高中物理动量定理专题训练答案(1)
高中物理动量定理题20套(带答案)含解析
【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。
高中物理选修一动量定理同步练习含答案
高中物理选修一动量定理同步练习含答案卷I(选择题)一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 质量为m的运动员从下蹲状态竖直向上起跳,经过时间t,身体伸直并刚好离开地面,离开地面时速度为v,则在时间t内地面对他的平均作用力为A.mgB.C.D.2. 玻璃杯从同一高度落下掉在石头上比掉在草地上容易碎是由于玻璃杯与石头撞击过程中()A.玻璃杯的动量较大B.玻璃杯受到的冲量较大C.玻璃杯的动量变化较快D.玻璃杯的动量变化较大3. 物体沿粗糙的斜面上滑,到最高点后又滑回原处,则()A.上滑时重力的冲量比下滑时小B.上滑时摩擦力冲量比下滑时大C.支持力的冲量为0D.整个过程中合外力的冲量为零4. 中国CNCAP(汽车碰撞实验)是检验汽车安全性能的重要标准,其中一项称为40%ODB正面碰撞检验:汽车速度为64km/ℎ,迎面碰到可溃障碍物上并停下来.某次测试中,驾驶座假人甲系着安全带,副驾驶座假人乙没有系安全带,但其前方固定着一竖直档板,假人质量均为50kg,碰撞时间为0.05s,假人与安全带的作用时间为0.2s,碰撞过程中甲、乙所受水平方向平均作用力之比为()A.1:4B.4:1C.2:5D.5:25. 质量为60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来,已知弹性安全带的缓冲时间是1.2s,安全带长5m,g取10m/s2,则安全带所受的平均冲力的大小为()A.500NB.1100NC.600ND.100N6. 下列说法中正确的是()A.物体所受的合外力越大,其动量变化一定越大B.物体所受合外力越大,其动量变化一定越快C.物体所受合外力的冲量越大,其动量变化可能越小D.物体所受合外力的冲量越大,其动量变化一定越快7. 如图所示,质量为m的质点在竖直面内做匀速圆周运动,速率为v,A为轨道的最低点B为最高点.则()A.质点从A点到B点动量的变化大小为2mvB.质点从A点到B点动量的变化为零C.质点从A点到B点重力的冲量为零D.质点从A点到B点合力的冲量为零8. 如图所示,为风洞游戏装置的简化示意图,其中圆心角为37∘的圆弧轨道竖直固定放置,与水平地面相切于点。
高中物理专题汇编物理动量定理(一)及解析
高中物理专题汇编物理动量定理(一)及解析一、高考物理精讲专题动量定理1.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;2.质量为0.2kg的小球竖直向下以6m/s的速度落至水平地面,再以4m/s的速度反向弹回,取竖直向上为正方向,(1)求小球与地面碰撞前后的动量变化;(2)若小球与地面的作用时间为0.2s,则小球受到地面的平均作用力大小?(取g=10m/s2).【答案】(1)2kg•m/s;方向竖直向上;(2)12N;方向竖直向上;【解析】【分析】【详解】(1)小球与地面碰撞前的动量为:p1=m(-v1)=0.2×(-6) kg·m/s=-1.2 kg·m/s小球与地面碰撞后的动量为p2=mv2=0.2×4 kg·m/s=0.8 kg·m/s小球与地面碰撞前后动量的变化量为Δp=p2-p1=2 kg·m/s(2)由动量定理得(F-mg)Δt=Δp所以F=pt∆∆+mg=20.2N+0.2×10N=12N,方向竖直向上.3.如图所示,两个小球A和B质量分别是m A=2.0kg,m B=1.6kg,球A静止在光滑水平面上的M点,球B在水平面上从远处沿两球的中心连线向着球A运动,假设两球相距L≤18m时存在着恒定的斥力F,L>18m时无相互作用力.当两球相距最近时,它们间的距离为d=2m,此时球B的速度是4m/s.求:(1)球B 的初速度大小; (2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间. 【答案】(1) 09B m v s= ;(2) 2.25F N =;(3) 3.56t s =【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;(2)在两球相距L >18m 时无相互作用力,B 球做匀速直线运动,两球相距L≤18m 时存在着恒定斥力F ,B 球做匀减速运动,由动能定理可得相互作用力 (3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t 。
(物理) 高考物理动量守恒定律专题训练答案
(物理) 高考物理动量守恒定律专题训练答案一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求:(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =014P E mgx =0(2043)v gx =+【解析】试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°=12mv 12 解得:103v gx =…①又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011322v v gx ==(2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P +12•2mv 22=0+2mg•x 0sin30° 解得:E P =2mg•x 0sin30°−12•2mv 22=mgx 0−34mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,物块A 恰能通过圆弧轨道的最高点C 点时,重力提供向心力,得:2c v mg m R=所以:0c v gR gx == C 点相对于O 点的高度: h=2x 0sin30°+R+Rcos30°=(43)+x 0…⑤ 物块从O 到C 的过程中机械能守恒,得:12mv o 2=mgh+12mv c 2…⑥ 联立④⑤⑥得:0(53)o v gx +=…⑦ 设A 与B 碰撞后共同的速度为v B ,碰撞前A 的速度为v A ,滑块从P 到B 的过程中机械能守恒,得:12mv 2+mg (3x 0sin30°)=12mv A 2…⑧ A 与B 碰撞的过程中动量守恒.得:mv A =2mv B …⑨A与B碰撞结束后从B到O的过程中机械能守恒,得:12•2mv B2+E P=12•2mv o2+2mg•x0sin30°…⑩由于A与B不粘连,到达O点时,滑块B开始受到弹簧的拉力,A与B分离.联立⑦⑧⑨⑩解得:33v gx=考点:动量守恒定律;能量守恒定律【名师点睛】分析清楚物体运动过程、抓住碰撞时弹簧的压缩量与A、B到达P点时弹簧的伸长量相等,弹簧势能相等是关键,应用机械能守恒定律、动量守恒定律即可正确解题.3.两个质量分别为0.3Am kg=、0.1Bm kg=的小滑块A、B和一根轻质短弹簧,弹簧的一端与小滑块A粘连,另一端与小滑块B接触而不粘连.现使小滑块A和B之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度3/v m s=在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B冲上斜面的高度为 1.5h m=.斜面倾角o37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g取210/m s.求:(提示:osin370.6=,ocos370.8=)(1)A、B滑块分离时,B滑块的速度大小.(2)解除锁定前弹簧的弹性势能.【答案】(1)6/Bv m s=(2)0.6PE J=【解析】试题分析:(1)设分离时A、B的速度分别为Av、Bv,小滑块B冲上斜面轨道过程中,由动能定理有:2cos1sin2B B B Bm gh m gh m vθμθ+⋅=①(3分)代入已知数据解得:6/Bv m s=②(2分)(2)由动量守恒定律得:()A B A A B Bm m v m v m v+=+③(3分)解得:2/Av m s=(2分)由能量守恒得:222111()222A B P A A B Bm m v E m v m v++=+④(4分)解得:0.6PE J=⑤(2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.4.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
高中物理动量守恒定律专项训练100(附答案)
最新高中物理动量守恒定律专项训练100( 附答案 )一、高考物理精讲专题动量守恒定律1.如下图,在水平川面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰巧与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【分析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,以后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,所以两物体在这段时间均匀速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)依据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.如下图,一小车置于圆滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg, AO 部分粗拙且长L=2m,动摩擦因数μ=0.3,OB部分圆滑.另一小物块a.放在车的最左端,和车一同以 v0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬时速度变成零,但不与挡板粘连.已知车 OB 部分的长度大于弹簧的自然长度,弹簧一直处于弹性限度内. a、 b 两物块视为质点质量均为 m=1kg,碰撞时间极短且不粘连,碰后一同向右运动.(取 g=10m/s2)求:(1)物块 a 与 b 碰后的速度大小;(2)当物块 a 相对小车静止时小车右端 B 到挡板的距离;(3)当物块 a 相对小车静止时在小车上的地点到O 点的距离.【答案】 (1)1m/s (2)(3) x=0.125m【分析】试题剖析:(1)对物块 a,由动能定理得:代入数据解得 a 与 b 碰前速度:;a、 b 碰撞过程系统动量守恒,以 a 的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分别, a 以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车 B 端距挡板的距离:;(3)由能量守恒得:,解得滑块 a 与车相对静止时与O 点距离:;考点:动量守恒定律、动能定理。
物理动量定理题20套(带答案)及解析
物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。
动量定理练习题含答案及解析
动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。
高中物理动量定理题20套(带答案)
高中物理动量定理题20套(带答案)一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
质量m 0=0.005kg 的子弹以速度v 0=300m/s 沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g 取10m/s 2。
求: (1)物块的最大速度v 1; (2)木板的最大速度v 2;(3)物块在木板上滑动的时间t.【答案】(1)3m/s ;(2)1m/s ;(3)0.5s。
【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:m0v0=(m+m0)v1解得:v1=3m/s(2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守恒得:(m+m0)v1=(M+m+m0)v2。
高中物理精品试题:动量定理(解析版)
2021-2022学年高二物理分层培优同步专题训练(人教版2019)第1.2节动量定理考点1 对冲量的理解和计算1.关于冲量的概念,以下说法正确的是()A.作用在两个物体上的力大小不同,但两个物体所受的冲量大小可能相同B.作用在物体上的力很大,物体所受的冲量一定也很大C.作用在物体上的力的作用时间很短,物体所受的冲量一定很小D.只要力的作用时间和力的大小的乘积相同,物体所受的冲量一定相同【答案】A【解析】冲量是矢量,其大小由力和作用时间共同决定.2.以初速度竖直向上抛出一物体,空气阻力大小不变.关于物体受到的冲量,以下说法正确的是() A.物体上升阶段和下落阶段受到的重力的冲量方向相反B.物体上升阶段和下落阶段受到空气阻力冲量的大小相等C.物体在下落阶段受到重力的冲量小于上升阶段受到重力的冲量D.物体从抛出到返回抛出点,动量变化的方向向下【答案】D【解析】物体上升阶段和下落阶段受到的重力的方向都向下,所以重力的冲量方向相同,A错误;物体向上运动的过程中空气阻力的方向向下,则:a1=,下降的过程中空气的阻力方向向上,则:a2=<a1,由于下降的过程中的位移等于上升过程中的位移,由运动学的公式可知上升的时间一定小于下降过程中的时间.所以上升阶段物体受到空气阻力冲量的大小小于下降阶段受到空气阻力冲量的大小,在下落阶段受到重力的冲量大于上升阶段受到重力的冲量,B、C错误;由于物体的初速度的方向向上,末速度的方向向下,所以物体从抛出到返回抛出点,动量变化的方向向下,D正确.3.如图所示,质量为m的小滑块沿倾角为θ的斜面向上滑动,经过时间t1速度为零然后又下滑,经过时间t2回到斜面底端,滑块在运动过程中受到的摩擦力大小始终为F1.在整个过程中,重力对滑块的总冲量为()A.mg sinθ(t1+t2)B.mg sinθ(t1-t2)C.mg(t1+t2)D.0【答案】C【解析】根据冲量的定义式I=Ft,因此重力对滑块的冲量应为重力乘作用时间,所以I G=mg(t1+t2),即C 正确.4.(多选)恒力F作用在质量为m的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t,下列说法正确的是()A.拉力F对物体的冲量大小为零B.拉力F对物体的冲量大小为FtC.拉力F对物体的冲量大小是Ft cosθD.合力对物体的冲量大小为零【答案】BD【解析】拉力F对物体的冲量大小为Ft,选项A、C错误,B正确;合力对物体的冲量等于物体动量的变化等于零,选项D正确.5.如图所示,水平传送带AB长L=12 m,始终以速度v=13 m/s运转,在传送带最右端B有一个与水平面成37°的斜坡.现将一个质量为m=2.0 kg的小木块轻放在传送带的最左端A,小木块运动到B处就立即沿斜坡运动,但速度大小损失;小木块离开坡顶C后,经过t1=0.3 s垂直击中竖直挡板D.已知:小木块与传送带之间的动摩擦因数μ1=0.6,小木块与斜坡之间的动摩擦因数μ2=0.5,重力加速度g=10 m/s2.求:(1)小木块到达传送带右端B时的速度大小;(2)小木块离开坡顶C时的速度大小;(3)小木块在斜坡上运动过程中,摩擦力对木块的冲量大小.【答案】(1)12 m/s(2)5 m/s(3)4 N·s【解析】(1)设小木块运动到右端未与皮带共速由动能定理:μ1mgL =mv,得:v1=12 m/s<13 m/s,故小木块运动到右端速度v1=12 m/s;(2)倒过来看:平抛运动:sin 37°=,得:v c=5 m/s;(3)设在斜坡上运动时间为t2,在斜坡底部速度大小v2,得:v2=v1由动量定理:-(mg sin 37°+μ2mg cos 37°)t2=mv c-mv2摩擦力的冲量:I=μ2mg cos 37°·t2=4 N·s考点2 用动量定理定性分析问题1.关于动量和冲量,下列说法正确的是()A.物体所受合外力不变时,其动量一定不变B.物体受到的合外力变化时,动量可能变化C.物体所受合外力的冲量等于物体动量的变化D.物体所受合外力的冲量等于物体的动量【答案】C【解析】物体受合外力不为零,不论合外力变或不变,物体的速度都会发生变化,动量一定变化,A、B错误;由动量定理可知,物体所受合外力的冲量等于物体的动量变化,C正确,D错误.2.有消息称:中国羽毛球运动员在一档节目上演示了一把高速度杀球,轻小的羽毛球被快速击出后瞬间将西瓜冲撞爆裂!据测羽毛球的时速高达300 km,羽毛球的质量介于4.74 g~5.50 g之间,经分析,下列说法中正确的是()A.这则消息一定是假的,因为羽毛球很轻小,不可能使西瓜爆裂B.这则消息一定是假的,因为击出的羽毛球速度虽然高,但其能量却很小C.这则消息可能是真的,俗话说无快不破,羽毛球虽然很轻小,但速度很高D.这则消息可能是真的,西瓜是否被撞击爆裂取决于羽毛球对西瓜的冲击力大小【答案】D【解析】在高速度杀球时,由于球速较快,在与西瓜相撞的瞬时,速度急剧变化,根据动量定理可知,羽毛球对西瓜的作用力较大,完全可以使西瓜爆裂,故使西瓜裂开的原因不是速度,而是冲击力的大小,故该消息可能是真的,D正确.3.(多选)下面的说法正确的是()A.冲量与动量的单位在国际单位制下是相同的,所以冲量就是动量B.如果物体的速度发生变化,则可以肯定它受到的合外力的冲量不为零C.如果合外力对物体的冲量不为零,则合外力一定使物体的动能增大D.作用在物体上的合外力冲量不一定能改变物体速度的大小【答案】BD【解析】冲量等于动量改变量,A错误;根据动量定理Ft=Δmv可得,速度变化时,合外力肯定不为零,合外力的冲量肯定不为零,但这种情况下,物体的速度可能增大,可能减小,也可能大小不变,只是方向发生变化,所以B正确,C错误;做匀速圆周运动的物体受到的向心力即合力的冲量只改变速度的方向,D 正确.4.(多选)从同样高度落下的玻璃杯,掉在水泥地上容易撞碎,而掉在草地上不容易撞碎,其原因是() A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时,相互作用时间长【答案】CD【解析】杯子是否被撞碎,取决于撞击地面时,地面对杯子的撞击力大小.规定竖直向上为正方向,设玻璃杯下落高度为h.它们从h高度落地瞬间的速度大小为,设玻璃杯的质量为m,则落地前瞬间的动量大小为p=m,与水泥或草地接触Δt时间后,杯子停下,在此过程中,玻璃杯的动量变化为Δp=-(-m),再由动量定理可知(F-mg)·Δt=-(-m),所以F=+mg.由此可见,Δt越小,玻璃杯所受撞击力F越大,玻璃杯就越容易碎,杯子掉在草地上作用时间较长,动量变化慢,撞击力小,因此玻璃杯不易碎,C、D正确.5.(多选)课上老师做了这样一个实验:如图所示,用一象棋子压着一纸条,放在水平桌面上接近边缘处.第一次,慢拉纸条,将纸条抽出,棋子掉落在地上的P点;第二次,将棋子、纸条放回原来的位置,快拉纸条,将纸条抽出,棋子掉落在地上的N点.从第一次到第二次现象的变化,下列解释正确的是()A.棋子的惯性变大了B.棋子受到纸带的摩擦力变小了C.棋子受到纸带的冲量变小了D.棋子离开桌面时的动量变小了【答案】CD【解析】两次拉动中棋子的质量没变,故其惯性不变,A错误;由于正压力不变,纸带对棋子的摩擦力没变,B错误;快拉时作用时间变短,摩擦力对棋子的冲量变小了,C正确;由动量定理可知,合外力的冲量减小,则棋子离开桌面时的动量变小,D正确.6.(多选)如图所示,把重物G压在纸带上,用一水平力缓慢拉动纸带,重物跟着纸带一起运动,若迅速拉动纸带,纸带将会从重物下抽出,解释这些现象的正确说法是()A.在缓慢拉动纸带时,重物和纸带间摩擦力小B.在迅速拉动纸带时,纸带给重物的摩擦力大C.在缓慢拉动纸带时,纸带给重物的冲量大D.在迅速拉动纸带时,纸带给重物的冲量小【答案】CD【解析】在缓慢拉动纸带时,重物与纸带之间是静摩擦力,在迅速拉动纸带时,它们之间是滑动摩擦力,静摩擦力与滑动摩擦力可认为相同.缓慢拉动纸带时,作用时间长,摩擦力的冲量大,重物的动量变化大,所以重物跟着纸带一起运动;迅速拉动纸带时,作用时间短,滑动摩擦力的冲量小,重物的动量变化小,所以重物几乎不动.考点3 动量定理的有关计算1.如图甲,物体A和B用轻绳相连挂在轻质弹簧下静止不动,A的质量为m,B的质量为M,当连接A、B 的绳突然断开后,物体A上升经某一位置时的速度大小为v,这时物体B下落的速度大小为u,如图乙所示.在这段时间里,弹簧的弹力对物体A的冲量()A.mvB.mv-MuC.mv+MuD.mv+mu【答案】D【解析】分别以A、B为研究对象,由动量定理得I-mgt1=mv,Mgt2=Mu,两物体的运动具有同时性,则t1=t2,所以I=mu+mv.2.质量分别为2m和m的A、B两个质点,初速度相同,均为v1.若他们分别受到相同的冲量I作用后,A的速度为v2,B的动量为p.已知A、B都做直线运动,则动量p可以表示为( )A.m(v2-v1)B.2m(2v2-v1)C.4m(v2-v1)D.m(2v2-v1)【答案】D【解析】对A由动量定理:I=2m(v2-v1),对B由动量定理:I=p-mv1,则p=I+mv1=m(2v2-v1),D正确.3.如图所示,竖直面内有一个固定圆环,MN是它在竖直方向上的直径.两根光滑滑轨MP、QN的端点都在圆周上,MP>QN.将两个完全相同的小球a、b分别从M、Q点无初速度释放,在它们各自沿MP、QN运动到圆周上的过程中,下列说法中正确的是()A.合力对两球的冲量大小相同B.重力对a球的冲量较大C.弹力对a球的冲量较小D.两球的动量变化大小相同【答案】C【解析】小球受到的合外力等于重力沿轨道方向的分力,即:mg sinθ,加速度为a=g sinθ(θ为杆与水平方向的夹角)由图中的直角三角形可知,小球的位移s=2R sinθ所以t===,t与θ无关,即t1=t2,所以合外力的冲量大小为:mg sinθ·t.由图可知MP与水平方向之间的夹角大,所以沿MP运动的a球受到的合外力的冲量大,由动量定理可知,a球的动量变化大,A、D错误;重力的冲量为mgt,由于运动的时间相等,所以重力的冲量大小相等,B 错误;弹力的冲量:mg cosθ·t,所以a球的弹力的冲量小,C正确.4.1966年曾在地球的上空完成了以牛顿第二定律为基础的测定质量的实验.实验时,用宇宙飞船(质量为m)去接触正在轨道上运行的火箭(质量为mx,发动机已熄火),如图所示.接触以后,开动飞船尾部的推进器,使飞船和火箭共同加速,推进器的平均推力为F,开动时间Δt,测出飞船和火箭的速度变化是Δv,下列说法正确的是()A.火箭质量mx应为B.宇宙飞船的质量m应为C.推力F越大,就越大,且与F成正比D.推力F通过飞船传递给火箭,所以飞船对火箭的弹力大小应为F【答案】C【解析】对整体由动量定理可得:FΔt=(m+mx)Δv,得火箭的质量mx=-m,整体的质量为,A、B错误;由公式可得,F=(m+mx)可知,推力F越大,就越大,且与F成正比,C正确;对火箭分析,由牛顿第二定律有:飞船对火箭的弹力F N=mx<F,D错误.5.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车相撞后连为一体,两车车身因相互挤压,皆缩短了0.5 m,据测算两车相撞前的速度约为30 m/s.则:(1)试求车祸中车内质量约60 kg的人受到的平均冲力是多大?(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s,求这时人体受到的平均冲力为多大?【答案】(1)5.4×104N(2)1.8×103N【解析】(1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为0.5 m,设运动时间为t,根据x=t,得t==s,根据动量定理Ft=Δp=mv0,得F==N=5.4×104N;(2)若人系有安全带,则F′==N=1.8×103N6.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60 kg的运动员,从离水平网面3.2 m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0 m高处.已知运动员与网接触的时间为1.2 s.若把这段时间内网对运动员的作用力当作恒力处理,求此力的大小.(g取10 m/s2) 【答案】1.5×103N【解析】将运动员看做质量为m的质点,从高h1处下落,刚接触网时速度的大小v1=,方向竖直向下.弹跳后到达的高度为h2,刚离网时速度的大小v2=,方向竖直向上.选竖直向上为正方向.由动量定理得(F-mg)·Δt=m[v2-(-v1)]由以上各式解得F=mg+m代入数据得F=1.5×103N7.如图甲所示,用水平向右的力F拉放在光滑水平地面上、质量为500 kg的物体,作用时间为20 s,使物体获得0.5 m/s的速度.若力F大小的变化为:前15 s从零开始随时间均匀增大,后5 s均匀减小为零,如图乙所示,求:(1)力F对物体的冲量;(2)力F的最大值.【答案】(1)250 N·s(2)25 N【解析】(1)拉力对物体的冲量等于物体的动量增加量,有:IF=mv=500×0.5 N·s=250 N·s(2)由于拉力均匀变化,设拉力最大值为F max,则拉力的冲量大小为图乙中图线与时间轴所围成的面积,则:IF =F max·t,得F max=25 N考点4 动量定理的综合应用1.高空“蹦极”是勇敢者的游戏.蹦极运动员将弹性长绳(质量忽略不计)的一端系在双脚上,另一端固定在高处的跳台上,运动员无初速度地从跳台上落下.若不计空气阻力,则()A.弹性绳开始伸直时,运动员的速度最大B.从弹性绳开始伸直到最低点的过程中,运动员的重力势能与弹性绳的弹性势能之和不断增大C.整个下落过程中,重力对运动员的冲量与弹性绳弹力对运动员的冲量相同D.整个下落过程中,重力对运动员所做的功等于运动员克服弹性绳弹力所做的功【答案】D【解析】当运动员的加速度等于零时速度最大,此时弹性绳弹力等于重力,A错误;运动员在运动的过程中,重力势能、动能、弹性势能三者之和保持不变,从弹性绳开始伸直到最低点的过程中,动能先增大后减小,故运动员的重力势能与弹性绳的弹性势能之和先减小后增大,B错误;根据动量定理知IG+IF=0,故重力对运动员的冲量与弹性绳弹力对运动员的冲量不相同,一正一负,C错误;根据能量守恒可知整个下落过程中,减少的重力势能全部转化为弹性势能,D正确.2.“娱乐风洞”是一项将科技与惊险相结合的娱乐项目,它能在一个特定的空间内把表演者“吹”起来.假设风洞内向上的风量和风速保持不变,表演者调整身体的姿态,通过改变受风面积(表演者在垂直风力方向的投影面积),来改变所受向上风力的大小.已知人体所受风力大小与受风面积成正比,人水平横躺时受风面积最大,设为S0,站立时受风面积为S0;当受风面积为S0时,表演者恰好可以静止或匀速漂移.如图所示,某次表演中,人体可上下移动的空间总高度为H,表演者由静止以站立身姿从A位置下落,经过B位置时调整为水平横躺身姿(不计调整过程的时间和速度变化),运动到C位置速度恰好减为零.关于表演者下落的过程,下列说法中正确的是()A.B点距C点的高度是HB.从A至B过程表演者克服风力所做的功是从B至C过程表演者克服风力所做的功的C.从A至B过程表演者所受风力的冲量是从A至C过程表演者所受风力的冲量的D.从A至B过程表演者所受风力的平均功率是从B至C过程表演者所受风力平均功率的【答案】B【解析】设人水平横躺时受到的风力大小为F m,由于人体受风力大小与正对面积成正比,故人站立时风力为F m.由于受风力有效面积是最大值的一半时,恰好可以静止或匀速漂移,故可以求得人的重力G=F m,即有F m=2G.从A至B过程表演者的加速度大小为a1===0.75g从B至C过程表演者的加速度大小为a2===g,由速度位移公式得:从A至B过程表演者的位移x1=,从B至C过程表演者的位移x2=,故x1∶x2=4∶3,x2=H,A错误;表演者从A至B克服风力所做的功为W1=F m·H=F m H;从B至C过程克服风力所做的功为W2=F m·H=F m H,得=,B正确;设B点的速度为v,则从A至B过程表演者的运动时间t1==.从B至C过程表演者的运动时间t2==,根据动量定理,I1=F m t1=mv,I2=F m t2=2mv,=,C错误;根据P=,又=,=,联立解得=,D错误.3.(多选)物体受到合力F的作用,由静止开始运动,力F随时间变化的图象如图所示,下列说法中正确的是()A.该物体将始终向一个方向运动B.3 s时该物体回到原出发点C.0~3 s内,力F的冲量等于零,功也等于零D.2~4 s内,力F的冲量不等于零,功却等于零【答案】BCD【解析】据题意,从图可知物体开始先向负向运动,0~1 s末速度为某个值-v,而位移为-s,之后力F 反向,1~1.5 s末速度减为0,此时总位移为-1.5s,之后物体向正向运动,1.5~2 s时末速度为v,向正向运动了0.5s,此时位移为-s,此后力又向负向,2~3 s末速度减为0,此时位移为0,故选项A错误,选项B正确;据以上分析,0~3 s内力F的冲量等于动量变化,即I03=mΔv=0,此过程力F做的功为:W03=mv-0=0,故选项C正确;3~4 s末速度为-v,位移为-s,所以2~4 s内力F冲量为:I24=mΔv =-2mv,功为W24=mv-mv=0,故选项D正确.4.(多选)光滑水平面上有直角坐标系xOy,坐标系的第Ⅰ、Ⅳ象限内有沿y轴正方向的匀强电场.一只质量为100 g的带电小球静止于x负半轴上某一点.小球受到一个沿x轴正向的瞬时冲量I后开始运动.从小球通过原点时刻开始计时,小球沿x、y轴方向的分运动的速度图象分别如图所示.下列判断正确的是()A.沿x轴正向的瞬时冲量I的大小是0.2 N·sB.开始计时后2 s内小球的动量变化大小是0.6 kg·m/sC.开始计时后2 s内小球沿y轴方向的位移是3 mD.开始计时后2 s末小球所在点的坐标是(4,3)【答案】ACD【解析】根据图象可知,小球沿x方向的初速度为2 m/s,由动量定理知沿x轴正向的瞬时冲量I的大小Ix=mvx=0.1×2 N·s=0.2 N·s,A正确;沿x方向动量不变,2 s末y方向的速度为3 m/s,则开始计时后2 s内小球的动量变化大小Δp=mvy-0=0.1×3 kg·m/s=0.3 kg·m/s,B错误;根据速度图象与坐标轴围成的面积表示位移可知,开始计时后2 s内小球沿y轴方向的位移y=×2×3 m=3 m,C正确;开始计时后2 s内,x方向的位移x=2×2 m=4 m,则开始计时后2 s末小球所在点的坐标是(4,3),D正确.5.(Ⅰ)如图甲所示,质量为m的物块在水平恒力F的作用下,经时间t从A点运动到B点,物块在A点的速度为v1,B点的速度为v2,物块与粗糙水平面之间动摩擦因数为μ,试用牛顿第二定律和运动学规律推导此过程中动量定理的表达式,并说明表达式的物理意义.(Ⅱ)物块质量m=1 kg静止在粗糙水平面上的A点,从t=0时刻开始,物块在受按如图乙所示规律变化的水平力F作用下向右运动,第3 s末物块运动到B点时速度刚好为零,第5 s末物块刚好回到A点,已知物块与粗糙水平面之间的动摩擦因数为μ=0.2,(g取10 m/s2)求:(1)AB间的距离;(2)水平力F在5 s时间内对物块的冲量.【答案】(Ⅰ)由牛顿第二定律得:F合-μmg=ma①由运动学公式得:a=②由①②得:(F-μmg)t=mv2-mv1③③式的物理意义为:合外力的冲量等于物体动量的变化(Ⅱ)(1)4 m(2)2 N·s【解析】(Ⅰ)由牛顿第二定律得:F-μmg=ma①由运动学公式得:a=②由①②得:(F-μmg)t=mv2-mv1③③式的物理意义为:合外力的冲量等于物体动量的变化(Ⅱ)(1)从第3秒末到第5秒末,由牛顿第二定律得:F-μmg=ma,得a=2 m/s2由运动学公式得AB之间的距离:x=at=4 m(2)选向左的方向为正方向,物体的末速度为:v A=at2=4 m/s对全程由动量定理得:IF+μmgt1-μmgt2=mv A解得IF=2 N·s.考点5 动量定理分析多过程问题1.水平推力F1和F2分别作用于水平面上等质量的A、B两物体上,作用一段时间后撤去推力,物体将继续运动一段时间后停下,两物体的v-t图象分别如图中OAB、OCD所示,图中AB∥CD,则()A.F1的冲量大于F2的冲量B.F1的冲量等于F2的冲量C.两物体受到的摩擦力大小相等D.两物体受到的摩擦力大小不等【答案】C【解析】设F1、F2的作用时间分别为t1、t2,则由图知t1<t2,当只有摩擦力F f作用时,由AB∥CD知图线斜率相同,则加速度相同,摩擦力F f相同,C正确,D错误;对物体A,由动量定理得:F1t1-F f t1=mv A;对物体B同理可得:F2t2-F f t2=mv C.由图象知:v A=v C,t1<t2,所以mv A=mv C,即F1t1-F f t1=F2t2-F f t2,得F2t2>F1t1,A、B均错.2.(多选)一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停止的过程称为过程Ⅱ,则()A.过程Ⅰ中钢珠的动量的改变量等于过程Ⅱ中动量的改变量B.过程Ⅱ中,钢珠所受阻力的冲量的大小等于过程Ⅰ和过程Ⅱ中重力的冲量的大小的和C.Ⅰ、Ⅱ两个过程中合外力的总冲量等于零D.过程Ⅱ中钢珠的动量的改变量等于零【答案】BC【解析】在Ⅰ、Ⅱ两个过程中,钢珠动量的改变量各不为零,且它们大小相等、方向相反,但对于全过程,钢珠动量的改变量为零,故合外力的总冲量等于零,A、D错误,C正确;过程Ⅱ中钢珠受重力和阻力,所以过程Ⅱ中阻力的冲量大小等于过程Ⅰ中重力的冲量大小与过程Ⅱ中重力冲量大小的和,B正确.3.(多选)一粒钢珠从静止状态开始自由下落,然后陷入泥潭中,若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,则()A.过程Ⅰ中钢珠所增加的动能等于过程Ⅱ中损失的机械能B.过程Ⅰ与过程Ⅱ中钢珠所减少的重力势能之和等于过程Ⅱ中钢珠克服阻力所做的功C.过程Ⅰ中钢珠动量的改变量等于重力的冲量D.过程Ⅰ中重力冲量的大小等于过程Ⅱ中阻力的冲量的大小【答案】BC【解析】根据能量守恒定律可知,在过程Ⅰ中,钢珠增加的动能等于钢珠减小的重力势能,过程Ⅱ中损失的机械能等于全程减小的重力势能,即Ⅰ过程中增加的动能小于Ⅱ过程中损失的机械能,A错误;由功能关系可知,克服阻力做的功即减小的机械能,B正确;根据动量定理可知,在Ⅰ过程中,只有重力产生冲量,所以钢珠动量的改变量就等于重力的冲量,C正确;全程使用动量定理可知,在Ⅰ、Ⅱ全过程中重力的冲量大小等于Ⅱ中阻力的冲量的大小,D错误.4.质量为1 kg的物体静止放在足够大的水平桌面上,物体与桌面间的动摩擦因数为μ=0.4,有一大小为5 N 的水平恒力F作用于物体上,使之加速前进,经3 s后撤去F,求物体运动的总时间.(g=10 m/s2)【答案】3.75 s【解析】物体由开始运动到停止的全过程中,F的冲量为Ft1,摩擦力的冲量为F f t.选水平恒力F的方向为正方向,根据动量定理有Ft1-F f t=0①又F f=μmg②联立①②式解得t=,代入数据解得t=3.75 s.。
高中物理动量守恒定律试题(有答案和解析)含解析
高中物理动量守恒定律试题(有答案和解析)含解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高中物理动量定理基础题(含答案)
高中物理动量定理基础题(含答案)一、单选题1.如图所示,质量为m 的小滑块沿倾角为θ的粗糙斜面向上滑动,经过时间1t 速度为零然后下滑,经过时间2t 回到斜面底端,滑块在运动过程中受到的摩擦力大小始终恒定。
在整个过程中,重力对滑块的总冲量为( )A .()12sin mg t t θ+B .()12sin mg t t θ-C .()12mg t t +D .()12cos mg t t θ+2.人从高处跳到地面,为了安全,一般都是让脚尖先着地,接着让整个脚底着地,并让人下蹲,这样做是为了( )A .减小人受到的冲量B .增大人受到的冲量C .延长与地面的作用时间,从而减小人受到的作用力D .延长与地面的作用时间,从而减小人动量的变化3.“守株持兔"是众所周知的寓言故事.假设兔子质量为3kg ,以10m /s 的速度奔跑,撞树后几乎不反弹、作用时间约为0.02s ,则兔子受到的平均撞击力大小为( ) A .1.5N B .15N C .150N D .1500N 4.如图,质量2kg m =的木块放在水平地面上,与地面间的动摩擦因数0.2μ=,木块在5N F =的水平恒力作用下由静止开始向右运动了10s ,210m/s =g ,在这10s 内,下列说法正确的是( )A .重力的冲量为0B .摩擦力的冲量为40N s -⋅C .物体动量的变化为20kg m/s ⋅D .合外力的冲量为50N·s5.如图,一物体静止在水平地面上,受到与水平方向成θ角的恒定拉力F 作用时间t 后,物体仍保持静止。
以下说法中正确的是( )A .物体的动量变化量为FtB .物体所受重力的冲量大小为0C .物体所受摩擦力的冲量大小为cos Ft θD .物体所受拉力F 的冲量大小是cos Ft θ二、多选题6.质量为1kg 的物块在水平力F 的作用下由静止开始在水平地面上做直线运动,F 与时间t 的关系如图所示。
高中物理动量定理题20套(带答案)
m/s2
5.0 1014 m/s2
(2)电子以速度 v0 进入金属板 A、B 间,在垂直于电场方向做匀速直线运动,沿电场方向
做初速度为零的匀加速直线运动,电子在电场中运动的时间为
t
L v0
0.1 2.0 107
s 5.0109 s
电子射出电场时在沿电场线方向的侧移量
代入数据
y 1 at2 2
y 1 5.01014 (5.0109)2 cm 0.63cm 2
【答案】(1) 40m / s (2)1.2104W (3) 4.8103 N s 方向为竖直向下
【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒: mgh 1 mv2
水平位移:
竖直位移:
x v0t
由勾股定理:
y 1 gt2 2
x2 y2 R2
解得 t 1s
竖直速度:
可得小球的动能
vy gt 10m / s
Ek
1 mv2 2
1m 2
v02 vy2
62.5J
5.北京将在 2022 年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深
高中物理动量定理题 20 套(带答案)
一、高考物理精讲专题动量定理
1.如图 1 所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下, 磁感应强度沿 y 轴方向没有变化,与横坐标 x 的关系如图 2 所示,图线是双曲线(坐标是
渐近线);顶角 =53°的光滑金属长导轨 MON 固定在水平面内,ON 与 x 轴重合,一根与
人教版高中物理选择性必修第一册第一章动量守恒定律1-2动量定理练习含答案
第一章动量守恒定律2 动量定理基础过关练题组一恒力冲量的计算1.(2024河北唐山开滦第二中学月考)如图,一人用恒定的拉力F拉着行李箱在水平路面上匀速前进,拉力与水平方向成θ角,在时间t内,以下说法正确的是()A.行李箱所受拉力F的冲量方向水平向左B.行李箱所受拉力F的冲量大小是Ft cos θC.行李箱所受摩擦力的冲量大小为0D.行李箱所受合力的冲量大小为02.(2024辽宁沈阳联考)如图所示,运动员将质量为m的网球从O点以速度v0水平击出,网球落到水平地面上的N点时速度方向与竖直方向的夹角为45°,不计空气阻力,则网球从O点运动到N点的过程中,重力对网球的冲量大小为()A.mv0B.mv02C.√2mv0D.2mv03.(经典题)设运动员的质量为m,托起质量为M的杠铃从下蹲状态(图甲)缓慢运动到站立状态(图乙),该过程杠铃和人的肩部相对位置不变,运动员保持乙状态站立Δt时间后再将杠铃缓慢向上举至双臂伸直停止(图丙)。
甲到乙、乙到丙过程杠铃上升的高度分别为h1、h2,经历的时间分别为t1、t2,重力加速度为g,则整个过程中,下列说法正确的是()A.地面对运动员的冲量为(M+m)g(t1+t2),地面对运动员做的功为(M+m)g(h1+h2)B.地面对运动员的冲量为(M+m)g(t1+t2),地面对运动员做的功为0C.运动员对杠铃的冲量为Mg(t1+t2+Δt),运动员对杠铃做的功为Mg(h1+h2)D.运动员对杠铃的冲量为Mg(t1+t2+Δt),运动员对杠铃做的功为0题组二变力冲量的计算4.一质量为0.25 kg的滑块静置在水平地面上,在水平拉力F作用下,由静止开始运动。
已知力F随时间变化的规律如图所示,滑块与地面间的动摩擦因数为0.8,取g=10 m/s2,最大静摩擦力等于滑动摩擦力,则0~6 s内拉力F和滑块受到的合外力冲量大小分别为()A.14 N·s,3 N·sB.14 N·s,0C.3 N·s,14 N·sD.0,3 N·s5.质量为m=0.5 kg的物块静止在粗糙水平面上,0时刻起受到一个水平向右的拉力F的作用,拉力F和摩擦力f的大小随时间变化的规律如图所示,g=10 m/s2,若最大静摩擦力等于滑动摩擦力,则下列说法错误的是()A.物块与水平面间的动摩擦因数为0.2B.前3 s拉力的冲量大小为6.5 N·sC.前3 s拉力做的功为24 JD.前2 s的平均速度为2 m/s题组三利用动量定理定性分析6.(2024江苏南京人民中学、南通海安实验中学联考)如图所示是某手机防摔装置,下列有关说法正确的是()A.防摔装置可以减小手机的动量的变化量B.防摔装置可以减小手机的动量的变化率C.防摔装置可以减小手机的动能的变化量D.防摔装置可以增加地面对手机的作用力7.(2024安徽池州联考)如图所示,铁架台放在水平面上,长木板搭在铁架台立柱上构成一个简易斜面,将一个光滑小球由木板上的A点处静止释放,小球会沿木板滑至水平面。
人教版高中物理选择性必修第一册第一章动量守恒定律1-1动量练习含答案
第一章动量守恒定律1 动量基础过关练题组一寻求碰撞中的不变量1.(经典题)(2024四川成都期末)气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦。
现用带竖直挡板C、D的气垫导轨和滑块A、B探究碰撞中的不变量,实验装置如图所示。
采用的实验步骤如下:a.用天平分别测出A、B的质量m A、m B;b.调整气垫导轨,使导轨处于水平;c.在A和B间放入一个被压缩的轻弹簧,用电动卡销锁定,静止放置在气垫导轨上;d.用刻度尺测出A的左端至挡板C的距离L1;e.按下电钮放开卡销,同时分别记录A、B运动时间的计时器开始工作,当A、B分别碰撞C、D时计时结束,记下A、B分别到达C、D的运动时间t1和t2。
(1)实验中还应测量的物理量及其符号是;(2)规定水平向左为正方向,作用前A、B质量与速度乘积之和为;作用后A、B质量与速度乘积之和为(用测量的物理量符号表示即可)。
2.(2023湖北襄阳四中月考)利用气垫导轨通过闪光照相进行“探究碰撞中的不变量”这一实验,如图所示,A、B两滑块质量比是1∶3,某次实验时碰撞前B滑块静止,A滑块匀速向B滑块运动并发生碰撞,利用闪光照相的方法连续4次拍摄得到的闪光照片如图所示。
已知相邻两次闪光的时间间隔为0.2 s,在这4次闪光的过程中,A、B 两滑块均在0~80 cm范围内,且第1次闪光时,滑块A恰好位于x=10 cm处。
若A、B两滑块的碰撞时间及闪光持续的时间极短,均可忽略不计。
如从第1次闪光开始计时,则可知经过时间t=s两滑块在x=cm处发生碰撞,两滑块碰撞前后质量与速度的乘积的矢量和。
题组二动量3.(2024河北唐山联考)关于动量,以下说法正确的是()A.做匀速圆周运动的物体,其动量保持不变B.悬线拉着的摆球在竖直面内摆动时,每次经过最低点时的动量均相等C.动量相同的物体,其速度一定相等D.动量相同的物体,其速度方向一定相同4.(多选题)(2024江苏徐州期中)如图所示,飞机在平直跑道上启动阶段的运动可看作初速度为零的匀加速直线运动,在启动阶段,飞机的动量()A.与它的位移成正比B.与它的速度成正比C.与它的动能成正比D.与它所经历的时间成正比5.(经典题)如图甲,长木板的一端垫有小木块,可以微调木板的倾斜程度,以平衡摩擦力,使小车能在木板上做匀速直线运动。
高中物理动量守恒定律题20套(带答案)及解析
高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
物理动量定理专项习题及答案解析及解析
物理动量定理专项习题及答案解析及解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0.【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.3.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小球A 以速度v 0=2m/s 向右运动与B 球发生弹性正碰,取重力加速度g =10m/s 2.求:(1)碰撞结束时A 球的速度大小及方向; (2)碰撞过程A 对B 的冲量大小及方向.【答案】(1)-1m/s ,方向水平向左(2)3N·s ,方向水平向右 【解析】【分析】A 与B 球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向;碰撞过程对B 应用动量定理求出碰撞过程A 对B 的冲量; 解:(1)碰撞过程根据动量守恒及能量守恒得:0A B mv mv Mv =+2220111222A B mv mv Mv =+ 联立可解得:1m/s B v =,1m/s A v =- 负号表示方向水平向左 (2)碰撞过程对B 应用动量定理可得:0B I Mv =- 可解得:3I N s =⋅ 方向水平向右4.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。
高考物理动量守恒定律题20套(带答案)
高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。
【物理】物理动量定理练习题20篇
【物理】物理动量定理练习题2 0 篇一、高考物理精讲专题动量定理1. 质量为m 的小球,从沙坑上方自由下落,经过时间t₁到达沙坑表面,又经过时间t₂停在沙坑里.求:(1)沙对小球的平均阻力F;(2)小球在沙坑里下落过程所受的总冲量1.【答案】(1) (2)mgt₁【解析】试题分析:设刚开始下落的位置为A, 刚好接触沙的位置为B, 在沙中到达的最低点为C.(1)在下落的全过程对小球用动量定理:重力作用时间为ti+tz, 而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(ti+t2)-Ft₂=0,解得:(2)仍然在下落的全过程对小球用动量定理:在t₁时间内只有重力的冲量,在t₂时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt₁-I=0,∴I=mgt₁方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2. 如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以vo=12m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m₁=0.5 kg、m₂=1.5kg。
求:①A 与B 撞击结束时的速度大小v;②在整个过程中,弹簧对A 、B 系统的冲量大小1。
【答案】①3m/s; ②12N·s【解析】【详解】①A 、B 碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m₁Vo=(m₁+m₂)v 代入数据解得v=3m/s②以向左为正方向, A 、B 与弹簧作用过程由动量定理得l=(m₁+m₂) (-v)-(m₁+m₂)v代入数据解得l=-12N ·s负号表示冲量方向向右。
3. 汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值B 时,安全气囊爆开.某次试验中,质量m=1600 kg 的试验车以速度v₁= 36 km/h 正面撞击固定试验台,经时间t₁= 0.10 s 碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I 的大小及F 的大小;(2)若试验车以速度v 撞击正前方另一质量m=1600 kg、速度v₂=18 km/h 同向行驶的汽车,经时间t₂=0. 16s 两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)1。
高中物理动量定理常见题型及答题技巧及练习题(含答案)及解析
【答案】(1) 2kg (2) 27J (3) 36N s
【解析】
【详解】
(1)由题图乙知,C 与 A 碰前速度为 v1=9m/s,碰后速度大小为 v2=3m/s,C 与 A 碰撞过 程动量守恒
解得 C 的质量
mCv1=(mA+mC)v2
(2)t=8s 时弹簧具有的弹性势能
mC=2kg.
Ep1= 1 (mA+mC)v22=27J 2
【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
a 则重力的冲量为: IG mgt 4.8103 N s ,方向为竖直向下。
【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率 的求法。
8.一质量为 0.5kg 的小物块放在水平地面上的 A 点,距离 A 点 5 m 的位置 B 处是一面墙, 如图所示.物块以 v0=8m/s 的初速度从 A 点沿 AB 方向运动,在与墙壁碰撞前瞬间的速度为
摩擦阻力和空气阻力, g 取10m / s2 ,问:
(1)运动员到达斜坡底端时的速率 v ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动量定理专题训练答案(1)一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2C v N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.3.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I .【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有:mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt 1-I=0,∴I=mgt 1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.4.如图甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s时与物块A 相碰,并立即与A 粘在一起不分开,C 的v -t 图象如图乙所示.求:(1)C 的质量m C ;(2)t =8s 时弹簧具有的弹性势能E p 1(3)4—12s 内墙壁对物块B 的冲量大小I【答案】(1) 2kg (2) 27J (3) 36N s ×【解析】【详解】(1)由题图乙知,C 与A 碰前速度为v 1=9m/s ,碰后速度大小为v 2=3m/s ,C 与A 碰撞过程动量守恒m C v 1=(m A +m C )v 2解得C 的质量m C =2kg .(2)t =8s 时弹簧具有的弹性势能E p1=12(m A +m C )v 22=27J (3)取水平向左为正方向,根据动量定理,4~12s 内墙壁对物块B 的冲量大小I=(m A +m C )v 3-(m A +m C )(-v 2)=36N·s5.滑冰是青少年喜爱的一项体育运动。
如图,两个穿滑冰鞋的男孩和女孩一起在滑冰场沿直线水平向右滑行,某时刻他们速度均为v 0=2m/s ,后面的男孩伸手向前推女孩一下,作用时间极短,推完后男孩恰好停下,女孩继续沿原方向向前滑行。
已知男孩、女孩质量均为m =50kg ,假设男孩在推女孩过程中消耗的体内能量全部转化为他们的机械能,求男孩推女孩过程中:(1)女孩受到的冲量大小;(2)男孩消耗了多少体内能量? 【答案】(1) 100N •s (2) 200J【解析】【详解】(1)男孩和女孩之间的作用力大小相等,作用时间相等,故女孩受到的冲量等于男孩受到的冲量,对男孩,由动量定理得:I =△P =0-mv 0=-50×2=-100N•s ,所以女孩受到的冲量大小为100N•s ;(2)对女孩,由动量定理得100=mv 1-mv 0,故作用后女孩的速度1100502m/s 4m/s 50v +⨯== 根据能量守恒知,男孩消耗的能量为 221011125016504200J 222E mv mv =-⋅=⨯⨯-⨯=;6.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。
一质量为60kg 的运动员在高度为80h m =,倾角为30θ=︒的斜坡顶端,从静止开始沿直线滑到斜面底端。
下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问:(1)运动员到达斜坡底端时的速率v ;(2)运动员刚到斜面底端时,重力的瞬时功率;(3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。
【答案】(1)40/m s (2)41.210W ⨯(3)34.810N s ⨯⋅ 方向为竖直向下【解析】【分析】(1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可;(3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可;【详解】(1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212mgh mv =到达底端时的速率为:40/v m s =;(2)滑雪者由滑到斜面底端时重力的瞬时功率为:4sin 30 1.210G P mg v W =⋅⋅︒=⨯; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动根据牛顿第二定律0sin 30mg ma =,可以得到:2sin 305/a g m s =︒=根据速度与时间关系可以得到:08v t s a-== 则重力的冲量为:34.810G I mgt N s ==⨯⋅,方向为竖直向下。
【点睛】本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。
7.如图所示,木块A 和四分之一光滑圆轨道B 静置于光滑水平面上,A 、B 质量m A =m B =2.0kg 。
现让A 以v 0=4m/s 的速度水平向右运动,之后与墙壁发生弹性碰撞(碰撞过程中无机械能损失),碰撞时间为t =0.2s 。
取重力加速度g =10m/s 2.求:①A 与墙壁碰撞过程中,墙壁对木块平均作用力的大小;②A 滑上圆轨道B 后,到达最大高度时与B 的共同速度大小.【答案】(1) F =80N (2) v 1=2m/s【解析】【详解】①以水平向左为正方向,A与墙壁碰撞过程,无机械能能损失,则以原速率弹回,对A,由动量定理得:Ft=m A v0﹣m A•(﹣v0),代入数据解得:F=80N;②A滑上圆轨道B后到达最大高度时,AB速度相等,设A、B的共同速度为v,系统在水平方向动量守恒,以向左为正方向,由动量守恒得:m A v0=(m A+m B)v1,代入数据解得:v1=2m/s;8.2018年诺贝尔物理学奖授于了阿瑟·阿什金(Arthur Ashkin)等三位科学家,以表彰他们在激光领域的杰出成就。
阿瑟·阿什金发明了光学镊子(如图),能用激光束“夹起”粒子、原子、分子;还能夹起病毒、细菌及其他活细胞,开启了激光在新领域应用的大门。
①为了简化问题,将激光束看作是粒子流,其中的粒子以相同的动量沿光传播方向运动。
激光照射到物体上,会对物体产生力的作用,光镊效应就是一个实例。
现有一透明介质小球,处于非均匀的激光束中(越靠近光束中心光强越强)。
小球的折射率大于周围介质的折射率。
两束相互平行且强度①>②的激光束,穿过介质小球射出时的光路如图所示。
若不考虑光的反射和吸收,请分析说明两光束因折射对小球产生的合力的方向。
②根据上问光束对小球产生的合力特点,试分析激光束如何“夹起”粒子的?【答案】见解析;【解析】【详解】解:①由动量定理可知:△v的方向即为小球对光束作用力的方向当强度①>②强度相同时,作用力F1>F2,由平行四边形定则知,①和②光速受力合力方向向左偏下,则由牛顿第三定律可知,两光束因折射对小球产生的合力的方向向右偏上,如图所示②如图所示,小球受到的合力向右偏上,此力的横向的分力F y,会将小球推向光束中心;一旦小球偏离光速中心,就会受到指向中心的分力,实现光束对小球的约束,如同镊子一样,“夹住”小球其它粒子9.一个质量为2kg的物体静止在水平桌面上,如图1所示,现在对物体施加一个水平向右的拉力F,拉力F随时间t变化的图象如图2所示,已知物体在第1s内保持静止状态,第2s初开始做匀加速直线运动,第3s末撤去拉力,第5s末物体速度减小为求:前3s内拉力F的冲量。