SPSS系列培训之:相关分析与线性回归模型

合集下载

spss中相关与回归分析

spss中相关与回归分析

定义变量:血红蛋白,贫血体征→Variables
20:41
16

建立数据文件:血红蛋 白的等级相关分析.sav.

定义变量 输入数据

开始分析

ቤተ መጻሕፍቲ ባይዱ
analyze →Correlate →Bivariate

定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
20:41
34

主要结果
b Model Summary
Model 1
R .930a
R Sq uare .865
Adjusted R Sq uare .848
Std. Error of the Estimate 1.8528
a. Predictors: (Constant), 身 高 ( cm) b. Dependent Variable: 体 重 ( kg )
表 4 慢性支气管炎患者各年龄组疗效观察结果 疗效 年龄(岁) 11~ 20~ 30~ 40~ 50~ 合计 治愈 35 32 17 15 10 109 显效 1 8 13 10 11 43 好转 1 9 12 8 23 53 无效 3 2 2 2 5 14 合计 40 51 44 35 49 219
17

20:41

主要结果
Correlations 血 红 蛋 白 含 量 ( g/dl) 1.000 . 10 -.741* .014 10 贫 血 体 征 -.741* .014 10 1.000 . 10
Spearman's rho
血 红 蛋 白 含 量 ( g/dl)

第6讲 SPSS的相关分析和线性回归分析

第6讲 SPSS的相关分析和线性回归分析

10
表6-2 课题相关因素的偏相关分析结果
Correlations Control Variables 投入高级职称的人 课题总数 Correlation 年数 Significance (2-tailed) df 论文数 Correlation Significance (2-tailed) df 课题总数 1.000 . 0 -0.140 0.461 . 28 论文数 -0.140 0.461 28 1.000 0
9
• 例6.2 在例6.1中发现,课题数与论文数之 间都有较强的正线性相关关系。但这种关 系中可能掺入了高级职称人数的影响(见 表6-1),因此需要进行课题数与论文数之 间的偏相关分析。 结果见表6-2。可以看出,课题数与论文数 之间的偏相关系数比简单相关系数减少了, 并且偏相关系数变得统计上不显著。
ˆ ˆ ˆ ˆ ˆ S β1 , β 2 , L, β k = ∑ y i − β 0 − β1 x1i − L β k x ki
i =1
(
)
n
(
)
2
13
4 回归方程的统计检验 通过样本数据建立回归方程后一般不能用于 对实际问题的分析和预测,通常要进行各种 统计检验,包括回归方程的拟合优度检 验、回归方程的显著性检验、回归系数的显 著性检验、残差分析等。
22
⑤变量的筛选 • 向前筛选(Forward):首先选择与被解释变量具有 最高线性相关系数的变量进入方程,并进行回归 方程的各种检验;然后在剩余的变量中寻找被解 释变量偏相关系数最高且通过检验的变量进入方 程;直到没有可进入方程的变量为止。 • 向后筛选(Backward):首先所有变量全部引入方 程;然后在回归系数显著性检验不显著的一个或 多个变量中,剔出t检验值最小的变量;直到所有 变量的回归系数检验都显著为止。 • 逐步筛选(Stepwise):是向前筛选与向后筛选方 法的综合。

实训6教学演示:直线相关与回归分析的SPSS软件实现方法

实训6教学演示:直线相关与回归分析的SPSS软件实现方法

【实训结果】
【结果解释】
实训表29相关分析结果显示,身高与前臂 长两个变量的相关系数为0.795。经检验, P=0.002(P<0.05),有统计学意义,可认为 身高与前臂长之间存在线性相关关系,且为 正相关。
项目二:回归分析
【实训目的】
运用SPSS“分析”菜单中的“回归”选项, 建立回归方程,并检验总体回归系数是否 为0,正确解释SPSS的输出结果。
【实训结果】
【结果解释】
✓ 实训表30为模型摘要表,显示了模型的拟合优度情况, 相关系数为0.795,决定系数为0.633,校正决定系数为 0.596。
✓ 实训表31为回归方程的方差分析表,显示了变异分解情 况,F=17.216,P<0.01,建立的模型具有统计学意义。
✓ 实训表32为回归系数表,给出了回归系数的估计及检验, 回归方程的常数项为10.700,身高的回归系数为0.200。 经回归系数t检验,t=4.149,P<0.01,说明身高与前臂 长之间存在线性回归关系,回归方程:^Y=10.7+0.2X。
项目一:直线相关分析
【实训目的】
运用SPSS“分析”菜单中“相关”选项, 计算相关系数,并检验两变量总体相关系 数是否为0,正确解释SPSS的输出结果。
【实训内容】
✓ 见第十一章例11-1,某医师测量12名20岁健康男大学生 的身高与前臂长,资料见表11-1。试求身高与前臂长的 相关系数。
表11-1 12名20岁健康男大学生身高与前臂长资料
实训6 直线相关与回归分析的SPSS软件实现方166
155
188
190
171
前臂 长 43 45 47 47 44 42 46 44 41 49 50 47 /cm

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

SPSS第六讲线性回归分析

SPSS第六讲线性回归分析

1 1867.896 290.715
Sig . .000a
Res idual6829.963
1063
6.425
Total 8697.859
1064
a.Predictors: (Constant), Highest Year School Completed, Fat her b.D ep endent Variable: H ighest Year of School Comp leted
.026
.295
7.768
Highest Year School Complet ed, Mother .189
.031
.230
6.058
a. Dependent Variable: Highest Year of School Completed
Sig. .000 .000
.000
四、 多元线性回归分析(三元)
Highest Year School Completed, Mother, Highest Year School Completed,
a
Father
Variables Removed
Method
. Enter
a. All requ ested variables entered. b . Dep en d en t Variable: Hig hest Year o f Scho o l Co mpleted
Sig . .000
.000
线性回归方程:Y=0.668X+1.910 “X”的实际值每增加1个单位,“Y”实际值增 加0.668个单位,可进行实际预测具体值。
标准化线性回归方程:Y‘=0.463X’ “X”的标准值每增加1个单位,“Y”的标准值 相应地增加0.463个单位。(与非标准化方程等价,标准化后去掉了单位的影响、 去掉常数,没法进行实际预测具体值仅反应的是自变量对因变量的影响程度,好 处是在多个自变量的情况下,可进行影响程度比较。)

数据统计分析软件SPSS的应用(五)——相关分析与回归分析

数据统计分析软件SPSS的应用(五)——相关分析与回归分析

数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS是目前应用广泛且非常强大的数据分析工具之一。

在前几篇文章中,我们介绍了SPSS的基本操作和一些常用的统计方法。

本篇文章将继续介绍SPSS中的相关分析与回归分析,这些方法是数据分析中非常重要且常用的。

一、相关分析相关分析是一种用于确定变量之间关系的统计方法。

SPSS提供了多种相关分析方法,如皮尔逊相关、斯皮尔曼相关等。

在进行相关分析之前,我们首先需要收集相应的数据,并确保数据符合正态分布的假设。

下面以皮尔逊相关为例,介绍SPSS 中的相关分析的步骤。

1. 打开SPSS软件并导入数据。

可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。

2. 准备相关分析的变量。

选择菜单栏中的“Analyze”选项,然后选择“Correlate”子菜单中的“Bivariate”。

在弹出的对话框中,选择要进行相关分析的变量,并将它们添加到相应的框中。

3. 进行相关分析。

点击“OK”按钮后,SPSS会自动计算所选变量之间的相关系数,并将结果输出到分析结果窗口。

4. 解读相关分析结果。

SPSS会给出相关系数的值以及显著性水平。

相关系数的取值范围为-1到1,其中-1表示完全负相关,1表示完全正相关,0表示没有相关关系。

显著性水平一般取0.05,如果相关系数的显著性水平低于设定的显著性水平,则可以认为两个变量之间存在相关关系。

二、回归分析回归分析是一种用于探索因果关系的统计方法,广泛应用于预测和解释变量之间的关系。

SPSS提供了多种回归分析方法,如简单线性回归、多元线性回归等。

下面以简单线性回归为例,介绍SPSS中的回归分析的步骤。

1. 打开SPSS软件并导入数据。

同样可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。

2. 准备回归分析的变量。

SPSS专题2 回归分析(线性回归、Logistic回归、对数线性模型)

SPSS专题2 回归分析(线性回归、Logistic回归、对数线性模型)

19
Correlation s lif e_ expectanc y _ f emale(y ear) .503** .000 164 1.000 . 192 .676**
cleanwateraccess_rura... life_expectancy_femal... Die before 5 per 1000
Model 1 2
R .930
a
R Square .866 .879
Model 1
df 1 54 55 2 53 55
Regres sion Residual Total Regres sion Residual Total
Mean Square 54229.658 155.861 27534.985 142.946
2
回归分析 • 一旦建立了回归模型 • 可以对各种变量的关系有了进一步的定量理解 • 还可以利用该模型(函数)通过自变量对因变量做 预测。 • 这里所说的预测,是用已知的自变量的值通过模型 对未知的因变量值进行估计;它并不一定涉及时间 先后的概念。
3
例1 有50个从初中升到高中的学生.为了比较初三的成绩是否和高中的成绩 相关,得到了他们在初三和高一的各科平均成绩(数据:highschool.sav)
50名同学初三和高一成绩的散点图
100
90
80
70
60
高 一成 绩
50
40 40
从这张图可以看出什么呢?
50 60 70 80 90 100 110
4
初三成绩
还有定性变量 • 该数据中,除了初三和高一的成绩之外,还有 一个定性变量 • 它是学生在高一时的家庭收入状况;它有三个 水平:低、中、高,分别在数据中用1、2、3 表示。

spss教程第三章--相关分析与回归模型的建立与分析

spss教程第三章--相关分析与回归模型的建立与分析

第三章相关分析与回归模型的建立与分析相关分析和回归分析是统计分析方法中最重要内容之一,是多元统计分析方法的基础。

相关分析和回归分析主要用于研究和分析变量之间的相关关系,在变量之间寻求合适的函数关系式,特别是线性表达式。

◆本章主要内容:1、对变量之间的相关关系进行分析(Correlate)。

其中包括简单相关分析(Bivariate)和偏相关分析(Partial)。

2、建立因变量和自变量之间回归模型(Regression),其中包括线性回归分析(Linear)和曲线估计(Curve Estimation)。

◆数据条件:参与分析的变量数据是数值型变量或有序变量。

§3.1 相关分析在SPSS中,可以通过Analyze菜单进行相关分析(Correlate),Correlate菜单如图3.1所示。

图3.1Correlate 相关分析菜单§3.1.1 简单相关分析两个变量之间的相关关系称简单相关关系。

有两种方法可以反映简单相关关系。

一是通过散点图直观地显示变量之间关系,二是通过相关系数准确地反映两变量的关系程度。

§3.1.1.1 散点图SPSS软件的绘图命令集中在Graphs菜单。

下面通过例题来介绍具体操作方法。

例1:数据库SY-8中的变量X表示山东省人均国内生产总值,Y表示山东省城镇居民的消费额(资料来源:山东省2003年统计年鉴),现画出散点图来观察两个变量的关联程度。

具体操作步骤如下:首先打开数据SY-8,然后单击Graphs Scatter,打开Scatter plot散点图对话框,如图3.2所示。

然后选择需要的散点图,图中的四个选项依次是:Simple 简单散点图Matrix 矩阵散点图Overlay 重叠散点图3-D 三维散点图图3.2 散点图对话框如果只考虑两个变量,可选择简单的散点图Simple,然后点击Define,打开Simple Scatterplot 对话框,如图3.3所示。

SPSS专题2回归分析线性回归Logistic回归对数线性模型

SPSS专题2回归分析线性回归Logistic回归对数线性模型

(Constant)
410.150
18.817
21.797
.000
l i fe_expectancy_ femal e(year)
-4.896
.284
-.885
-17.252
.000
cl eanwateraccess_ rural (%)
-.237
a. Dependent Vari abl e: Di e before 5 per 1000
Kendall Spearman
Corre la ti ons
Kendal l's tau_b cl eanwateraccess_ rural (%)
cl eanwateracc
ess_rural (%)
Correl ati on Coeffi ci ent
1 . 00 0
Si g. (2-tai l ed)
Corre la ti ons
cl eanwateraccess_ rural (%)
Pearson Correl ati on Si g. (2-tai l ed)
cl eanwateracc e ss_ ru ra l(% )
l i fe_expectancy_ femal e(year)
N
Die before 5 per 1000
5
还有定性变量
下面是对三种收入对高一成绩和高一与初三成绩差的盒 形图
高一成绩与初三成绩之差 高一成绩
110
100
90
80
70
60
50
39 25
40
30
N=
11
27
12
1
2

相关分析和回归分析SPSS

相关分析和回归分析SPSS

人均 国民收入
1068.8 1169.2 1250.7 1429.5 1725.9 2099.5
人均 消费金额
643 690 713 803 947 1148
计算结果

解:根据样本相关系数的计算公式有
r
n x x n y y
2 2 2
n xy x y
回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释 变量(因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
回归分析与相关分析的区别
1. 相关分析中,变量 x 变量 y 处于平等的地位, 是对称的双向关系;回归分析中,变量 y 称为因 变量,处在被解释的地位, x 称为自变量,用于 预测因变量的变化,是一种不对称的单向关系。 2. 相关分析中所涉及的变量 x 和 y 都是随机变量 ;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量。 3. 相关分析主要描述两个变量间线性关系的密切程 度;回归分析不仅可以揭示变量 x 对变量 y 的 影响大小,还可以由回归方程进行预测和控制。
一元线性回归模型(概念要点)

对于只涉及一个自变量的简单线性回归模型可表示 为 y = b + b x +
模型中,y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 • 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 • 是不能由 x 和 y 之间的线性关系所解释的变异性 b0 和 b1 称为模型的参数
Bivariate过程用于进行两个或多个变量间的相关分析,如为
多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他 变量的影响时,就可以利用偏相关分析对其他变量进行控制 ,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间进行相似 性分析,一般不单独使用,而作为聚类分析和因子分析等的 预分析。

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

实验二 偏相关分析
❖ 实验目的
准确理解偏相关分析的方法原理和使用前提; 熟练掌握偏相关分析的SPSS操作; 了解偏相关分析在中介变量运用方法。
实验二 偏相关分析
❖ 准备知识
偏相关分析的概念
在多元相关分析中,由于其他变量的影响,Pearson相关系数 只是从表面上反映两个变量相关性,相关系数不能真正反映两 个变量间的线性相关程度,甚至会给出相关的假想。因此,在 有些场合中,简单的Pearson相关系数并不是测量相关关系的 本质性统计量。当其他变量控制后,给定的任意两个变量之间 的相关系数叫做偏相关系数。偏相关系数才是真正反映两个变 量相关关系的统计量。
(3)点击“选项”按钮,见图,选择 零阶相关系数(也就是两两简单相关系 数,可以用与偏相关系数比较)。点击 “继续”按钮回到主分析框。点击“确 定”按钮。
❖ 实验结果
描述性统计分析
偏相关分析
实验三 简单线性回归分析
❖ 实验目的
准确理解简单线性回归分析的方法原理; 熟练掌握简单线性回归分析的SPSS操作与分析; 了解相关性与回归分析之间关系; 培养运用简单线性回归分析解决实际问题的能力。
实验二 偏相关分析
❖ 实验步骤
(1)在SPSSl7.0中打开数据文件6-2.sav,通过选择“文件— 打开”命令将数据调入SPSSl7.0的工作文件窗口 。
❖ 旅游投资数据文件
(2)从菜单上依次选择“分析-相关-偏相关”命令,打开其 对话框,如图所示。选择“商业投资”与“经济增长”作为相 关分析变量,送入变量框中;选择“游客增长率”作为控制变 量,用箭头送入右边的控制框中。
实验一 相关分析
❖ 实验内容
❖ 某大学一年级12名女生的胸围(cm)、肺活量(L)身 高(m),数据见表6-1-1。试分析胸围与肺活量两个变 量之间相关关系。

《2024年数据统计分析软件SPSS的应用(五)——相关分析与回归分析》范文

《2024年数据统计分析软件SPSS的应用(五)——相关分析与回归分析》范文

《数据统计分析软件SPSS的应用(五)——相关分析与回归分析》篇一数据统计分析软件SPSS的应用(五)——相关分析与回归分析一、引言在当今的大数据时代,数据统计分析成为了科学研究、市场调研、社会统计等众多领域的重要工具。

SPSS(Statistical Package for the Social Sciences)作为一款功能强大的数据统计分析软件,被广泛应用于各类数据分析中。

本文将重点介绍SPSS 中相关分析与回归分析的应用,以帮助读者更好地理解和掌握这两种分析方法。

二、相关分析1. 相关分析的概念与目的相关分析是研究两个或多个变量之间关系密切程度的一种统计方法。

其目的是通过计算相关系数,了解变量之间的线性关系强度和方向,为后续的回归分析提供依据。

2. SPSS中的相关分析操作步骤(1)导入数据:将数据导入SPSS软件中,建立数据文件。

(2)选择分析方法:在SPSS菜单中选择“分析”->“相关”->“双变量”,进行相关分析。

(3)设置变量:在弹出的对话框中,设置需要进行相关分析的变量。

(4)计算相关系数:点击“确定”后,SPSS将自动计算两个变量之间的相关系数,并显示在结果窗口中。

3. 相关分析的注意事项(1)选择合适的相关系数:根据研究目的和数据特点,选择合适的相关系数,如Pearson相关系数、Spearman相关系数等。

(2)控制混淆变量:在进行相关分析时,要控制可能影响结果的混淆变量,以提高分析的准确性。

三、回归分析1. 回归分析的概念与目的回归分析是研究一个或多个自变量与因变量之间关系的一种预测建模方法。

其目的是通过建立自变量和因变量之间的数学模型,预测因变量的值或探究自变量对因变量的影响程度。

2. SPSS中的回归分析操作步骤(1)导入数据:同相关分析一样,将数据导入SPSS软件中。

(2)选择分析方法:在SPSS菜单中选择“分析”->“回归”->“线性”,进行回归分析。

SPSS相关性分析

SPSS相关性分析
i 1
相关系数的数值范围是介于–1与 +1之间:
如果|r| ' 0,表明两个变量没有线性相关关系。 如果|r| ' 1 ,则表示两个变量完全直线相关。线性相关的 方向通过相关系数的符号来表示,“+”号表示正相关,“﹣” 表示负相关。


相关系数为0或接近于0不能说明两个变量之间 没有相关性,它只说明没有线性相关性。不能 排除具有其它非线性关系。 Pearson 相关系数是一种线性关联度量。如果 两个变量关系密切,但其关系不是线性的,则 Pearson 相关系数就不是适合度量其相关性的 统计量。

矩阵散点图:以ห้องสมุดไป่ตู้阵的形式在多个坐标轴上分 别显示多对变量间的统计关系。变量在那一行, 那一行横坐标就是它。
线性相关的度量—尺度数据间的相关 性的度量

Pearson相关系数
r
n i 0
(x
i 0
n
i
x)( yi y )
2 n 2
(x


i
x) ( yi y )
等级相关分析

等级相关分析 等级相关是指以等级次序排列 或以等级次序表示的变量之间的相关。主要包 括斯皮尔曼二列等级相关和肯德尔和谐系数多 列等级相关。
Spearman等级相关系数—定序变量之 间的相关性的度量

斯皮尔曼等级相关系数:


两个变量为定序变量。 一个变量为定序变量,另一个变量为尺度数据,且 两总体不是正态分布,样本容量n不一定大于30。 数据的秩:秩rank,是一种数据排序的方式,可以 知道某变量值在该列所有值中的名次。秩是对应数 值由大到小的,例如有100个数据都不一样的话, 最大的数值对应的秩就是100,最小的就是1。有重 复数据时候,会按同名称排列。

简单介绍SPSS如何做回归和相关

简单介绍SPSS如何做回归和相关

02
SPSS回归分析
线性回归分析
定义:线性回 归分析是一种 通过建立数学 模型来描述因 变量和自变量 之间线性关系 的统计分析方
法。
目的:通过回 归分析,可以 确定因变量和 自变量之间的 关系强度,并 预测因变量的
未来值。
适用范围:适 用于因变量和 自变量之间存 在线性关系的
情况。
操作步骤:选 择自变量和因 变量,建立回 归模型,进行 模型拟合和检 验,解释结果 和预测未来。
YOUR LOGO
20XX.XX.XX
SPSS回归和相关分析的简单介 绍
XX,a click to unlimited possibilities
汇报人:XX
目 录
01 单 击 添 加 目 录 项 标 题 02 S P S S 回 归 分 析 03 S P S S 相 关 分 析
01
添加章节标题
THANK YOU
汇报人:XX
数据清洗和 建立回归模 模型评估和
整理

优化
解释结果和 预测
03
SPSS相关分析
描述性相关分析
参数相关分析
添加标题 添加标题 添加标题 添加标题
定义:参数相关分析是统计学中用于衡量两个或多个变量之间关联程度 的方法。
类型:包括Pearson相关系数、Spearman秩相关系数和Kendall秩相关 系数等。
非线性回归分析
定义:非线性回归分析是一种用于探索和描述因变量与自变量之间非线性关系的统计方法。
适用场景:当因变量与自变量之间的关系不是简单的线性关系时,可以使用非线性回归分 析。
模型形式:非线性回归分析的模型通常采用幂函数、指数函数、对数函数等形式。
参数估计:非线性回归分析的参数通常通过最小二乘法或最大似然估计等方法进行估计。

数据统计分析软件SPSS的应用相关分析与回归分析

数据统计分析软件SPSS的应用相关分析与回归分析

数据统计分析软件SPSS的应用相关分析与回归分析一、本文概述随着信息技术的快速发展和大数据时代的来临,数据统计分析在各个领域的应用越来越广泛。

SPSS作为一款功能强大的数据统计分析软件,其在社会科学、商业分析、医学统计等多个领域具有广泛的应用。

本文将深入探讨SPSS在相关分析与回归分析中的应用,帮助读者更好地理解和应用这一强大的工具。

本文将简要介绍SPSS软件的基本功能和特点,使读者对其有一个初步的了解。

随后,文章将重点介绍相关分析的概念、类型及其在SPSS中的实现方法,包括皮尔逊相关系数、斯皮尔曼秩相关系数等。

文章还将详细阐述回归分析的基本原理、类型及其在SPSS中的操作步骤,如线性回归分析、逻辑回归分析等。

通过本文的学习,读者将能够掌握SPSS在相关分析与回归分析中的基本应用,提高数据处理和分析的能力,为实际工作和研究提供有力支持。

文章还将提供一些实际案例,以帮助读者更好地理解和应用所学知识,提高实际操作能力。

二、SPSS软件基础SPSS,全称为Statistical Package for the Social Sciences,即“社会科学统计软件包”,是一款广泛应用于社会科学领域的数据统计分析软件。

它提供了丰富的数据分析工具,包括描述性统计、推论性统计、探索性数据分析、回归分析、因子分析、聚类分析等,能够帮助研究者轻松处理和分析数据,挖掘数据背后的深层次信息。

在使用SPSS之前,用户需要对其基本界面和常用功能有所了解。

SPSS界面友好,主要分为菜单栏、工具栏、数据视图和变量视图等部分。

菜单栏包含了大多数统计分析功能的命令,如“分析”“描述统计”“因子分析”等。

工具栏则提供了一些常用的统计分析工具的快捷方式。

数据视图是用户输入和编辑数据的地方,而变量视图则用于定义变量的属性,如变量名、变量类型、宽度、小数位数等。

在SPSS中,数据分析的核心步骤通常包括数据准备、数据分析、结果解释和报告生成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS系列培训之: 相关分析与线性回归模型
相关分析
▪ 任意多个变量都可以考虑相关问题
▪ 任意测量尺度的变量都可以测量相关强度
▪ 常用术语
▪ 直线相关
▪ 两变量呈线性共同增大 ▪ 呈线性一增一减
▪ 曲线相关
▪ 两变量存在相关趋势 ▪ 并非线性,而是呈各种可能的曲线趋势
▪ 正相关与负相关 ▪ 完全相关
▪ 前者可用于检测观测值的接近程度 ▪ 后者则常用于考察各变量的内在联系和结构 ▪ 一般不单独使用,而是作为MDS的预分析过程
▪ 典型相关分析
SPSS统计分析系列培训
4
相关分析
▪ Bivariate过程
▪ 案例:考察信心指数值和年龄的相关性
▪ 散点图 ▪ 非参数相关系数
SPSS统计分析系列培训
5
相关分析
▪ Partial过程
▪ 在控制家庭收入QS9对总信心指数影响的前提下,考 察总信心指数值和年龄的相关性。
SPSS统计分析系列培训
6
相关分析和回归分析的关系
80
70
60
50
40
0
20
40
60
X
80
100
80
70
60
50
40
0
20
40
60
80
100
X
SPSS统计分析系列培训
7
Y Y
回归分析概述
▪ 研究一个连续性变量(因变量)的取值随着其 它变量(自变量)的数值变化而变化的趋势
SPSS统计分析系列培训
14
线性回归模型简介
▪ 分析步骤
▪ 做出散点图,观察变量间的趋势
11
10
14
13
10
9
9
8
8
7
7
6

6
5
5
4
12 12
11
10 10
9 8
8
7 6
6
4
3
4
5
2
4
6
8
10
12
14
16
2
4
6
8
10
12
14
16
2
4
6
8
10
12
14
16
0
10
20
X
X
X
X4
Y1 Y2 Y3 Y4
SPSS统计分析系列培训
yi a bx ei ei~N(0, 2)
SPSS统计分析系列培训
11
案例:销量影响因素分析
▪ 某专门面向年轻人制作肖像的公司计划在国内 再开设几家分店,收集了目前已开设的分店的 销售数据(Y,万元)及分店所在城市的16岁以下 人数(X1,万人)、人均可支配收入(X2,元),数 据见reg.sav。试进行统计分析。
SPSS统计分析系列培训
10
回归分析概述
▪ 估计值和每一个实测值之间的差被称为残差。 它刻画了因变量y除了自变量x以外的其它所有 未进入该模型,或未知但可能与y有关的随机和 非随机因素共同引起的变异,即不能由x直接估 计的部分。
▪ 为了方程可以得到估计,我们往往假定i服从正 态分布N(0,σ2)。
SPSS统计分析系列培训
2
相关分析
▪ Bivariate过程
▪ 进行两个/多个变量间的参数/非参数相关分析 ▪ 如果是多个变量,则给出两两相关的分析结果
▪ Partial过程
▪ 对其他变量进行控制 ▪ 输出控制其他变量影响后的相关系数
SPSS统计分析系列培训
3
相关分析
▪ Distances过程
▪ 对同一变量内部各观察单位间的数值或各个不同变量 间进行相似性或不相似性(距离)分析
▪ 通过回归方程解释两变量之间的关系显的更为 精确,可以计算出自变量改变一个单位时因变 量平均改变的单位数量,这是相关分析无法做 到的
▪ 除了描述两变量的关系以外,通过回归方程还 可以进行预测和控制,这在实际工作中尤为重 要
SPSS统计分析系列培训
8
回归分析概述
▪ 回归分析假定自变量对因变量的影响强度是始 终保持不变的,如公式所示:
▪ 强影响点的诊断 ▪ 多重共线性问题的判断
▪ 这两个步骤和残差分析往往混在一起,难以完全分出先后
SPSS统计分析系列培训
17
案例:固体垃圾排放量与土地种类的关系
▪ 本例来自Golueke and McGauhey 1970年对美 国40个城市的固体垃圾排放量(吨)的调查资料, 所关心的问题是不同种类土地使用面积(单位, 英亩)与固体垃圾排放量之间的关系。可能的 影响因素有:indust(工业区土地面积的大小)、 metals(金属制造企业用地面积)、trucks(运 输及批发商业用地面积)、retail(零售业用地 面积)、restrnts(餐馆与宾馆用地面积)。试 作逐步回归分析。数据库为waste.sav。
yˆ a bx
▪ 对于因变量的预测值可以被分解成两部分:
▪ 常量(constant):x取值为零时y的平均估计量,可 以被看成是一个基线水平
▪ 回归部分:它刻画因变量Y的取值中,由因变量Y与自 变量X的线性关系所决定的部分,即可以由X直接估计 的部分
SPSS统计分析系列培训
9
回归分析概述
yˆ a bx
15
线性回归模型简介
▪ 分析步骤
▪ 考察数据的分布,进行必要的预处理。即分析变量的 正态性、方差齐等问题
▪ 进行直线回归分析 ▪ 残差分析
▪ 残差间是否独立(Durbin-Watson检验) ▪ 残差分布是否为正态(图形或统计量)
SPSS统计分析系列培训
16
线性回归模型简介
▪ 分析步骤
▪ 残差分析
▪ 实际上拟合的模型如下:
yˆ a b1x1 b2x2
yi yˆ ei a b1x1i b2x2i ei
SPSS统计分析系列培训
12
模型适用条件
▪ 线性趋势
▪ 独立性
▪ 正态性
▪ 方差齐性
▪ 如果只是探讨自变量与因变量间的关系,则后两个条 件可以适当放宽
▪ 样本量
▪ 根据经验,记录数应当在希望分析的自变量数的20倍 以上为宜
SPSS统计分析系列培训
18
多变量的筛选策略
▪ 较稳妥的方式
▪ 单自变量回归模型,筛掉那些显然无关联的候选变量 ▪ 尝试建立多自变量模型,可手动、也可利用自动筛选
▪ Ŷ:y的估计值(所估计的平均水平),表示给
定自变量的取值时,根据公式算得的y的估计值
▪ a:常数项,表示自变量取值均为0时因变量的 平均水平,即回归直线在y轴上的截距
▪ 多数情况下没有实际意义,研究者也不关心
▪ b:回归系数,在多变量回归中也称偏回归系数。 自变量x 改变一个单位,y估计值的改变量。即 回归直线的斜率
▪ 实质上样本量和模型的决定系数有关,可通过迭代的 方法进行计算
SPSS统计分析系列培训
13
常用指标
▪ 偏回归系数
▪ 相应的自变量上升一个单位时,因变量取值的变动情 况,即自变量对因变量的影响程度。
▪ 标化偏回归系数:量纲问题
▪ 决定系数
▪ 相应的相关系数的平方,用R2表示,它反映因变量y 的全部变异中能够通过回归关系被自变量解释的比例。
相关文档
最新文档