智能传感器的CAN总线接口设计

合集下载

基于Can总线瓦斯智能传感器的通信应用研究

基于Can总线瓦斯智能传感器的通信应用研究

基于Can总线瓦斯智能传感器的通信应用研究[摘要]目前制约煤炭发展的主要问题是煤矿安全问题。

而瓦斯事故又是煤矿安全中的重中之重。

煤矿瓦斯气体监测的系统是保证煤矿生产安全的必备设备,本文针对矿井瓦斯监控的特点,分析了当前流行的现场总线特点,提出基于can总线煤矿瓦斯气体监测的网络系统。

着重介绍智能传感器的中央处理单元所用单片机为at89s51作为can总线煤矿瓦斯智能节点,研究设计can总线通信接口与智能节点的接口设计等。

通过研究设计表明智能节点具有简单明了、体积小、性能高、成本低廉、抗干扰能力强等特点,能够满足煤矿瓦斯气体监测的网络系统要求。

[关键词]传感器;can总线;网桥;单片机现场总线是应用于过程自动化和制造自动化中的,实现现场智能化设备与高层设备之间互联的,全数字、串行、双向的通信网络,通过该技术可以实现跨网络的分布式控制。

现场总线是当今自动化领域发展的热点之一,被誉为自动化领域的计算机局域网,其作为工业数据通信网络的基础,沟通了生产过程现场设备之间及其与更高控制管理层之间的联系。

现场总线不仅是一个基层网络,而且还是一种开放式、新型全分布式的控制系统。

现场总线是以智能传感器、控制、计算机、数据通信等为主要内容的综合技术具有节省硬件数量和投资、节省安装费用、节省维护开销、使用户具有高度的系统集成主动权以及提高了系统的准确性和可靠性等优点。

所以其受到世界范围的关注而成为自动化技术发展的热点,并将导致自动化系统结构与设备的深刻变革。

目前,现场总线种类众多而且没有统一的标准,根据瓦斯监测监控系统要求,在众多现场总线中,以下几种比较适合矿井应用:(1)rs-485总线rs-485总线协议是目前工业现场常用的总线之一。

该总线数据信号采用差分传输方式,最大传输距离约为1.2km(速率100kb/s),最大传输速率为10mb/s。

rs-485工作模式为半双工,同一时刻总线上只能有一个节点发送数据,不能实现多主结构,如果有两个以上节点同时发送数据,总线将会因“短路”而出现问题。

CAN总线简介(2024版)

CAN总线简介(2024版)
目前汽车上的网络连接方式主要采用2条CAN, 一条用于驱动系统的高速CAN,速率达到500kb/s; 另一条用于车身系统的低速CAN,速率是100kb/s。
驱动系统的高速CAN
• 驱动系统CAN主要连接对象是发动机控制器 (ECU)、ABS控制器、安全气囊控制器、 组合仪表等等,它们的基本特征相同,都是 控制与汽车行驶直接相关的系统。
倍。这种传统布线方法不能适应汽车的发展。CAN总线可有效减少线束,节省空间。
例如某车门-后视镜、摇窗机、门锁控制等的传统布线需要20-30 根,应用总线 CAN 则
只需要 2 根。(3)关联控制在一定事故下,需要对各ECU进行关联控制,而这是传统
汽车控制方法难以完成的表1 汽车部分电控单元数据发送、接受情况
• (5)直接通信距离最远可达10km(速率5Kbps以下)。
• (6)通信速率最高可达1MB/s(此时距离最长40m)。
• (7)节点数实际可达110个。
• (8)采用短帧结构,每一帧的有效字节数为8个。
• (9)每帧信息都有CRC校验及其他检错措施,数据出错 率极低。
• (10)通信介质可采用双绞线,同轴电缆和光导纤维,一 般采用廉价的双绞线即可,无特殊要求。
可靠性高:传输故障(不论是由内部还是外部引起 的)应能准确识别出来 使用方便:如果某一控制单元出现故障,其余系统 应尽可能保持原有功能,以便进行信息交换 数据密度大:所有控制单元在任一瞬时的信息状态 均相同,这样就使得两控制单元之间不会有数据偏 差。如果系统的某一处有故障,那么总线上所有连 接的元件都会得到通知。 数据传输快:连成网络的各元件之间的数据交换速 率必须很快,这样才能满足实时要求。
• (2)网络上的节点(信息)可分成不同的优先级,可以满 足不同的实时要求。

基于CAN总线的设计

基于CAN总线的设计

CAN总线的特点:
CAN总线有如下基本特点: (1)多主站依据优先权进行总线访问。 总线开放时,任何单元均可开始发送报文,具有最高优先权的报 文的单元赢得总线访问权。 利用这个特点可以用液晶显示器作为多主 机的公用监视器,不用每台主机配一个监视器,从而节约系统成本。 (2)无破坏性的基于优先权的仲裁。 网络上的每个主机可以同时发送,哪个主机的数据可以发送出去 取决于主机所发送报文的标识符决定的优先权的大小,没有发送出去 的帧可自动重发。 (3)借助接收滤波的多地址帧传送 收到报文的标识符与本机的接收码寄存器与屏蔽寄存器相比较, 符合的报文本机才予以接收。
CAN总线的特点:
(4)远程数据请求。 网络上的每个接点可以发送一个远程帧给另一个接点,请求该接 点的数据帧,该数据帧与对应的远程帧以相同的标识符ID命名。 (5)配置灵活性 通过八个寄存器进行接点配置,每个接点可以接收,也可以发送 (6)全系统数据相容性 (7)错误检测和出错信令 有五种错误类型,每个接点都设置有一个发送出错计数器和一个 接收出错计数器。发送接点和接收接点在检测到错误时,出错计数器 根据一定规则进行加减,并根据错误计数器数值发送错误标志(活动 错误标志和认可错误标志),当错误计数器数值大于255时,该接点 变为“脱离总线”状态,输出输入引脚浮空,既不发送,也不接收。
CAN于汽车车窗智能控制系统上的应用:
各节点单元相关命令和状态通过CAN控制器以报文格式由CAN 总线完成与其他节点单元信息间的传输和共享。 • 其中报文的发送由CAN控制器遵循CAN协议规范自动完成。首 先CPU必须将待发送的数据按特定格式组合成一帧报文,进入CAN控 制发送缓冲器中,并置位命令寄存器中的发送请求标志,发送处理可 通过中断请求或查询状态标志进行控制。其发送程序分发送远程帧和 数据帧两种,远程帧无数据场。 报文的接收程序负责节点报文的接收 以及总线关闭、错误报警、接收溢出等其他情况处理。报文的收发主 要有中断接收方式和查询接收方式。 •

基于CAN总线的温度控制系统

基于CAN总线的温度控制系统

基于CAN总线的温度控制系统前言CAN (Controller Area Network) 总线又称控制器局域网是Bosch 公司, 在现代汽车技术中领先推出的一种多主机局部网由于其卓越的性能极高的可靠性独特灵活的设计和低廉的价格现,已广泛应用于工业现场控制智能大厦小区安防交通工具医疗仪器环境监控等众多领域CAN, 已被公认为几种最有前途的现场总线之一CAN。

总线规范已被ISO 国际标准组织制订为国际标准,CAN 协议也是建立在国际标准组织的开放系统互连参考模型基础上的,主要工作在数据链路层和物理层。

用户可在其基础上开发适合系统实际需要的应用层通信协议,但由于CAN 总线极高的可靠性从而使应用层通信协议得以大大简化。

CAN总线的物理层是将ECU连接至总线的驱动电路。

ECU的总数将受限于总线上的电气负荷。

物理层定义了物理数据在总线上各节点间的传输过程,主要是连接介质、线路电气特性、数据的编码/解码、位定时和同步的实施标准。

控制器局域网CAN是目前为止被批准为国际标准的少数现场总线之一。

CAN 网络可以采用多主方式工作。

它采用非破坏性的总线仲裁技术,其控制和信号传输采用短帧结构,因而具有低耦合性和较强的抗干扰能力。

它的传输介质可以是双绞线、同轴光纤或电缆,选择十分灵活;每帧信息都有CRC校验及其它检错措施,因此数据出错率极低,可靠性较高;当其传输的信息出错严重时,节点可以自动断开与总线的联系,以使其总线上其它的操作不受影响。

虽然目前USB、PCI等总线技术得到了快速发展,但是在大量应用的测试微机及工控机中,用的最多的还是ISA总线。

ISA总线具有16位数据宽度,其最高工作频率为8MHz,数据传输速率可达到16MB/s,地址总线有24条,可寻址16MB 的地址单元,其总线信号分为5类,分别为数据线、控制线、地址线、电源线和时钟线。

控制器局域网CAN属于现场总线的范畴,是一种有效支持分布式控制系统的串行通信网络。

CAN总线网络设计

CAN总线网络设计

1 引言can(controller area network)即控制器局域网络,最初是由德国bosch公司为解决汽车监控系统中的自动化系统集成而设计的数字信号通信协议,属于总线式串行通信网络。

由于can总线自身的特点,其应用领域由汽车行业扩展到过程控制、机械制造、机器人和楼宇自动化等领域,被公认为最有发展前景的现场总线之一。

can总线系统网络拓扑结构采用总线式结构,其结构简单、成本低,并且采用无源抽头连接,系统可靠性高。

本设计在保证系统可靠工作和降低成本的条件下,具有通用性、实时性和可扩展性等持点。

2 系统总体方案设计整个can网络由上位机(上位机也是网络节点)和各网络节点组成(见图1)。

上位机采用工控机或通用计算机,它不仅可以使用普通pc机的丰富软件,而且采用了许多保护措施,保证了安全可靠的运行,工控机特别适合于工业控制环境恶劣条件下的使用。

上位机通过can总线适配卡与各网络节点进行信息交换,负责对整个系统进行监控和给下位机发送各种操作控制命令和设定参数。

网络节点由传感器接口、下位机、can控制器和can收发器组成,通过can收发器与总线相连,接收上位机的设置和命令。

传感器接口把采集到的现场信号经过网络节点处理后,由can收发器经由can总线与上位机进行数据交换,上位机对传感器检测到的现场信号做进一步分析、处理或存储,完成系统的在线检测,计算机分析与控制。

本设计can总线传输介质采用双绞线。

图 1 can总线网络系统结构3 can总线智能网络节点硬件设计本文给出以arm7tdmi内核philips公司的lpc2119芯片作为核心构成的智能节点电路设计。

该智能节点的电路原理图如图2所示。

该智能节点的设计在保证系统可靠工作和降低成本的条件下,具有通用性、实时性和可扩展性等特点,下面分别对电路的各部分做进一步的说明。

图2 can总线智能网络点3.1 lpc2119处理器特点lpc2119是philips公司推出的一款高性价比很处理器。

CAN总线应用简介

CAN总线应用简介

CAN总线应用简介CAN,全称为“Controller Area Network”,即控制器局域网,采用串行通信,是国际上应用最广泛的现场总线之一。

CAN总线最早在1986年由德国Bosch公司最先提出,使用CAN连接发动机控制单元、传感器、防刹车系统等,解决日益复杂的汽车电子装置之间的连线问题,其传输速度可达1Mb/s,能有效地支持具有很高安全等级的分布实时控制。

一、CAN总线技术规范1、CAN通信模型CAN技术规范(CAN-bus规范V2.0版本)的目的是为了在任何两个CAN 仪器之间建立兼容性。

为了兼容CAN2.0,要求CAN的仪器应兼容A部分或B 部分。

CAN-bus规范V2.0版本由两部分组成:(1)A部分在这部分中,CAN的报文格式说明按CAN1.2规范定义。

为了达到设计透明度以及实现柔韧性,CAN被细分为以下层次:对象层、传输层、物理层。

物理层定义不同节点间的信号根据电气属性进行位信息的传输方法。

同一网络内,物理层对于所有的节点必须是相同的。

A部分没有定义物理层,以便允许根据实际应用,对发送媒体和信号电平进行优化。

传输层是CAN协议的核心。

她把接收到的报文提供给对象层,以及接收来自对象层的报文。

传输层负责位定时及同步、报文分帧、仲裁、应答、错误检测和标定、故障界定。

对象层的功能是报文过滤以及状态和报文的处理。

CAN节点的层结构及其开发系统互联模型OSI之间的对应关系如图所示。

(2)B部分B部分包含了报文标准格式和扩展格式的说明。

B部分的目的是定义数据链路层中MAC子层和一小部分LLC子层,以及定义CAN协议于周围各层当中所发挥的作用。

根据ISO/OSI参考模型,CAN被细分为数据链路层和物理层。

CAN总线的层结构及其与开发系统互联模型OSI之间的对应关系如图所示。

物理层定义信号是如何实际地传输的,因此涉及位时间、位编码、同步的解释。

B部分没有定义物理层的驱动器/接收器特性,以便允许根据它们的应用,对发送媒体和信号电平进行优化。

基于单片机的智能传感器CAN总线接口硬件设计

基于单片机的智能传感器CAN总线接口硬件设计

2 、智能传感器的 C AN总线接 口设计
在 C 总 线设计的掌握上 , AN 首先要明确一定的设计要点 , 悉 熟 硬件 电路的设计点 , 通过处理 C N通信控 制器与微处理器之 间的 A 主 要关系, 构建 完 善 的数 字 网路 , 注重 C N总 线 收发 器 和 物 理 总 并 A 线的接 口电路 , 围绕一些主要 的参数点和技术含量要求 , 譬如 单机 片、 控制器 的接 口、 门狗 电路等的一些具体的数据细化工作 。 看 在掌 握 C 通信控制器 的核心看点上 , AN 熟知C AN总线接 口的主要 点 , 完 成C AN的通 信 协 议 , 发 挥 出 C N总 线 收 发 器 的主 要 功 能 , 并 A 以便 增 大通讯之间的有 效距 离 , 进而提升系统 的瞬间抗干扰能力 , 实现对 总线的整体保护 , 尤其是可 以有效的降低RF 的射频干扰 , 出热 I 突 防护的有效效果。 在收 发器 的选用上 , 以采用P ip公司 生产 的 可 hl s i
S A10 控 制器 或者 其他 配型 的收 发器 , J 00 通过系统 的全盘设 置 , 选 择有利 的总线介质 , 设计 合理 的布 线方案 , 具体链接 CAN网络 在 时, 实现对两 套介质 同时进行信 息的有效传送 , 形成与另一种介质 的共融 , 并通过技术处理实 现总线的切换功能 。
传 感 器CAN总线接 口的 设计 。 关键词 : 智能 传 感 器 C N 总线接 口 A
中 图分类 号 : P 1 T 22
文献标识码 : A
文章编 号 :0 79 1(0 20 —180 10—4 62 1)70 1—2
1 、CAN 总线 智 能 传 感 器 的 组成
C AN在网络上上属于总线式结构 , 系统 由上位机 、 现场总线 网 络和智能传感器三部分组成 。 上位机主要负责对系统数据 的接 收与 管理 、 控制命令的发送 以及各控制单元动态参数和设备状态 的实时 显示 ; 智能传感器主要负责对现场的环境参数和设备状态数据进行 监测 , 把采集的模拟信号进行打包处理成数字信号并通过C N通信 A 控制器sA10发送 f C J 00 ] 1 AN总线。 系统 中的数据传送和接收, 都是通 过 C N总 线 接 口实 现 , 以 C A 所 AN总 线接 口 电路 的设 计 是 很 重 要 的 。

手把手教你设计CAN总线系列讲座(2)

手把手教你设计CAN总线系列讲座(2)

手把手教你设计CAN总线系列讲座(2)—CAN总线智能节点的设计在远程测控系统中,都要通过传感器或其他测量装置获取环境或相关的输入参数,传送到处理器,经过一定的算法,做出相应的控制决策,启动执行机构对系统进行控制,基于CAN总线的测控系统将单个测控设备变成网络节点,将控制系统中所需的基本控制、运行参数修改、报警、显示和监控等功能分散到各个远程节点中。

因此总线上的节点应该具有总线通信功能和测控功能,这必然离不开微处理器。

我们把具有这类功能的节点叫智能节点。

1 CAN网络节点结构和SJA1000的应用结构图一般把每个CAN模块分成不同的功能块。

这里以分布式恒温控制节点构成的CAN图1 CAN总线控制网络结构图控制网络为例(如图1所示),分析一下基于CAN总线的分布式网络节点的结构。

CAN节点由微处理器、CAN控制器SJA1000、光耦6N137模块和CAN驱动器82C50构成。

CAN控制器SJA1000执行在CAN规范里规定的完整的CAN协议,用于报文的缓冲和验收过滤,负责与微控制器进行状态、控制和命令等信息交换;在SJA1000下层是CAN收发器PCA82C50,它为CAN控制器和总线接口,它控制从CAN控制器到总线物理层或相反的逻辑电平信号,提供对总线的差动发送和对CAN控制器的差动接收功能。

光耦6N137起隔离作用。

图2 SJA1000的结构图所有这些CAN模块都由微处理器控制,它负责执行应用的功能,负责控制执行器(比如加热设备)、读传感器(比如温度)和处理人机接口。

如图2是SJA1000的应用结构图。

在CAN规范里,CAN核心模块控制CAN帧的发送和接收。

接口管理逻辑负责连接外部微处理器,该控制器可以是单片机、DSP或其他器件。

经过SJA1000复用的地址/数据总线访问寄存器和控制读写选通信号。

SJA1000的发送缓冲器能够存储一个完整的报文(扩展的或标准的)。

当微处理器初始化发送接口管理逻辑,CAN核心模块就会从发送缓冲器读CAN报文。

基于单片机的智能传感器CAN总线接口硬件设计

基于单片机的智能传感器CAN总线接口硬件设计

基于单片机的智能传感器CAN总线接口硬件设计随着智能化技术的不断发展,人们越来越关注智能系统的搭建,传感器技术的应用也越来越广泛,单片机技术更是在这个背景下广受关注。

在实现智能传感器的联网和信息处理方面,CAN总线作为一种主要网络协议,已经被广泛应用。

在这种情况下,智能传感器必须具有相应的CAN总线接口设计。

本文将介绍基于单片机的智能传感器CAN总线接口硬件设计。

1、 CAN总线介绍CAN(Controller Area Network)总线是一种串行通信协议,主要用于多个控制节点之间的实时数据传输。

CAN总线的通讯速度高,误码率低,具有自适应性等特点。

CAN总线的应用包括工业控制系统、汽车电子控制系统等。

2、硬件设计原理基于单片机的智能传感器CAN总线接口硬件设计需要根据自己的实际需求进行选择。

以STM32单片机为例,STM32单片机的CAN总线接口包括CAN1和CAN2,这两个接口在硬件电路上都有Rx和Tx引脚和节点电阻。

3、硬件设计流程(1)选择STM32单片机在选取单片机的时候,需要根据实际应用场景来选择。

STM32单片机有许多系列,每个系列又有不同的型号,不同型号的单片机内置了不同的外设,需要根据实际需求进行选择。

同时,要根据芯片性价比、性能、功耗等因素进行考虑。

(2)CAN总线选择在硬件设计中,需要选择CAN总线芯片,这个芯片需要支持CAN2.0A和CAN2.0B协议,并且需要支持高速通讯。

同时,要注意芯片的封装和额定工作温度等特性。

(3) CAN总线硬件连接在硬件连接中,需要将CAN总线芯片的Rx和Tx引脚和单片机的CAN1或CAN2接口相连,同时还需添加适当的电流限制电阻和终端电阻。

(4) CAN总线软件调试最后,需要对硬件电路进行软件调试,包括使用标准的CAN总线协议进行通信、CAN总线的数据传输、接收和发送数据、调试CAN中断等。

4、总结基于单片机的智能传感器CAN总线接口硬件设计需要根据实际需求进行选择,在硬件设计中需要选择合适的单片机、CAN总线芯片,并进行正确的硬件连接。

基于STM32的通用智能仪表设计及实现

基于STM32的通用智能仪表设计及实现

1系统设计STM32微型处理器用的是Cortex-M3内核,外面的接口非常多,主频高达72MHz,它是一种能远程控制的仪器,CAN能被广泛应用到很多行业,优点很多。

如功能强大、可靠性高、技术先进且成本合理等。

CAN总线可以支持多主,通信率高达1Mbit/s(间离小于20m),用这种方式来布置线路,方便性和可靠性大幅度增强。

下图就是智能仪表的设计图。

2关键硬件设计STM32可以用在很多设备上,可以根据用途,选择合适的科学的硬件要求。

这种系统还有一个强大的功能是能裁剪,我们可以按照需求对硬件进行调整,找出适合我们,经济实惠的进行使用。

2.1核心处理器核心处理器使用STM32F103VC,内核是功能强大的32位RISC,工作频率为72MHz,内部安装高速的存储器,能够增强I/O的端口并能连接到两条APB的总线;有三个十二位的ADC,能够提供十五种采样通道或者多种模式;DMA控制器的通道很多,高达十二个,能持的外设种类更多;还包括四个十六位的定时器与两个PWM 定时器;通信标准接口很多,工业领域非常适合;带4个片选的灵活的静态存储器控制器,支持SD卡、SRAM、PSRAM、NOR和NAND存储器;提供并行LCD接口,兼容8080/6800模式;采用LQFP100封装,提供80个GPIO;除了模拟输入I/O,其他管脚可以承受5V信号输入;供电范围非常宽,两伏到三点六伏之间,还有能编程的电压检测器,让整个系统的工作更稳定,抗干扰能力更强,把温度传感器与内部ADC直接相连,能更简便的监测器件周围的环境;最适合的温度是四十到一百零五摄氏度,达到工业生产中的应用需求。

2.2抗干扰设计内部建设也重要。

每种电路里面含有两种类型的信号,一类是模拟信号,另一类是数字信号。

两类中抗干扰能力最强的是数字信号,但是噪音很大,它就成了模拟信号的主要噪声源,因此要重视两种信号的隔离与去耦。

用5V电源输入,要在输入端加入相应的去耦电容。

智能传感器系统刘君华第章

智能传感器系统刘君华第章

数据链路层(DLL: Data Link Layer): DLL低层(介质访问)功能有:基本设备不能主动发起通信,只 能接受查询; 链路主设备在得到令牌时可以发起一次通信;每个网段的链路主设备中有一个链路活动 调节器,发起周期和非周期通信。
DLL高层(数据传输)功能有:无连接数据传输,发行数据定向连接传输, 请求/响应数据定向连接 传输。
7.3.2 可寻址远程传感器数据通路(HART)
HART是美国Rosemount公司研制的。其协议可参照ISO/OSI模型的物理层、数据链路层和应用层。 它主要有如下特性:
物理层:采用基于Bell 202通信标准的FSK技术, 即在直流4~20 mA模拟信号上叠加FSK数字信号, 逻辑1为1 200 Hz,逻辑0为2 200 Hz, 波特率为1 200 bit/s, 调制信号为±0.5 mA或 Up-p=0.25 V(250 Ω 负载)。用屏蔽双绞线单台设备距离为3 000 m而多台设备互连距离为1 500 m。
FAL应用实体(AE):为一些通信服务功能。该服务功能组成了现场总应用服务元素(FAL ASE)。 每个ASE又提供了一组传递应用层及其APO的请求或应答服务。 对于每一类APO,都定义了一个特定 的ASE。在现场总线中,为访问应用进程的APO定义了一些ASE,包括变量ASE、事件ASE、装载区 域ASE、 功能请求ASE。
LONWORKS采用LONTALK通信协议,LONTALK提供了五种基本类型的报文服务:确认、非确 认、请求/响应、重复、 非确认重复。
LONTALK协议的介质访问控制子层(MAC)对CSMA作了改进,采用一种新的称为Predictive P Persistent的CSMA, 根据总线负载随机调整时间槽n(1~63),在负载较轻时使介质访问延迟最小化,而 在负载较重时使冲突的可能性最小化, 从而使传输介质发生挥它的最大传输容量。LONWORKS支持 可自动重试的点到点的确认功能。

基于CAN总线的车载智能终端硬件设计

基于CAN总线的车载智能终端硬件设计

编程 F ah存 储 器 , 用 高 密 度 非 易 失性 存 储 器 技 ls 采
术 制造 , 与工业 8 C 1产 品指 令 和引脚 完全兼 容 。 O5
1 2 2 CAN 控 制 器 的 选 择 . .
S A1 0 是 一 款 独 立 的 C J 00 AN 控 制 器 , 泛 应 广 用 于汽车 和一般 工业 环 境 中 的控 制器 局域 网络 。它
内的节点 数 在理 论上不 受 限制 。另外 , AN 总线 的 C 通 信介 质多样 , 以是 双绞 线 、 可 同轴 电缆 或光 纤 。在
C AN 收 发 器 是 C AN 协 议 控 制 器 和 物理 总线
成本 上 , 基于 C AN 的车 用 总 线 具 有 较 强 的 市 场竞
争力 , 普遍 认为 是 车载 网络 领 域 最 有 发 展 前 途 的 被
之 间 的接 口, 为总 线提 供 差动 的发 送 和接 收功 能 , 是 C AN 系统 中的 必 须 设 备 。该 智 能 终 端 选 用 常用 的
C AN 收 发 器 即 P A8 C 5 C 2 2 0作 为 C AN 控 制 器 S AI 0 J O 0和 C AN 总 线 间 的 接 口, 现 对 总 线 的差 实
摘 要 : 据 车 载 智 能 终 端 的 需 要 , 计 了 基 于控 制 器局 域 网 C 根 设 AN 总 线 的 车 载 智 能 终 端 硬
件 电路 , 并对 信 号 传 输进 行 抗 干 扰 处 理 ; 拟 实验 表 明 所 设 计 的 系统 能 够 正 确 读 取 C N 帧 报 文 信 模 A
随着 汽车工 业 的发展 , 车 变得 越来 越 电子 化 、 汽
智 能化 、 网络化 , 电子 设 备及 线 路越 来 越 多 。该 文拟 设计 基 于控 制 器 局 域 网 C N( o t l rAraN t A C nr l e e— oe w r) ok 总线的汽 车智 能终 端 , 汽 车上 的多路 传感 器 将 信号通 过 C N 总线传 输 到智 能终 端 上 , A 以实 现对 车

CAN总线详细教程精心编制

CAN总线详细教程精心编制

CAN总线布置、构造和基本特点
考虑到信号旳反复率及产生出旳数据量,CAN总线系统分为 三个专门旳系统
• CAN驱动总线(高速),500Kbit/s,可基本满足实时要求。 • CAN舒适总线(低速),100 Kbit/s,用于对时间要求不高 旳情况。 • CAN“infotainment”总线(低速),100Kbit/s,用于对 时间要求不高旳情况。
Canbus旳收发器如图所示,使用一种电路进行控制,这么也就 是说控制单元在某一时间段只能进行发送或接受一项功能。 逻辑“1”:全部控制器旳开关断开;总线电平为5Vor3.5V; Canbus未通讯。 逻辑“0”:某一控制器闭合;总线电平为0伏; Canbus进行通
所以总线导线上就会出现两种状态: 状态1: 截止状态,晶体管截止(开关未接合) 无源: 总线电平=1,电阻高
◆ 基于CAN旳应用层协议应用较通用旳有两种:DeviceNet(适合于工厂底层自动 化) 和 CANopen(适合于机械控制旳嵌入式应用)。 ◆ 任何组织或个人都可以从DeviceNet供货商协会(ODVA)获得DeviceNet规范。 购买者将得到无限制旳、真正免费旳开发DeviceNet产品旳授权。 ◆ DeviceNet自2023年被确立为中国国家原则以来,已在冶金、电力、水处理、乳
汽车电子技术发展旳特点:
汽车电子控制技术从单一旳控制逐渐发展到 综合控制,如点火时刻、燃油喷射、怠速控 制、排气再循环。
电子技术从发动机控制扩展到汽车旳各个构 成部分,如制动防抱死系统、自动变速系统、 信息显示系统等。技术旳分类:
单独控制系统:由一种电子控制单元(ECU)控制 一种工作装置或系统旳电子控制系统,如发动机控 制系统、自动变速器等。

总之,使用汽车网络不但能够降低线束,而且 能够提升各控制系统旳运营可靠性,降低冗余 旳传感器及相应旳软硬件配置,实现各子系统 之间旳资源共享,便于集中实现各子系统旳在 线故障诊疗。

基于STM32的RS232-CAN通信协议转换器设计

基于STM32的RS232-CAN通信协议转换器设计

基于STM32的RS232-CAN通信协议转换器设计王英志;杨佳;韩太林【摘要】依据RS232接口和CAN总线的特点,设计了RS232接口与CAN总线的协议转换器。

以集成串行接口和CAN总线控制器的STM32F103C8单片机为核心,设计转换器的硬件电路和软件程序,实现RS232和CAN总线通信协议的转换。

本转换器具有通信隔离、防雷电等功能,具有体积小,成本低,便于实现,易于推广等特点,在应用中取得良好效果。

【期刊名称】《制造业自动化》【年(卷),期】2013(000)014【总页数】3页(P141-143)【关键词】协议转换;CAN总线;RS232;STM32F103C8【作者】王英志;杨佳;韩太林【作者单位】长春理工大学电子信息工程学院,长春130022;吉林建筑工程学院电气与电子信息工程学院,长春130021;长春理工大学电子信息工程学院,长春130022【正文语种】中文【中图分类】TP2730 引言目前,RS232接口和CAN总线接口广泛应用于工业设备之间的通信。

它们各有特点,应用在不同领域。

RS232通信距离短,接口容易损坏。

CAN总线具有多点通信、组网方便,传输距离远,通信实时性好,纠错能力强,成本低等特点,能更好地匹配和协调各个控制系统[1]。

基于两种接口特点,本文介绍一种实现RS232接口设备与CAN总线设备进行通信的转换器,更好的解决用户在地域、通信网络、接口协议等方面的矛盾。

1 系统硬件设计RS232-CAN通信协议转换器设计,主要是完成RS232与CAN总线之间的通信协议转换,实现数据的互联通信。

在通信过程中,为了使系统具有通用性和稳定性,对供电电源、通信隔离、防雷电等方面进行了特殊设计。

系统原理框图如图1所示。

图1 系统原理框图1.1 单片机选择选用意法半导体公司ARM Co rtex™-M 3核的32位STM 32F103C8单片机,负责系统的整体运行。

单片机特点为:最大时钟频率为72MHz,3个16位定时器,其内部集成CAN2.0控制器、USART接口和USB2.0全速接口等,调试模式为SWD和JATG接口。

CAN总线的特点及J1939协议通信原理

CAN总线的特点及J1939协议通信原理

CAN总线的特点及J1939协议通信原理、内容和使用来源:众多国际知名汽车公司早在20世纪80年代就积极致力于汽车网络技术的研究及使用。

迄今已有多种网络标准,如专门用于货车和客车上的SAE的J1939、德国大众的ABUS、博世的CAN、美国商用机器的AutoCAN、ISO的VAN、马自达的PALMNET等。

在我国的轿车中已基本具有电子控制和网络功能,排放和其他指标达到了一定的要求。

但货车和客车在这方面却远未能满足排放法规的要求。

计划到2006年,北京地区的货车和客车的排放要满足欧Ⅲ标准。

因此,为了满足日益严格的排放法规,载货车和客车中也必须引入计算机及控制技术。

采用控制器局域网和国际公认标准协议J1939来搭建网络,并完成数据传输,以实现汽车内部电子单元的网络化是一种迫切的需要也是必然的发展趋势。

1 CAN总线特点及其发展控制器局域网络(CAN)是德国Robert bosch公司在20世纪80年代初为汽车业开发的一种串行数据通信总线。

CAN是一种很高保密性,有效支持分布式控制或实时控制的串行通信网络。

CAN的使用范围遍及从高速网络到低成本底多线路网络。

在自动化电子领域、发动机控制部件、传感器、抗滑系统等使用中,CAN的位速率可高达1Mbps。

同时,它可以廉价地用于交通运载工具电气系统中,如灯光聚束、电气窗口等,可以替代所需要的硬件连接。

它采用线性总线结构,每个子系统对总线有相同的权利,即为多主工作方式。

CAN网络上任意一个节点可在任何时候向网络上的其他节点发送信息而不分主从。

网络上的节点可分为不通优先级,满足不同的实时要求。

采用非破坏性总线裁决技术,当两个节点(即子系统)同时向网络上传递信息时,优先级低的停止数据发送,而优先级高的节点可不受影响地继续传送数据。

具有点对点、一点对多点及全局广播接收传送数据的功能。

随着CAN在各种领域的使用和推广,对其通信格式的标准化提出了要求。

1991年9月Philips Semiconductors制定并发布了CAN技术规范(Versio 2.0)。

随着科学技术的进步和发展

随着科学技术的进步和发展

随着科学技术的进步和发展,对车辆驾驶性能和安全舒适性的要求大为提高,使得车辆上的电子控制单元数量逐步增加。

但是,车辆上的电控单元(如,各种开关、执行器、传感器等)的连接仍然以传统的配线束来实现,使得车内线束过多且布线复杂,从而造成了严重的电磁干扰,导致系统的可靠性下降。

在高级轿车上,电子元件及其系统占据了整车超过20%的价格,而且,有日渐增加的趋势。

在这种情况下,车内电控线路就会更加复杂,如何使车内的装置网络化,并降低配线束数量等成为改善车内系统的一个重点研究方向。

在车辆的网络化与通信系统中,局部网络的方法越来越丰富,其中,CAN,Profibus,LON,ASI,EIB与eBus等网络技术已经发展的相当成熟,各种网络技术的标准化也相继出台,而且,这些成熟的网络技术已经完成集成化工作。

CAN总线在稳定性、即时性及其性价比等方面在汽车应用中都显示出较强的优势,作为分布式控制中的局域网技术具有较强的竞争力。

目前,很多汽车采用CAN总线将整个汽车控制系统联系起来统一管理,实现数据共享和相互之间协同工作,使车内线束布线方便可靠,提高了汽车整体的安全性和性价比,增强了自身的竞争力。

实现车辆系统的网络化控制的前提是网络接点的智能化设计,包括传感器、控制器和执行器的智能化。

本文以线控电子节气门为研究对象,设计了脚踏板位置传感器、节气门位置传感器和节气门位置控制执行器的CAN总线智能化接点,以此为基础组成CAN总线控制网络,完成对节气门位置的精确控制。

1、车辆CAN总线与分布式控制系统结构控制局域网(controller area network,CAN)属于工业现场总线,是德国Bosch公司20世纪80年代初作为解决现代汽车中众多的控制与测试仪器间的数据交换而开发的一种通信协议。

1993年11月,ISO 正式颁布了高速通信CAN的国际标准(ISO 11898)。

CAN总线系统中现场数据的采集由传感器完成,目前,带有CAN总线接口的传感器种类还不多,价格也较贵。

基于CAN总线的无人车车载无线传输终端设计

基于CAN总线的无人车车载无线传输终端设计

基于CAN总线的无人车车载无线传输终端设计张松松;高美娟;朱学葵【摘要】针对无人驾驶汽车运行状态的监控问题,设计了以CAN总线和嵌入式技术为核心的车辆参数数据采集和远程监控系统,基于核心处理器STM32F107搭建了终端的硬件系统,介绍了汽车CAN总线接口设计、串行接口设计和语音报警模块电路设计,监控端使用面向对象的界面化设计.应用结果表明,系统的实时性强、稳定性好,可以方便地远程观测无人驾驶汽车的运行参数.【期刊名称】《北京联合大学学报(自然科学版)》【年(卷),期】2015(029)003【总页数】5页(P44-48)【关键词】CAN总线;无人驾驶汽车;STM32F107;车载终端【作者】张松松;高美娟;朱学葵【作者单位】北京联合大学北京市信息服务工程重点实验室,北京 100101;北京联合大学自动化学院,北京 100101;北京联合大学北京市信息服务工程重点实验室,北京 100101【正文语种】中文【中图分类】U46引言无人驾驶汽车是一种智能汽车,也可以称之为室外轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶仪来实现无人驾驶[1]。

它一般是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶[2]。

出于安全性和实际测试需要考虑,需要在无人驾驶汽车上安装一套能够实时采集车辆状态的系统,用以观测车辆运行参数。

根据无人驾驶汽车的特点,本文选用汽车电子系统中最常用的通信方式——控制局域网 CAN(Controller Area Network)总线。

1 CAN总线CAN是国际上运用最广泛的总线之一,由于是通过差分方式传输,其具有结构简单、传输距离较远、速率较快、节点数自由、安全可靠等特性,使其在汽车电子领域备受关注[3]。

CAN总线被设计在汽车电子控制单元ECU(Electronic Control Units)之间交换信息,从而构成了汽车电子网络。

8 第五课 第三章CAN总线系统结构

8 第五课 第三章CAN总线系统结构
现场总线技术
图3.4 简单的总线拓扑结构
(a)环型拓扑结构
现场总线技术
(b)树型拓扑结构
图3.5 复杂拓扑结构的连接
现场总线技术
3.5 CAN总线的通信方式
CAN总线根据节点的不同,可以采取不同的通信方式以适应不同 的工作环境和效率。
(1)CAN总线可以多主式工作,网络上任意一个节点均可以在任意时刻主动地 向网络上的其它节点发送信息,而不分主从,通信方式灵活。
现场总线技术
3.2CAN总线系统的节点
3.2.1节点的概念
节点一般是指挂在CAN总线上的传感部件、执行部件或控制单元。
节点间通过对等的传播数据来实现网络通信。
节点的微控制器和上位机之间的通信可以是单向的,也可以 双向。
在双向传输信息模式中,上位机可以通过节点传来的数据和 状态值,进行报警或调整等反馈措施。
现场总线技术
3.4基于CAN总线构建复杂拓扑结构的工业控制系统
很多工业控制系统应用了基于CAN总线的网络控制系统,而 这些网络控制系统一般具有复杂的拓扑结构。
以一个16位微处理器的CAN网关的设计为例:
一个微处理器控制4个通信接口:两个CAN、一个485和一个上位机RS232。 信息和数据在两条CAN之间转发。 CAN和485之间数据转换。 和上位机之间的通信服务。 具备路由选择和流量控制功能,能提供本地时钟服务(Local Real Time Clock Service)。Fra bibliotekPC 机
控制器
CAN卡
RH6
DVT
目标
现场总线技术
CAN总线的应用举例
工控机
码跺机器人
托盘2
控制器
检测点3 传送线
DVT 检测点2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cr uis w hih m an y c nss fC805 F0 n AD 6 3. The p e p o e s d sg li he c ve t d i o t ic t c i l o ito 1 41 a d 2 r — r c s e ina s t n on re nt heCA N e s geby a nt r l m s a n i e na CA N o r lri t gr e n S C 051 c ntole n e at d i O C8 F041a r ns it d t nd t a m te o CAN svi n e e na bu a a xt r lCAN r ns ev rCTM 8 ta c i e 251 T. A om b n ton c iai oft e i e f c o la r ns uc r c n be d fne s aCA N h nt r a e m de nd t a d e a e i d a nod . A fe or ul ig o w n CA N pl a i -a e ot c l r s e t rf m atn uro ap i ton l y rpr o o ,tan — c duc lc r cda a s e sa e s c e s u l r ns it d t ou eree toni t he t r u c s f ly ta m t e hr gh CA N us wih l b t ow ro iy a a h CA N od a e e v e t i — p irt nd e c n e c n r c i e c r an pa r m e e e tng t e lz he a plc to ft a s c r a t r s t i o r aie t p ia in o r n du e s’p u n l y lg a d pa . Key w o d r s:CAN nt li n n e f c i elge ti t r a e;CAN om m un c to r t o ;C80 F0 c ia i n p o oc l 51 41;CA N o r le c nt o lr;CA N r ns ev r t a c ie
C AN 总 线 接 口 , 之 成 为 C N 总 线 上 的 一 个 智 能 节 点 , 使 A
即易 于 实 现 传 感 器 的 即插 即 用 , 提 高 了 测 控 系 统 的 灵 活 也
性和可扩展性 。
1 传 感 器 / N智 能接 口系统 构 成 CA
传 感 器 / A 智 能 接 口 的作 用 主要 有 两 点 : 是 控 制 C N 一 传感 器 的 信 号 调 理 , 传 感 器 的输 出模 拟 信 号转 换 为 数 字 将
差 分 带 宽 等 于 共 模 带 宽 。 因 此 , 带 宽 范 围 内 的 共 模 信 在 号 , RC不 完 全 匹 配 ( t 0 引 起 的 幅 值 差 , 带 宽 范 因 △ ≠ ) 在 围 内 , 波 器 不 能 将 其 滤 除 。当 接 人 C 滤 3后 , 果 使 C3 如 — 1 C, 差 分 带 宽 比共 模 带 宽 降 低 了 2 0 则 0余 倍 , 此 可 大 量 因
中 图 分 类 号 :TH3 9
文 献 标 识 码 :A
CAN n era e Des g s n It l n an d c 鲞 It f c i n Ba ed o n eli ge tTr s u er
Ya gF n W uB n n , uHa u n e , oo g W U n
21 年第8 平 07 期 机 嵌入式系 l 证应冈


¨ ¨ l
的传 感 器 信 号 幅度 在 2 0 mV 左 右 , 端 输 出 。此 后 对 该 0 单 信 号 的处 理 完 全 由 基 于 s 0c 技 术 的 混 合 信 号 微 处 理 器 C 0 1 0 1 自动 完 成 , 信 号 的 程 控 放 大 、 号 的 零 点 8 5F 4 如 信 校 准 、 号 的 A/ 信 D变 换 、 号 的 数 字 滤 波 以 及 C 信 AN 报 文 的形成和收发 控制 等 ;85F 4 C 0 1 0 1是 该 接 口 的 核 心 , 不 它
被 合 成 为 两 倍 幅值 的 同频 差 分 信 号 , 差 分 信 号 不 仅 不 能 该 被抑制 , 被放大器放大 , 还 即被 混 叠 到 有 效 信 号 中 , 以消 难 除 。 为此 , 两 低 通 滤 波 器 之 间 跨 接 了 电容 C3 这 样 该 滤 在 , 波 器 的差 分 带 宽 为 :
丽十
() 1
() 2
其中: R—R1 一R2 C—C1 2 , 一C 。 比较 ( ) 2 两 式 可 以 看 出 , 不 接 人 C 1 () 当 3时 , 波 器 的 滤
2 传 感器 信 号 调 理
考 虑 到 绝 大 多 数 传 感 器 信 号 较 弱 , 包 含 大 量 的 噪声 且
接 口系 统 构 成 如 图 1所 示 。 图 1 智能接I 系统构成 : 1 针 对 大 多 数模 拟 传 感 器 输 出信 号 较 弱 的特 点 , 1 接 3首
先 对 传 感 器 信 号 进 行 一 级 放 大 和 滤 波 的预 处 理 , 处 理 后 预
ppr entcr.n投稿专用) ae @m se.o c( n
sg a sv r a in li e ywe k,i s o l ep o es dt r u hn cs ayf trn t h udb r cs e h o g ee s r i e ig,p o r m ana l iain,z r air t n a dA/ o v rin l rg a g i mpi c t f o eoc l ai n D c n eso b o
引 言
测 控 系 统 离 不 开 传 感 器[ 。 由 于 各 种 传 感 器 的 工 作 1 ]
原 理 不 同 , 最 终 输 出 的 电量 形 式 各 不 相 同 。 即使 同一 类 其 传 感 器 , 灵 敏 度 、 量 范 围不 同 , 同 电 信 号 代 表 的 物 理 其 测 相 量 也 不 尽 相 同 。 因此 , 统 的 测 控 系 统 , 须 对 系 统 中 的 传 必
量 , 进 行 相 应 的处 理 , 成 可 发 送 的 CAN 报 文 信 息 ; 并 形 二
每 一个 传 感 器 进 行 配 置 , 感 器 类 型 、 敏 度 、 量 范 围等 传 灵 测 的细 微 改 变 都将 导 致 系 统 ( 主要 是 软 件 和 部 分 硬 件 ) 重 的 新 设 置 。若 要 增 / 减传 感 器 , 改 变 测 控 系 统 的规ห้องสมุดไป่ตู้模 , 需 以 则 对整个 系统( 件 、 件及布线) 软 硬 。进 行 重 新 配 置 。这 无 疑
智能传感器 的 C AN 总 线 接 口设 计
杨芬 , 吴伯 农 , 海 军 吴
( 方工业大学 机电工程学院, 京 104) 北 北 0 1 4
摘 要 :为 使 传 感 器 可 即插 即 用 于 CAN 的测 控 系统 , 混合 信 号 微 处 理 器 C8 5 F 4 以 0 1 0 1为核 心 , 建 可嵌 入 传 感 器 的 智 能 构 转 换接 口 , 传 感 器输 出信 息 转 换 为 C 将 AN 总线 上 的报 文 信 息 ; 对 大 多数 模 拟 传 感 器 输 出信 号较 弱 的 特 点 , 0 1 0 1 针 C8 5 F 4 结 合 AD6 3等 模 拟 电路 对 传 感 器信 号 进 行 必要 的 滤 波 、 控 放 大 、 点 校 准 、 D 变 换 , 由其 内部 集 成 的 C 2 程 零 A/ 并 AN 控 制 器 转 换 为 CAN 报 文 信 息 , 过 外 接 的 C 通 AN 驱 动 器 C TM8 5 T 最 终 接 入 CAN 总 线 ; AN 控 制 器 使 该 传 感 器 成 为 一 个 21 C
CAN 节 点 , 过 定 义 CAN 应 用层 协 议 , 传 感 器 插入 后 立 即 以较 低 优 先 级 传 送 传 感 器 电子 数 据 表 单 , 收 必要 的 参 数 通 使 接
设 定 , 而 实现 传 感 器 即插 即 用 。 从 关 键 词 :CAN 智 能 接 1 CAN 通 信 协 议 ; 0 1 0 1 C : 2; C8 5 F 4 ; AN 控 制 器 ; CAN 收 发 器
极 大 地 限 制 了测 控 系 统 的灵 活 性 , 约 了测 控 系统 的 扩 展 制
是控制 C N驱 动器, / A 收 发
执相的能制 行应智控

智 能 一

一 一

性 。C AN 的 通 信 硬 件 接 口简 单 , 信 线 少 , 信 介 质 可 以 通 通
为 双 绞 线 、 轴 电 缆 或 者 光 缆 。将 测 控 系 统 配 置 为 同 C AN 总 线 结 构 , 目前 广 泛 应 用 的 各 种 模 拟 传 感 器 , 以 将 配
Ab ta t I de o m e tt e n e ft a duc r ’p u nd ply a ple n t es n o r y t m s d onCA N s r c : n or r t e h e dso r ns e s l g a a p id i het ta d c ntols s e ba e bus m a tc n— ,as r o v r in i e f c m o l e so nt ra e de whih a b e b dd d nt t a duc r wa de eop d c c n e m e e i o r ns es s v l e w ih t SOC m ir c ntole C80 F0 a t e or co o r lr 51 41 s h c e, t oug h c het a duc rsout i hr h w i h t r ns e ’ putsgna a e c nv r e n o t e s g n CA N s Fo o to he a a o r n du e ’ t t lc n b o e t d i t he m s a e o bu . rm s ft n l g t a s c rsou pu
相关文档
最新文档