船舶阻力
船舶阻力介绍
![船舶阻力介绍](https://img.taocdn.com/s3/m/30ee1eacf524ccbff0218405.png)
船舶阻力定义船舶运动过程中,流体作用于船体上,阻止其运动的力。
种类当船舶在水面上航行时,船体处于空气和水两种流体介质中运动,必然通受空气和水对船体的阻力。
为研究方便起见,船体总阻力按流体种类分成空气阻力和水阻力。
空气阻力是指空气对船体水上部分的反作川力。
水阻力是水对船体水下部分的反作用力。
进一步把水阻力分成船体在静水中航行时的静水阻力和波限中的阻力增加值(亦称为汹涛阻力)两部分。
静水阻力通常分成裸船体阻力和附体阻力两部分。
所谓附体阻力是指突出于裸船体之外的附属体如舵、舭龙骨、轴支架等所增加的阻力值。
根据这种处理力法,船舶在水中航行时所受到的阻力通常分为两大部分:一是裸船体在静水中所受到的裸船体阻力,另一部分是附加阻力,包括空气阻力、汹涛阻力和附体阳力。
对于常规船型,附体阻力通常仅占船舶阻力的很小部分,故常常通过船模阻力试验确定总阻力后,按经验公式乘以某个适当系数以获得附体阻力的值。
对于特殊船型,如有较大附体的非常规船型(特殊作业船、潜水器、救生船、探测船、水下采矿船等),附加阻力可能较大,需对带有附体的船模进行试验予以确定。
试验中需注意因缩尺船模的附体较小所产生的尺度效应,要求船模尽可能大。
工程中初步估算时常用经验统计数据,结合具体情况作适当修正。
目前尚无有效的理论算法。
在船舶设计中,常用附体阻力系数估计附体阻力。
为减小附体阻力,附体形状应尽可能采用流线型。
船长对阻力的影响船长对阻力的影响在保持排水量不变时,改变船长必然引起L/B及L/▽1/3的变化,当排水量一定时,选用较大的船长L,则B,d,C b必然要作适当的减小及L/B,L/▽1/3随之增加。
随着L/B或L/▽1/3乃的增加,船体变得瘦长,船体型线的纵向曲率变小,船体兴波区域的型线变得平直,兴波作用趋于和缓,波高变低,兴波作用所消耗的能量减少,所以兴波阻力随着变小。
同时由于船长增加以后,尾部型线变平顺减少了旋涡的产生,从而降低了旋涡阻力。
船舶阻力数值计算
![船舶阻力数值计算](https://img.taocdn.com/s3/m/1b0131ac112de2bd960590c69ec3d5bbfd0ada25.png)
船舶阻力数值计算1.船体阻力的计算船体阻力是船舶行驶时由于水的粘性作用在船体表面产生的阻力。
常用的方法有几种,其中一种是波尔根公式:R=К*S*V²其中,R表示船体阻力,К为波尔根系数,S为船体湿表面积,V为船舶的航行速度。
2.波浪阻力的计算波浪阻力是船舶行驶时由于船体在海水中的波浪作用下产生的阻力。
波浪阻力一般可以通过计算波浪幅度的方法来获得,其中较为常用的是费尔康普公式:R_wave = К_wave * ρ * g * A_wave * L / 2其中,R_wave表示波浪阻力,К_wave为波浪阻力系数,ρ为水密度,g为重力加速度,A_wave为波浪振幅,L为船长。
3.粘性阻力的计算粘性阻力是由于水分子的粘性作用在船体周围产生的阻力。
根据流体力学的相关理论,可以通过雷诺数来计算粘性阻力。
一种常用的计算方法是维塔公式:R_viscous = К_viscous * μ * V * S / L其中,R_viscous表示粘性阻力,К_viscous为粘性阻力系数,μ为水的黏度,S为船体湿表面积,L为船长。
4.附加阻力的计算附加阻力是由于船舶与船艏、船尾以及侧板、船舶结构等水流非均匀情况下的相互作用而产生的阻力。
附加阻力的计算比较复杂,常常需要通过模型试验或者计算流体力学模拟方法来进行。
其中一种常用的方法是简化模型试验法,通过对一系列模型试验的数据进行曲线拟合,得到附加阻力的数学模型。
总结起来,船舶阻力数值的计算是一个相对复杂的过程,需要考虑船体阻力、波浪阻力、粘性阻力和附加阻力等多个方面。
这些阻力的计算方法也是不同的,从经验公式到数值模拟等各种方法都有。
在实际计算中,需要根据船舶的具体情况选择合适的计算方法,并结合实测数据或者试验数据进行验证,以保证计算结果的准确性和可靠性。
船舶阻力阻力
![船舶阻力阻力](https://img.taocdn.com/s3/m/a805be42f02d2af90242a8956bec0975f565a419.png)
推进功率
PT T vA
W T
vA
vs
R X
有效功率 PT
T
PE R vs
PD n
T
P'D
n 主轴
PM
R PE
推力 轴承
主机
传送效率
主机功率PM
传递效率
S
船后桨收到功率P‘D
PD
M
Q
相对旋转
R
敞水桨收到功率PD
敞水桨
P
PD MQ
推进功率PT
PT T vA
船身效率
H
有效功率PE
PE R vs
1. 兴波阻力成因inf
➢ 理想流体 ➢ 粘性流体
Rw
Cw
1 2
Sv2
2. 船行波inf
3. 与速度之间关系 Rw v46 4. 占总阻力百分比 Rw / R0 10% 80%左右 5. 影响因素
船形(首部形状-水线面附近);速度;
1. 兴波阻力成因
1. 理想流体
W
Re 理 0
T
2. 粘性流体
v 水深傅汝德数: Fh gh
摩擦,涡流,兴波
§8.8 浅水航行对吃水的影响
一. 船舶在深水中航行的沉浮量inf 二. 船舶在浅水中航行的沉浮量inf
一、船舶在深水中航行的沉浮量
体积傅汝德数: Fnv
v gV 1/ 3
Fnv 1 排水状态 1 Fnv 3 过渡状态 Fn 3 滑行状态
深水中航行时的沉浮量
38
二、船舶在浅水中航行的沉浮量
变化规律:
水深傅汝德数: Fnv
v gh
Fnh 0.4 变化小
水深傅汝德数:
0.4 Fnh 1 尾倾
船舶阻力系数公式
![船舶阻力系数公式](https://img.taocdn.com/s3/m/bde8729959f5f61fb7360b4c2e3f5727a5e92430.png)
船舶阻力系数公式船舶在水中航行时,会受到各种各样的阻力,而要准确地分析和计算这些阻力,就离不开船舶阻力系数公式。
咱先来说说船舶阻力都有哪些种类。
就好比一辆汽车在路上跑,会受到风阻、路面摩擦力等等的影响,船舶在水里也一样,会碰到摩擦阻力、兴波阻力、形状阻力等等。
这摩擦阻力呀,就像是船的身体和水在不停地“摩擦摩擦”,水可不是好惹的,它就会给船一个阻力。
兴波阻力呢,船在水里跑,就像咱们跑步会带起风一样,它会掀起波浪,这波浪反过来就会给船制造麻烦,形成阻力。
形状阻力呢,简单说就是船的外形如果不太“顺溜”,水就不乐意了,阻力也就跟着来了。
那这船舶阻力系数公式到底是个啥呢?其实它就像是一把神奇的钥匙,能帮咱们打开了解船舶阻力的大门。
比如说常见的船舶阻力系数公式,会考虑到船的速度、形状、水的密度等等好多因素。
我记得有一次去参观造船厂,那场面可壮观啦!一艘巨大的船舶正在建造中。
我就和旁边的工程师聊起来船舶阻力的问题。
他指着那船的模型跟我说:“你看这船头的形状,如果设计不好,阻力可就大了去了。
”然后他拿起一张图纸,上面密密麻麻写着各种公式和参数,其中就有船舶阻力系数公式。
他给我解释说,通过这个公式,他们能提前预估这艘船在水里航行时大概会受到多大的阻力,然后在设计上进行优化,让船跑得更快更省油。
这公式里的每个参数都有它的讲究。
速度快了,阻力自然会增大;船的形状越流线型,阻力通常就会越小;水的密度也会有影响,在不同的水域,水的密度可能会有细微差别,这也得考虑进去。
再来说说这公式在实际中的应用。
比如在船舶的设计阶段,设计师们会用这个公式反复计算和模拟,调整船的外形、尺寸,力求让船舶在满足各种功能需求的同时,阻力最小化。
在船舶的运营过程中,船员们也能根据这个公式,结合实际的航行情况,来调整航行速度和航线,达到节能增效的目的。
不过,要想准确地运用这个公式,可不是一件简单的事儿。
它需要大量的实验数据和精确的测量,还得考虑到各种复杂的实际情况。
船舶阻力要点
![船舶阻力要点](https://img.taocdn.com/s3/m/7a4a2e9f0d22590102020740be1e650e52eacff6.png)
第一章总论1.船舶快速性,船舶快速性问题的分解。
船舶快速性:对一定的船舶在给定主机功率时,能达到的航速较高者快速性好;或者,对一定的船舶要求达到一定航速时,所需主机功率小者快速性好。
船舶快速性简化成两部分:“船舶阻力”部分:研究船舶在等速直线航行过程中船体受到的各种阻力问题。
“船舶推进”部分:研究克服船体阻力的推进器及其与船体间的相互作用以及船、机、桨(推进器)的匹配问题。
2.船舶阻力,船舶阻力研究的主要内容、主要方法。
船舶阻力:船舶在航行过程中会受到流体(水和空气)阻止它前进的力,这种与船体运动相反的作用力称为船的阻力。
船舶阻力研究的主要内容:1.船舶以一定速度在水中直线航行时所遭受的各种阻力的成因及其性质;2.阻力随航速、船型和外界条件的变化规律;3.研究减小阻力的方法,寻求设计低阻力的优良船型;4.如何较准确地估算船舶阻力,为设计推进器(螺旋桨)决定主机功率提供依据。
研究船舶阻力的方法:1.理论研究方法:应用流体力学的理论,通过对问题的观察、调查、思索和分析,抓住问题的核心和关键,确定拟采取的措施。
2.试验方法:包括船模试验和实船实验,船模试验是根据对问题本质的理性认识,按照相似理论在试验池中进行试验,以获得问题定性和定量的解决。
3.数值模拟:根据数学模型,采用数值方法预报船舶航行性能,优化船型和推进器的设计。
3.水面舰船阻力的组成,每种阻力的成因。
船舶在水面航行时的阻力由裸船体阻力和附加阻力组成,其中附加阻力包括空气阻力、汹涛阻力和附体阻力。
船体阻力的成因:船体在运动过程中兴起波浪,船首的波峰使首部压力增加,而船尾的波谷使尾部压力降低,产生了兴波阻力;由于水的粘性,在船体周围形成“边界层”,从而使船体运动过程中受到摩擦阻力;在船体曲度骤变处,特别是较丰满船的尾部常会产生漩涡,引起船体前后压力不平衡而产生粘压阻力。
4.船舶阻力分类方法。
1.按产生阻力的物理现象分类:船体总阻力由兴波阻力、摩擦阻力和粘压阻力Rpv三者组成,即Rt二Rw+Rf+Rpv.2.按作用力的方向分类:分为由兴波和旋涡引起的垂直于船体表面压力和船体表面切向水质点的摩擦阻力,即Rt=Rf+Rp.3.按流体性质分类:分为兴波阻力和粘性阻力(摩擦阻力和粘压阻力),即Rt=Rw+Rv.4.傅汝德阻力分类:分为摩擦阻力和剩余阻力(粘压阻力和兴波阻力), 即Rt二Rf+Rr.5.船舶动力相似定律,研究船舶动力相似定律的意义,粘性与重力互不相干假定。
知识点二 船舶的阻力-PPT课件
![知识点二 船舶的阻力-PPT课件](https://img.taocdn.com/s3/m/40257baaf021dd36a32d7375a417866fb84ac046.png)
附加阻力
• 汹涛阻力
船舶阻力也会由于风、浪和船身的剧烈摇摆运动的影响而增加。顶浪航行 时,一般船舶总阻力比静水状态增加50%~100%。
• 空气阻力
空气阻力指在静水状态下(3级风以下),船舶水上部分对空气的相对运动产 生的阻力。一般来说,空气阻力与船速的平方以及船体水线以上部分正投影面 积成正比。一般情况下,空气阻力通常占总阻力的2%~4%左右,但集装箱船由 于其船体水线以上部分正投影面积较大,且船速较高,其空气阻力占总阻力的 比例可达10%。 附加阻力的大小与风浪大小、船体污底轻重及航道浅窄有关。
附加阻力
指船舶营运过程中由于船舶附体的增加、船体表面粗糙 度、海况、风以及海流等引起的船舶阻力增量。附加阻 力包括: • (1)附体阻力 • (2)坞底阻力 • (3)汹涛阻力 • (4)空气阻力
附加阻力
• 附体阻力
指由于舵、舭龙骨及轴包架等附体对水运动而增加的部分阻力。
• 坞底阻力
船舶营运过程中,船壳板上漆层的脱落、海生物的生长都会使船体表面变为粗 糙,意味着船舶摩擦阻力的增加。这种船体表面粗糙度的增大,在整个船舶使 用寿命期间可能使总阻力增加25%~50%。有关数据显示,每米长度的粗糙度厚 度为25μm时,船速降低1%。
船舶阻力的构成
• 营运中的船舶所受的阻力总量RT由基本阻力R0和附加阻力 △R两部分构成。 船舶阻力表示为:
RT=R0+ΔR
基本阻力
• 基本阻力是指新出坞的裸船体(不包括附属体)在平 静水面行驶时对船体产生的阻力。由摩擦阻力、兴波 阻力、涡流阻力三部分组成,即
R0=RF+RW+RE
基本阻力
• 摩的阻力
船舶的阻力
• 船舶在水面上以一定的航速航行,船舶必须依靠主机 发出的功率,驱动推进器产生推力,从而克服船舶本 身所受的各种阻力。
船舶阻力与船速的计算公式
![船舶阻力与船速的计算公式](https://img.taocdn.com/s3/m/563ff87c66ec102de2bd960590c69ec3d5bbdbfc.png)
船舶阻力与船速的计算公式船舶阻力与船速的计算公式是船舶设计和航行中非常重要的内容。
船舶阻力是指船舶在航行中受到的水流、风力和波浪等外部力量的阻碍,是决定船舶动力系统设计和船舶性能的重要因素之一。
船舶的阻力与船速之间存在着密切的关系,通过计算可以得到船舶在不同航速下的阻力大小,为船舶设计和航行提供重要的参考依据。
船舶阻力的计算公式可以分为静水阻力和波浪阻力两部分。
静水阻力是指船舶在静止状态下受到的水流阻力,主要与船体的形状和湿表面积有关;波浪阻力是指船舶在航行中受到的波浪阻力,主要与船舶航行速度和波浪形态有关。
下面我们将分别介绍船舶静水阻力和波浪阻力的计算公式。
静水阻力的计算公式通常采用法国工程师Froude提出的Froude公式,即:\[ R = k \times S \times V^2 \]其中,R为静水阻力,k为阻力系数,S为湿表面积,V为船舶航行速度。
阻力系数k是与船舶的形状和流体粘度等因素相关的常数,可以通过实验或经验公式进行确定。
湿表面积S是指船舶在水中的受潮表面积,通常可以通过船舶的几何形状参数计算得到。
船舶的航行速度V是指船舶相对于水流的速度,是静水阻力的一个重要影响因素。
通过Froude公式可以得到船舶在不同航速下的静水阻力大小,为船舶设计和性能分析提供了重要的参考数据。
波浪阻力的计算公式通常采用Holtrop提出的Holtrop公式,即:\[ R_{w} = 0.5 \times \rho \times g \times C_{1} \times A_{T} \times B_{L} \times \left( 1 + k_{B} \times \left( 1.0 C_{B} \right) \right) \times C_{B} \times S \times\left( 1 + 0.35 \times \left( \frac{B_{L}}{T} \right) \right) \times \left( 1 C_{F} \right) \times \left( 1 \frac{C_{F}}{C_{F} + 1} \right) \times \left( 1 \frac{C_{F}}{C_{F} + 2} \right) \times \left( 1 \frac{C_{F}}{C_{F} + 3} \right) \times C_{F} \times V^2 \]其中,\( R_{w} \)为波浪阻力,\( \rho \)为水的密度,g为重力加速度,\( C_{1} \)为修正系数,\( A_{T} \)为横截面积系数,\( B_{L} \)为船舶长度与波长的比值,\( k_{B} \)为波浪系数,\( C_{B} \)为方形系数,S为湿表面积,\( T \)为船舶吃水深度,\( C_{F} \)为摩擦系数,V为船舶航行速度。
船舶原理-船舶阻力
![船舶原理-船舶阻力](https://img.taocdn.com/s3/m/9b947879da38376bae1faeaf.png)
拖曳水池
Froude(傅汝德) 1871年 2783610英尺
上海交大
11063 米
708所
7552.5 米
702所
474147 米
试验性质
• 校核试验 • 变参数试验 • 系列试验
试验种类
• 阻力试验 (无螺旋桨) • 自航试验
Slide 9
实船试验
鉴定船舶的各种性能是否达到设计要求,并 同船模试验比较,分析尺度效应的影响,验证船 模试验结果的准确性。但是由于经济原因和测试 的困难,除新船试验外很少进行。
2
mm
Sm
Frm Frs m s
Lm Ls
Crs
1 2
s s 2
SsLm Ls
Sm
Crs
s m
Lm Ls
Sm Ss
m s
Crm
Crs Crm
Crs Crm Ctm C fm
实验测定 平板公式
Cts Cfs Ctm Cfm
Froude假定的问题点 ①忽略相互干涉
Slide 10
理论分析
应用流体力学的理论,建立解决问题的基本 数学模型,对一些复杂问题减化为简单的情况, 抓出问题的本质,给出一些指导性的定性结果。
Slide 11
CFD(Computational Fluid Dynamics) 数值模拟
利用计算机,根据数学模型,采用数值方法,模 拟船体航行时的流场,阻力性能等,与模型试验进行 比较,预报船舶航行性能。
Slide 6
研究方法
试验方法
• 模型试验 • 实船试验
理论计算分析
• 理论分析 物理概念 简单分析 • 计算分析 CFD (Computational
船舶阻力与推进计算题
![船舶阻力与推进计算题](https://img.taocdn.com/s3/m/c4c27a48b42acfc789eb172ded630b1c59ee9b1f.png)
船舶阻力与推进计算船舶阻力与推进是船舶运行过程中的两个重要方面。
阻力是指船舶在水中航行时所受到的力,而推进是为了克服阻力,使船舶能够前进。
一、船舶阻力计算船舶阻力分为摩擦阻力和波浪阻力两部分。
1.摩擦阻力摩擦阻力是由船体与水之间的摩擦引起的,可以通过以下公式计算:F f=12C fρAV22.其中,F f为摩擦阻力,C f为阻力系数,ρ为水的密度,A为船舶受到水流的有效面积,V为船舶相对水流的速度。
3.波浪阻力波浪阻力是由船体将水推离出去形成的波浪引起的,可以通过以下公式计算:F w=12C wρgV2L4.其中,F w为波浪阻力,C w为波浪阻力系数,ρ为水的密度,g为重力加速度,V为船舶相对水流的速度,L为船舶的长度。
二、船舶推进计算船舶的推进力可以通过以下公式计算:F t=Pηpηmηv其中,F t为推进力,P为功率,ηp为螺旋桨效率,ηm为主机效率,ηv为传动效率。
船舶螺旋桨效率的计算可以通过以下公式进行近似估算:ηp=√11+(Kt−1)J其中,K为螺旋桨的膨胀系数,t为螺旋桨的扭曲系数,J为进流系数。
船舶主机效率的计算可以通过以下公式进行近似估算:ηm=0.5+0.61(1−(L p L ))其中,L p为主机的长度,L为船舶的长度。
船舶传动效率的计算可以通过以下公式进行近似估算:ηv =√BL T其中,B 为船舶的宽度,L 为船舶的长度,T 为船舶的吃水深度。
三、总体计算 船舶的总阻力可以通过以下公式计算:F r =F f +F w其中,F r 为总阻力,F f 为摩擦阻力,F w 为波浪阻力。
船舶的净推进力可以通过以下公式计算:F n et =F t −F r其中,F n et 为净推进力,F t 为推进力,F r 为总阻力。
根据以上计算公式,可以对船舶的阻力和推进进行准确的计算。
在实际应用中,还需考虑船舶的工作状态、环境条件等因素,进行综合评估和调整。
船舶阻力
![船舶阻力](https://img.taocdn.com/s3/m/15cad12f2f60ddccda38a0ad.png)
第一章 1.什么是快速性? 船舶快速性是在给定主机功率时,表征船舶航速高低的一种性能。
加2.船体阻力的分类: a 、船舶周围流动现象和产生的原因来分类 R t = R w + R f + R pvb 、按作用在船体表面上的流体作用力的方向来分类 R t = R f + R p C 、按流体性质分类 Rt=Rw+Rv ,其中,Rv=Rf+Rpv d.付汝德分类 Rt=Rf+Rr ,其中,Rr=Rw+Rvp 2.什么叫力学相似? 两物系任一对应里成比例,所有涉及的力有惯性力,粘性力,重力。
3.付汝德相似的条件是什么?当两形似船的付汝德数Fr 相等时,兴波阻力系数Cw 必相等。
4.什么是比较律? 形似船在相应速度时(或相同付汝德数Fr ),单位排水量兴波阻力必相等。
(付汝德比较定律)5.雷诺相似的条件是什么?当雷诺数相同时,两形似物体粘性阻力系数必相等。
当雷诺数相同时,不同平板的摩擦阻力系数必相等。
6.为什么说全相似不可能? 全相似定律:水面船舶的总阻力系数是雷诺数和付汝德的函数,若能实船和船模的雷诺数和付汝德数同时相等,就称为全相似,在满足全相似的条件下,实船和船模的总阻力系数为一常数,称为全相似定律。
若付汝德数和雷诺数同时相等时,则船模和实船的长度以及运动粘性系数应满足实际上船模是在水池中进行试验,而海水和淡水的运动粘性系数相差不大。
可假定,则要满足全相似条件,除非即而且,这意味着实船即船模,或实船在试验池内进行试验,这显然是不现实的。
第二章 7.简述摩擦阻力产生的原因、计算方法。
原因:当水或客气流经平板表面时,由于流体的粘性作用,在平板表面附近形成界层,虽然界层厚度很小,但界层内流体速度的变化率很大。
8.减小摩擦阻力的措施。
减小摩擦阻力的方法:1、首先从船体设计本身考虑,低速船选取较大的排水体积长度系数(或较小的L/B)从减小湿面积的观点看是合理的,另外减少不必要的附体如呆木等,或尽量采用表面积较小的附体亦可减少摩擦阻力。
船舶阻力阻力讲解
![船舶阻力阻力讲解](https://img.taocdn.com/s3/m/fdf3a2e880eb6294dc886c18.png)
Ce
1 2
Sv 2
2. 与速度之间关系 Re v2
3. 占总阻力百分比 4. 影响因素
Re / R0 5 10%左右
船形(尾部形状)inf;
速度;粘性;
涡流阻力成因
1. 理想流体
W
Re 理 0
T
2. 粘性流体
Re
Ce
1 2
Sv 2
vs
R
vs
尾部形状对涡流阻力的影响
流线体
敞水桨收到功率 PD MQ
推进功率
PT T vA
W T
vA
vs
R X
有效功率 PT
T
PE R vs
PD n
T
P'D
n 主轴
PM
R PE
推力 轴承
主机
传送效率
主机功率PM
传递效率
S
船后桨收到功率P‘D
PD
M
Q
相对旋转
R
敞水桨收到功率PD
敞水桨
P
PD MQ
W
Re 理 0
T
2. 粘性流体
vs
R
Rw
Cw
1 2
Sv2
vs
2. 船行波
1. 首波系
– 横波 – 散波
2. 尾波系
– 横波 – 散波
球鼻首作用
§8.3 相似定律
一. 相似准则inf 二. 流体力的一般表达式inf 三. 雷诺相似定律inf 四. 傅汝德相似定律inf 五. 基本阻力全相似条件inf 六. 傅汝德假设inf
W
vs
船舶的基本阻力包括的哪些阻力
![船舶的基本阻力包括的哪些阻力](https://img.taocdn.com/s3/m/b031b469bf1e650e52ea551810a6f524ccbfcb0c.png)
船舶的基本阻力包括的哪些阻力1.船舶的基本阻力包括的哪些阻力?(3分)摩擦阻力,涡涡流阻力,兴波阻力2..简单陈述基本阻力的成因和降阻措施。
(6分)摩擦阻力:成因,船体在水中运动时,由于水具有粘性是船体周围有一薄层水被船体带动遂川一起运动。
由于各层水流速度大小不同,在各层水流之间必然会产生切应力作用,这种由于流体的粘性而产生的切应力沿着船舶运动方向上的合力,成为船舶摩擦阻力。
降阻措施:降低船体表面的曲度和粗糙度,减小流体粘性,减小形势速度,减小是表面面积涡流阻力:当水流经船体时,由于水具有粘性说引起的首尾压力差而形成的阻力。
降阻措施:船尾设计成很好的流线型。
兴波阻力:船舶在静水面上行驶时由于兴起波浪而形成的阻力,为兴波阻力。
降阻措施:选择适当的船长和菱形系数。
船首水线下的船体设计成球鼻型。
3.运营船舶是怎样应付汹涛阻力的?(2分)预留储备功率4.船舶在浅水中航行,会给航态和阻力带来什么影响?。
(6分)船舶在浅水中航行,由于水与船的相对速度增加,和船行波变化的影响,使船舶阻力增加,航行钻台改变即吹水增加以及发生首倾或是尾倾。
船舶一同样的速度在浅水中航行于在深水中航行相比较,由于在浅水中航行时船底与河堤之间间隙变小使得水流相对于船体的速度增加,使水压下降,船体下沉吃水增加,船的湿面积增加,由于流速增加使船底与河底的间隙变小,易产生涡流。
一次船舶在潜水中航行时,摩擦阻力和涡流阻力都会增加。
船舶在浅水航行时船行波的波形发生变化,行波范围逐渐扩大,使兴波阻力增加。
5.污底阻力的本质是增加基本阻力中的哪种阻力成分?。
(2分)摩擦阻力6.球鼻艏的设置的目的是为了:美观?减小波阻?加强艏部强度?增加艏尖舱容?。
(2分)减小波阻球鼻兴起的波谷与船首兴起的波峰正好处于同一位置时,则两波的合成波较务球鼻时平坦,减小船舶的兴波阻力。
7.甲板上过高堆放货物给船增加的是什么阻力?。
(2分)附加阻力即空气阻力。
船舶阻力阻力
![船舶阻力阻力](https://img.taocdn.com/s3/m/14d8786358fb770bf78a55db.png)
➢ 平板摩擦阻力 ➢ 船体摩擦阻力
Rf
0
Cf
0
1 2
Sv2
2. 与速度之间关系
Rf v1.83
Rf
Cf
1 Sv2
2
3. 占总阻力百分比 Rf / R0 20% 80% 4. 影响因素
粘性;速度梯度;Wຫໍສະໝຸດ 船形;速度;表面粗糙度 T
湿表面积(吃水);
vs
R X
1. 平板
一、摩擦阻力计算
du
4. 影响大小、程度:
R空
kC x
1 2
Sv2
2-30%*基本阻力,P152
四、汹涛阻力
1. 耐波性定义:P152
船舶在各种海况下营运船速不致显著降低的性能。
2. 失速 v / vc 3. 汹涛阻力组成
摩擦,涡流,兴波
4. 储备功率 25% 40%
五、浅水附加阻力
1. 浅水航行特点:
a. 吃水; b. 浮态; c. 阻力变化;
基本量纲: L, M,T
F
ma
kL3
L T2
kL2 ( L )2
T
F C 1 Sv2
2
C 牛顿数
1 v2 流体的动压强
2
1 Sv2 流体的动力量纲
2
三、雷诺相似定律
Rf
Cf
1 Sv2
2
Cf
f ( vL)
雷诺数:Rn
vL
R fs
C fs
(1 2
Sv2 )s
R fm
C
fm
(1 2
Sv2 )m
Re
Ce
1 2
Sv 2
2. 与速度之间关系 Re v2
3. 占总阻力百分比 4. 影响因素
船舶阻力——精选推荐
![船舶阻力——精选推荐](https://img.taocdn.com/s3/m/4845b76700f69e3143323968011ca300a6c3f608.png)
船舶阻力1. 船舶快速性:在给定主机功率时,表征航速高低的一种性能。
3. 推进部分:研究克服阻力的推进器及其与船体间的相互作用以及船机桨的配合问题。
4. 研究船舶快速性的方法:理论研究方法,实验方法,数值模拟。
6. 船舶总阻力Rt:摩擦阻力Rf,压阻力Rp。
压阻力Rp:粘压阻力Rpv,兴波阻力Rw。
粘性阻力Rv:摩擦阻力Rf,粘压阻力Rpv。
船体总阻力Rt:粘性阻力Rv,兴波阻力Rw。
7. Rt=Rw+Rf+Rpv8. 对于Rpv的处理:(1)Rpv+Rw=Rr剩余阻力(2)Rpv+Rf=Rv (粘性阻力),则有Rt=(1+k)Rf+Rw9. 阻力相似定律:(1)粘性阻力相似定律----雷诺定律-------Cr=f (Re)对于一定形状的物体,粘性阻力系数仅与雷诺数有关,当Re相同时,两形似物体的粘性系数必相等。
10. 兴波阻力相似定律----傅汝德定律-----Cw=f(Fr)对于给定船型的兴波阻力系数仅是Fr的函数,当两形似船的Fr 相等时,兴波阻力系数必相等,称为傅汝德定律。
形似船:仅大小不同,形状完全相似(即几何相似)的船舶之间的统称。
Rws?s=Rwm?mFr数),单位排水量兴波阻力必相等。
11. 船体总阻力相似定律----全相似定律------Ct=f(Re,Fr)---可得,水面船舶的总阻力系数是雷诺数和傅汝德数的函数。
第二章粘性阻力1. 相当平板假定:实船和船模的摩擦阻力分别等于与其同速度,同长度,同湿表面积的光滑平板的摩擦阻力。
3. 一般船舶的雷诺数在4×106~3×108,其对应的流动状态是湍流边界层。
4. 光滑平板层流摩擦阻力系数公式(速度为对数分布的计算方法)(1)桑海公式:Re∈106~109时,Cf=(lgRe)美国(2)柏兰特-许立汀公式:Cf=(lgRe)2.58 ---------欧洲(3)ITTC:Cf=0.075(lgRe?2)20.4550.4631 --------我国5.船体表面弯曲度+表面粗糙度对Rf的影响6. 船体表面粗糙度:(1)普遍粗糙度(又称漆面粗糙度),主要是油漆面的粗糙度,壳板表面凹凸不平等。
关于船舶阻力
![关于船舶阻力](https://img.taocdn.com/s3/m/38efb99a51e2524de518964bcf84b9d529ea2c60.png)
船舶阻力
船舶阻力是指船舶在航行或静止时所受到的抵抗力,它对船舶运行速度和能耗有重要影响。
船舶阻力可以分为以下几种类型:
1.摩擦阻力:摩擦阻力是由于水流与船体表面摩擦产生的阻
力。
摩擦阻力与船体湿表面积、水流速度和船体表面粗糙
度等因素有关。
2.波浪阻力:波浪阻力是由于船舶行驶时所产生的波浪系统
引起的阻力。
这种阻力与船体速度、船体几何形状和波浪
特性等因素有关。
3.空气阻力:空气阻力是指船舶行驶时,船载货物、船舶部
件和船体上的空气动力学阻力。
空气阻力与风速、风向和
船舶的形状等因素有关。
4.波浪侧倾阻力:波浪侧倾阻力是由于船舶行驶时,波浪在
船体两侧产生的侧倾效应引起的阻力。
这种阻力与船体速
度、船体宽度和波浪特性等因素有关。
5.加速度阻力:加速度阻力是由于船舶改变运动状态时所产
生的阻力。
这种阻力与船舶质量、船速改变率和推进装置
性能等因素有关。
船舶阻力的准确计算对于船舶设计和运行至关重要。
船舶设计师和工程师通常采用数值模拟、实验测试和经验公式等方法来估算和优化船舶阻力,以提高船舶的运行效率和节能性。
船舶阻力数值计算
![船舶阻力数值计算](https://img.taocdn.com/s3/m/1a80bc62bdd126fff705cc1755270722192e591e.png)
船舶阻力数值计算船舶阻力是指船只在航行中遭受的水流阻碍而产生的阻力。
船舶阻力的准确计算对于设计船只的性能以及评估船只的能效至关重要。
船舶阻力数值计算涉及到多个复杂的参数和公式,下面将详细介绍船舶阻力数值计算的方法。
1.船舶几何参数的计算:船舶的外形和尺寸是计算阻力的基础。
常见的几何参数包括船舶的长、宽、吃水深度、型佳系数等。
这些参数可以根据船舶的设计图纸和规格手册获得。
2.黏性阻力的计算:黏性阻力是由于水流与船体表面接触而产生的阻力。
根据斯托克斯定律,黏性阻力与船体的湿表面积和黏度成正比。
黏性阻力可以通过计算湿表面积和黏度,然后使用相应的公式进行计算。
3.波浪阻力的计算:波浪阻力是由水流与船体产生的波浪相互作用而造成的阻力。
波浪阻力的计算可以通过船舶的速度和波浪参数来估算。
常见的波浪阻力计算方法包括亚当斯公式和法拉第公式等。
4.鲨鱼阻力的计算:鲨鱼阻力是由船体形状造成的额外阻力,主要是由于船头的凹型和船尾的凸型造成的。
鲨鱼阻力的计算需要基于船舶的几何参数和流体力学理论进行估算。
5.欠驱动阻力的计算:欠驱动阻力是指船舶在航行中由于推进力不足而导致的阻力。
欠驱动阻力的计算需要考虑船舶的推进力与阻力的平衡关系,通常使用航速-功率曲线进行计算。
6.其他阻力的计算:船舶在航行中还会受到其他因素的影响而产生额外的阻力,如侧风阻力、摩擦阻力等。
这些阻力可以通过合适的公式进行计算。
需要注意的是,船舶阻力的数值计算是一个复杂的过程,需要考虑多个因素的影响,如船舶的船型、航速、航线等。
在实际计算中,通常采用数值模拟或实验方法来获得更精确的结果。
综上所述,船舶阻力数值计算是一个复杂而关键的过程,需要考虑多个参数和公式。
准确计算船舶阻力有助于优化船舶的设计和提高船舶的能效,对于船舶工程和海洋工程领域具有重要意义。
船舶阻力数值计算
![船舶阻力数值计算](https://img.taocdn.com/s3/m/e6ca9586f021dd36a32d7375a417866fb94ac076.png)
船舶阻力数值计算船舶阻力是指在船舶运行中所受到的阻碍和抵抗的力量。
船舶阻力的计算对于船舶的设计、性能评估、节能减排等方面都具有重要的意义。
下面将介绍船舶阻力数值计算的一般方法。
船舶阻力由以下几个主要部分组成:摩擦阻力、波浪阻力和附加阻力。
摩擦阻力是由于船舶与水之间的直接接触产生的阻力,包括湿表面的摩擦阻力和水线周长(长、中、短取平均值)抗操纵阻力。
摩擦阻力可以根据庞德尔船舶阻力公式进行计算,其中摩擦阻力与湿表面积的平方根成正比,与速度的平方成正比。
波浪阻力是由于船体在航行过程中引起的波浪形成的阻力。
波浪阻力可以通过里纳德船舶阻力公式进行计算,其中波浪阻力与船体湿表面积、速度的四次方、波浪系数和波浪高度的乘积成正比。
附加阻力是由于船舶晃动、涡流、压力分布不均匀等因素引起的附加阻力。
附加阻力可以通过经验公式进行估计,如ITTC-57、Holtrop等公式。
除了上述基本的阻力成分外,船舶还受到其他因素的影响,如纵浪阻力、侧浪阻力、浮船坞阻力、机械传动系统的阻力等。
这些因素的计算需要根据特定的船型和工况进行分析和评估。
船舶阻力的计算是一个复杂而多变的过程,需要考虑众多的参数和因素。
船舶阻力的数值计算可以通过模型试验、数值模拟或经验公式等方法进行。
其中,数值模拟方法如CFD(计算流体力学)模拟可以提供比较准确的结果,但计算时间和成本较高;经验公式方法则基于大量实际船舶的试航数据和统计分析,适用性较广。
总之,船舶阻力数值计算是船舶设计和性能评估的关键环节之一、通过合理准确地计算船舶阻力,可以为船舶的优化设计、节能减排等提供参考依据,并为船舶的性能预测和装备选型提供可靠的技术支持。
第七章 船舶阻力9.30
![第七章 船舶阻力9.30](https://img.taocdn.com/s3/m/d45a2b7602768e9951e73859.png)
第七章 船舶阻力船舶快速性:船舶消耗较小功率,维持一定航行速度的性能。
由船舶阻力和船舶推进两部分组成。
第一节 船舶阻力的分类及成因船舶阻力构成:空气阻力仅占其总阻力的2%~4%一、船体阻力的分类及成因1.按产生阻力的物理性质分类t w f pv R R R R =++船体总阻力=兴波阻力+摩擦阻力+粘压阻力(漩涡阻力)1)兴波阻力的成因:根据伯努利方程,当水流流经船体时,随着船长方向流速的变化,水面高度也会起变化。
在船舶首尾两端的速度最低处,产生水位上升,而在船体中部速度最高区域内,产生水位下降,这就是形成船波的原因。
伯努利方程:g u g p Z g u g p Z 2//2//22222111++=++ρρ首横波自首柱后一波峰开始,尾横波自尾柱前一波谷开始船首的波峰使首部压力增加,而船尾的波谷使尾部压力降低,于是产生首尾流体动压力差。
这种由兴波引起压力分布的改变所产生的阻力称为兴波阻力。
从能量观点来解释。
船行波必具有一定能量,这个能量只能由船舶克服流体阻力作功而转化出来,波浪的存在正说明了兴波阻力的存在。
2)摩擦阻力的成因:由于流体的粘性,水质点沿着船体表面运动,构成了阻碍船舶运动的力。
3)粘压阻力的成因:理想流体(无黏性)x 轴方向上来流的速度、压力变化水质点远处为V =V 0,接近A 点V 逐渐变小,到达A 点V =0,过A 点分流向后V 逐渐增大,到达C 点,V 达到最大值V 理,过C 点V 逐渐变小,到达B点V =0支流汇合,离开B 点V 逐渐增大恢复为V 0。
压力分布如曲线I.作用在前后体上的合力相等,阻力为零。
实际流体(有黏性)x 轴方向上来流的速度、压力变化由于黏性形成边界层(流速受到影响的水层)。
当水质点到达C 点,V 达到最大值V 实<V 理,由于动能较小,到达D 点V =0,过D 点在压力差的作用下水质点回流,形成许多不稳定的旋涡并与水流一起被冲向船后方。
旋涡的产生使船尾部压力降低,从而使船体沿船长方向的压力分布发生变化,即加大了船首尾压力差(压力分布如曲线Ⅲ)产生了阻力。
第七章 船舶阻力9.30
![第七章 船舶阻力9.30](https://img.taocdn.com/s3/m/d8e535a20066f5335a8121ce.png)
第七章 船舶阻力船舶快速性:船舶消耗较小功率,维持一定航行速度的性能。
由船舶阻力和船舶推进两部分组成。
第一节 船舶阻力的分类及成因船舶阻力构成:空气阻力仅占其总阻力的2%~4%一、船体阻力的分类及成因1.按产生阻力的物理性质分类t w f pv R R R R =++船体总阻力=兴波阻力+摩擦阻力+粘压阻力(漩涡阻力)1)兴波阻力的成因:根据伯努利方程,当水流流经船体时,随着船长方向流速的变化,水面高度也会起变化。
在船舶首尾两端的速度最低处,产生水位上升,而在船体中部速度最高区域内,产生水位下降,这就是形成船波的原因。
伯努利方程:g u g p Z g u g p Z 2//2//22222111++=++ρρ首横波自首柱后一波峰开始,尾横波自尾柱前一波谷开始船首的波峰使首部压力增加,而船尾的波谷使尾部压力降低,于是产生首尾流体动压力差。
这种由兴波引起压力分布的改变所产生的阻力称为兴波阻力。
从能量观点来解释。
船行波必具有一定能量,这个能量只能由船舶克服流体阻力作功而转化出来,波浪的存在正说明了兴波阻力的存在。
2)摩擦阻力的成因:由于流体的粘性,水质点沿着船体表面运动,构成了阻碍船舶运动的力。
3)粘压阻力的成因:理想流体(无黏性)x 轴方向上来流的速度、压力变化水质点远处为V =V 0,接近A 点V 逐渐变小,到达A 点V =0,过A 点分流向后V 逐渐增大,到达C 点,V 达到最大值V 理,过C 点V 逐渐变小,到达B点V =0支流汇合,离开B 点V 逐渐增大恢复为V 0。
压力分布如曲线I.作用在前后体上的合力相等,阻力为零。
实际流体(有黏性)x 轴方向上来流的速度、压力变化由于黏性形成边界层(流速受到影响的水层)。
当水质点到达C 点,V 达到最大值V 实<V 理,由于动能较小,到达D 点V =0,过D 点在压力差的作用下水质点回流,形成许多不稳定的旋涡并与水流一起被冲向船后方。
旋涡的产生使船尾部压力降低,从而使船体沿船长方向的压力分布发生变化,即加大了船首尾压力差(压力分布如曲线Ⅲ)产生了阻力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.船舶受力:1地球引力2浮力3流体动力4推进器推力2.船舶阻力:船舶受到流体作用在船舶运动相反方向上的力3.船舶阻力+传播推进=快速性船舶快速性:尽可能消耗较少的主机功率以维持一定航速的能力4.船舶性能:稳性、浮性、抗沉性、快速性、操纵性、耐波性5.船舶阻力曲线:船舶阻力随航速变化的曲线6.1海里/时(节)=1.852公里/时=0.5144m/s1米/秒=3.6km/h=1.942节雷诺数:Re=u L/V 长度弗劳德数:体积弗劳德数:gL UFr =水深弗劳德数:31.∇=∇g U Fr hg U Fr h .=7.船舶航态:1排水航行状态Fr<1.02过渡状态1.0<Fr <3.0(护卫、巡逻、高速双体、V 型快船)3滑行状态Fr>3.08.排水型船舶:低速船(Fr<0.2)中速(0.2<Fr<0.3)高速(Fr>0.3)9.随体坐标系:固接于船体上的坐标系10.航道:1深水航道2限制航道(a 浅水航道水深b 狭窄航道水深宽度)11.船舶阻力:1水阻力(a 静水阻力b 汹涛阻力)2空气阻力12.船体阻力R t :1摩擦阻力R f 2剩余阻力R r (a 粘压阻力F pv b 兴波阻力F w )13.湿表面积:船舶处于正浮状态时水线以下裸船体与水接触处表面积14.船体周围流场:主流区、边界层、边界层和由于边界层分离产生的漩涡区15.1摩擦阻力:船舶表面的剪切应力在船舶运动方向上的投影沿船体表面积分所得合力(能量观点):就某一封闭区,当船在静水中航行,由于粘性作用会带动一部分水运动(边界层),为携带它运动,船体不断提供能量给水,产生摩擦阻力。
2粘压阻力(形状阻力或漩涡阻力):由于粘性作用,船体前后压力不对称产生压力差即为粘压阻力(能量观点):船尾部形成漩涡要消耗能量,一部分能量被冲向船后方的同时,在船艉部又持续不断的产生漩涡,船体不断为流体提供能量,这部分能量消耗就是粘压阻力表现形式3兴波阻力:由于船体兴波导致船体压力前后分布不对称而产生的与船体运动方向相反的压力差,成为兴波阻力16.形状效应:船体表面弯曲影响使其摩擦阻力与相当平板计算所得结果的差别17.相当平板理论:假设具有相同长度,相同运动速度和湿表面积的船体和平板的摩擦力相同18.污底:海洋中的生物附着在船体表面,增加船体表面的粗糙度,使阻力增加很大19.船体表面粗糙度:1普通粗糙度:油漆面粗糙度,壳板平面2局部粗糙度:结构粗糙度20.减小摩擦阻力的方法:1减小湿表面积。
如低速船系用短而肥的船型2边界层控制。
通过控制边界层内流涕的运动状态来减小摩擦阻力。
如可以抽吸一部分边界层内流体来延长边界层流区3改变船体周围流体介质。
通过改变船体周围液体介质来降低摩擦阻力。
如向船体表面相邻的流体中加入高分子化合物。
4仿生学研究。
在细长体表面贴弹性覆盖层21.边界层离体的充要条件:1壁面及粘性对流体的粘滞作用2具有逆压梯度区22.船体形状对粘压阻力的影响:1船后体形状:为延缓边界层离体船后体收缩后缓和2船前体形状:采用球鼻型艏3螺旋桨的影响:对水流有抽吸作用23.船兴起的波浪:1船行波:在船行驶过之后,留在船体后方并不断向外传播的波。
2破波:被船体兴起后很快就破碎的波浪24.兴波干扰:1有利干扰:船艏横波波峰与艉横波波谷相遇,相互抵销,兴波阻力减小。
2不利干扰:二者相位相同,则船后波浪变大,兴波阻力变大。
对兴波最大的船型参数:船长和棱形系数25.破波阻力特性:1对于船速较高的丰满船型,破波阻力是一种不可忽视的阻力成分;2破波阻力来源于船艏非线性兴波的破碎,也是兴波阻力用吃水弗劳德数描述代替gTU Fr T =长度弗劳德数;3同一丰满船型,同样航速下压在情况下吃水小,吃水弗劳德数大,因此较满载破波阻力大;4主要与宽度吃水比、进流段长度、球艏伸出长度等船型参数有关,减小B/T ,增加进流段长度,采用前伸的薄型球艏有利减小破波阻力。
26.薄船理论:设船在静止无界水域自由表面匀速直线运动,1船宽长比B/L 很小,为薄船。
2水是不可压缩、均质、无粘性的理想流体,运动无旋。
3船体兴波为微幅波。
4忽略船体下沉、纵倾对兴波阻力的影响。
27.减小兴波阻力的方法:1常规型船减小兴波阻力的方法:a 选择合适的船型及船型系数L 、C p ,避开不利干扰。
B 造成有利波系干扰。
民船采用球鼻船艏;高速排水型船用消波水翼降低兴波阻力。
2采用非常规船型,双体和三体船,水翼艇和小水线面双体船28.破波阻力:由于有序流动的损失,显示出动量(速度)的亏损。
这种能量的损失,或者动量的亏损,就体现为破波阻力。
29.确定船体阻力的方法:1求摩擦阻力、粘压阻力和兴波阻力,然后相加。
2粘流计算。
3船舶阻力近似估算30.船舶阻力近似估算方法:1计算内容分:直接近似总阻力或有效功率,估算剩余阻力,再采用相当平板公式计算摩擦阻力;2采用资料形式分:图谱法,回归公式法;3资料来源分:母型船数据估算法,模型系列实验资料估算法,归纳实船和模型资料分析估算31.弗劳德假设:1摩擦阻力和剩余阻力是相互独立的两部分,摩擦阻力只与雷诺数有关,剩余阻力至于弗劳德数有关。
2船体摩擦阻力等于相同速度、相同长度、相等湿表面积的相当平板摩擦阻力。
不完善在于:1将剩余阻力与摩擦阻力划分为相互独立的两部分,没有考虑二者的影响。
2兴波阻力与重力有关,粘压阻力与水的粘性有关,弗劳德将两个不同性质的阻力合成为剩余阻力不恰当。
3用相当于平板理论计算船体的摩擦阻力存在偏差。
32.休斯观点:弗劳德将两个不同性质的阻力合称为剩余阻力不恰当,应将与粘性有关的粘压阻力和摩擦阻力合并在一起,将船体阻力划分为粘性阻力与雷诺数有关和兴波阻力与弗劳德数有关。
且粘压阻力系数和摩擦阻力系数之比是一常数k ,1+k 称形状因子,仅与船体形状有关。
33.船舶阻力的能量观点将船的总阻力分为尾流阻力和波形阻力,尾流阻力包括粘性阻力和破波阻力。
34.附体阻力:由于附体通常位于水线以下较深的位置,且相对尺寸较小,故引起的兴波阻力也很小,,因此主要阻力成分是粘性阻力。
其中舭龙骨、轴包套等尺度较长且沿流线布置的附体主要阻力成分是摩擦阻力,而如轴支架等长度较短的附体主要阻力成分是粘压阻力。
35.附体设计应注意的事项:1附体应沿流线方向布置以减小由附体产生的漩涡,进而减小粘压阻力。
2尽可能采用湿表面积小的附体以减小摩擦阻力。
3一般附体沿水流方向尽可能采用流线型对称剖面。
36.减小空气阻力:上层建筑尽可能低而长,以减小迎风面积,前端流线型,后端阶梯形。
37.汹涛阻力:由于风、过往船舶,太阳和月亮引力,海底地震等作用下均要在水中产生波浪,导致船舶阻力增加,所增加的阻力即为汹涛阻力(波浪中的阻力增值)38.波浪中阻力增值产生的原因:1波浪使船做纵摇、升沉、横摇和摇首等各种运动,引起阻力增大;2波浪遇到船体后反射产生反射水波,消耗能量,产生阻力增值;3波浪作用引起船体周围压力产生周期性变化,阻力随之发生变化,引起阻力增值增大;4海浪冲击船艏和上层建筑溅到甲板上的海水改变了其原有的运动状态且随船舶一起运动,以及船体严重浸湿使船体湿表面积增大,导致阻力增大。
39.影响波浪中阻力增值(汹涛阻力增大)的因素:1汹涛阻力随遭遇波高的增大而增大;2当波浪周期与船的纵摇周期接近时产生很大纵摇(改变航速航向回避)3波浪波长大于3/4船长时,纵摇和深沉运动加剧,汹涛阻力显著增大。
40.船在波浪中航行,由于阻力增大会出现:如保持与静水相同功率,则船速降低,这种航速的减小称失速;如要维持与静水中相同航速,则必须在原静水功率基础上增大功率R aw ,所增大的功率成为储备功率。
41.回流速度:流体流经船体时,由于船体曲率的影响,除船艏艉两端外,船体周围的水流速度较来流速度大。
42.狭窄航道中船舶航速划分:亚临界航速,临界航速,超临界航速。
利用相对运动原理,假设船体不动,水从远处以船舶航速U 0流向船体。
假设:1船体横剖面沿船长方向变化不大,船体无倾斜,沿船长方向水面下降相等。
2弗劳德数很小,不考虑船舶兴波。
43.许立汀中间速度法估算狭窄水道阻力:1航速较低,较深水航道阻力增加值只由粘性阻力引起,因此只考虑深水航道中的回流速度的增值,不考虑兴波影响。
2在求回流速度时用参数代替浅水中的参数,其中r h 称为水利半径,。
h m r A h A m m m h G h b A bh r ++−=244.从降低船体阻力的角度而言,低速船的船长尽量取小些,即船型为短而肥有利于降低阻力。
高速船增大船长有利。
45.船艏形状:1垂直式2斜直式3倾斜式4球鼻艏5飞剪式6破冰型就减小阻力而言,球鼻艏可以减小兴波阻力,破波阻力和舭涡阻力。
46.船艉:1椭圆型尾2巡洋舰尾3方尾巡洋舰尾特点:增加水线长度,有利于减小兴波阻力和粘性阻力,尾部甲板面积达,有利于增加初稳性,便于布置舵机,对螺旋桨和舵有保护作用,提高推进效率,可以减小尾倾和尾部拍击现象。
47.方尾特点:低速船在尾后形成大量漩涡,高速船利于减小阻力,提高航速。
尾部容积大,可减小航行时的尾倾;尾部水线丰满,增大水线面系数,提高横稳性;尾部水线较宽,有效的遮盖螺旋桨;尾部甲板面积大,利于舵机、深水炸弹、水雷等布置。
48.与船舶阻力有关的船型系数:主尺度比,长宽比,宽吃水比,吃水长度比。
49.船型系数:方型系数C b ,棱形系数C p ,船舯横剖面系数C m ,排水体积长度系数3)01.0(L ∇50.船体形状横剖面面积曲线形状,满载水线面形状,船体首尾形状51.宽吃水比B/T 对船体阻力的影响:对摩擦影响小,对剩余阻力影响大。
B/T 选取往往不是依据阻力性能,而是从船舶稳性、布置、航道水深限制等选定。
52.棱形系数对阻力的影响:不考虑对摩擦的影响,低速船C p >最佳理论值C p 提高经济效益。
高速军船C p <理论值53.浮心的位置对阻力的影响:低速船,x c 于船舯前减小粘压阻力;中速船,x c 适当移向舯部;高速船,x c 取在舯后,减小兴波阻力。
54.平行中体:船体中部一段横剖面与船舯横剖面完全相同的一段船体。
进流段,平行中体,去流段。
55.对于低速船,保证去流段有足够长度,平行中体中心宜在船舯前,进流段较短,减小粘压阻力,提高经济效益;随航速增大,避免前肩波系与船艏波系发生不良干扰,增加进流段,平行中体中心后移,接近船中央处。
56.横剖面面积曲线两端形状:低速船两端宜为直线型。
中速船前端宜取微凹或凹形,后端宜取直线或微凹形。
高速船两端宜取直线或微凸形。
57.船艏艉横剖面形状对阻力影响:对摩擦阻力影响小,对剩余阻力影响大。
船艏:低速船取V形较佳,可减小摩擦阻力;中高速传取U形,减小兴波阻力;快艇采用V形,提高水动力特性和改善耐波性。