脱磷能力较差。

因此脱磷是炼钢过程的重要任务之一。

在20世纪90年代中后期,为解决超低磷钢的生产难题,世界上各大钢厂都曾经进行过转炉铁水脱磷实验研究。

1、铁水预处理方法1.1喷吹苏打粉处理日本住友公司鹿岛厂开发的“住友碱精炼法”是成功用于工业生产的苏打精炼法。

工艺流程:从高炉流出的铁水先经脱硅处理,即将高炉铁水注入混铁车内,用氮气输送和喷吹烧结矿粉,喷入量为每吨铁水40公斤,最大供粉速度为每分钟400公斤,最大吹氧量为每分钟50立方米,脱硅量约为0.4%。

脱硅处理后的铁水硅含量可降到0.1%以下。

然后用真空吸渣器吸出脱硅渣,进行脱磷处理,以氮气为载气向铁水中喷入苏打粉,苏打粉用量为每吨18公斤,最大供粉量为每分钟250公斤,最大吹氧量为每分钟50立方米,处理后铁水中【P】≤0.001%,【S】≤0.003%,再用真空吸渣器吸出脱磷渣,并将其送到苏打回收车间,经水浸后可回收约80%的Na2O,最后将处理过的铁水倒入转炉冶炼。

1.2喷吹石灰系熔剂处理由于石灰系熔剂具有成本低,对环境污染小的优点,因此受到重视,并不断对其深入研究,以使其满足精炼铁水的需要。

工艺流程:向高炉铁沟中加入铁磷进行脱硅处理,加入量为每吨铁水27公斤,处理后铁水含硅量由0.5%降到0.15%,氧的利用率为80%-90%。

莱钢转炉脱磷优化生产工艺措施

莱钢转炉脱磷优化生产工艺措施

莱钢转炉脱磷优化生产工艺措施摘要:通过对现有装备和工艺技术能力进行系统分析,莱钢炼钢厂通过完善与优化转炉护炉技术、推广应用连铸新技术和新工艺、在铁水预处理、转炉、二次精炼、等方面的先进工艺技术,保证了炼钢生产的稳定运行。

关键词:转炉品种结构工艺优化1、前言高效转炉工艺技术主要以保证质量为前提,以高作业率为基本手段来实现高质量、低成本。

实现转炉的高效生产不仅需要科学管理,更重要的是持续不断的技术改造创新,采用优质耐材和先进工艺、生产设备技术,以不断提高转炉脱磷工艺技术装备水平。

莱钢炼钢转炉系统经过近年来改革和发展,坚持走引进、消化、吸收、再创新的道路,在品种、质量等方面有了质的飞跃,而且自主开发集成了多项关键技术。

目前,莱钢炼钢系统主要包括转炉炼钢和电炉炼钢,转炉炼钢现有3座50t转炉、1座60t转炉,5座120t转炉,相应配套小方坯连铸机、带钢坯连铸机、矩形坯连铸机、异型坯连铸机、板坯连铸机,生产能力为1 000万t/a。

莱钢炼钢厂针对实际生产中存在的薄弱工艺环节,对现有设备工艺进一步优化改造,提高了生产装备水平,完善炼钢新工艺、新技术,进一步发挥了转炉的潜能,提高了质量,降低了成本。

2、依靠技术创新,提升工艺水平自金融危机以来。

全球钢铁消费需求不断下滑,国内钢企面临日益严峻的增支减利和结构优化调整压力。

为了更好地生存与发展,坚持以效益为中心,以技术创新为手段,立足于自主开发,加快新技术和新工艺的集成应用,大力发展循环经济,挖掘节能降耗潜力;同时加大高端新产品开发力度,提高产品质量,改善品种结构,积极应对市场变化。

莱钢炼钢系统充分发挥广大工程技术人员的聪明才智,大力开展技术攻关,提升工艺技术水平,促进了生产顺行,改善了产品质量,降低了生产成本。

特别是在炼钢系统,不断开发和应用新技术、新工艺,依靠技术进步和创新,工艺降本增效和新产品开发工作取得了显著成效。

3、转炉炼钢工艺过程在转炉炼钢过程中,通过氧枪向熔池内吹入氧气,与铁水中的碳、硅、磷、硫等元素反应生成炉渣、废气等,同时释放热量使熔液的温度升高,进而得到所需的钢种。

转炉脱磷少渣炼钢工艺技术发展与现状概述

转炉脱磷少渣炼钢工艺技术发展与现状概述

转炉脱磷少渣炼钢工艺技术发展与现状概述引言钢铁是现代社会重要的基础材料之一,而磷是钢铁中的一个有害杂质。

传统的炼钢工艺中,磷的含量往往难以控制,导致钢材性能下降。

为了解决这个问题,转炉脱磷少渣炼钢工艺被广泛应用。

本文将对转炉脱磷少渣炼钢工艺的发展与现状进行概述。

转炉脱磷少渣炼钢工艺的原理转炉脱磷少渣炼钢工艺是通过将含有磷的原料在高温下与氧化剂反应,将磷转化为易脱离熔渣的磷酸盐,从而实现脱磷的目的。

其基本原理如下:1.熔融脱磷:在高温条件下,钢中的磷溶解于熔渣中,通过加入适量的熔剂,形成易分离的磷酸盐熔渣。

2.氧化脱磷:在高温条件下,将空气、氧气或含氧气的气体通入转炉中,氧化钢中的磷,将其转化为磷酸盐。

3.过渡氧化脱磷:在转炉炉脱磷过程中,通过在转炉中加入适量的铁素体,将磷转化为铁磷,再将其转化为磷酸盐。

转炉脱磷少渣炼钢工艺的发展历程转炉脱磷少渣炼钢工艺起源于20世纪50年代,经过多年的研究和改进,逐渐成熟并得到广泛应用。

其发展历程主要包括以下几个阶段:1.早期工艺的发展:早期的转炉脱磷少渣炼钢工艺主要采用人工喷镁的方式进行脱磷,但由于操作不稳定、生产效率低等问题,限制了其在实际生产中的应用。

2.化学脱磷工艺的应用:20世纪60年代,化学脱磷工艺开始应用于转炉脱磷少渣炼钢中。

该工艺是通过加入一定比例的化学试剂,如石灰石、白云石等,与熔渣中的磷反应,形成易分离的磷酸盐。

3.氧化脱磷工艺的引入:20世纪70年代,随着氧气和氧气枪在炼钢工艺中的应用,氧化脱磷工艺得到了推广。

该工艺是通过在转炉中加入氧气,氧化钢中的磷,将其转化为磷酸盐。

4.过渡氧化脱磷工艺的发展:20世纪80年代,随着对转炉脱磷少渣炼钢工艺的进一步研究和优化,过渡氧化脱磷工艺得到了广泛应用。

该工艺是通过在转炉中加入铁素体,将磷转化为铁磷,再将其转化为磷酸盐。

5.现代工艺的创新与应用:近年来,随着科技的进步和钢铁工业的发展,转炉脱磷少渣炼钢工艺逐渐采用自动化控制、机器学习等现代技术,提高了工艺的稳定性和生产效率。

转炉冶炼高磷高带渣量铁液脱磷工艺研究

转炉冶炼高磷高带渣量铁液脱磷工艺研究

转炉冶炼高磷高带渣量铁液脱磷工艺研究转炉冶炼是当今冶金行业中最常用的冶炼方法,由于高磷高带渣量铁液的特殊性,传统冶炼过程使用的工艺参数受到了较大的限制。

因此,研究如何利用转炉冶炼技术脱除高磷高带渣量铁液中的磷,对提高铁液质量和提高冶金生产效率具有重要意义和指导意义。

首先,要明确脱磷对转炉冶炼影响。

转炉冶炼高磷高带渣量铁液最主要的影响有:(1)由于磷是一种非金属元素,其溶解度非常低,当磷溶解度过高时,其在熔炼、坩埚和下砂过程中形成砂渣,阻碍清除砂渣,从而影响转炉冶炼的效率,导致杂质含量过高;(2)当磷含量过高时,会影响转炉冶炼的熔强度,从而降低冶炼质量;(3)磷本身是易焊性金属,磷在铁液中高度溶解,会影响转炉冶炼过程中生成的熔铸,从而降低铸件的质量。

其次,要考虑脱磷工艺的技术参数设置。

针对高磷高带渣量铁液的脱磷,应该从技术参数的设置入手。

建议采用相应的冶炼参数,例如增加转炉温度,调整转炉的转矩、转速、温度梯度等。

在实际冶炼过程中,要注意控制转炉内部熔炼温度和溶解度,加速磷的溶解过程,使磷容易脱除,从而提高冶炼效率和质量。

此外,可以使用辅助剂催化脱磷。

有些辅助剂可以促进铁液中磷的溶解,增加转炉冶炼过程中磷的溶解度,因此可以有效催化脱磷,提高转炉冶炼效果。

最后,如何选择脱磷剂也是值得考虑的一个因素,目前已经开发的脱磷剂包括磷酸根和硫酸、氯化物等。

在选择脱磷剂时,还需考虑
其磷溶解度、操作成本、环境危害等因素。

总之,研究转炉冶炼高磷高带渣量铁液的脱磷工艺具有重要的指导意义。

在实际应用中,应该分析影响高磷高带渣量铁液脱磷工艺的各种因素,科学设置冶炼参数,合理选择脱磷剂,以确保冶炼质量和效率,满足生产需求。

转炉脱磷造渣工艺

转炉脱磷造渣工艺

转炉脱磷造渣工艺1. 引言转炉脱磷造渣工艺是钢铁生产过程中的一项重要工艺,用于去除炼钢过程中产生的磷元素,以保证钢铁产品的质量和性能。

本文将介绍转炉脱磷造渣的基本原理、工艺流程和关键技术。

2. 转炉脱磷造渣的原理转炉脱磷造渣是通过向钢水中添加磷灰石或其他磷源,利用氧气吹炼的过程中,在高温下将磷元素与其他元素反应生成易于脱离炉渣的化合物,实现磷的去除。

转炉脱磷造渣的原理可以归纳为以下几个方面:•磷灰石溶解法:磷灰石在高温下可以与钢中的溶解铁反应生成可溶解的化合物。

在转炉中加入磷灰石后,磷元素与炼钢过程中形成的氧化铁和砂状物质反应生成可溶解的磷化合物,随炉渣一起排出。

•气相反应法:在转炉脱磷过程中,通过向炉内注入氧气形成高温气氛,利用氧气与炼钢过程中产生的磷元素发生反应,生成易于脱离炉渣的磷化合物。

•硅酸盐溶解法:在炼钢过程中,添加硅酸盐类物质可以与磷元素反应生成低熔点的磷化合物,帮助磷元素更好地转移到炉渣中。

3. 转炉脱磷造渣工艺流程转炉脱磷造渣的工艺流程一般包括以下几个步骤:3.1 钢水准备在转炉脱磷造渣工艺中,首先需要准备好合适的钢水。

钢水的成分和温度对脱磷效果有很大的影响,通常需要控制好钢水的硫含量、温度和其他杂质含量。

3.2 炉前处理在转炉脱磷造渣工艺中,炉前处理是非常重要的一环。

通过炉前处理可以将钢水中的杂质和不洁物去除,以减少对转炉脱磷造渣工艺的影响。

3.3 加入磷源在转炉中加入适量的磷源是实现脱磷的关键步骤。

常用的磷源有磷灰石、磷矿石等,选择合适的磷源对脱磷效果有很大的影响。

3.4 氧气吹炼在加入磷源后,转炉中开始进行氧气吹炼处理。

氧气的注入可以改变钢水中的气氛,促进磷元素与其他元素的反应,生成易于脱离炉渣的化合物。

3.5 炉渣处理转炉脱磷造渣过程中产生的炉渣需要进行处理。

一般情况下,炉渣会经过冷却、处理、分离等步骤,将渣中的磷元素尽可能去除,以保证炉渣的质量和性能。

4. 转炉脱磷造渣的关键技术转炉脱磷造渣的关键技术包括以下几个方面:4.1 磷源选择选择合适的磷源对于脱磷工艺的效果至关重要。

大型转炉炼钢脱磷的研究

大型转炉炼钢脱磷的研究

大型转炉炼钢脱磷的研究摘要:主要研究近年来脱磷的方法,一些防止回磷的措施,复吹转炉成渣过程对脱磷的影响,高磷铁水脱磷效率影响因素,以及钢渣在微波场中还原脱磷的工艺。

关键词:脱磷;回磷;炉渣碱度;还原;预熔脱磷剂;高磷铁水;炼钢工艺1. 前言一般情况下,磷是钢材中的有害成分,使钢具有冷脆性。

磷能溶于a-Fe中(可达1. 2%),固溶并富集在晶粒边界的磷原子使铁素体在晶粒问的强度大大增高,从而使钢材的室温强度提高而脆性增加,称为冷脆。

但含磷铁水的流动性好,充填性好,对制造畸形复杂铸件有利。

此外,磷可改善钢的切削性能、易切削钢中磷含量可达0.08%一0.15%。

2.转炉的脱磷2.1转炉脱磷的基本原理通常认为,磷在钢中是以[Fe3P]或[Fe_2P]的形式存在,为方便起见,均用[P]表示。

炼钢过程中的脱磷反应是在金属液与熔渣界面进行,首先是[P]被氧化成(P2O5),然后与(CaO)结合成稳定的磷酸钙,其反应式可表示为:2.2影响脱磷的因素磷的氧化在钢渣界面进行,按炉渣分子理论的观点,反应式如下:2.3回磷现象所谓的回磷现象,就是磷从熔渣中又返回到钢液中。

成品钢中磷含量高于终点钢中的磷含量也属于回磷现象。

熔渣的碱度或氧化亚铁含量降低,或石灰划渣不好,或温度过高等,均会引起回磷现象。

出钢过程中,由于脱氧合金加入不当,或出钢下渣,或合金中磷含量较高等因素,也有导致成品钢中磷高于终点钢[P]含量。

通常采用避免钢水回磷措施:挡渣出钢,尽量避免下渣;适当提高脱氧前碱度;出钢后向钢包渣面加一定量石灰,增加炉渣碱度;尽可能采取钢包脱氧,而不采取炉内脱氧;加入钢包改质剂。

3 钢渣在微波场中还原脱磷微波技术在加热高电介质耗损原料方面是一种简单而有效的方法,在冶金还原领域有着广阔的应用前景。

相较于传统加热还原工艺需要较高的温度和损耗,具有体积性加热、选择性加热、非接触性加热、即时性等加热特性的微波场在较低温度下能够提供更多的热量。

大型转炉炼钢脱磷的研究_杨文远

大型转炉炼钢脱磷的研究_杨文远

森公司利用终点前加强底吹搅拌可生产钢中磷低
于 0 .006 %的深冲钢 。 法国索拉克钢厂利用底吹 喷石灰粉法生产深冲钢(马口铁)和重轨钢[ 2] , 产
品质量在国际领先 。 广 钢厂引进 LD -AC 法吹 炼普通铁水 , 但脱磷效果得到明显改善 。这些有
效的脱磷工艺都值得深入研究 , 取其有益部分加
以采用 。
3 .2 .2 吹炼终点钢中磷含量的回归分析
对于采用溅渣护炉的数据进行回归分析 , 吹
炼终点钢中磷含量与各操作参数关系如式(1)。
[
P]
2 钢
=-0
.0208
+0
.0025ln t
+0(.0T0F2e9)9 +
0 .000791 (P2O5 )
+0
.00105 R
+
0
.0000134(MgO)+
0 .083 %, S 0 .006 %, 铁水温度 1 315 ℃。HT98 炉 的吹炼过程中金属和炉渣成分变化如图 3 所示 。
吹炼前期金属 、炉渣的成分和温度属于正常 情况 。吹炼到 8 min 40 s 时 , 炉渣碱度达到 1 .4 , 渣 中(T .Fe)10 .93 %, 金属中磷已下降到 0 .021 %。 从 9min 29 s 一直到 17 min 39 s 钢水都处于回磷阶 段 , 如图 3(a)中金属成分变化曲线 。 这一时期炉 渣的(T .Fe)下降到 6 %~ 10 %, 较正常吹炼炉次 低 5 %~ 8 %。炉渣碱度 1 .2 ~ 1 .4 , 比正常炉次 低 0 .4 ~ 0 .6 。 石灰加入量多于 HT69 炉 , 主要是 石灰未能溶解于渣中 。 吹炼到 17 min 39 s 时 , 渣 中游离氧化钙 10 .46 %, 相当于正常炉次的 3 倍 。 图 2 中的曲线 2 表明回磷炉次脱磷率的变化 。吹 炼中期钢水回磷是由于炉渣成分控制不当 。

探析转炉脱磷影响因素及其工艺发展

探析转炉脱磷影响因素及其工艺发展

探析转炉脱磷影响因素及其工艺发展1 概述磷、硫是钢铁冶炼中常见的杂质元素,其中磷元素是炼钢过程中必须考虑并加以控制的元素。

在绝大多数钢种中磷是有害元素,为提高钢的纯净度,必须尽量降低钢液中的磷含量。

通常认为,磷在钢中以[Fe2P]或[Fe3P]的形式存在,为方便起见,本文均用[P]表示。

由于炼铁过程为还原性气氛,炼铁原料中的磷几乎全部进入铁水中,而转炉以其自身的氧化性和炉渣特点为脱磷创造了良好的环境,有着较好的脱磷效果,能达到85%,钢中的磷主要是在转炉冶炼过程中被去除的,因此转炉终点磷控制直接影响产品磷含量。

由于脱磷反应是在钢-渣界面进行的,因此控制和调整好转炉内炉渣的成分和性质是转炉脱磷的重要条件,其中炉渣碱度、炉渣氧化性和炼钢熔池温度是影响脱磷的主要因素。

本文将重点分析转炉脱磷的影响因素和国内外转炉脱磷工艺的发展情况。

2 转炉脱磷的热力学理论分析转炉脱磷反应是在金属液与熔渣界面上进行的,针对脱磷的热力学平衡,国内外学者均做了研究,其主要的化学反应方程式如下:钢液/熔渣界面反应:(1)熔渣中的反应:(2)式(1)+式(2)得:(3)从反应式可以看出,反应在相界面上进行,在高氧化铁的条件下,磷可以得到有效的去除。

在炼钢的熔渣制度下,(P2O5)并不稳定,必须和碱性氧化物结合才能被脱除,而FeO和CaO是生成稳定磷酸盐的最主要的氧化物。

吹炼前期,生成的(P2O5)主要与(FeO)生成较稳定的(3FeO·P2O5)()。

但碳氧反应的进行,吹炼温度不断上升,在1400℃~1620℃时,(3FeO·P2O5)逐渐分解,使磷又回到钢液当中。

为了有效地彻底脱磷,必须用石灰造高碱度钢渣,使磷在高碱度下生成更稳定的磷酸盐渣3CaO·(P2O5)或4CaO·(P2O5),其中4CaO·(P2O5)()更稳定,3CaO·(P2O5)次之,但通常达到平衡时的反应产物是4CaO·(P2O5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转炉炼钢脱磷工艺的探讨
【摘要】本文从脱磷的热力学分析入手,对冶炼过程中温度、炉渣碱度、渣中(FeO),等对磷含量的影响进行了探讨。

同时探讨了回磷的原因、影响的因素和防止的措施。

【关键词】转炉炼钢;脱磷工艺;探讨
磷在钢中是以【Fe3P】或【Fe2P】形式存在,一般以【P】表示。

磷含量高时,会使钢的朔性和韧性降低,即使钢的脆性增加,这种现象低温时更严重,通常把它称为“冷脆”。

且这种影响常常随着氧,氮含量的增加而加剧。

磷在连铸坯中的偏析仅次于硫,同时它在铁固溶体中扩散速度又很小。

不容易均匀化,因而磷的偏析和难消除。

由于炼铁过程为还原性气氛,脱磷能力较差。

因此脱磷是炼钢过程的重要任务之一。

在20世纪90年代中后期,为解决超低磷钢的生产难题,世界上各大钢厂都曾经进行过转炉铁水脱磷实验研究。

1、铁水预处理方法
1.1喷吹苏打粉处理
日本住友公司鹿岛厂开发的“住友碱精炼法”是成功用于工业生产的苏打精炼法。

工艺流程:从高炉流出的铁水先经脱硅处理,即将高炉铁水注入混铁车内,用氮气输送和喷吹烧结矿粉,喷入量为每吨铁水40公斤,最大供粉速度为每分钟400公斤,最大吹氧量为每分钟50立方米,脱硅量约为0.4%。

脱硅处理后的铁水硅含量可降到0.1%以下。

然后用真空吸渣器吸出脱硅渣,进行脱磷处理,以氮气为载气向铁水中喷入苏打粉,苏打粉用量为每吨18公斤,最大供粉量为每分钟250公斤,最大吹氧量为每分钟50立方米,处理后铁水中【P】≤0.001%,【S】≤0.003%,再用真空吸渣器吸出脱磷渣,并将其送到苏打回收车间,经水浸后可回收约80%的Na2O,最后将处理过的铁水倒入转炉冶炼。

1.2喷吹石灰系熔剂处理
由于石灰系熔剂具有成本低,对环境污染小的优点,因此受到重视,并不断对其深入研究,以使其满足精炼铁水的需要。

工艺流程:向高炉铁沟中加入铁磷进行脱硅处理,加入量为每吨铁水27公斤,处理后铁水含硅量由0.5%降到0.15%,氧的利用率为80%-90%。

脱硅后的铁水流入混铁车中,并与混铁车内上一炉脱磷脱硫渣混合,待渣与铁分离后扒渣。

然后,向混铁车内铁水中用氮气为载气体,流量为每分钟为3-5立方米,喷入石灰熔剂。

处理后温度为13500C左右,处理时间25分钟。

将处理后的铁水倒入转炉,在转炉内进一步脱磷,可使钢中【P】≤0.001%。

2、转炉冶炼过程中脱磷
2.1氧化脱磷
磷在钢液中能够无限溶解,。

而它的氧化物P2O5在钢液的溶解度却很小,因此,要除去钢中的磷,可设法使磷氧化生成P2O5进入炉渣,并固定在渣中。

炼钢过程中的脱磷反应在渣—钢界面和氧气顶吹转炉的乳浊液中,是被渣中FeO 氧化,其反应为:
2【P】+5(FeO)= (P2O5)+5【Fe】
△G0=-1495194+684.92T(J/mol)
生成的P2O5的密度较小,几乎不溶于钢液,所以一旦生成即上浮转入渣相。

但由于冶炼初期渣中较多的碱性氧化物是FeO,因此进入炉渣的P2O5仅和FeO 结合成磷酸铁盐。

其反应:
(P2O5)+3(FeO)=(3FeO·P2O5)
△H0=-128030J/mol
根据生成焓△H0判断,渣中(P2O5),(3FeO·P2O5)却不稳定,它们在炼钢过程中随着熔池温度的不断升高而逐渐分解,使磷又回到钢液之中。

所以在炼钢温度下,以氧化铁为主的炉渣脱磷能力很低。

为了使脱磷过程进行得比较彻底,防止已被氧化的磷大量返回钢液,目前大多工厂的做法是向熔池加入一定量的石灰,增加渣中强碱性氧化物CaO的含量,使五氧化二磷和氧化钙生成较稳定的磷酸钙,从而提高炉渣的脱磷能力。

在生产中,随着石灰的变化,炉渣的碱度会逐渐升高,渣中的游离的CaO逐渐增加,此时将发生置换反应:
即:(3FeO·P2O5)+4(CaO)=(4CaO·P2O5)+5【Fe】
所以,碱性氧化渣脱磷的总反应为:
2【P】+5(FeO)+4(CaO)=(4CaO·P2O5)+5【Fe】
转炉冶炼过程中低碳低磷铁水转炉去磷率达到90%以上。

2.1.1影响炉渣脱磷的主要因素:(1)炉渣成分的影响:炉渣成分对脱磷反应的影响主要反应在渣中的FeO含量和炉渣碱度上。

渣中的FeO是脱磷的首要条件,如果渣中没有氧化铁或氧化铁含量很低,就不可能使磷氧化。

但是,纯氧化铁炉渣只有很小的去磷效果,因为渣中(3FeO·P2O5)在高温下不稳定,它会分解或被硅、锰还原,而渣中(4CaO·P2O5)在17100c的温度下比较稳定,即炼钢温度下它分解的可能性不大,所以CaO是脱磷的必要条件;(2)温度的影响:脱磷反应是强放热反应,升高温度会使其平衡常数的数值减小,去除效率下降。

从热力学条件来看,降低温度有利于去P反应进行,但是应该辩证地看待温度的影响,尽管升高温度会使反应的平衡常数K值减少,然而与此同时较高的温度能使炉渣的粘度下降,加速石灰的成渣速度和渣中各组元的扩散速度,强化了磷从金属液向炉渣的转移。

其影响可能超过Kp值得降低,温度过高时,Kp值的下降起主导作用,会使炉渣的去P效率下降。

钢中的磷含量回升;(3)炉渣粘度的影响:炼钢熔池中的脱P反应主要是在炉渣与金属液两相的界面上进行的,所以反应速度与炉渣粘度有关。

通常情况下,炉渣粘度越低,渣中反应物FeO向渣—钢界面的扩散转移速度就越快,渣中反应产物P2O5离开界面溶入炉渣的速度也就越快。

因此,在脱P要求的高碱度条件下,应及时加入稀渣剂改善炉渣的流动性,以促进脱P反应的顺利进行;(4)渣量的影响:随着脱磷反应的进行,渣中P2O5的含量不断升高,炉渣脱P能力逐渐下降。

在一定条件下,增大渣量必然会使渣中的P2O5含量降低,破坏磷在钢—渣间分配的平衡性,促进脱磷反应的继续进行,使钢中的磷含量进一步降低。

所以炉内渣量的多少决定着钢液的脱磷程度。

但渣量过大,会使钢液面上渣层过厚而减慢去磷速度,同时还压抑了钢液的沸腾,使气体及夹杂物的排除受到影响。

2.2回磷
2.2.1产生回磷的原因:冶炼终点一般被认为脱P 反应达到平衡,在出钢过程向钢包加入脱氧剂,将使使钢中的氧以及渣中(FeO)下降,脱氧产物(SiO2),(Al2O3)等进入炉渣,使炉渣碱度降低,从而打破了脱磷反应的平衡状态,有利于(P2O5)的分解和还原,磷又重新进入钢液。

2.2.2影响回磷的因素:(1)出钢过程中下渣是磷的主要原因。

下渣量大,回磷严重;(2)出钢合金化或增碳操作不合理。

如出钢后期补加硅铁,碳化硅,碳粉等;(3)吹氩时,使用氩气压力过高,造成钢液-炉渣翻腾,卷渣,也会增加回磷。

2.2.3防止回磷的措施:要防止钢水会磷,首先是挡好渣,减少出钢过程的下渣量。

其次是严格出钢合金化操作,杜绝出钢后补加合金。

再次出钢时向钢包内投入少量小块石灰以提高钢包内渣层的碱度,稠化炉渣,降低炉渣的反应能力,阻止钢渣接触时发生回磷反应。

3、结束语
转炉脱磷工艺在各国冶金工作者的努力下不断地发展,同时适合转炉脱磷工艺的新型脱磷剂也在研究与发展中,随着世界转炉炼钢技术的发展及炼钢设备的多样化,使传统的转炉炼钢过程逐步转向单一化,这样不仅可以提高钢水的质量,缩短转炉冶炼周期,降低原材料消耗和能耗,而且有利于冶炼过程的控制和管理,更好发挥转炉脱磷工艺的优点。

做好这些就有利于我国目前进行技术改进,提高钢水纯净度,更好的优化钢铁冶炼工艺水平。

相关文档
最新文档