2016级高等数学(下)考卷及答案
2016年河北省专接本高等数学(二)真题试卷(题后含答案及解析)
2016年河北省专接本高等数学(二)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.函数的定义域为( )A.(一2,+∞)B.(4,+∞)C.(-2,4)D.(-4,4)正确答案:B解析:考查函数的定义域.解方程组即得.2.设函数可导,且,则= ( )A.1B.2C.3D.5正确答案:D解析:考查导数的定义式.3.己知,则( )A.16B.8C.4D.2正确答案:A解析:考查方阵行列式的性质.4.已知函数,则=( )A.27B.28C.D.正确答案:D解析:考查函数的高阶导数.5.一阶微分方程2xydx+x2dy=0的通解为( )A.B.C.x2y=CD.xy2=C正确答案:C解析:考查一阶线性微分方程的通解.6.曲线y=x4?5x3+18x2+2x+1的凸区间是( )A.(2,3)B.(一3,一2)C.(一∞,一2)D.(3,+∞)正确答案:A解析:考查函数曲线的凹凸性.令yn=6x2—30x+36=( )A.B.C.D.正确答案:A解析:考查无穷区间上的广义积分.8.已知的一个原函数为sinx,则=( )A.xsinx+cosx+CB.xcosx+sinx+CC.xcosx?sinx+CD.xsinx?cosx+C正确答案:C解析:考查不定积分的分部积分法.9.定积分=( )A.2e2+2B.2e2—2C.6e2+2D.6e2—2正确答案:A解析:考查定积分的还原积分法及分部积分法.10.下列无穷级数中,条件收敛的是( )A.B.C.D.正确答案:D解析:考查常数项级数的敛散性.填空题11.己知函数z=x2ey,则dz=________.正确答案:dz=2xeydx+x2eydy.解析:考查多元函数的全微分.12.极限= ________.正确答案:解析:考查洛必达法则.13.向量组α1=(1,2,0,1),α2=(1,3,0,一1),α3=(一1,一1,1,0)的秩为________.正确答案:3解析:考查向量组的秩.14.已知函数在定义域内连续,则a=________,b= ________.正确答案:a=3,解析:考查函数的连续性.令即得.15.级数的收敛域为________.正确答案:[—3,7)解析:考查幂级数的收敛域.解答题解答时应写出推理、演算步骤。
历年天津理工大学高数期末考试试卷及答案
2015-2016年第二学期《高等数学AII 》期末考试试卷一、单项选择题(从4个备选答案中选择最适合的一项,每小题2分共20分) 1、三重积分⎰⎰⎰Ω=dV z y x f I ),,(,其中Ω由平面1=++z y x ,1=+y x ,0=x ,0=y ,1=z 所围,化为三次积分是( B ) A 、 ⎰⎰⎰---=211010),,(y x x dz z y x f dy dx I ; B 、 ⎰⎰⎰---=111010),,(y x x dz z y x f dy dx I ;C 、 ⎰⎰⎰--=11110),,(yx dz z y x f dy dx I ; D 、 ⎰⎰⎰--=11010),,(yx x dz z y x f dy dx I .2、设y e x u 2=,则=du ( A )A. dy e x dx xe y y 22+;B. dy e xdx y +2;C. dy xe dx e x y y 22+;D. dy e x dx e x y y 22+. 3、微分方程y dxdyx= 的通解为( C ). A. C x y +-=; B. C x y +=; C. Cx y =; D. x y =.4、设1∑是222y x R z --=上侧,2∑是222y x R z ---=下侧,3∑是xoy 平面上圆222R y x ≤+的上侧,R Q P ,,在3R 空间上有一阶连续偏导数,且0=∂∂+∂∂+∂∂zR y Q x P ,则与曲面积分⎰⎰∑++1Rdxdy Qdzdx Pdydz 相等的积分是( B )(A) ⎰⎰∑++2Rdxdy Qdzdx Pdydz ;(B) ⎰⎰∑++3Rdxdy Qdzdx Pdydz ;(C)Rdxdy Qdzdx pdydz ++⎰⎰∑∑21 ;(D)Rdxdy Qdzdx pdydz ++⎰⎰∑∑31 .5、微分方程x xe y y y 396-=+'-''的特解形式为( B )A 、x axe 3-;B 、x e b ax 3)(-+;C 、x e b ax x 3)(-+;D 、x e b ax x 32)(-+ 解:特征方程0)3(9622=-=+-r r r ,321==r r ,特解形式为x e b ax y 3)(-*+=.选(B ). 6、当)0,0(),(→y x 时, 22yx xyu +=的极限为( A ) A 、不存在; B 、1; C 、2; D 、0. 7、下列级数收敛的是( B ) A 、∑+∞=+121n n ; B 、∑+∞=131sin n n ; C 、∑+∞=+1441n n n ; D 、∑+∞=-121)1(n n n . 8、微分方程02=-'+''y y y 的通解为( C )A. x x e C e C y --=21;B. 221x xe C e C y --=; C. 221x xe C eC y -=-; D. x x e C e C y 221+=-.解:特征方程0)1)(12(122=+-=-+r r r r ,11-=r ,212=r ,通解为221xx e C e C y -=-.选(C ).9、设⎰⎰+=Ddxdy y x I 21)(,⎰⎰+=Ddxdy y x I 32)(,D 由直线1=x ,1=y 与1=+y x 围成,则1I 与2I 的大小关系是( A )A 、21I I <;B 、21I I =;C 、21I I >;D 、21I I ≥. 10、积分 0 0adx ⎰⎰的极坐标形式的二次积分为( B )A 、⎰⎰40csc 02πθθa dr r d ;B 、⎰⎰40sec 02πθθa dr r d ;C 、⎰⎰20tan 02πθθa dr r d ;D 、⎰⎰40sec 0πθθa rdr d .二、填空题(每空3分,共30分)1、微分方程0))(,,(4='''y x y y x F 的通解含有(独立的)任意常数的个数是 2 个.2、设)(x f 是周期为π2的周期函数,且⎩⎨⎧<≤<≤--=ππx x x x f 000)(,它的傅立叶级数的和函数为)(x S ,则=)5(πS 2π. 3、已知函数)ln(22y x z +=,则=∂∂-∂∂xzy y z x0 . 4、设平面曲线L 为1||||=+y x ,则曲线积分=⎰+ds e Ly x ||||e 24.5、若曲线积分⎰---=Ldy y ax xy dx y xy I )(3)6(2232与路径无关,则=a 2 。
2016年专升本高数真题答案解析(浙江)
浙江省2016年选拔优秀高职高专毕业生进入本科学习统一考试高等数学参考答案选择题部分一、选择题:本大题共5小题,每小题4分,共20分。
题号12345答案ACAAC1.A 解析:取整函数[]x 的图像可知,[]x x x ≤<-1,所以[]01≤-<-x x ,所以函数[]x x -是有界函数,所以选项A 正确。
2.C 解析:选项A :错,反例:3)(x x f =在0=x 处可导,且0)0(='f ,但却是非极值选项B 错,反例:⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x x x x f ,⎪⎩⎪⎨⎧=≠-='0,00,1cos 1sin 2)(x x xx x x f ,明显)(x f '在0=x 处不连续选项C 对,因为针对于一元函数,可导必定可微,可微也必定可导选项D 错,反例:2)(x x f =,0)0(='f ,但却是非拐点3.A 解析:111011)]([)1()())(()]([)(x f f dx x f x f x x f d x dx x f x -'='-'='=''⎰⎰⎰2)01(3))0()1((3=--=--=f f ,可见选项A 正确。
4.A 解析:x ax b a b a x x n n n n n n n 1lim )(111=+⋅+=+++∞→ρ,令11)(<=x a x ρ,解得:()a a x ,-∈,因此收敛区间为:()a a ,-,收敛半径为:a R =。
故选A5.C 解析:特征方程为:012=++r r ,043)21(2=++r ,即:i r 2321±-=,因为i i +=+0ωλ不是012=++r r 的根,所以:0=k 。
所以sin '''++=y y y x x 的特解形式可设为:x d cx x b ax y cos )(sin )(*+++=,可见选项C 正确。
安徽理工大学期末考试试题2016级高数下试卷解答
=
n=1
x 0
n
n−1
x 3
dx
= 3n=1
x n 3
=
3 x 1−
3 x3
=
3x 3− x
,故
S(x)
=
3x 3− x
=
9
(3 − x)2
,
−
3
x
3
。(5
分)
x
S(x)dx =
3x
=
9
−3=
9
− 3 = 9 (x − 2)n − 3 , S(x) = 9 n(x − 2)n−1 。(4 分)
D
0
0
( ) = 2 1 2 83
1+ 4r2
1 =5
0
5 6
−1
,
A
=
5
5 −1 + 6
2
。(3
分)
3. 由对称性, x = y = 0 (1 分), S = 2 a2 (1 分),
zdS =
a2 − x2 − y2
a
dxdy = a dxdy = a a2 = a3 ,(3 分)
n=2
( −1)n
n − ln n
条件收敛。(2
分)
2.
R = lim
n→
an an+1
=
lim
n→
n 3n
3n+1 n +1
=
3
,
x
=
3
时级数发散,所以收敛区间为
( −3,3)
;(3
分)
令
S
(
x)
=
n=1
n
x 3
n−1
2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
13.
设由方程组
y + xyz
z+x =1
=
0
确定的隐函数
y
=
y(x)
及
z
=
z(x),求
dy dx ,
dz dx
.
14.
设连续函数
f (x)
满足方程
f (x)
=
ˆ
3x
f
() t d t + e2x,
求
f (x).
¨(
0
3
)
(
)
15. 计算曲面积分 I = x2 − yz d y d z + y2 − zx d z d x + 2z d x d y, 其中 Σ
xOy ydx
平面上一条简单光滑的正向闭曲线,原点在其所围闭区域之外,则
=
【】
C x2 + 4y2
(A) 4π
(B) 0
(C) 2π
(D) π
6. 微分方程 xy′′ − y′ = 0 满足条件 y′(1) = 1, y(1) = 0.5 的解为
【】
(A) y = x2 + 1 44
(B) y = x2 2
1,
√ − ¨x
⩽
y
⩽
√x},则正确的选x 项为
¨
【】
(A) f (y)g(x) d x d y = 0
(B) f (x)g(y) d x d y = 0
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
高等数学B1期末考试试卷-附答案(武汉大学)
武汉大学2016-2017高等数学B1期末考试题1、(8分)计算极限∑=∞→++nk n kn n k12lim。
解:∑∑=∞→=∞→++=++n k n nkn n k n n kn kn n k 121211lim lim。
21lim 212lim 1lim 21lim 211lim 11121)1(112)1()(,)1()(,1)(f 1211101112121222222=++=-=⎪⎪⎭⎫ ⎝⎛-==≤++=++≤⎪⎪⎭⎫ ⎝⎛-≥≤+⎪⎪⎭⎫ ⎝⎛++-=++≤-+-=+-='+=∑∑∑⎰∑∑∑∑∑=∞→∞→=∞→=∞→=∞→====nk n n nk n nk n n k n n k n k nk n k k n nk n n k n n n k n xdx nk n nk n n k n n kn k n n k n n k n n n k n k n n k n n kn k n k n n k n n k xx aa x f x ax f xax θθ2、(8分)计算极限)cos 1(cos 1lim 0x x xx --+→。
解:2121)cos 1(21lim 21)cos 1(cos 1lim )cos 1(cos 1lim 220=+=+-=--+++→→→x x x xx x x x x xx x x 。
3、求反常积分⎰∞++12)1(x x dx的值。
解:1,1,1)1()()(1)1(12222=-==+++++=+++=+C A B x x B x B A x C A x C x B x A x x 2ln 1ln 1)1ln()1(ln 1)1ln(1111)1(11111)1(11122222-=⎥⎦⎤⎢⎣⎡--+=++--+=+++-=++++-=+∞+∞+⎰⎰⎰⎰⎰x x x x x dx Cx xx dx x dx xdx xdx xx x x xx x4、(8分)求函数34922+--=x x x y 的间断点并判断其类型。
2016年成人高考专升本考试《高等数学》真题及标准答案
2016年成人高考专升本考试《高等数学》真题(总分150, 考试时间150分钟)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A 0B 1C 2D 3该问题分值: 4答案:C2.A -1B 0C 1D 2该问题分值: 4答案:C3. 设函数y=2+sinx,则y/=A cosxB -cosxC 2+cosxD 2-cosx该问题分值: 4答案:A4. 设函数y=ex-1+1,则dy=A exdxB ex-1dxC (ex+1)dxD (ex-1+1)dx该问题分值: 4答案:B5.A 1B 3C 5D 7该问题分值: 4答案:B6.A π/2+1B π/2C π/2-1D 1该问题分值: 4答案:A7.A 4x3+4xB 4x3+4C 12x2+4xD 12x2+4该问题分值: 4答案:D8.A -1B 0C 1D 2该问题分值: 4答案:C9. 设函数z=x2+y,则dz=A 2xdx+dyB x2dx+dyC x2dx+ydyD 2xdx+ydy该问题分值: 4答案:A10.A 1/2B 1C 3/2D 2该问题分值: 4答案:D填空题填空11-20小题。
每小题4分,共40分。
11.该问题分值: 4答案:-1/312. 设函数y=x2-ex,则y/=该问题分值: 4答案:2x-ex13. 设事件A发生的概率为0.7,则A的对立事件非A发生的概率为该问题分值: 4答案:0.314. 曲线y=lnx在点(1,0)处的切线方程为该问题分值: 4答案:y=x-115.该问题分值: 4答案:ln|x|+arctanx+C16.该问题分值: 4答案:cosx17.该问题分值: 4答案:cosx18. 设函数z=sin(x+2y),则αz/αx=该问题分值: 4答案:cos(x+2y)19. 已知点(1,1)是曲线y=x2+alnx的拐点,则a=该问题分值: 4答案:220. 设y=y(x)是由方程y=x-ey所确定的隐函数,则dy/dx=该问题分值: 4答案:1/(1+ey)解答题21-28题,共70分。
江苏省2016年专转本高等数学试卷及解答
可见 f (x) 的一个原函数是 −sin x (取 C=1 C=2 0 ),答案:B. 4.二阶常系数非齐次线性微分方程 y′′ − y′ − 2 y =2xe−x 的特解 y* 的正确假设形式为 ( D ).
A . Axe−x
B . Ax2e−x
C . ( Ax + B)e−x
D . x( Ax + B)e−x
20. 计算二重积分 ∫∫ xdxdy ,其中 D 是由直线 y= x + 2 ,x 轴及曲线=y D
域.
∫∫ ∫ ∫ ∫ = 解 xdxdy D
2
4− y2
= dy xdx
1
2 x2
4− y2
dy
0
y−2
20
y−2
4 − x2 所围成的平面闭区
y y= x + 2
2 =y 4 − x2
∫ ∫ =
1
A . tan x
B . 1− x −1
C . x2 sin 1 x
D .e x −1
解
lim = tan x
l= im x 1 , lim
1− x −1 =
lim
1 (−x) 2=
−
1
,
x2 sin 1 lim=x
l= im x sin 1
0,
x→0+ sin x x x→0+
x→0+ sin x
∑∞ 1 + (−1)n
12.无穷级数 n=1 2n
▲
.(请填写收敛或发散)发.散.
∑ ∑ ∑ ∞ 1
∞ (−1)n
∞ 1 + (−1)n
解 因为级数
发散,
收敛,所以无穷级数
2016年山东省专升本考试高等数学真题试卷(含答案)
I 二 I~I : I : 口 一、选择题(本大题共 5 小题,每小题 3 分,共 15 分)
___
5 A
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)
1. 12兀
2. e
3. 3
4. 15
5. 发散
三、解答题(本大题共 7 小题,每小题 6 分,共 42 分,解答应写出文字说明、证明过程
=
ln
X
1
...
+ ,J;_万平了
…...
2
分
= -ln(x +.fx2+i) = -fCx) ......... 2 分
所以y = ln(x +.j;.了了1) 为奇函数......... 1 分
2. 证... ; .. ,1 分 2
使得f.!1 f (x)dx = /(c)(l - -1) ......... 2 分
·150·
i 』二c-,二.二-::c一c~c---:=::-~:::::::cc::c, —-三三亏- -- - - ----
山东省专升本考试公共课历年真题及解析·高等数学
4. 解:由伈f(x)dx = arcsinx + c,
通过求导可得xf(x) = 1 ...... …2 分 �
即上-= X�, ••••••••• z 分 f(x)
·:y垂直于&, ... r. a= o…...... 2分一
恤
:即.:;t(=P髻-..应.)....a.=..p1.分芘-应. a= o, ... ·-:1分
应a
厮 =P..:. 彗 a.......... z分
2. 解:根据公式: A=;f02巴 lsinx - cosxl dx.... ·令.... z分
高等数学下试题及参考答案
一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)z y x =-+的定义域为。
2.设向量(2,1,2)a = ,(4,1,10)b =- ,c b a λ=- ,且a c ⊥,则λ=。
3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为。
4.设yz u x =,则du =。
5.级数11(1)np n n∞=-∑,当p 满足条件时级数条件收敛。
二、单项选择题(本大题共5小题,每小题3分,共15分)1.微分方程2()'xy x y y+=的通解是()A.2x y Ce =B.22xy Ce =C.22y y e Cx=D.2y e Cxy=2.求极限(,)(0,0)24limx y xy xy →-+=()A.14B.12-C.14-D.123.直线:327x y zL ==-和平面:32780x y z π-+-=的位置关系是()A.直线L 平行于平面πB.直线L 在平面π上C.直线L 垂直于平面πD.直线L 与平面π斜交4.D 是闭区域2222{(,)|}x y a x y b ≤+≤,则22Dx y d σ+=⎰⎰()A.33()2b a π-B.332()3b a π-C.334()3b a π-D.333()2b a π-得分得分5.下列级数收敛的是()A.11(1)(4)n n n ∞=++∑B.2111n nn ∞=++∑C.1121n n ∞=-∑D.311(1)n n n ∞=+∑三、计算题(本大题共7小题,每小题7分,共49分)1.求微分方程'x y y e +=满足初始条件0x =,2y =的特解。
2.计算二重积分22Dx y dxdy x y++⎰⎰,其中22{(,):1,1}D x y x y x y =+≤+≥。
3.设(,)z z x y =为方程2sin(23)43x y z x y z +-=-+确定的隐函数,求z z x y∂∂+∂∂。
2016年河南省专升本高等数学真题及答案高清版
高等数学
一 选 择 题 每 小 题 ! 分 共 $" 分
在每小题的四个备选答案中选出一个正确答案用 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号
涂黑!
#!函数"#$ # 的定义域是
槡#%#
!%&% '%# !)&% '# !!函数"#$#%!#+ 是 !%&奇 函 数
##!若曲线"#$#%#+ 与曲线*#$-2# 在自变量# $#" 时的切线相互垂直则#"
应为
! !
!%&+#
槡+
(&%
#
+
槡+
!)&#+
*&%
# +
#!!已知"#$#%#, 在闭区间%##上满足罗尔中值定理则在开区间%##内使
"(#$ " 成 立 的# $ !%&"
! ! ! !
"
!%&%9%#
&
##+ +
!)&9%# &#!
* #6!定积分 ' #9%#!8# $ %'
!%&!'9%'!
(&%9%# &!# *&9%# &!#
(&'9%'!
! !
!)&"
*&!'
#7!由曲线+ $9%# 与直线# $"# $#+ $"所围成的平面图形的面积是
《高等数学》学年第二学期期末考试试卷(B)卷
2015-2016 第二学期经管旅游等《高等数学》复习提示本学期《高等数学》使用教材:《高等数学》(经管类)(下)第二版林伟初郭安学主编(使用这套教材的本科各专业学生适用本复习提示)复习范围:第7 章:7.1,7.2,7.3(1-4),7.4(1-3),7.5(1),7.6(1-2);第8 章:8.1,8.2,8.3;第9 章:9.1,9.2,9.3,9.4(1-2);第10 章:10.1,10.2(1-2),10.3,10.4,10.5(1-3).复习典型题举例: P2-7:例 2-例9;P9: 8 、 9; P14: 例 4; P17: 1,2,4; P19: 例1;P20: 例 3- 例 5; P22: 例 9;P27: 1(2)-(5); P30: 例2-例4; P32: 2; P33: 例2-例4;P36: 例7;P45: 例 4; P61: 性质1-6; P62: 2,3;P65: 例1,例2; P66: 例4-例6; P68: 1(1)(2); P71: 例1,例2;P72: 3(1)(4)(5),4; 80: 例2-例4; P83: 定理1 及推论;P87: 例1,例2(记住结论),例3; P90: 例5-例6;P91: 1(1)(2)(5)(8)(10)(11); P93: 例2; P96: 例1(记住结论);P99: 例3;P102: 1(1)(3);P124: 例2,例4;P127: 例7;P131-139: 例1,例3,例5;P142-144: 例2-例4;P148: 3(1)-(6).下面还附上一份往年的考试卷,供同学们参考,可参考其考试方式及题型类型。
今年的考试题目肯定与往年这份卷子的考试题目不同!特别强调:请同学们按复习范围进行复习!全面复习!复习典型题举例以及下面的往年考试卷都只是供同学们复习时参考的,切记切记!韶关学院20**-20**学年第二学期《高等数学》期末考试试卷(B 卷)系专业 20** 级本科班学号姓名注:1、考试时间120 分钟,总分100 分;2、适用于20**级本科:经、管、旅游等本科各专业.2015-2016 第二学期《高等数学》期末复习提示第1 页共4 页。
河南省专升本考试高等数学真题2016年
河南省专升本考试高等数学真题2016年(总分:150.00,做题时间:90分钟)一、单项选择题(总题数:30,分数:60.00)1.______(分数:2.00)A.(-∞,-1]B.(-∞,-1)C.(-∞,1]D.(-∞,1) √解析:[解析] 要使函数有意义,则需1-x>0,即x<1,故应选D.2.函数f(x)=x-2x 3是______(分数:2.00)A.奇函数√B.偶函数C.非奇非偶函数D.无法判断奇偶性解析:[解析] f(-x)=-x-2(-x) 3 =-x+2x 3 =-(x-2x 3 )=-f(x),故f(x)为奇函数,故应选A.3.已知则f[f(x)]=______A.x-1B.C.1-xD.(分数:2.00)A.B.C.D. √解析:[解析D.4.下列极限不存在的是______A.B.C.D.(分数:2.00)A.B.C.D. √解析:[解析] D.5.______(分数:2.00)A.0B.1C.-1 √D.-2解析:[解析C.也可直接对分子分母的最高次项进行比较.6.已知极限则a的值是______A.1B.-1C.2D.(分数:2.00)A.B.C.D. √解析:[解析7.已知当x→0时,2-2cosx~ax 2,则a的值是______A.1B.2C.D.-1(分数:2.00)A. √B.C.D.解析:[解析8.x=1处,下列结论正确的是______(分数:2.00)A.a=2时,f(x)必连续B.a=2时,f(x)不连续√C.a=-1时,f(x)连续D.a=1时,f(x)必连续解析:[解析] 要使函数f(x)在x=1处连续,则有当a=2a=2时,f(x)不连续.故应选B.9.已知函数φ(x)在点x=0处可导,函数f(x)=(x-1)φ(x-1),则f"(1)=______(分数:2.00)A.φ"(0)B.φ"(1)C.φ(0) √D.φ(1)解析:[解析] 由φ(x)在x=0处可导,可知φ(x)在x=0处连续,故应选C.10.函数f(x)=1-|x-1|在点x=1处______(分数:2.00)A.不连续B.连续且可导C.既不连续也不可导D.连续但不可导√解析:[解析f(x)在x=1处连续.而f"(1 +)=-1,f"(1 -)=1,故在x=1处不可导,故应选D.11.若曲线f(x)=1-x 3与曲线g(x)=lnx在自变量x=x 0时的切线相互垂直,则x 0应为______A.B.C.D.(分数:2.00)A.B.C. √D.解析:[解析] f"(x 0 )=(1-x 3 )| x=x0 =- ,由于切线相互垂直,则C.12.已知f(x)=1-x 4在闭区间[-1,1]上满足罗尔中值定理,则在开区间(-1,1)内使f"(ξ)=0成立的ξ=______(分数:2.00)A.0 √B.1C.-1D.2解析:[解析] f"(x)=-4x 3,f"(ξ)=-4ξ=0,则ξ=0,故应选A.13.设函数f(x)在区间(-1,1)内连续,若x∈(-1,0)时,f"(x)<0;x∈(0,1)时,f"(x)>0,则在区间(-1,1)内______(分数:2.00)A.f(0)是函数f(x)的极小值√B.f(0)是函数f(x)的极大值C.f(0)不是函数f(x)的极值D.f(0)不一定是函数f(x)的极值解析:[解析] 由极值第一判定定理,可知f(0)应为函数f(x)的极小值,故应选A.14.设函数y=f(x)在区间(0,2)内具有二阶导数,若x∈(0,1)时,f"(x)<0;x∈(1,2)时,f"(x)>0,则______(分数:2.00)A.f(1)是函数f(x)的极大值B.点(1,f(1))是曲线y=f(x)的拐点√C.f(1)是函数f(x)的极小值D.点(1,f(1))不是曲线y=f(x)的拐点解析:[解析] 函数f(x)在(0,1)上为凸,在(1,2)上为凹,故(1,f(1))应为函数f(x)的拐点,故应选B.15.已知曲线y=x 4,则______∙ A.在(-∞,0)内y=x4单调递减且形状为凸∙ B.在(-∞,0)内y=x4单调递增且形状为凹∙ C.在(0,+∞)内y=x4单调递减且形状为凸∙ D.在(0,+∞)内y=x4单调递增且形状为凹(分数:2.00)A.B.C.D. √解析:[解析] y"=4x 3,当x>0时,y">0;当x<0时,y"<0;y"=12x 2,在(-∞,+∞)上有y"≥0,根据选项,可知应选D.16.已知F(x)是f(x)的一个原函数,则不定积分∫f(x-1)dx=______(分数:2.00)A.F(x-1)+C √B.F(x)+CC.-F(x-1)+CD.-F(x)+C解析:[解析] 由题可知∫f(x)dx=F(x)+C,∫f(x-1)dx=∫f(x-1)d(x-1)=F(x-1)+C,故应选A.17.设函数则f"(x)=______A.B.-e -x +2xC.e -x +x 2D.e -x +2x(分数:2.00)A.B.C. √D.解析:[解析C.18.定积分∙ A.2ae-a2∙ B.ae-a2∙ C.0∙ D.2a(分数:2.00)A.B.C. √D.解析:[解析] 令f(x)=xe -x2,f(-x)=-xe -x2 =-f(x),可知f(x)为奇函数,故19.由曲线y=e -x与直线x=0,x=1,y=0所围成的平面图形的面积是______∙ A.e-1∙ B.1∙ C.1-e-1∙ D.1+e-1(分数:2.00)A.B.C. √D.解析:[解析] C.20.______(分数:2.00)A.I1=I2B.I1>I2 √C.I1<I2D.不能确定,I1与I2的大小解析:[解析] 当x∈(1,2)时,x 2>x.由定积分保序性可知I 1>I 2故应选B.21.向量a=j+k的方向角是______A.B.C.D.(分数:2.00)A.B.C.D. √解析:[解析] 向量a的坐标表示应为{0,1,1},故方向余弦为则α,β,γD.22.已知e -x是微分方程y"+3ay"+2y=0的一个解,则常数a=______A.1B.-1C.3D.(分数:2.00)A. √B.C.D.解析:[解析] 令y=e -x,y"=-e -x,y"=e -x,代入有e -x -3ae -x +2e -x =0,由e -x≠0,则有1-3a+2=0,a=1.故应选A.23.下列微分方程中可进行分离变量的是______∙ A.y"=(x+y)e x+y∙ B.y"=xye x+y∙ C.y"=aye xy∙ D.y"=(x+y)e xy(分数:2.00)A.B. √C.D.解析:[解析] 对于B项,y"=xye x·e y,分离变量得B.24.设二元函数z=x 3 +xy 2 +y 3,则∙ A.3y2∙ B.3x2∙ C.2y∙ D.2x(分数:2.00)A.B.C. √D.解析:[解析C.25.用钢板做成一个表面积为54m 2的有盖长方体水箱,欲使水箱的容积最大,则水箱的最大容积为______∙ A.18m3∙ B.27m3∙ C.6m3∙ D.9m3(分数:2.00)A.B. √C.D.解析:[解析] 设水箱的长、宽、高分别为x,y,z,则有2xy+2yz+2xz=54,即xy+yz+xz=27,体积V=xyz,令F(x,y,z)=xyz+λ(xy+yz+xz-27),解得x=3,y=3,z=3,由于驻点(3,3,3)唯一,实际中确有最大值,故当x=3,y=3,z=3时长方体体积最大,最大值V=27.故应选B.26.设D={(x,y)|1≤x 2 +y 2≤4,x≥0,y≥0},则二重积分(分数:2.00)A.16πB.8πC.4πD.3π√解析:[解析] 由二重积分的性质可知S D为D的面积.27.已知则变换积分次序后A.B.C.D.(分数:2.00)A. √B.C.D.解析:[解析] 积分区域为D:0≤x≤1,0≤y≤x,也可表示为:0≤y≤1,y≤x≤1,28.设L为连接点(0,0)与点(1,)的直线段,则曲线积分∫ L y 2 ds=______ A.1B.2C.3D.(分数:2.00)A.B. √C.D.解析:[解析] L可表示为29.下列级数发散的是______A.B.C.D.(分数:2.00)A. √B.C.D.解析:[解析] 选项A为调和级数,可知其发散.30.已知级数则下列结论正确的是______A.B.若部分和数列{S n }有界,则收敛C.D.(分数:2.00)A.B.C. √D.解析:[解析] 的必要条件,故应选C.选项B中,需要求为正项级数;选项D应改为若收敛.二、填空题(总题数:10,分数:20.00)31.函数f(x)=x 3的反函数是y= 1.(分数:2.00)解析: [解析] 令y=f(x)=x 3,,故f(x)的反函数32.极限(分数:2.00)解析:[解析33.已知函数x=0是f(x)的 1间断点.(分数:2.00)解析:可去[解析f(0)=1,故x=0是f(x)的可去间断点.34.函数f(x)=e 1-x在点x=0.99处的近似值为 1.(分数:2.00)解析:1.01 [解析] 取x 0=1,Δx=-0.01,有f(x 0+Δx)=f(0.99)≈f(x 0)+f"(x 0)Δx=1-1·(-0.01)=1.01.35.不定积分∫sin(x+1)dx= 1.(分数:2.00)解析:-cos(x+1)+C[解析] ∫sin(x+1)dx=∫sin(x+1)d(x+1)=-cos(x+1)+C.36.定积分(分数:2.00)解析:ln2[解析37.函数z=xy-x 2 -y 2在点(0,1)处的全微分dz| (0,1) = 1.(分数:2.00)解析:dx-2dy[解析38.与向量{2,1,2}同向平行的单位向量是 1.(分数:2.00)解析:[解析] 故与{2,1,2}39.微分方程y+xy 2 =0的通解是 1.(分数:2.00)解析:[解析] 方程分离变量得两边积分得C为任意常数.当y=0时,可知也为方程的解.40.幂级数 1.(分数:2.00)解析:3[解析三、计算题(总题数:10,分数:50.00)41.计算极限(分数:5.00)__________________________________________________________________________________________ 正确答案:()解析:[解析42.求函数(分数:5.00)__________________________________________________________________________________________ 正确答案:()解析:[解析] 令u=2-cosx43.计算不定积分(分数:5.00)__________________________________________________________________________________________ 正确答案:()解析:[解析44.计算定积分(分数:5.00)__________________________________________________________________________________________ 正确答案:()解析:[解析45.设直线A(0,1,2)且平行于直线l的直线方程.(分数:5.00)__________________________________________________________________________________________ 正确答案:()解析:[解析] 设已知直线l的方向向量为n,则由于所求直线与l平行,故其方向向量可取{1,-2,1},又直线过点A(0,1,2),故所求直线方程为46.已知函数z=f(x,y)由方程xz-yz-x+y=0所确定,求全微分dz.(分数:5.00)__________________________________________________________________________________________ 正确答案:()解析:[解析] 令F(x,y,z)=xz-yz-z+y,则F x =z-1,F y =-z+1,F z =x-y,因此47.已知D={(x,y)|0≤x 2 +y 2≤4},计算二重积分(分数:5.00)__________________________________________________________________________________________ 正确答案:()解析:[解析] 积分区域D可用极坐标表示为0≤r≤2,0≤θ≤2π,故48.求微分方程xy"+y-x=0的通解.(分数:5.00)__________________________________________________________________________________________ 正确答案:()解析:[解析] 方程化简为为一阶线性微分方程,由通解公式得其中C为任意常数.49.求幂级数(分数:5.00)__________________________________________________________________________________________正确答案:()解析:[解析] 令t=x-1.则级数为不缺项的幂级数.R=1,则-1<t<1.即-1<x-1<1,0<x<2,故收敛区间为(0,2).50.求级数(分数:5.00)__________________________________________________________________________________________正确答案:()解析:[解析] 收敛半径R=1,令四、应用题(总题数:2,分数:14.00)51.求由直线x=1,x=e,y=0及曲线(分数:7.00)__________________________________________________________________________________________正确答案:()解析:[解析] 如图所示,即所求图形.则面积52.某工厂生产计算器,若日产量为x台的成本函数为C(x)=7500+50x-0.02x 2,收入函数为R(x)=80x-0.03x 2,且产销平衡,试确定日生产多少台计算器时,工厂的利润最大?(分数:7.00)__________________________________________________________________________________________正确答案:()解析:[解析] 利润=收入-成本,故利润L(x)=R(x)-C(x)=80x-0.03x 2-7500-50x+0.02x 2=30x-0.01x 2-7500.令L"(x)=30-0.02x=0,x得x=1500,且L"(1500)=-0.02<0.故x=1500为L(x)的极大值,又由实际问题,极值唯一,故x=1500为L(x)的最大值,即日生产1500台计算器时,工厂的利润最大.五、证明题(总题数:1,分数:6.00)53.已知方程4x+3x 3 -x 5 =0有一负根x=-2,证明方程4+9x 2 -5x 4 =0必有一个大于-2的负根.(分数:6.00)__________________________________________________________________________________________正确答案:()解析:[证明] 令f(x)=4x+3x 3 -x 5,由题可知f(-2)=0,又有f(0)=0,f(x)在[-2,0]上连续,存(-2,0)上可导,故由罗尔定理可知至少存在一点ξ∈(-2,0),使得f"(ξ)=4+9ξ2 -5ξ1 =0,即方程4+9x 2 -5x 4 =0必有一个大于-2的负根.。
2016年浙江3+2专升本高数真题--答案解析(知乎内部资料)
1 (1 x)2
,
1 (1 x)2
11
x
(1)n n0
xn
n0
(1)n nxn1
,所以
f
(x)
1 (1 x)2
(1)nnxn1 (1)n1nxn1 (1)n1nxn1 ,收敛域为: x
n0
n0
n1
1,1
四、综合题: 本大题共 3 小题, 每小题 10 分, 共 30 分。
lim ln(1 x)
x0
x
1 ,因为
f ' (0)
f ' (0) ,所以
f '(0) 1
所以
f
'(x)
1 (2x 1)2
,
x
0
1
1
x
,
x
0
18.
解:
f (x)
7x 6 x2 3x 2
7x 6 (x 1)(x 2)
8 x2
1 ,定义域为: x 1
x x 1且x 2
,
(1,2)
f (x)
0
f (x)
凸
拐点
凹
凸
凹区间: (0,1) , (2,) ;凸区间: (,0) , (1,2) ,拐点: (0,3)
(2,)
凹
19.
解:
该方程为欧拉方程:令
x
et
,则
dy dx
dy dt
dx dt
et
dy dt
,
d2y dx2
d (dy) dt dx
dx
dt
et dy dt
1
6. 1
解析: 方法一: lim
x
1
2016年河南专升本高数真题+答案解析
2016年河南省普通高等学校选拔专科优秀毕业生进入本科学校学习考试高等数学试卷一、单项选择题(每小题2分,共60分)1.函数()f x 的定义域是( )A .(,1]-∞-B .(,1)-∞-C .(,1]-∞D .(,1)-∞【答案】D【解析】要使函数有意义,则需10x ->,即1x <2.函数3()2f x x x =-是( )A .奇函数B .偶函数C .非奇非偶函数D .无法判断【答案】A【解析】33()2()2()f x x x x x f x -=---=-+=-,所以是奇函数.3.已知1()1f x x=-,则[]()f f x =( ) A .1x - B .11x - C .1x - D .11x- 【答案】D【解析】[]111()11111f f x f x x x ⎛⎫=-=-=⎪-⎝⎭-.4.下列极限不存在的是( )A .20lim1x xx →+ B .2lim1x xx →∞+C .lim 2x x →-∞D .lim 2x x →+∞【答案】D 【解析】20lim 01x x x →=+,2lim 01x x x →∞=+,lim 20x x →-∞=,lim 2xx →+∞=+∞.5.极限2212lim x x x x →∞--的值是( )A .0B .1C .1-D .2-【答案】C【解析】2212lim1x x x x →∞--=-,故选C .6.已知极限0lim 2sin x xax→=,则a 的值是( )A .1B .1-C .2D .12【答案】D 【解析】0001lim lim lim 2sin x x x x x ax ax a →→→===,故12a =.7.已知当0x →时,222cos ~x ax -,则a 的值是( )A .1B .2C .12D .1-【答案】A【解析】()222200001221cos 22cos 12lim lim lim lim 1x x x x xx x ax ax ax a →→→→⋅--====,故1a =.8.已知函数21,1()12,1x ax x f x x x ⎧-+≠⎪=-⎨⎪=⎩则在点1x =处,下列结论正确的是( )A .2a =时,()f x 必连续B .2a =时,()f x 不连续C .1a =-时,()f x 连续D .1a =时,()f x 必连续【答案】B【解析】要使函数()f x 在1x =处连续,则有1lim ()(1)x f x f →=,即211lim21x x ax x →-+=-,而当2a =时,2211121(1)limlim lim(1)0211x x x x x x x x x →→→-+-==-=≠--,故当2a =时,()f x 不连续.9.已知函数()x ϕ在点0x =处可导,函数()(1)(1)f x x x ϕ=--,则(1)f '=( )A .(0)ϕ'B .(1)ϕ'C .(0)ϕD .(1)ϕ【答案】C【解析】由()x ϕ在点0x =处可导,可知()x ϕ在点0x =处连续,111()(1)(1)(1)0(1)limlim lim (1)(0)11x x x f x f x x f x x x ϕϕϕ→→→----'===-=--.10.函数()11f x x =--在点1x =处( )A .不连续B .连续且可导C .既不连续也不可导D .连续但不可导【答案】D【解析】2,1()11,1x x f x x x x ->⎧=--=⎨≤⎩,显然()f x 在1x =处连续,而11()(1)21(1)lim lim 111x x f x f x f x x +++→→---'===---,11()(1)1(1)lim lim 111x x f x f x f x x -+-→→--'===--,由于(1)(1)f f -+''≠,故在1x =处不可导.11.若曲线3()1f x x =-与曲线()ln g x x =在自变量0x x =时的切线相互垂直,则0x 应为( )AB.C .13D .13-【答案】C【解析】200()3f x x '=-,001()g x x '=,由于切线相互垂直,则2003x x -=-,即013x =.12.已知4()1f x x =-在闭区间[]1,1-上满足罗尔中值定理,则在开区间(1,1)-内使()0f ξ'=成立的ξ=( )A .0B .1C .1-D .2【答案】A【解析】3()4f x x '=-,3()40f ξξ'=-=,则0ξ=.13.设函数()f x 在区间(1,1)-内连续,若(1,0)x ∈-时,()0f x '<,(0,1)x ∈时,()0f x '>,则在区间(1,1)-内( ) A .(0)f 是函数()f x 的极小值 B .(0)f 是函数()f x 的极大值C .(0)f 不是函数()f x 的极值D .(0)f 不一定是函数()f x 的极值【答案】A【解析】由极值第一判定定理,可知(0)f 应为函数()f x 的极小值.14.设函数()y f x =在区间(0,2)内具有二阶导数,若(0,1)x ∈时,()0f x ''<,(1,2)x ∈时,()0f x ''>,则( )A .(1)f 是函数()f x 的极大值B .点()1,(1)f 是曲线()y f x =的拐点C .(1)f 是函数()f x 的极小值D .点()1,(1)f 不是曲线()y f x =的拐点【答案】B【解析】函数()f x 在(0,1)上为凸,在(1,2)上为凹,故()1,(1)f 是曲线()y f x =的拐点.15.已知曲线4()f x x =,则( ) A .在(,0)-∞内4y x =单调递减且形状为凸 B .在(,0)-∞内4y x =单调递增且形状为凹 C .在(0,)+∞内4y x =单调递减且形状为凸D .在(0,)+∞内4y x =单调递增且形状为凹【答案】D【解析】34y x '=,当0x >时,0y '>;当0x <时,0y '<;212y x ''=,在(,)-∞+∞上有0y ''≥.16.已知()F x 是()f x 的一个原函数,则不定积分(1)f x dx -=⎰( )A .(1)F x C -+B .()F xC +C .(1)F x C --+D .()F x C -+【答案】A【解析】由题可知()()f x dx F x C =+⎰,(1)(1)(1)(1)f x dx f x d x F x C -=--=-+⎰⎰.17.设函数20()()xt f x e t dt -=+⎰,则()f x '=( )A .313x e x --+B .2x e x --+C .2x e x -+D .2x e x -+【答案】C【解析】()()220()x tx f x et dt e x --''=+=+⎰.18.定积分2ax axe dx --=⎰( )A .22a ae -B .2a ae -C .0D .2a【答案】C【解析】令2()x f x xe -=,2()()x f x xe f x --=-=-,可知()f x 为奇函数,故20ax axe dx --=⎰.19.由曲线x y e -=与直线0x =,1x =,0y =所围成的平面图形的面积是( )A .1e -B .1C .11e --D .11e -+【答案】C【解析】由题可知所求面积1101x A e dx e --==-⎰.20.设定积分2211I x dx =⎰,221I xdx =⎰,则( )A .12I I =B .12I I >C .12I I <D .不能确定【答案】B【解析】当(1,2)x ∈时,2x x >,由定积分保序性可知22211x dx xdx >⎰⎰,即12I I >.21.向量=+a j k 的方向角是( )A .4π,4π,2π B .4π,2π,2πC .4π,2π,4πD .2π,4π,4π 【答案】D【解析】向量a 的坐标表示应为(0,1,1),故方向余弦为cos 0α=,cosβ=,cos γ则应为α,β,γ应为2π,4π,4π.22.已知x e -是微分方程320y ay y '''++=的一个解,则常数a =( )A .1B .1-C .3D .13-【答案】A【解析】令x y e -=,x y e -'=-,x y e -''=,代入有320x x x e ae e ----+=,由0x e -≠,则有1320a -+=,1a =.23.下列微分方程中可进行分离变量的是( )A .()x y y x y e +'=+B .x y y xye +'=C .xy y xye '=D .()xy y x y e '=+【答案】B【解析】对于B 项,x y y xye e '=⋅,分离变量得x y dyxe dx ye=.24.设二元函数323z x xy y =++,则2zx y∂=∂∂( ) A .23y B .23x C .2y D .2x【答案】C【解析】223z x y x∂=+∂,22z y x y ∂=∂∂.25.用钢板做成一个表面积为254m 的有盖长方体水箱,欲使水箱的容积最大,则水箱的最大容积为( )A .318mB .327mC .36mD .39m【答案】B【解析】设水箱的长、宽、高分别为x ,y ,z ,则有22254xy yz xz ++=,即27xy yz xz ++=,体积V xyz =,令()(,,)27F x y z xyz xy yz xz λ=+++-,令()()()000270xyz F yz y z F xz x z F xy x y F xy yz xz λλλλ⎧=++=⎪=++=⎪⎨=++=⎪⎪=++-=⎩,解得333x y z =⎧⎪=⎨⎪=⎩,由于驻点(3,3,3)唯一,实际中确有最大值,故当3x =,3y =,3z =时长方体体积最大,最大值27V =.26.设{}22(,)14,0,0D x y x y x y =≤+≤≥≥,则二重积分4Ddxdy =⎰⎰( )A .16πB .8πC .4πD .3π【答案】D【解析】由二重积分的性质可知444D DDdxdy dxdy S ==⎰⎰⎰⎰,D S 为D 的面积,()2132144D S πππ=⋅-⋅=,故34434Ddxdy ππ=⋅=⎰⎰.27.已知100(,)(,)xD f x y d dx f x y dy σ=⎰⎰⎰⎰,则变换积分次序后(,)Df x y d σ=⎰⎰( )A .110(,)y dy f x y dx ⎰⎰ B .10(,)ydy f x y dx ⎰⎰C .1(,)xdy f x y dx ⎰⎰D .10(,)xdy f x y dx ⎰⎰【答案】A【解析】积分区域为D :01x ≤≤,0y x ≤≤,也可表示为:01y ≤≤,1y x ≤≤,故交换积分次序后11(,)(,)yDf x y d dy f x y dx σ=⎰⎰⎰⎰.28.设L 为连接点(0,0)与点的直线段,则曲线积分2L y ds =⎰( )A .1B .2C .3 D【答案】B【解析】L可表示为y =,01x ≤≤,则)21122322Ly ds xdx ==⋅=⎰⎰⎰.29.下列级数发散的是( )A .11n n∞=∑B .21(1)n n ∞=-∑C .211n n∞=∑D .221(1)n n∞=-∑【答案】A【解析】选项A 为调和级数,可知其发散.30.已知级数1n n u ∞=∑,则下列结论正确的是( )A .若lim 0n n u →∞=,则1n n u ∞=∑收敛 B .若部分和数列{}n S 有界,则1n n u ∞=∑收敛C .若1n n u ∞=∑收敛,则lim 0n n u →∞= D .若1n n u ∞=∑收敛,则1n n u ∞=∑收敛【答案】C【解析】lim 0n n u →∞=是1n n u ∞=∑收敛的必要条件,故应选C ,选项B 中,需要求1n n u ∞=∑为正项级数;选项D 应改为若1n n u ∞=∑收敛,则1n n u ∞=∑收敛.二、填空题(每小题2分,共20分)31.函数3()f x x =的反函数是y =________.【解析】令3()y f x x ==,x =,故()f x 的反函数y .32.极限1lim 21n n n →∞-=+________.【答案】12【解析】11lim 212n n n →∞-=+.33.已知函数2,0()1,0x x f x x -≠⎧=⎨=⎩,则点0x =是()f x 的________的间断点.【答案】可去【解析】00lim ()lim(2)2x x f x x →→=-=,(0)1f =,故0x =是()f x 的可去间断点.34.函数1()x f x e -=在点0.99x =处的近似值为________.【答案】1.01【解析】取01x =,0.01x ∆=-,有000()(0.99)()()11(0.01) 1.01f x x f f x f x x '+∆=≈+∆=-⋅-=.35.不定积分sin(1)x dx +=⎰________. 【答案】cos(1)x C -++【解析】sin(1)sin(1)(1)cos(1)x dx x d x x C +==++=-++⎰⎰.36.定积分1011dx x =+⎰________. 【答案】ln2 【解析】原式1110011(1)ln 1ln 211dx d x x x x =+=+=++⎰⎰.37.函数23z xy x y =--在点(0,1)处的全微分(0,1)dz =________.【答案】2dx dy - 【解析】2zy x x∂=-∂,2z x y y ∂=-∂,故(0,1)(0,1)(0,1)2zz dz dx dy dx dy xy∂∂=+=-∂∂.38.与向量(2,1,2)同向平行的单位向量是________. 【答案】212,,333⎛⎫⎪⎝⎭3,故与(2,1,2)同向平行的单位向量为212,,333⎛⎫⎪⎝⎭.39.微分方程20y xy '+=的通解是________. 【答案】22y x C=+或0y = 【解析】方程分离变量的2dy xdx y =-,两边积分得2112x C y =+,整理得22y x C=+,其中C 为任意常数,当0y =时,可知也为方程的解.40.幂级数13nn n x ∞=∑的收敛半径为________.【答案】3【解析】11131lim lim 313n n n n n na a ρ++→∞→∞==⋅=,故13R ρ==.三、计算题(每小题5分,共50分) 41.计算极限20lim(1)xx x →-.【答案】2e -【解析】21(2)200lim(1)lim(1)xxx x x x e ⋅---→→-=-=.42.求函数y =的导数.【解析】令2cos u x =-,y ''=.43.计算不定积分2ln 1x dx x -⎰. 【答案】()22ln 14x C -+【解析】()()()()22ln 12ln 112ln 1ln 2ln 12ln 124x x dx x d x x d x C x --=-=--=+⎰⎰⎰.44.计算定积分2sin x xdx π⎰.【答案】1【解析】22220sin cos cos cos 1x xdx xd x x x xdx ππππ=-=-+=⎰⎰⎰.45.设直线230:3571x y z l x y z ++=⎧⎨++=⎩,求过点(0,1,2)A 且平行于直线l 的直线方程. 【答案】12121x y z --==- 【解析】设已知直线l 的方向向量为s ,则123(1,2,1)357==--i j ks .由于所求直线与l 平行,故其方向向量可取(1,2,1)-,又直线过点(0,1,2)A ,故所求直线方程为12121x y z --==-.46.已知函数(,)z f x y =由方程0xz yz x y --+=所确定,求全微分dz . 【答案】11z z dx dy x y x y--+-- 【解析】令(,,)F x y z xz yz x y =--+,则1x F z =-,1y F z =-+,z F x y =-,故1x z F z zx F x y∂-=-=∂-,1y z F z z y F x y∂-=-=∂-,因此11z z dz dx dy x y x y --=+--.47.已知{}22(,)04D x y x y =≤+≤,计算二重积分D.【答案】163π【解析】20163Dd rdr ππθ==⎰⎰.48.求全微分方程0xy y x '+-=的通解. 【答案】2x C y x=+ 【解析】方程化简为11y y x'+=,为一阶线性微分方程,由通解公式得 ()11112dx dxx x x C y e e dx C xdx C xx-⎛⎫⎰⎰=⋅+=+=+ ⎪⎝⎭⎰⎰.49.求幂级数1(1)(1)1nnn x n ∞=--+∑的收敛区间.【答案】(0,2)【解析】令1t x =-,则级数1(1)1n nn t n ∞=-+∑为不缺项的幂级数,11lim lim 12n n n na n a n ρ+→∞→∞+===+,故收敛半径1R =,则11t -<<,即111x -<-<,02x <<,故收敛区间为(0,2).50.求级数11n n x n+∞=∑的和函数.【答案】()ln(1)S x x x =--【解析】1lim 11n n n ρ→∞=⋅=+,收敛半径1R =,令1111()()n nn n x x S x x xS x n n+∞∞=====∑∑,111101()1n n n n n n x S x x x n x ∞∞∞-==='⎛⎫'====⎪-⎝⎭∑∑∑,(1,1)x ∈-,所以()11()()()x S x xS x x S t dt '==⎰01ln(1)1x x dt x x t ⎛⎫==-- ⎪-⎝⎭⎰.四、应用题(每小题7分,共14分)51.求由直线1x =,x e =,0y =及曲线1y x=所围成平面图形的面积. 【答案】1 【解析】111e S dx x==⎰.52.某工厂生产计算器,若日产量为x 台的成本函数为2()7500500.02C x x x =+-,收入函数为2()800.03R x x x =-,且产销平衡,试确定日生产多少台计算器时,工厂的利润最大? 【答案】1500【解析】利润=收入-成本,故利润2()()()300.017500L x R x C x x x =-=--,令()0L x '=,1500x =,且(1500)0.020L ''=-<,故1500x =为()L x 的极大值,又由实际问题知,极值唯一,故1500x =为()L x 的最大值,即日生产1500台计算器时,工厂的利润最大.五、证明题(6分)53.已知方程35430x x x +-=有一负根2x =-,证明方程244950x x +-=必有一个大于2-的负根.【证明】令35()43f x x x x =+-,由题可知(2)0f -=,又有(0)0f =,()f x 在[]2,0-上连续,在()2,0-上可导,故由罗尔定理可知至少存在一点()2,0ξ∈-,使得24()4950f ξξξ'=+-=, 即方程244950x x +-=必有一个大于2-的负根.。
华南师范大学数学专业2016级下学期专业试卷及答案解析-高等数学试卷A
《高等数学》(下)试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 判断题(每小题2分,共10分)1.二元函数(),z f x y =在平面区域上的积分为二重积分。
( )2.二元函数(),z f x y =的极值点只能是使得0z zx y∂∂==∂∂的点。
( )3.二元函数z =在()0,0点连续但偏导数不存在。
( )4.闭区域上的二元连续函数一定存在最大最小值,且一定可积。
( )5.二元函数z =在()0,0点连续但偏导数不存在。
( )二.单项选择题(每小题2分,共20分)1.平面2y = ( ) A.垂直于xOz 平面 B.平行于xOy 平面 C.平行于xOz 平面 D. 平行于Oy 轴2. 二元函数(),z f x y =在某点()00,x y 连续,那么(),z f x y =在该点一定 ( )A .极限存在 B.两个偏导存在 C.可微 D.以上都不对3. 极限()(),0,0lim x y xyx y→+的结果为 ( )A.0B.∞C. 12D.不存在4.若区域D 是由1x y +≤与12x y +≥所围成,则积分()22ln Dx y d σ+⎰⎰的值( )A.大于零B. 小于零C.等于零D. 不存在 5.下列绝对收敛的级数是 ( ) A.∑∞=--1n nn1n 23)1( B.∑∞=--1n 1n n )1(C.∑∞=--1n 51n n)1(D.∑∞=--1n n 21)1(6. 下列无穷级数中发散的无穷级数是 ( )A.∑∞=+1n 221n 3n B. ∑∞=+-1n n 1n )1(C. ∑∞=--3n 1n n ln )1(D. ∑∞=+1n 1n n32 7. 点(0,0,1)到平面z=1的距离为 ( ) A .0 B .1 C .2 D .38. 积分2011dx x +∞+⎰的结果为 ( )A.0B. 2πC. 2π-D.不存在9. 函数()arctan f x x =在 []0,1上,使拉格朗日中值定理成立的ξ是( )A.-10.设()f x 在(),a b 内满足()'0f x <,()''0f x >,则曲线()f x 在(),a b 内是( )A.单调上升且是凹的B. 单调下降且是凹的C.单调上升且是凸的D. 单调下降且是凸的三.填空题(每小题2分,共10分) 1. 设函数z x y =-,则xz∂∂=___________。
2016最新高等数学试题及答案.
2016中南大学现代远程教育课程考试复习题及参考答案高等数学一、填空题ax+a-x1.设f(x)=,则函数的图形关于 2⎧sinx-2<x<0π2.若y=⎨2,则y()=. 2⎩x+10≤x<2x2sin3.极限limx→0sinx1= 。
x2+ax+b=2,则a=_____, b=_____。
4.已知lim2x→2x-x-25.已知x→0时,(1+ax)-1与cosx-1是等价无穷小,则常数a6.设x+z=yϕ(),其中ϕ可微,则22123zy∂z ∂y7.设u=exyz2,其中z=z(x,y)由x+y+z+xyz=0确定的隐函数,则∂u∂x(0,1)=1∂2z8.设z=f(xy)+yϕ(x+y),f,ϕ具有二阶连续导数,则= 。
x∂x∂y9.函数f(x,y)=xy-xy-xy的可能极值点为和10.设f(x,y)=x2siny+(x2-1)xy|则f'y(1,0)=_____________.211.xsin2xdx= . 22⎰[0,π]上曲线y=cosx,y=sinx之间所围图形的面积为12.在区间 .13.若⎰+∞0e-kxdx=221,则k=_________。
222(x+4y+1)dxdy≤⎰⎰D14.设D:x+y≤1 ,则由估值不等式得≤2215.设D由y=x,y=2x,y=1,y=2围成(x≥0),则⎰⎰f(x,y)dσ在直角坐标系下的D两种积分次序为_______________和_______________.16.设D为0≤y≤1-x,0≤x≤1,则____.17.设级数⎰⎰Dfdxdy的极坐标形式的二次积分为∑nn=1∞12+p收敛,则常数p的最大取值范围是 . x2x4x6+-+ )dx=18.⎰x(1- 01!2!3! 119. 方程dx-x2+dy-y2=0的通解为20.微分方程4y''-20y'+25=0的通解为.21.当n=_________时,方程y'+p(x)y=q(x)yn 为一阶线性微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学 2016~2017学年第二学期期末考试试卷 一、填空题(每空 3 分,共 15 分)1.函数1z x y =+-的定义域是_________. 2. 设yz xe =,则2z x y∂=∂∂ _________.3. 曲面22z x y =+在()1,1,2处的切平面方程为______.4. 级数()112n n n ∞=+∑的和为________.5. 微分方程''690y y y '-+=的通解为_______. 二、单项选择题 (每小题3分,共15分) 1. 以下命题不一定成立的是( )。
(A)多元函数可微就可导; (B) 多元函数可微就连续; (C)多元函数偏导数连续就可微; (D) 多元函数可导就可微2. 幂级数()02nn n a x ∞=+∑在3x =收敛,则幂级数0n n n a x ∞=∑的收敛半径R 满足( )。
(A) 23R << ; (B) 34R <<; (C) 45R <<; (D) 5R ≥3. 若()1y x ,()2y x 是非齐次微分方程:()()()''y p x y q x y f x '++=的两个特解,要使()()12y x y x αβ+仍然是方程: ()()()''y p x y q x y f x '++=的解,则α,β应满足( )。
(A) 12αβ+=; (B) 1αβ-=;(C) 0αβ=; (D) 1αβ+=4. 设∑是取外侧的曲面2221x y z ++=,则曲面积分Òxdydz ydzdx zdxdy ∑+-=⎰⎰( )。
(A) 13π; (B) 23π; (C) π; (D) 43π 5. 设()()()()()222,,0,0,0,,0,0x y x y x yf x y x y ⎧+≠⎪+=⎨⎪=⎩,则()0,0y f = ( )。
(A)1-; (B)0; (C)1; (D)2三、计算题(共3小题,每小题8分,共24分)1、已知()2sin z x xy =,求z x ∂∂, 2z x y∂∂∂。
2、求二重积分D⎰⎰,其中积分区域D 是由曲线()2211x y +-=和()2224x y +-=所围成的区域。
3、求微分方程''sin y y x +=的通解四、计算题(共2小题,每小题8分,共16分)1、计算曲线积分()sin 2cos ln 3L y y dx y x x dy x⎛⎫+++ ⎪⎝⎭⎰,其中有向曲线L 是从点()4,0A 沿上半圆周()2231x y -+=到点 ()2,0B 。
2、求幂级数031n nn x n ∞=+∑的收敛半径、收敛域以及和函数。
五、计算题(共2小题,每小题8分,共16分) 1、求曲面2222426x y z xyz x z -+--+=在点()0,1,2处的切平面方程和法线方程。
2、生产某产品的利润函数为()3144,80R x y x y =,其中x ,y分别表示投入的劳动力数量和原材料数量。
若每个单位劳动力需600元,每单位原材料需2000元,且劳动力和原材料投入的总预算为40万元,求最佳的资金投入方案。
六、计算题(8分)用高斯公式计算曲面积分333Òx dydz y dzdx z dxdy ∑++⎰⎰, 其中∑为曲面2224x y z ++=所围立体的外侧曲面。
七、证明题(6分)设正项数列{}n a 单调递减,级数()11nn n a ∞=-∑发散,求证级数()111n na n ∞+=∑收敛。
南昌大学 2016~2017学年第二学期期末考试试卷及答案一、填空题(每空 3 分,共 15 分)1.函数1z x y =+-的定义域是 (){}22,0,1x y x y xy +≥+≠2. 设yz xe =,则2z x y∂=∂∂y e .3. 曲面22z x y =+在()1,1,2处的切平面方程为()()()212110x y z -+---=.4. 级数()112n n n ∞=+∑的和为34.5. 微分方程''690y y y '-+=的通解为()312x C C x e +.二、单项选择题 (每小题3分,共15分) 1. 以下命题不一定成立的是( D )。
(A)多元函数可微就可导; (B) 多元函数可微就连续; (C)多元函数偏导数连续就可微; (D) 多元函数可导就可微2. 幂级数()02nn n a x ∞=+∑在3x =收敛,则幂级数0n n n a x ∞=∑的收敛半径R 满足( D )。
(A) 23R << ; (B) 34R <<;(C) 45R <<; (D) 5R ≥3. 若()1y x ,()2y x 是非齐次微分方程:()()()''y p x y q x y f x '++=的两个特解,要使()()12y x y x αβ+仍然是方程: ()()()''y p x y q x y f x '++=的解,则α,β应满足( D )。
(A) 12αβ+=; (B) 1αβ-=;(C) 0αβ=; (D) 1αβ+=4. 设∑是取外侧的曲面2221x y z ++=,则曲面积分Òxdydz ydzdx zdxdy ∑+-=⎰⎰( D )。
(A) 13π; (B) 23π; (C) π; (D) 43π 5. 设()()()()()222,,0,0,0,,0,0x y x y x yf x y x y ⎧+≠⎪+=⎨⎪=⎩,则()0,0y f = ( D )。
(A)1-; (B)0; (C)1; (D)2三、计算题(共3小题,每小题8分,共24分)1、已知()2sin z x xy =,求z x ∂∂, 2z x y∂∂∂。
解: ()()22sin cos z x xy x y xy x∂=+∂ ()()2233cos sin z x xy x y xy x y∂=-∂∂2、求二重积分1D⎰⎰,其中积分区域D 是由曲线()2211x y +-=和()2224x y +-=所围成的区域。
解:1D=⎰⎰4sin 02sin 02sin 4d d d πθπθθρθθ===⎰⎰⎰ 3、求微分方程''sin y y x +=的通解解: 与所给方程对应的齐次方程为: ''0y y +=它的特征方程为:210r += 特征根为:1,2.r i =±于是与所给方程对应的齐次方程的通解为:12cos sin Y C x C x =+由于i ±是特征方程的根,可设特解为: ()*cos sin y x a x b x =+把它代入方程,得:12a =-, 0b =所以原方程的特解为:*1cos 2y x x =- 从而,所求方程的通解为:121cos sin cos 2y Y y C x C x x x *=+=+-四、计算题(共2小题,每小题8分,共16分)1、计算曲线积分()sin 2cos ln 3L y y dx y x x dy x⎛⎫+++ ⎪⎝⎭⎰,其中有向曲线L 是从点()4,0A 沿上半圆周()2231x y -+=到点 ()2,0B 。
解: 添加路径BA u u u r ,使得L BA +u u u r成为闭路,设闭路所围的区域为D ,设sin 2yP y x=+, cos ln 3Q y x x =+ 1Q Px y ∂∂-=∂∂由格林公式,有:()sin 2cos ln 3L BA y y dx y x x dy x +⎛⎫+++= ⎪⎝⎭⎰u u u r Ñ 2D DQ P dxdy dxdy x y π⎛⎫∂∂=-== ⎪∂∂⎝⎭⎰⎰⎰⎰ 又:()sin 2cos ln 30BA y y dx y x x dy x ⎛⎫+++= ⎪⎝⎭⎰u u u r 原式()sin 2cos ln 3L BA y y dx y x x dy x +⎛⎫=+++- ⎪⎝⎭⎰u u u r Ñ ()sin 2cos ln 3BA y y dx y x x dy x ⎛⎫-+++= ⎪⎝⎭⎰u u u r 022ππ=-=2、求幂级数031n nn x n ∞=+∑的收敛半径、收敛域以及和函数。
解: Q 31n n a n =+, 1132n n a n ++=+∴收敛半径1lim n n n a R a →∞+==()21lim 313n n n →∞+=+当13x =时, 111n n ∞=+∑发散;当13x =-时, ()111nn n ∞=-+∑收敛.故收敛域为11,33⎡⎫-⎪⎢⎣⎭令()S x =031n nn x n ∞=+∑.()xS x '⎡⎤=⎣⎦03n n n x ∞==∑()01313n n x x ∞==-∑ 所以 ()0()x xS x xS x dx '⎡⎤==⎣⎦⎰()0ln 131133x x dx x -==--⎰11,33⎡⎫-⎪⎢⎣⎭故: ()ln 1311,,00,()3331,0U x x S x xx ⎧-⎡⎫⎛⎫-∈-⎪⎪ ⎪⎢=⎨⎣⎭⎝⎭⎪=⎩五、计算题(共2小题,每小题8分,共16分) 1、求曲面2222426x y z xyz x z -+--+=在点()0,1,2处的切平面方程和法线方程。
解: 令()222,,2426F x y z x y z xyz x z =-+--+- 在点()0,1,2处246x F x yz =--=-,44y F y xz =--=-,226z F z xy =-+=切平面方程: ()()321320x y z ---+-= 法线方程: 12323x y z --==-- 2、生产某产品的利润函数为()3144,80R x y x y =,其中x ,y分别表示投入的劳动力数量和原材料数量。
若每个单位劳动力需600元,每单位原材料需2000元,且劳动力和原材料投入的总预算为40万元,求最佳的资金投入方案。
解:目标函数:()3144,80R x y x y =约束条件:6002000400000x y += 或:3102000x y += 令()()3144,,803102000L x y x y x y λλ=++-由1144334460302010031020000x y L x y L x y L x y λλλ--⎧=+=⎪⎪⎪=+=⎨⎪=+-=⎪⎪⎩得:50050x y =⎧⎨=⎩即: 劳动力数为500,原材料数为50.六、计算题(8分)用高斯公式计算曲面积分333Òx dydz y dzdx z dxdy ∑++⎰⎰, 其中∑为曲面2224x y z ++=所围立体的外侧曲面。