倒虹吸管设计计算

倒虹吸管设计计算
倒虹吸管设计计算

倒虹吸管设计计算

一、倒虹吸管总体布置(根据地形和当地需水量情况确定)

1.布置原则;13P

2.布置型式;{地面式(露天或浅埋式)、架空式}

3.管路布置;(斜管式和竖井式)

4.进口段布置;{渐变段、拦污栅、节制闸、连接段﹙进水口、通汽孔﹚、沉沙、冲沙及泄水设施}

5.出口段布置;(设消力池)

二、倒虹吸管的构造

1.管身构造;(钢筋混泥土管、钢管、铸铁管)

2.支承结构;(管座、镇墩、支墩)

三、倒虹吸管的水力计算

1.管道断面尺寸的确定;

①灌溉面积的确定:(根据土地利用参加够调整表查出整理后土地的灌溉面积。)

②补水量的计算:

项目区水田和旱地需水量除去项目区降雨量即为需补给水量。项目区分为水田和旱地,主要农作物为水稻、玉米、油菜,各种农作物所在区需水量不同。根据贵州省《灌溉用水定额》编制分区图:项目区属Ⅰ区,灌溉定额根据贵州省灌溉用水定额编制Ⅰ区水稻净定额为2703m/亩,毛灌溉定额为6443m/亩。

需水量公式

W

M A n =??毛需

W 需—— 农业生产总需水量,3

m ;

M 毛

—— 综合毛灌溉定额,3

m

A

—— 灌溉面积,亩;

n —— 农作物复种指数,采用综合灌溉定额时,已经考虑了复种指数,可不再计入。

M M η

=

M 净—— 作物净灌溉定额,3

m /亩;

η

—— 灌溉水利用系数。Ⅰ区渠系水利系数为0.465;

田间水利用系数为0.95,故灌溉水利用系数为0.465×0.95得0.44。

③.流量计算

根据当地全年水田需水量表、旱地需水量表和全年降雨量表查出全年需水量和降雨量的最大值和最小值,计算出最大补水量和最小补水量,以推出其流量。

④.确定尺寸;

o D (圆管)

o D —— 管道内径,m;

Q —— 倒虹吸管设计流量,3/m s

υ—— 设计流速,m/s 。

2.管壁厚度的拟定

取单位长度承受较大内水压力P 的管道

管壁中环向拉应力为

22o w o

o

o

P D gH D t t θρσ=

=

以钢材的设计允许应力[]σ代替θσ; 经整理得:

[]

2w o

o gH D t ρ?σ

(mm)

w ρ—— 水的密度,1000kg/3

m ;

H —— 内水压力,m 。初估计时水锤压力值按静水头的15﹪~30﹪。高水头取大值,低水头取小值;

?—— 焊缝系数,一般为0.90~0.95,双面对接焊缝取0.95,单面对接取0.90;

o D —— 压力钢管的内直径,m;

[]σ —— 钢管的设计允许应力,kpa 。查下表

钢材的允许应力[]σ

应力区域 膜应力区 局部应力区 备注

荷载组合 基本

特殊

基本

特殊

s σ为钢材屈服强

产生应力的内力

轴力 轴力 轴力和弯矩

轴力 轴力和弯

允许应力

0.55

s

σ

0.67

s

σ

0.67

s

σ

0.7

s

σ

0.9

s

σ

(0.8

0.9)

s

σ

0.67

s

σ

0.85

s

σ

0.8

s

σ

1.

s

σ

3.水头损失计算

总水头损失等于沿程水头损失与局部水头损失之和;

2

()

2

f j j

o

L V

z h h

D g

λξ

=+=+∑

2

2

4/3

f

n

h V

R

=

L——管道长度,m;

λ——能量损失系数,λ=

2

8g

C

,1/6/

C R n

=;

j

ξ

∑——各局部阻力系数之和,46

P;

V——管内平均流速,m/s。

4.能量方程

22

'

1122

12

22w

p u p u

z z h

g g g g

ρρ

++=+++

5.进出口渐变段长度计算

12()L C B B =- ①

1L C h

= ②

C 、1C —— 系数;

1B —— 渠道水面宽度,m;

2B —— 渐变段缩窄端水面宽度,m ;

h —— 上、下渠道水深,m 。

6.进口沉沙池段面尺寸计算 池内水深 H h T =+

0.5200O T D δ=++ (mm ) h —— 进口渠道水深,m;

T —— 进口渠底至沉沙池底的高差,m;

池宽

Q B H υ

=

Q ——渠道设计流量,3

/m s

υ—— 沉沙池内平均流速,m/s;

δ—— 管壁厚度,mm;

o D —— 管道内直径,mm;

池长度 '

L KL = ('

o

H

L υω=)

K

—— 安全系数;

'

L —— 泥沙沉降的水平长度;

o ω—— 泥沙沉降速度,m/s 。

注:L

、B

可根据经验有:

L ≥(4~5)h B ≥(4~5)b

h 、b 分别为渠道的水深和底宽。

7.出口消力池尺寸确定 按经验公式:

L =(3~4)h

T = 0.5o D +δ+0.3

消力池以后的护底长一般采用3~5m 。 8.通过小流量时进口水跃的处理: (50P )

9.通过加大流量时计算挡水墙顶对进口雍水位的超高;(52P )

四、倒虹吸管的结构计算 1.土压力(上埋式管土压力) 单位长度竖向土压力B

G 为:

1B s G K HD γ=

H —— 管顶以上填土高度; s γ—— 填土容重;

1D —— 管的外径,矩形管为外形宽度;

K —— 系数,查表,对于柔性管K =1.0。

1

/H D

0.1 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 ≧10 K

1.04

1.20

1.40

1.45

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15

2.地面活荷载产生的竖向压力

①.敷设在公路下1m 的压力管道还受汽车压力和拖拉机压力;

1k G f Q D =汽汽 (kN/m)

k f —— 动力系数,查表;

Q 汽——

加重汽车作用于管道上的竖向荷载,查表;

1D —— 管道外径,m

动力系数

k

f 表

填土深度 0.3 0.4 0.5 0.6 ≧0.7 k f

1.25

1.20

1.15

1.05

1.0

Q 汽值(kN /㎡)表

汽车荷载

填 土 厚 度 H (m )

0.5 0.75 1.0 1.5 2.0 3.0 4.0

5.0 8.0 汽车-10级 69.0 43.5 25.1 1

6.8 12.9 8.9 6.8 4.6 3.4 汽车-13级 8

7.6 49.5 37.7 22.9 17.7 12.1 9.2 6.2 4.7 汽车-18级 170.5 96 73.3 44.3 34.3 23.5 1

8.6 12.1

9.6

②.拖拉机压力;

1k G f Q D =拖拖 (kN/m)

Q 拖—— 履带式拖拉机作用于管道的竖向压力(kN /

㎡)查表;

Q 拖值(kN /㎡)表

拖拉机吨位 填 土 厚 度 H (m )

0.5 0.75 1.0 1.5 2.0 3.0 4.0 6.0 8.0 60t 47 38.3 32.3 24.7 21.2 17.8 15.0 11.7 9.6 80t

88.4 63.2 53.9 41.6 36.3 30.3 25.9 20.2 16.5

3.其他荷载计算 ①.管内水重

(1cos )r o P r ωωγ?=-

ωγ—— 水的重度,kN/3

m ;

o r —— 圆管内半径,m; ?—— 垂直直径之夹角。 当冲满水时 2r o

P r ωω

πγ=

②.管道的均匀内水压力

r P H ωωγ=

H —— 管内顶部以上水头;

4.管道外水压力 不均匀外水压力计算

1(1cos )ek e P r ωβγ?=- (圆管)

1r —— 圆管外半径;(83P )

e β—— 外水压力折减系数,查表4-11;(84P ) 五、倒虹吸管镇墩的计算 ㈠ 直接作用于镇墩上的荷载; ⑴由均匀内水压力产生的轴向力

作用在弯管段起始段面和末端断面的轴向压力分别为;

'21"

22/4/4p m o

p

m o

A H D A H D γπγπ==

1H 、2H —— 分别为弯管段起始及末端断面中心处的水头;

⑵ 弯管段水流离心力;

2

2

2

2

2

2sin(/2)

4

4

w o

o

G D V D V

V

F m a l g

R

gR

g

ωωωωπγπγθ==

?=

???

=

?

? m —— 弯管段水体的质量(/W w m

G g

=);

a —— 离心加速度(2

/a R υ=);

W w G —— 弯管内水体重力,(2

(/4)W w o W G D l ω

πγ=);

θ

—— 弯管段的中心角('

"

θθθ

=-);图148页。

g —— 重力加速度,m/s;

R —— 弯管中心线弧长;可近似用弦长AB BC +来代替,{2sin(/2)w l AB BC R θ=+=}; ⑶ 镇墩自重力及镇墩内水重力

确定其形式尺寸后可算出自重和内水重力; ⑷ 作用于镇墩上的水平土压力

22'

21/2cos /4()r a o

a E h K B D h K kN γπθγ=-

a K ——

主动土压力系数2

(45)2

a K tg ?

=-

B —— 镇墩垂直水流方向宽度,m;

1h —— 斜管段管端断面中心线至填土顶面高度,m;

2h —— 镇墩底面至填土顶面高度,m;

?

—— 土的内摩擦角。

注:土的重度和内摩擦角值见表5-14。(149P ) ㈡ 通过管身传给镇墩的荷载

1.镇墩上侧斜管传给镇墩的力 ⑴管身自重

'

'

c

c G D L

πδγ=

轴向分力

''

sin c c

A G θ=

垂直管轴的分力

'

cos c c N G θ=

'

L —— 镇墩上侧斜管段长度,m; ⑵内水重力

'2'

1G r L

ωωπγ=

垂直分力

'

'

'

cos N G ωωθ=

⑶道上的浮力

'2'

1

f G r l

ωπγ=

轴向分力

'''

sin f

f

A G θ=

垂直分力

'''

cos f f N G θ=

'

l —— 在水位以下的斜管轴线长度,m; ⑷管道填土压力

''

()k j G F F L

γυ=+

轴向分力

''"

sin A G γγθ=

竖向分力

''

cos N G γγθ=

k F υ、j F —— 顺管道每米长土的重力,可分别按式(4-11)、(4-23)计算; (6165P -)

⑸管身摩擦力

'

''

''()c o s

f r

A f N N N N ω=+-+ (kN )

o f —— 管底和管座之间的摩擦系数。 (152P ) k θ—— 临界坡角;(k

θθ>管道下滑,k θθ≤管道

不动。)

2.镇墩下侧斜管传给镇墩的荷载

所计算力与以上公式一样;(152P )(图150P ) ㈢墩身稳定计算

1.镇墩与两侧管端刚性连接

当'

k θθ>,上侧斜管下滑力大于摩擦力,这时可将所有作用力转化为力'

A 及"A ,再求其总和。

轴向力总和在x 在轴上的分力为

'"

'

'""

cos cos x x x

A

A θθ

=+=

+∑∑∑∑∑

轴向力总和在y 轴上的分力

'"

''""

sin sin y y y A A θθ=

+=

+∑

∑∑∑∑

'x ∑及"

x

—— 分别为镇墩上游侧及下游侧水平分力

的总和,kN ;

'

y

及"

y

—— 分别为镇墩上游侧及下游侧竖向分力

的总和,kN 。

将x ∑和y ∑代人下式

()

c f y G K x E γ+=

+∑∑≥1.2~1.58

c K —— 镇墩的抗滑安全系数;对钢管可取1.5;

E γ—— 侧向土压力,kN ;

f —— 镇墩与地基之间的摩擦系数;

G —— 为镇墩自重力(z G )及镇墩内水重力(z G ω)之和;

z z G G G ω=+ (kN )

2(2)4

z O

G D R b ωωπ

γθ=

+

b —— 弯管段起点、终点至直管管端长度; 2.镇墩与两管端柔性连接

3.镇墩上侧与管端为钢性连接下侧为柔性连接 ㈣地基强度和稳定计算

一般基础底面都做成矩形的,故地基的最大和最小力为:

m ax m in 2

6/y G M B L

B L

σσ+=

±

[]max σσ≤

M ∑—— 总力矩,kN ·m ,是x ∑、y ∑、和G 、E γ等各力对镇墩底面形心1O 点力矩的总和;(图153P )

B、L——分别为镇墩底面的宽度和长度,m;

[]σ——地基的许可承载力,kN/㎡,见下表;

地基的许可承载力

地基名称许可承载力(kN/㎡)

中等坚硬岩石1200~2000

软弱岩石800~1200

稍湿的粘性土200~400

很湿的粘性土100~200

稍湿的砂壤土300~400

很湿的砂壤土200~300

1.钢制倒虹吸管镇墩计算步骤

⑴作用在钢制倒虹吸管镇墩上各个力的计算;按照表6-2所列的

A、2A、3A、4A、5A、6A、7A诸轴向力同时

1

作用下,取最不利的情况设计(一般以温度升高、管内充水为控制条件)。(

P)

175

计算中、小型钢制倒虹吸管镇墩时,也可仅取其中起主要作用的

A、2A、6A三力即可。算出各力且注意各

1

力对镇墩中心的方向。

⑵将各轴向力叠加并分解为水平分力和竖向分力。

⑶求镇墩的体积和校核地基的承载力。

2.钢管支墩的计算步骤

⑴计算作用在支墩上的力。

作用在支墩上的力有:垂直于管道轴线方向的管自重力

n和水重力nω(表6-2第10、11号公式175P),管传给s

支墩的摩擦力

A(表6-2第9号公式)及支墩自重力zd g。

8

⑵分解总作用力为水平分力。

各力在x 轴上的水平分力为

8cos ()sin s x A n n ωθθ=±-+

沿y 轴的竖向分力为

8sin ()cos s y A n n ωθθ=±++

8A ——

支墩对钢管的摩擦力;

注:当温度升高管道向上伸长时,作用在支墩上的摩擦力6a 朝向管道上端,取负号。当温度降低管道向下缩短时,作用于支墩上的摩擦力6a 朝向管道下端,取正号。 ⑶校核支墩抗滑稳定。计算时根据对稳定最不利情况取用6a 为正号或负号

[]88sin ()cos 1.5

cos ()sin s zd o

C s A n n g f K A n n ωωθθθθ

±+++=

≥±-+

六、露天式钢管结构计算 1.管壁应力计算

⑴径向力作用产生的管壁应力。 管壁环向拉应力

2s o P D ωθσδ

=

o D —— 钢管内径,mm; δ—— 钢管壁厚度,mm ; ⑵轴向力作用产生的管壁应力。

断面积F 为

F D πδ

=

得轴向应力计算公式

'2x

N

N

F

r σπδ

=

=

∑∑

D —— 平均直径,mm;

r

—— 平均半径,mm 。

注:设计计算时,如N 为压力,则N 前加负号,如算得'

x σ为负值,则为压应力。

⑶法向力作用产生的管壁应力。

"

2cos cos x

M M W

r

δ

θθ

σπ=-

=-

2

2

4

o o D W r πδ

πδ=

=

W —— 钢管环行断面抵抗矩; M —— 法向力产生的弯矩

o r —— 钢管内半径。

断面剪应力

2sin l x Q S Q Jb

F

θτθ=

=

Q —— 钢管横断面上的剪力,跨端支墩两侧各等于

2

G ,{()cos s G

G G l ωα=+;l :支墩间距;α 水平倾斜角度;

} 跨中断面G 为零;

l S —— 管壁计算点以外部分断面对重心轴的静矩,2

2sin l S r δθ

=;

J —— 管断面惯性矩,3

J r πδ=;

b —— 受剪断面净宽度,2b δ=; F —— 钢管断面积,2F r πδ=;

x θτ—— 钢管横断面,(图179P )沿θ角变化的环向剪应力;当θ=0和180 时,x θτ=0;当θ=90

和270 时,

2x Q F

θτ=

,为最大剪应力。

3. 钢管壁强度的校核

按应力圆原理,其最大剪应力m ax τ应满足

[]

m ax ττ=

<

校核管壁应力的公式

[]σ<

[]σ—— 钢材允许应力。 第三强度理论校核钢管壁强度,

[]1(0)σσθ=

≤=

[]2(90)σσθ=

≤=

[]3(180)σσθ=

≤=

根据畸变能理论得到的三向应力状态一般情况的合成应力公式

o σ= 对于平面应力状态

1σ=

剪应力等于零时

2σ=

我国SD144——85《水电站压力钢管设计规范》中给出了上式中规定满足强度条件

[]1σ?σ≤

[]2σ?σ≤

?—— 焊缝系数,其值为0.9~0.95,工程级别越高,焊缝检查越严格,则焊缝系数越大;

[]σ—— 为相应计算工况的钢材允许应力。《规范》规定,地面钢管在基本荷载组合条件下,[]σ=0.55s σ,

s σ 为屈服点;考虑局部应力时,可提高到

[]σ=0.67s σ。

七、加径环与支承环旁管壁的应力计算 一、加径环与加径环旁管壁应力分析

加劲环每侧管段的影响长度

t =

=

总体过程(184199P -) 主要设计规范

(1) SDJ20——78《水工钢筋混凝土结构设计规

范》;

(2) SL/T191——96《水工混凝土结构设计规范》; (3) DL5077——1997《水工建筑物荷载设计规范》; (4) SL211——98《水工建筑物抗冰冻设计规范》; (5) SL203——97《水工建筑物抗震设计规范》; (6) SL285——2003《水利水电工程进水口设计规

范》;

(7) SL265——2001《水闸设计规范》;

(整理)倒虹吸设计

1. 引言 (4) 2. 设计依据文件和规范 (4) 3. 设计基本资料及主要参数 (4) 4 设计一般原则 (9) 5.布置要求与优化设计 (9) 6.水力计算 (11) 7.结构设计 (12) 8.有关构造、细部结构 (16) 9.观测设计 (16) 10.技术专题研究 (17) 11.工程量计算 (17) 12.应提供的设计成果 (17) .................

................. 1 引言 格节河 倒虹吸管是 引汤 灌区(电站或其他工程)的 引汤 引水渠上(桩号33+800~36+466)的输水(引水)建筑物,位于 黑龙江 省 汤原 县(市) 胜利 乡的 格节河 ,对外交通为 公路 ,距 哈尔滨—罗北 公路里程约 2 km 。 按初步设计报告,本倒虹吸管经审定为:设计流量 17.31 m 3/s ,采用 方 形过水断 面,管径(宽×高) 2.8×3 m ,根数 3 条,进出口设计水位差 0.54 m 。管体采用 结构,设计最大水头 0.57m ,由进口段、管道、出口段及管道支承结构等建筑物组成,全长 242 m 。 2 2.1 (1)初步设计文件(包括补充文件); 一、概况 引汤灌区位于汤旺河下游松花江的北岸,黑龙江省汤原县境内,引汤灌区近期灌区范围,西起引汤渠首,东至乌龙河合阿凌达河,南起汤旺河、松花江交界,北至阶地的夹长条状,区内地形西北、东南低,地面坡度在1/5000左右。近期灌区面积26.87万亩。 二、工程地质 引汤灌区的总干渠和干渠均布设在阶地的边缘。粘性土较厚,一般在2-4m 左右,其下层为中砂和砂砾石,除沟谷外地下水位较深,一般在4-6m ,大部分建筑物基础坐落在砂层上。根据地质剖面图显示从上而下4-8米均为含壤土的细砾层,垂直渗透系数0.0865厘米/秒,渗透损失较大,休止角为水上35.5°、水下34°。 据《中国地震动参数区划图》(GB18306--2001),该区地震动峰值加速度0.05g ,相当于地震基本烈度为VI 度,地震动反应谱特征周期为0.35s 。属区域构造稳定区。依据《水工建筑物抗震设计规范》SL203-1997,采用基本烈度作为设计烈度,不进行抗震设计。 三、总干渠36+466倒虹吸工程的格节河洪水按20年一遇洪水标准设计。按50年一遇洪水标准校核。 工程级别为3级。抗滑稳定安全系数:基本组合1.25,特殊组合1.10. 四、水利要素: 上下游水位、渠道比降、渠底高程、渠道边坡、渠道底宽、地面高程、设计流量等见表X (2)初步设计审批文件(包括对本工程的其他文件); (3)技术设计任务书; (4)其它有关文件及资料。 2.2 主要设计规范 (1)SDJ12-78 水利水电枢纽工程等级划分及设计标准和补充规定(山区、丘陵区部分) (试行); (2)SDJ217-87 水利水电枢纽工程等级划分及设计标准(平原、滨海部分)(试行);

连续管钻井水力参数计算软件计算公式

N2 =$L$2-2*$M$2 Q2=$P$2/$N$2 R2=59.7/(2*Q2)^(8/7) 第一种情况 直段长度盘管长度密度P n k a b △Pg 情况1 3500 0 清水1006 1 0.001 0.0786 0.25 0.024 R5=(LOG10(P5)+3.93)/50 R6 S5=(1.75-LOG10(P5))/7 S6 T5=0.0003767*($O5/1000)^0.8*($Q5*1000)^0.2*($S$2/60)^1.8 T6 C16=PI()*(($A16-2*$B16)^2-$L$2^2)/4 C17 D16=36/3600/$C16 D17 G16=$O$5*($A16-2*$B16-$L$2)*$D16/$Q$5 G17 H16=(1/(2*(1.8*LOG10($G16)-1.53)))^2 H17 E16=2*$H$16*$L$5*$O$5*$D16^2/($A16-2*$B16-$L$2)/1000000 E17 F16 =2*$H$16*$L$6*$O$5*$D16^2/($A16-2*$B16-$L$2)/1000000 F17 G20=($O$6*$D16^(2-$P$6)*($A16-2*$B16-$L$2)^$P$6/($Q$6*12^($P$6-1)))*( 4*$P$6/(3*$P$6+1))^$P$6 H20=16/G20 E20=2*$H20*$L$5*$O$6*$D16^2/($A16-2*$B16-$L$2)/1000000 F20=2*$H20*$L$6*$O$6*$D16^2/($A16-2*$B16-$L$2)/1000000 G2=($S$2/60000)/(PI()*$N$2^2/4) H2=$O$5*$N$2*$G2/$Q$5 K2=H2*($N$2/2/1.3)^0.5 K3=H3*($N$2/2/1.441)^0.5

(整理)倒虹吸管设计计算

倒虹吸管设计计算 一、倒虹吸管总体布置(根据地形和当地需水量情况确定) 1.布置原则;13P 2.布置型式;{地面式(露天或浅埋式)、架空式} 3.管路布置;(斜管式和竖井式) 4.进口段布置;{渐变段、拦污栅、节制闸、连接段﹙进水口、通汽孔﹚、沉沙、冲沙及泄水设施} 5.出口段布置;(设消力池) 二、倒虹吸管的构造 1.管身构造;(钢筋混泥土管、钢管、铸铁管) 2.支承结构;(管座、镇墩、支墩) 三、倒虹吸管的水力计算 1.管道断面尺寸的确定; ①灌溉面积的确定:(根据土地利用参加够调整表查出整理后土地的灌溉面积。) ②补水量的计算: 项目区水田和旱地需水量除去项目区降雨量即为需补给水量。项目区分为水田和旱地,主要农作物为水稻、玉米、油菜,各种农作物所在区需水量不同。根据贵州省《灌溉用水定额》编制分区图:项目区属Ⅰ区,灌溉定额根据贵州省灌溉用水定额编制Ⅰ区水稻净定额为2703m/亩,毛灌溉定额为6443m/亩。

需水量公式 W M A n =??毛需 W 需—— 农业生产总需水量,3 m ; M 毛—— 综合毛灌溉定额,3m ; A —— 灌溉面积,亩; n —— 农作物复种指数,采用综合灌溉定额时,已经考虑了复种指数,可不再计入。 M M η = 净 毛 M 净—— 作物净灌溉定额,3m /亩; η—— 灌溉水利用系数。Ⅰ区渠系水利系数为 0.465; 田间水利用系数为0.95,故灌溉水利用系数为0.465×0.95 得0.44。 ③.流量计算 根据当地全年水田需水量表、旱地需水量表和全年降雨量表查出全年需水量和降雨量的最大值和最小值,计算出最大补水量和最小补水量,以推出其流量。 ④.确定尺寸; o D (圆管) o D —— 管道内径,m;

倒虹吸计算书Word版

旧寨倒虹吸计算书 一、基本资料 设计流量:2.35 m3/s 加大流量:2.94 m3/s 进口渠底高程:1488.137m 进口渠宽:2.0m 进口渠道设计水深:1.31m 加大流量水深:1.56m 出口渠底高程:1487.220m 进口渠道设计水深:1.43m 加大流量水深:1.70m 进出口渠道形式:矩形 进口管中心高程:1487.385m 出口管中心高程:1486.69m 管径DN:1.6m 二、设计采用的主要技术规范及书籍 1、《灌溉与排水工程设计规范》GB50288—99; 2、《水电站压力钢管设计规范》SL284—2003 3、《混凝土结构设计规范》SL/T191—96; 4、《水工建筑物抗震设计规范》DL5073—1997; 5、《小型水电站机电设计手册-金属结构》;。 6、《水力计算手册》

7、《倒虹吸管》 三、进口段 1、渐变段尺寸确定 L=C(B1-B2) 或L=C1h; C取1.5~2.5; C1取3~5: h上游渠道水深; 经计算取L=4m; 2、进口沉沙池尺寸确定 (1) 拟定池内水深H; H=h+T T=(1/3~1/4)h; T为进口渠底至沉沙池底的高差;取0.8m; (2) 沉沙池宽B B=Q/(Hv); v池内平均流速0.25~0.5m/s; 经计算取B=3.5m; (3) 沉沙池长L’ L’≥(4~5)h 经计算取L =8m; (4) 通气孔

通气孔最小断面面积按下式计算: P C KQ A △1265 ; A 为通气管最小断面面积m 2;Q 为通气管进风量,近似取钢管内流量,m 3/s ;C 为通气管流量系数;如采用通气阀,C 取0.5;无阀的通气管,C 取0.7;P △为钢管内外允许压力差,其值不大于0.1N/mm 2;K 为安全系数,采用K=2.8。 经计算A=0.0294 m 2;计算管内径为0.194m ,采用D273(δ=6mm)的螺旋钢管。 四、出口段 倒虹吸管出口消力池,池长L 及池深T ,按经验公式: L=(3~4)h T ≥0.5D 0+δ+0.3 经计算取L =6m ,T=1.2m 。 五、管身段 本倒虹吸管采用Q235B 板钢管,经初步布置和拟定后量得钢管长约410m 。根据地形在全线设4座镇墩,初定钢管内径DN1600mm ,壁厚δ为14和16mm 。下面分别对倒虹吸进行水力计算、钢管和镇墩结构计算: (一) 水力计算 倒虹吸的过水能力及总水头损失按《灌溉与排水工程设计规范》附录N 所列公式计算: 1、倒虹吸的过水能力按下式计算

倒虹吸施工工艺设计

13.5 倒虹吸施工工艺标准 13.5.1工艺概述 当水渠穿越道路等障碍时,利用连通器的原理,让水流在道路下面的封闭管道利用高差流过。这样流水和交通各行其道,互不干扰,这种管道像倒置的虹吸管,称为“倒虹吸”。 因路堑边坡上倾斜管节在后期养护过程中不易于清淤及维修,在客专线设计中,倒虹吸均设计成水平管与竖井配合,其结构要素见图13.5.1。 图13.5.1 倒虹吸结构要素 13.5.2作业容 倒虹吸施工主要作业容有:基坑开挖、管座基础施工、管节吊装、竖井基础及竖井施工、基坑回填、出入口沟槽施工等。 13.5.3质量标准及验收法 1、倒虹吸水平管节各部位偏差及检验法应符合表13.5.3-1和13.5.3-2的规定,混凝土和砂浆强度应符合设计要求。

2、管身直顺,混凝土表面平整坚实,无蜂窝、麻面。 3、进、出口流水顺畅,整洁美观。 表13.5.3-1 水平管节预制的允偏差和检验法 检验数量:施工单位每10节检查不少于1节。 检验数量:施工单位每座倒虹吸全部检查。 13.5.4工艺流程图 倒虹吸施工工艺流程见图13.5.4。

图13.5.4 倒虹吸施工工艺流程图 13.5.5工序步骤及质量控制说明 一、施工准备 1.技术准备 ⑴认真阅读和审核设计图纸及相关设计要求,熟悉并分析施工现场地质资料及水文情况,调查了解季节和地下水位的关系。 ⑵编制倒虹吸单项施工案,对开挖超过2m的深基坑,应编制安全专项施工组织设计,对开挖超过5m的深基坑,应组织相关专家进行案的评审后实施。 ⑶做好相关施工技术交底,并向作业人员进行技术交底和相关知识的培训教育。

⑷测量放样:平整场地后粗测倒虹吸的平面位置。 ⑸基坑开挖前认真阅读设计提供的地质资料及水文状况,掌握地下常水位及施工水位情况。 ⑹调查开挖区域及边地下管线分布情况,对影响施工的管线做好改移和保护案,重要管线需提前向有关部门提报施工案并取得批复。 2.材料准备 ⑴钢筋、钢材、水泥及混凝土粗骨料必须符合设计要求和具有产品质量证明。 ⑵预制管节一般采用离心式工艺施工,需外购,进场时检查各部位偏差必须在规允围,管节必须具有产品合格证和产品质量证明。 ⑶在采用泵送混凝土施工时,对需掺加的外加剂必须进行试验确定配合比,同时应具备产品质量证明。 3.机具准备 倒虹吸施工需要的机械主要有:挖掘机、混凝土运输车、钢筋加工机具、木工机具、混凝土浇筑机具、管节吊装机具等。 4.作业条件 ⑴试验室符合资质条件,混凝土配合比、钢筋试验等报批工作已完成。 ⑵混凝土搅拌站安装调试完成,水泥、砂、等材料进场。 ⑶具备钢筋加工、存储和运输条件。 ⑷施工现场供水、供电条件达到开工要求。 ⑸施工技术人员和作业人员的培训学习、考核、技术交底工作已完成。 ⑹编制完成环境保护措施及具备使用功能的环保设备的运行条件。 二、施工工艺 1.测量放样

隧道结构计算

一.基本资料 惠家庙公路隧道,结构断面尺寸如下图,内轮廓半径为 6.12m ,二衬 厚度为 0.45m 。围岩为 V 级,重度为19.2kN/m3,围岩弹性抗力系数为 1.6×105kN/m3,二衬材料为 C25 混凝土,弹性模量为 28.5GPa ,重度 为 23kN/m 3。考虑到初支和二衬分别承担部分荷载,二衬作为安全储备,对其围岩压力进行折减,对本隧道按照 60%进行折减。求二衬内力,作出内力图,偏心距分布图。 1)V1级围岩,二衬为素混凝土,做出安全系数分布图,对二衬安全性进行验算。 2)V2级围岩,二衬为钢筋混凝土,混凝土保护层厚度 0.035m ,按结构设计原理对其进行配筋设计。 二.荷载确定 1.围岩竖向均布压力:q=0.6×0.45?1 2-S γω 式中: S —围岩级别,此处S=5; γ--围岩重度,此处γ=19.2KN/3m ; ω--跨度影响系数,ω=1+i (m l -5),毛洞跨度m l =13.14+2?0.06=13.26m ,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1?(13.26-5)=1.826。 所以,有:q=0.6×0.451 -52 ??19.2?1.826=151.456(kPa )

此处超挖回填层重忽略不计。 2.围岩水平均布压力:e=0.4q=0.4?151.456=60.582(kPa ) 三.衬砌几何要素 5. 3.1 衬砌几何尺寸 内轮廓线半径126.12m , 8.62m r r == 内径12,r r 所画圆曲线的终点截面与竖直轴的夹角1290,98.996942φφ=?=?; 拱顶截面厚度00.45m,d = 墙底截面厚度n 0.45m d = 此处墙底截面为自内轮廓半径2r 的圆心向内轮廓墙底做连线并延长至与外轮廓相交,其交点到内轮廓墙底间的连线。 外轮廓线半径: 110 6.57m R r d =+= 2209.07m R r d =+= 拱轴线半径: '1200.5 6.345m r r d =+= '2200.58.845m r r d =+= 拱轴线各段圆弧中心角: 1290,8.996942θθ=?=? 5.3.2 半拱轴线长度S 及分段轴长S ? 分段轴线长度: '1 1190π 3.14 6.3459.9667027m 180180S r θ? = = ??=?? '2228.996942π 3.148.845 1.3888973m 180180S r θ?==??=?? 半拱线长度: 1211.3556000m S S S =+= 将半拱轴线等分为8段,每段轴长为: 11.3556 1.4194500m 88 S S ?= ==

倒虹吸设计

1. 引言 4 2. 设计依据文件和规范 . (4) 3. 设计基本资料及主要参数 . (4) 4 设计一般原则 . (9) 5. 布置要求与优化设计 . (9) 6. 水力计算 . (11) 7. 结构设计 . (12) 8. 有关构造、细部结构 . (16) 9. 观测设计 . (16) 10. 技术专题研究 . (17) 11. 工程量计算 . (17) 12. 应提供的设计成果 . (17)

1引言 格节河倒虹吸管是引汤灌区(电站或其他工程)的引汤引水渠上(桩号33 + 800?36+ 466)的输水(引水)建筑物,位于黑龙江省汤原县(市)胜利乡的格节河,对外交通为公路,距哈尔滨—罗北公路里程约2 km。 按初步设计报告,本倒虹吸管经审定为:设计流量17.31 m3/s,采用方形过水断 面,管径(宽X高)2.8x 3_m,根数二 __________ 条,进出口设计水位差 0.54 m。管体采用 结构,设计最大水头0.57m,由进口段、管道、出口段及管道支承结构等建筑物组成,全 长 242 m。 2 设计依据文件和规范 2.1 有关本工程主要文件 (1)初步设计文件(包括补充文件); 一、概况 引汤灌区位于汤旺河下游松花江的北岸,黑龙江省汤原县境内,引汤灌区近期灌区范围,西 起引汤渠首,东至乌龙河合阿凌达河,南起汤旺河、松花江交界,北至阶地的夹长条状,区内地形西北、东南低,地面坡度在 1/5000左右。近期灌区面积26.87万亩。 二、工程地质 引汤灌区的总干渠和干渠均布设在阶地的边缘。粘性土较厚,一般在2-4m左右,其下层为中砂和砂砾石,除沟谷外地下水位较深,一般在4-6m,大部分建筑物基础坐落在砂层上。根据地 质剖面图显示从上而下4-8米均为含壤土的细砾层,垂直渗透系数0.0865厘米/秒,渗透损失 较大,休止角为水上35.5 °、水下34°。 据《中国地震动参数区划图》(GB18306--2001),该区地震动峰值加速度 0.05g,相当于地震基本烈度为VI度,地震动反应谱特征周期为 0.35s。属区域构造稳定区。依据《水工建筑物抗震设计规范》SL203-1997,采用基本烈度作为设计烈度,不进行抗震设计。 三、总干渠36+466倒虹吸工程的格节河洪水按 20年一遇洪水标准设计。按 50年一遇洪水标准校核。 工程级别为3级。抗滑稳定安全系数:基本组合 1.25,特殊组合1.10. 四、水利要素: 上下游水位、渠道比降、渠底高程、渠道边坡、渠道底宽、地面高程、设计流量等见表X (2)初步设计审批文件(包括对本工程的其他文件); (3)技术设计任务书; (4)其它有关文件及资料。 2.2 主要设计规范 (1) SDJ12 — 78 水利水电枢纽工程等级划分及设计标准和补充规定(山区、丘陵区部分) (试行); (2) SDJ217 — 87水利水电枢纽工程等级划分及设计标准(平原、滨海部分)(试行); (3) SDJ10 — 78① 水工建筑物抗震设计规范(试行); (4) SDJ20-78②水工钢筋混凝土结构设计规范(试行); (5)SDJ207-82 水工混凝土施工规范; (6)SD303-88 水电站进水口设计规范(试行); 2.3 主要参考资料 [1]《水工建筑物》第三版天津大学

隧道工程课程设计70946

隧道工程课程设计说明书The structural design of the Tunnel 作者姓名:黄浩刘彦强 专业、班级:道桥1002班道桥1003班 学号:311007020711 311007020815 指导教师:陈峰宾 设计时间:2014/1/9 河南理工大学 Henan Polytechnic University

目录 目录 (3) 隧道工程课程设计 0 一.课程设计题目 0 二.隧道的建筑限界 0 三.隧道的衬砌断面 0 四.荷载确定 (1) 4.1围岩压力计算 (1) 4.2围岩水平压力 (1) 4.3浅埋隧道荷载计算 (2) (1)作用在支护结构上的垂直压力 (2) 五.结构设计计算 (3) 5.1计算基本假定 (3) 5.2内力计算结果 (4) 5.3 V级围岩配筋计算 (5) 5.4偏心受压对称配筋 (6) 5.5受弯构件配筋 (7) 5.6箍筋配筋计算 (7) 5.7强度验算 (7) 5.8最小配筋率验算: (9)

取 50 s a mm = ,有 ()() 942 0.02092% 100050050 s s A b h a ρ===> ?-?- 满足规范要求. (9) 六.辅助施工措施设计 (9) 6.1双侧壁导坑施工方法 (9) 6.2开挖方法 (9) 6.3施工工序 (10)

隧道工程课程设计 一.课程设计题目 某单车道时速350Km/h高速铁路隧道Ⅴ级围岩段结构及施工方法设计 二.隧道的建筑限界 根据《铁路隧道设计规范》有关条文规定,隧道的建筑限界高度H取6.55m,宽度取8.5m,如图所示。 三.隧道的衬砌断面 拟定隧道的衬砌,衬砌材料为C25混凝土,弹性模量Ec=2.95*107kPa,重度γh=23kN/m3,衬砌厚度取50cm,如图所示。

倒虹吸工程施工设计方案

贵塘(S206象山至金屯、X203金屯至塘湾)公路改 建工程 开工报告 倒虹吸 承包单位:中煤建设集团有限公司 监理单位:虎门技术咨询有限公司 日期:2016年4月25日

贵塘(S206象山至金屯、X203金屯至塘 湾)公路改建工程 倒虹吸施工方案 编制: 审核: 批准: 中煤建设集团有限公司 贵塘(S206象山至金屯、X203金屯至塘湾)公路改建工程经理部 二〇一六年四月二十五日

目录 一、施工技术方案及工艺流程 (1) 1.1、工程概况 (1) 1.2、适用围 (1) 1.3、施工技术方案 (1) 二、质量保证体系 (1) 2.1质量管理体系 (3) 2.2工程质量保证措施 (4) 三、安全、文明、环保保证措施 (5) 3.1安全保证措施 (5) 3.2环境保护措施 (6) 3.3文明施工保证措施 (7) 3.4、现场施工规化管理 (7) 3.5、材料堆放要求 (7) 四、施工进度安排 (8) 五、机械、材料进场情况和计划安排 (8) 六、附件............................................................. 错误!未定义书签。

一、施工技术方案及工艺流程 1.1、工程概况 倒虹吸1-Φ0.75共计11道,合计369.14m。 本项目倒虹吸地基基底换填砂砾垫层,洞口井身、井基础采用C20混凝土,竖井砼井基采用C15混凝土。涵洞全长围每4~6m设置一道沉降缝,沉降缝贯穿整个涵身断面,缝用沥青麻絮或不透水材料填塞,沉降缝与涵洞中心线垂直,填挖交界处及基底土石交界处均设置沉降缝。 本项目倒虹吸涵顶以上及涵身两侧在不小于2倍孔径围的填土分层对称夯实,压实度要求达到96%。 1.2、适用围 本方案适用于所有倒虹吸施工。 1.3、施工技术方案 1、倒虹吸施工工艺及方法 ⑴工艺流程 倒虹吸模管采用整体型钢筋混凝土圆涵,外套管、竖井、出入口矩形槽现场浇注,明挖基础采用机械开挖,人工清理。倒虹吸施工工艺流程见图1。 ⑵工艺方法 ①基础开挖及处理 开挖前先进行精密、准确放线,并复核无误后方可施工。 基坑开挖采用机械开挖辅助人工施工,机械开挖至设计高程以上20cm 左右时,采取人工开挖、凿除,以免影响地基稳固。挖至设计标高后,清

倒虹吸管的水力计算

倒虹吸管的水力计算倒虹吸水力计算(钢管D=1.8m) 1、初拟管道直径 设计流量Q 6.710 倒虹吸总长度L 334.410 材料糙率n 0.012 初选流速v' 2.650 初选过水断面面积w' 2.532 初选管道直径D' 1.796 确定出管道直径D 1.800 设计流速v 2.637 相应过水断面面积w 2.543 2、水头损失R=D/4 0.450 (1)沿程水头损失 2λ=8g/c 0.015 2 hf,λL*v/(4R*2g) 0.971 (2)局部水头损ζ0.250 j进口失 ζ0.100门槽 拦污栅栅条厚度s 0.030 拦污栅间距b 0.100 拦污栅与水平面夹角a 80.000

栅条形状系数β0.760 ζ,β(s/b)sina 0.150拦污栅 弯道损失:ζ弯道0.324 =0.073+0.073+0.073+0.071+0.034 ζ0.100旁通管(单个为0.1) w 9.560渠 w/w 0.266管渠 ζ0.540出口 ζ0.100进人孔 总局部水头损失系数?ζj 1.564 2总局部水头损失hj,?ζv/2g 0.554 j 总水头损失z,hj+hf 1.525 允许水头损失1.990 0.53、校核流量Q,w(2gz)/(λL/D+?ζ) 6.707 j 所选管径能满足要求 倒虹吸水力计算(预应力砼管D=1.8m) 1、初拟管道直径 设计流量Q 6.710 倒虹吸总长度L 334.410 材料糙率n 0.015 初选流速v' 2.650 初选过水断面面积w' 2.532

初选管道直径D' 1.796 确定出管道直径D 1.800 设计流速v 2.637 相应过水断面面积w 2.543 2、水头损失R=D/4 0.450 沿程水头损失C=R/n 58.359 2λ=8g/c 0.023 2 hf,λL*v/(4R*2g) 1.517 (2)局部水头损失ζ0.250 j进口 ζ0.100门槽 拦污栅栅条厚度s 0.030 拦污栅间距b 0.100 拦污栅与水平面夹角a 80.000 栅条形状系数β0.760 ζ,β(s/b)sina 0.150拦污栅 弯道损失:ζ弯道0.324 =0.073+0.073+0.073+0.071+0.034 ζ0.100旁通管(单个为0.1) w 9.560渠 w/w 0.266管渠 ζ0.540出口 ζ0.100进人孔

隧道工程课程设计

1初始条件 某高速公路隧道通过III 类围岩(即IV 级围岩),埋深H=30m ,隧道围岩天然容重γ=23 KN/m3,计算摩擦角ф=35o ,变形模量E=6GPa,采用矿山法施工;衬砌材料采用C25喷射混凝土,材料容重322/h KN m γ=,变形模量25h E GPa =。 2隧道洞身设计 2.1隧道建筑界限及内轮廓图的确定 该隧道横断面是根据两车道高速公路IV 级围岩来设计的,根据《公路隧道设计规范》确定隧道的建筑限界如下: W —行车道宽度;取3.75×2m C —余宽;因设置检修道,故余宽取为0m J —检修道宽度;双侧设置,取为1.0×2m H —建筑限界高度;取为5.0m2L L —左侧向宽度;取为1.0m R L —右侧向宽度;取为1.5m L E —建筑限界左顶角宽度;取1.0m R E —建筑限界右顶角宽度;取1.0m h —检修道高度;取为0.25m

隧道净宽为1.0+1.0+7.50+1.50+1.0=12m 设计行车速度为120km/h,建筑限界左右顶角高度均取1m ;隧道轮廓线如下图: 图1 隧道内轮廓限界图 根据规范要求,隧道衬砌结构厚度为50cm (一次衬砌为15cm 和二次衬砌35cm )通过作图得到隧道的尺寸如下: 图2 隧道内轮廓图 得到如下尺寸:11.2m R 5.6m R 9.47m R 321===,, 3隧道衬砌结构设计 3.1支护方法及衬砌材料 根据《公路隧道设计规范》(JTG-2004),本设计为高速公路,采用复合式衬砌,复合式衬砌是由初期支护和二次衬砌及中间防水层组合而成的衬砌形式。 复合式衬砌应符合下列规定: 1初期支护宜采用锚喷支护,即由喷射混凝土,锚杆,钢筋网和钢筋支架等支护形式单独或组合使用,锚杆宜采用全长粘结锚杆。 2二次衬砌宜采用模筑混凝土或模筑钢筋混凝土结构,衬砌截面宜采用连结圆顺的等厚衬砌断面,仰拱厚度宜与拱墙厚度相同。 IV 级围岩:

钢筋混凝土倒虹吸管设计大纲范本

FJD FJD34280 钢筋混凝土倒虹吸管 设计大纲范本 水利水电勘测设计标准化信息网 1998年8月 1

工程技术设计阶段钢筋混凝土倒虹吸管技术设计大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3. 设计基本资料及主要参数 (4) 4 设计一般原则 (9) 5.布置要求与优化设计 (9) 6.水力计算 (11) 7.结构设计 (12) 8.有关构造、细部结构 (16) 9.观测设计 (16) 10.技术专题研究 (17) 11.工程量计算 (17) 12.应提供的设计成果 (17) 3

4 1 引言 倒虹吸管是 灌区(电站或其他工程)的 引水渠上(桩号×+××× ~ ×+×××)的输水(引水)建筑物,位于 省 县(市) 乡的 ,对外交通为 ,距 的公路里程约 km 。 按初步设计报告,本倒虹吸管经审定为:设计流量 m 3 /s ,采用 形过水断面,管径(宽×高) m ,根数 条,进出口设计水位差 m 。管体采用 结构,设计最大水头 m ,由进口段、管道、出口段及管道支承结构等建筑物组成,全长 m 。 2 2.1 (1)初步设计文件(包括补充文件); (2)初步设计审批文件(包括上级机关对本工程的其他文件); (3)技术设计任务书; (4)其它有关文件及资料(如会议纪要、专题论证报告及其它部门的文件)。 2.2 主要设计规范 (1)SDJ12-78 水利水电枢纽工程等级划分及设计标准和补充规定(山区、丘陵区部 分)(试行); (2)SDJ217-87 水利水电枢纽工程等级划分及设计标准(平原、滨海部分)(试行); (3)SDJ10-78① 水工建筑物抗震设计规范(试行); (4)SDJ20-78 ② 水工钢筋混凝土结构设计规范(试行); (5)SDJ207-82 水工混凝土施工规范; (6)SD303-88 水电站进水口设计规范(试行); 2.3 [1]刘启钊等.水工设计手册第七卷.第三十四章压力管道.水利电力出版社 .1989.5 [2]陈济群.水工设计手册第8卷.第四十章渠系建筑物.水利电力出版社 .1984.11 [3]余际可等.倒虹吸管(第二版).水利电力出版社 .1993.6 [4]华东水利学院等.水工钢筋混凝土结构(下册).水利电力出版社 .1975.10 [5]武汉水利电力学院水力学教研室.水力计算手册.水利电力出版社 .1980.12 3 设计基本资料及主要参数 3.1 ①范本是按SDJ10-78编写的,如用新规范DL5073-1997,则有关内容需作相应修改。 ②范本是按SDJ20-78编写的,如用新规范SL/T191-96(或DL/T5057-1996),则有关内容需作相应修改。

倒虹吸管水力计算书

倒虹吸管水力计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本设计资料 1.依据规范及参考书目: 武汉大学水利水电学院《水力计算手册》(第二版) 华东水利学院《水工设计手册》(第二版) 中国水利水电出版社《灌区建筑物的水力计算与结构计算》(熊启钧编著)2.计算参数: 计算目标: 已知流量及管径,求水头损失L。 设计流量Q = 20.000 m3/s 倒虹吸管断面形状:圆形;孔口数量:3孔 倒虹吸管孔直径D = 2.000m 管身长度L = 220.00m,斜管段边坡1 : 4.00 弯管中心半径R = 2.00倍管径,管身粗糙系数n = 0.0140 上游渠道流速V1 = 0.700 m/s,下游渠道流速V2 = 0.700 m/s 门槽局部水头损失系数ξ4 = 0.050,管进口局部水头损失系数ξ5 = 0.200 三、计算过程 门槽局部水头损失系数ξ4 = 0.050。 管进口局部水头损失系数ξ5 = 0.200 斜管段边坡1:4.00,相应弯道中心的圆心角为: α = tan-1(1/4.00) = 14.036° 弯道中心半径R=2.00D,每个弯道的局部水头损失为: ξ6 = [0.131+0.1632(H/R)3.5+(α/90)1/2 = {0.131+0.1632×[2.000/(2.00×2.00)]3.5}×(14.036/90)1/2=0.057 管身流速为:V管= Q/*3×π×(D/2)2] = 20.000/[3×3.14×(2.000/2)2] = 2.122 m/s 管出口局部水头损失系数为:

倒虹管专项工程施工设计方案

目录 一、编制依据 (2) 二、工程概况 (2) 三、施工准备 (2) 四、施工顺序 (2) 五、施工方法 (3) 六、其它措施 (8)

一、编制依据

1.1编制依据 (1)《工程建设标准强制性条文(城市建设工程部分)》; (2)《给排水管道工程施工及验收规范》(GB50268-2008); (3)《给排水构筑物工程施工及验收规范》(GB50141-2008); (4)《建筑地基基础工程施工质量验收规范》 (GB50202-2002); (5)《混凝土结构工程施工质量验收规范》(GB50204-2015); (6)《重庆市南川区东城污水处理厂及配套干管工程土建及安装调试工程》图纸及初步设计会审专家组意见,中国市政工程中南设计研究总院有限责任公司; (7)图中坐标系采用北京坐标系。 二、工程概况 工程概况: 该工程建设内容包括污水处理厂及配套干管;服务范围:主要是收集隆化片区新城区、永隆山片区、北固片区、东胜片区及等区域内即将产生的城市污水,服务城市建成区面积约为9.23k ㎡;厂区建设规模:近期(2020年)2.0万m3/天,规划期末(2025年)达4.0万m3/天。此次范围为:厂区按近期建设规模实施,管网按远期综合考虑。

配套干管包含A线(凤咀江河截污干管,管道全长约12.58km,其中含顶管1.997km)和B线(龙岩河截污干管,管道全长约 1.3km,其中含顶管1.019km),管径为DN600~1000,总长度为13.88km,1#倒虹管:WA-101~WA-102,采用两根D480x8过河倒虹管,一用一备,2#倒虹管WA-171~WA-172,采用两根 D630x8过河倒虹管,一用一备,3#倒虹管WA-238~WA-239,采用两根D720x10过河倒虹管,一用一备。 三、施工准备 工程开工前,进行以下的测设工作:核对水准点、建立临时水准点;核对接入原有管道的高程;测设管道坡度、管道中心线、开挖沟槽边线及附属构筑物的位置;堆土堆料界限及其它临时用地范围;测量原地面标高,制作土方横断面图,并送交监理审核。 四、施工顺序 施工顺序流程图如下: 围堰施工基坑支护钢管管沟土方开挖及运输垫层基础管道安装接管、稳管井室砌筑闭水试验回填和扫尾 五、施工方法

公路隧道设计规范

公路隧道设计规范(JTG D70-2004) 1 总则 (1) 2 主要术语与符号 (2) 3 隧道调查及围岩分级 (5) 4 总体设计 (11) 5 建筑材料 (17) 6 荷载 (22) 7 洞口及洞门 (25) 8 衬砌结构设计 (27) 9 结构计算 (33) 10 防水与排水 (40) 11 小净距及连拱隧道 (42) 12 辅助通道 (44) 13 辅助工程措施 (48) 14 特殊地质地段 (51) 15 隧道内路基与路面 (54) 16 机电及其它设施…………………………………………………………………68 附录A围岩分级有关规定 (60) 附录B隧道标准内轮廓 (63) 附录C型钢特性参数表 (65) 附录D释放荷载的计算方法 (69) 附录E浅埋隧道荷载的计算方法 (71) 附录F偏压隧道衬砌荷载的计算方法 (74) 附录G明洞设计荷载的计算方法 (75) 附录H洞门土压力荷载的计算方法 (77) 附录I荷载结构法 (78) 附录J地层结构法 (80) 附录K钢筋混凝土受弯和受压构件配筋量计算方法 (88) 附录L本规范用词说明 (94) 在编制过程中,编制组对全国已建和在建的公路隧道进行了较广泛的调查研究,搜集并分析了大量设计文件、工程报告、营运管理报告,就有关专题进行了研究,并听取了全国有关设计院和专家的意见。考虑到我国公路隧道技术起步较晚,其经验和基础性工作不足,因此在我国经验的基础上又采用或借鉴了国外公路隧道的成功经验和先进技术。 本次修订中,充分考虑了与其它相关标准、规范的协调性,并保持一致。同时,在全面修订的原则下,尽量按原《规范》的风格编排撰写。本次修订的重点为调查、围岩分类、总体设计、锚喷支护与衬砌、洞口段工程、结构计算、特殊构造设计、特殊地质地段设计等,并增加了三车道隧道、连拱隧道和小净距隧道等内容。 关于强制性条款 《公路隧道设计规范》(JTG D70-2004)中第1.0.3、1.0.5、1.0.6、1.0.7、3.1.1、3.1.3、7.1.2、8.1.2、10.1.1、15.1.1、15.1.2、16.1.1条为强制性条款,必须 按照国家有关工程建设标准强制性条文的有关规定严 格执行。《工程建设标准强制性条文》(公路工程部

连续油管钻井水力参数理论计算

连续油管钻井水力计算实例分析 一、计算原始参数 CT 规格:" 78 73 4.8(20.188")3500mm m φ???,级别CT80。 滚筒尺寸(底径x 内宽x 轮缘):260024504200mm φφ?? 采用老井加深工艺,原井筒1500m (5-1/2”和7”套管)加深钻井1000m 和2000m ,参考大量实例,钻头采用4-3/4”和6-1/8’牙轮钻头或PDC 钻头,螺杆马达采用3-3/4”和4-3/4”规格。 钻井液采用清水和一种水基泥浆(ULTRADRIL 钻井液),其流体参数为: ρl =1180kg/m 3,n=0.52564,k=0.8213Pa.s n ,粘度为45.5mPa.s 。 二、泵压计算 P P P P P P P =?+?+?+?+?+?泵工具CT 直管汇钻头环空CT 盘 (一)管内压降计算模型 CT 内流体的摩阻损失通常表示为压力降低的形式,即: 2 2f L v P f d ρ?= 中L 和d 分别是管长和管径,v 是管内的平均速度,f 是范宁Fanning 摩擦因子,它与流体的雷诺数、管壁的粗糙度等因素有关。 (二)清水(牛顿流)介质管内摩阻计算 1.雷诺数计算及狄恩数计算 e R d N ρν μ = 式中,N Re 为雷诺数,无量纲; ρ为液体密度,kg/m 3; ν为循环介质在管路中的平均流速,m/s ; d 为模拟连续油管内径,m ; μ为牛顿流体的动力粘度,Pa*s ; 狄恩数(Dean)是研究弯管流动阻力的基本无量纲数:

De N N = 其中r 0为连续油管内径,R 为连续油管弯曲半径,N Re 为雷诺数。 2.直管摩阻系数计算模型 (1)层流 对于直管,范宁摩阻系数可用如下公式计算: Re 16 SL f N = (2)紊流 对管内单向流摩阻系数公式进行了分析,当不考虑管粗糙度,在紊流光滑区(3*103

隧道结构计算

重庆交通大学教案 第6章隧道结构计算 6.1 概述 6.1.1 引言 隧道结构工程特性、设计原则和方法与地面结构完全不同,隧道结构是由周边围岩和支护结构两者组成共同的并相互作用的结构体系。各种围岩都是具有不同程度自稳能力的介质,即周边围岩在很大程度上是隧道结构承载的主体,其承载能力必须加以充分利用。隧道衬砌的设计计算必须结合围岩自承能力进行,隧道衬砌除必须保证有足够的净空外,还要求有足够的强度,以保证在使用寿限内结构物有可靠的安全度。显然,对不同型式的衬砌结构物应该用不同的方法进行强度计算。 隧道建筑虽然是一门古老的建筑结构,但其结构计算理论的形成却较晚。从现有资料看,最初的计算理论形成于十九世纪。其后随着建筑材料、施工技术、量测技术的发展,促进了计算理论的逐步前进。最初的隧道衬砌使用砖石材料,其结构型式通常为拱形。由于砖石以及砂浆材料的抗拉强度远低于抗压强度,采用的截面厚度常常很大,所以结构变形很小,可以忽略不计。因为构件的刚度很大,故将其视为刚性体。计算时按静力学原理确定其承载时压力线位置,检算结构强度。 在十九世纪末,混凝土已经是广泛使用的建筑材料,它具有整体性好,可以在现场根据需要进行模注等特点。这时,隧道衬砌结构是作为超静定弹性拱计算的,但仅考虑作用在衬砌上的围岩压力,而未将围岩的弹性抗力计算在内,忽视了围岩对衬砌的约束作用。由于把衬砌视为自由变形的弹性结构,因而,通过计算得到的衬砌结构厚度很大,过于安全。大量的隧道工程实践表明,衬砌厚度可以减小,所以,后来上述两种计算方法已经不再使用了。进入本世纪后,通过长期观测,发现围岩不仅对衬砌施加压力,同时还约束着衬砌的变形。围岩对衬砌变形的约束,对改善衬砌结构的受力状态有利,不容忽视。衬砌在受力过程中的变形,一部分结构有离开围岩形成“脱离区”的趋势,另一部分压紧围岩形成所谓“抗力区”,如图6-1所示。在抗力区内,约束着衬砌变形的围岩,相应地产生被动抵抗力,即“弹性 94

隧道设计计算书

《地下结构课程设计》任务书 ——地铁区间隧道结构设计 学校:交通大学 学院:土木建筑工程学院 :俊 学号:11231214 班级:土木1108班 指导教师:贺少辉、晓静

目录 一.设计任务 (3) 1.1 工程地质条件 (3) 1.2 其他条件 (3) 二.设计过程 (5) 2.1 根据给定的隧道或车站埋深判断结构深、浅埋 (5) 2.2 计算作用在结构上的荷载 (5) 2.2.1永久荷载 (5) 2.2.2可变荷载 (7) 2.3 进行荷载组合..................................... 错误!未定义书签。 2.3.1承载能力极限状态................................ 错误!未定义书签。 2.3.2正常使用极限状态 (7) 2.4 绘出结构受力图 (8) 2.5 利用midas程序计算结构力 (8) 2.5.1 midas程序建模过程 9 2.5.2 绘制力分析图 11 三. 结构配筋计算 ......................................... 错误!未定义书签。 3.1 基本条件 11 3.1 顶板配筋计算 (15) 3.2 侧板配筋计算 (18) 3.3 底板配筋计算 (20) 四.最终配筋: (23) 五.参考资料 22 六、设计总结............................................. 错误!未定义书签。

一、设计任务 对某区间隧道进行结构检算,求出力,并进行配筋计算。具体设计基本资料如下: 1.1 工程地质条件 线路垂直于永定河冲、洪积扇的轴部,第四纪地层沉积韵律明显,地层由上到下依次为:杂填土、粉土、细砂、圆砾土、粉质粘土、卵石土。其主要物理力学指标如表1,本地区地震烈度为6度。 1.2 其他条件 地下水位在地面以下12m处;隧道顶板埋深14m;采用暗挖法施工,隧道断面型式为马蹄形。

浅谈倒虹管工艺设计与技术要求

浅谈倒虹管工艺设计与技术要求 摘要:排水管渠遇到河流、山涧、洼地、地下构筑物、铁路等天然或人为的障碍物的阻隔等障碍物时,需采用倒虹吸方式通过。本文根据相关规范和设计手册对倒虹管道的设计要点进行了分析和总结,并将其应用到倒虹管实例的设计与计算中,提出应对倒虹管道漏水、堵塞及清疏的几点建议。 关键词:倒虹管设计要点水力计算实例 0 引言 现今,随着城市化进程的加快,作为城市发展先导的市政基础设施建设是必不可少的。市政配套设施建设与城市化建设同步以至超前,有效的保证城市的正常运行和发展。在市政管网的实施过程中,由于河流、山涧、洼地、地下构筑物、铁路等天然或人为的障碍物的阻隔,管道不能按平坦地区的坡度和高程进行施工,而是以下凹的折线方式从障碍物下通过,这就是倒虹吸管道。 1. 倒虹管道的设计要点 (1)在地形、地质条件允许的情况下,倒虹管道的轴线尽可能与障碍物正交,管轴线的平面布置应在一条直线上,以减少管道的长度,降低投资。 (2)通过河道的倒虹管,一般不宜少于两条;通过谷地、旱沟或小河的倒虹管可采用一条。通过障碍物的倒虹管,尚应符合与该障碍物相交的有关规定。 (3)倒虹管形式有多折型和凹字型两种,应根据具体情况来选用适合的倒虹管形式。多折型适用于河面与河滩较宽阔,河床深度较大的情况,需用大开挖施工,所需施工面较大;凹字型适用于河面与河滩较窄,或障碍物面积与深度较小的情况,可用大开挖施工,有条件时还可用顶管法施工。凹字型倒虹管在日本与我国华东地区广为应用,效果良好。 (4)管材管径选择:目前在倒虹管道中常用的管材有预应力钢筋混凝土管、钢管,,倒虹管一般采用钢管、钢筋混凝土管,近年来由于新型管材的发展,像预应力钢筒混凝土管、玻璃钢管、玻璃钢夹砂管等新型管材也在倒虹设计中得到了应用。倒虹管道最小管径宜为200mm。 (5)管内设计流速应大于0.9m/s,并应大于进水管内的流速,当管内设计流速不能满足上述要求时,应增加定期冲洗措施,冲洗时流速不应小于1.2m/s。设计建议推荐流速为1.2~1.5m/s。 (6)倒虹管的管顶距规划河底距离一般不宜小于1.0 m,通过航运河道时,其位置和管顶距规划河底距离应与当地航运管理部门协商确定,并设置标志,遇冲刷河床应考虑防冲措施;

相关文档
最新文档