中考数学试题-2018年中考数学第一轮基础知识点测试题23 最新

合集下载

第29讲 统计训练题2018年中考数学一轮复习资料.docx

第29讲 统计训练题2018年中考数学一轮复习资料.docx

一、选择题(每题3分,共30分)1.为了调查了解某县七年级男生的身高,有关部门准备对200名七年级男生的身高作调查,以下调查方案中比较合理的是()A,查阅外地200名七年级男生的身高统计资料B,测量该县县城一所中学200名七年级男生的身高C.测量.该,县两所农村中学各100名七年级男生的身高D.在该县县城任选一所中学,农村任选三所中学,每所中学用抽签的方法分别选择50名七年级男生,然后测量他们的身高2.某省有7万名学生参加初中毕业会考,要想了解这7万名学生的数学成绩,从中抽取了 1 000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1 000名考生是总体的一个样本B.每位考生是个体C.7万名考生是总体D.这种调查是抽样调查3.九年级某班在一次考试中对某道单选题的作答情况如图所示,根据统计图,下列判断中错误的是()A.选A的有8人B.选B的有4人C.选C的有26人D.该班共有50人参加考试4.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()A. 216B.252C.288D.3245.如图,是某工厂2010-2013年的年产值统计图,则年产值在2500万元以上的年份是(A. 2011 年B. 2012 年C. 2013 年D. 2011 年和 2013 年6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输人汉字的个数统计结果如下表,某同学分析上表后得出如下结论:(1)甲、乙两班学生成绩平均水平相同,(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入N150个汉字为优秀)⑶甲班成绩的波动比乙班大上述结论正确的是()A. (1)⑵(3)B. (1) (2)C. (1) (3)D. (2) (3)7.下表是四川省11个地市5月份某日最高气温(°C)的统计结果:该日最高气温的极差和平均数分别是( )A. 31 °C,28 °CB.. 26 °C, 28 °CC. 5 °C, 27 °CD. 5 °C, 28 °CC 2 c 28.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲=0. 51, S乙=0. 41, S丙%0. 62, S T22=0. 45,则四人中成绩最稳定的是( )A.甲B.乙C.丙D. T9.某次歌唱比赛,最后三名选手的成绩统计如下:若唱功、音乐常识、综合知识按6 : 3 : 1的加权平均分排出冠军、亚军、季军,则冠军、亚军、季军分别A.王飞、李真、林杨B.王飞、林杨、李真C.李真、王飞、林杨D.李真、林杨、王飞10.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生汉字输入的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数不少于150为优,秀);③甲班成绩的波动比乙班■大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每题3分,共30分)11.五个数1, 2, 4, 5, -2的极差是.12.已知一组数据3, 4, 4, 2, 5,这组数据的中位数为.13.某工厂共有50名员工,他们的月工资方差*=20,现在给每个员工的月工资增加300元,那么他们新工资的方差是.14.数据3, 2, 1, 5, - 1, 1的众数和中位数之和是.15.已知一组数据10, 9, 8, X, 12, y, 10, 7的平均数是10,又知y比x大2,则x+y= .16.某校九年级(2)班(1)组女生的体重(单位:kg)为:38, 40, 35, 36, 65, 42, 42,则这组数据的中位数是17.一个班级有40人,一次数学考试中,优秀的有18人.在扇形图中表示优秀的人数所占百分比的扇形的圆心角的度数是.18.某校男子足球队队员的年龄分布如表所示:年龄(岁)13 14 15 16 17人数 2 6 8 3 3则这些队员年龄的中位数是—岁.19.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是_.20.在某次学校安全知识抢答赛中,九年级参赛的10名学生的成绩统计图如图所示.这10名学生的参赛成绩的中位数是—分.85 90 e三、解答题(共60分)21.(本题6分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3: 3: 2: 2计算,那么甲、乙的数学综合素质成绩分别为多少分?22.(本题7分)在开展“好书伴我成长”的读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:册数0 1 2 3 4人数 3 13 16 17 1(1)求这50个样本数据的平均救,众数和中位数.(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.23.(本题7分)甲、成绩分别被制成下列两个统计图:乙两名队员参加射击训练,根据以上信息,整理分析数据如下:平均成绩/中位数/环众数/环方差环甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a, b, c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?24.(本题8分)某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰, 设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)九年级(1)班共有—名学生;(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是_(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.25.(本题8分)了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额, 并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:,诙SX额条以(人)数额(元)(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人.一周零花钱数的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?26.(本题8分)随着一部在重庆取景拍摄的电影《火锅英雄》在山城的热播,山城人民又掀起了一股去吃洞子老火锅的热潮.某餐饮公司为了大力宣传和推广该公司的企业文化,准备举办一个火锅美食节.为此,公司派出了若干业务员到几个社区作随机调查,了解市民对火锅的喜爱程度.业务员小王将“喜爱程度”按A、B、C、D进行分类,并将自己的调查结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:“喜爱程度”条形统计图“喜爱程度”扇形统计图(说明:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢)(1)请把条形统计图补充完整.;(2)扇形统计图中A类所在的扇形的圆心角度数是_;(3)若小王调查的社区大概有5000人,请你用小王的调查结果估计“非常喜欢”和“比较喜欢”的人数之和.27.(本题8分)为了降低塑料袋--“白色污染”对环境污染.学校组织了对使用购物袋的情况的调查, 小明同学5月8日到站前市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力分别提供了 0.1元,0.2元,0.3元三种质量不同的塑料袋,下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总人数是—人;(2)请补全条形统计图,并说明扇形统计图中0.2元部分所对应的圆心角是度,0.3元部分所对应的圆心角是度;(3)若5月8日到该市场购物的人数有3000人次,则该市场应销售塑料购物袋多少个?目备0.1兀28.(本题8分)A, B, C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图1:竞选人 A .B C笔试85 95 90口试80 85■笔试□ 口试B C(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图2 (没有弃权票,每名学生只能推荐一个),则B在扇形统计图中所占的圆心角是度.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4: 3: 3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.。

江西省中考数学总复习第1部分基础过关第六单元圆课时23与圆有关的位置关系作业(2021学年)

江西省中考数学总复习第1部分基础过关第六单元圆课时23与圆有关的位置关系作业(2021学年)

江西省2018年中考数学总复习第1部分基础过关第六单元圆课时23 与圆有关的位置关系作业编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江西省2018年中考数学总复习第1部分基础过关第六单元圆课时23与圆有关的位置关系作业)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江西省2018年中考数学总复习第1部分基础过关第六单元圆课时23 与圆有关的位置关系作业的全部内容。

课时23 与圆有关的位置关系(时间:50分钟分值:50分)评分标准:选择填空每题3分.基础过关1.⊙O的半径为6 cm,点A到圆心O的距离为5 cm,那么点A与⊙O的位置关系是( ) A.在圆内 B.在圆上C.在圆外 D.不能确定2.已知⊙O的半径是5,直线l是⊙O的切线,P是l上的任一点,那么( )A.0<OP<5B.OP=5C.OP>5 D.OP≥53.如图1,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是( )图1A.27°B.34°C.36°D.54°4.如图2,P为⊙O外一点,PA,PB分别切⊙O于点A,B,CD切⊙O于点E,分别交PA,PB 于点C,D,若PA=5,则△PCD的周长为( )图2A.5 B.7C.8ﻩ D.105.(2017吉林)如图3,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O 于点C.若AB=12,OA=5,则BC的长为()图3A.5 B.6C.7ﻩD.86.如图4,∠ABC=80°,O为射线BC上一点,以点O为圆心,错误!OB长为半径作⊙O,要使射线BA与⊙O相切,应将射线绕点B按顺时针方向旋转()图4A.40°或80°B.50°或110°C.50°或100° D.60°或120°7.(2017齐齐哈尔改编)如图5,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O 于点D,连接OD,若∠A=50°,则∠ADO的度数为__________.图58.如图6,∠AOB=30°,⊙M的圆心在OA上,半径为4 cm,若圆心在射线OA上移动,则当OM=__________cm时,⊙M与OB相切.图69.如图7,已知在平面直角坐标系中,点P是直线y=-x+4上的一个动点,⊙O的半径为1,过点P作⊙O的切线,切点为A,则PA长度的最小值为__________.图710.(7分)(2017荆门)已知:如图8,在△ABC中,∠C=90°,∠BAC的平分线AD交BC 于点D,过点D作DE⊥AD交AB于点E,以AE为直径作⊙O。

2018届中考数学第一轮复习考点强化12 统计类应用题(无答案 )

2018届中考数学第一轮复习考点强化12 统计类应用题(无答案 )

考点强化练十二 统计类应用题一、选择题1. (2016·六盘水)小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:学校附近的商店经理根据表中决定本月多进尺码为23.0cm 的女式运动鞋,商店经理的这一决定应用了哪个统计知识( ) A. 众数 B. 中位数 C. 平均数 D. 方差2. (2017·安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A. 280B. 240C. 300D. 2603. (2016·广安)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如下表:那么被遮盖的两个数据依次是( )A. 35,2B. 36,4C. 35,3D. 36,34. (2016·成都)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x -(单位:分)及方差s 2如下表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A. 甲B. 乙C. 丙D. 丁5. (2016·北京)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断正确的是()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150~180之间;④该市居民家庭年用水量的平均数不超过180.A. ①③B. ①④C. ②③D. ②④二、填空题6. 某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是________分.7. (2017·江西)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.8. 在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如图不完整的统计图.其中捐100元的人数占全班总人数的25%,则本次捐款的中位数是________元.三、解答题9. (2016·宁波)为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数;(2)将条形统计图补充完整;(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.10. (2016·青岛)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?。

最新-2018届中考第一轮复习数学专题验收题方程与不等

最新-2018届中考第一轮复习数学专题验收题方程与不等

2018届中考第一轮复习数学专题验收题方程与不等式一、填空题(共32分,每小题 2分)1、方程x 2 = x 的解是2、方程 1x-1= 2的根是 _______________ 3、一元二次方程2x 2 + 5x + 3 = 0根的判别式△ = ________ , 若x 1、x 2 是它的两个实数根,则x 1 + x 2 = _________ ,x 1·x 2 = ___________4、若代数式的 x(x — 6) 的值等于 — 5 ,则x = _______5、不等式组 的解集是 _________________6、若关于 x 的方程 3x =1— 2ax 的解是负数,则a7、若方程 3x 2 — kx + 3 =0 有两个相等的实数根 ,则k =8、当k ___________ 时,方程 23 x — 3k = 5(x —k) +1 的解是正数 _________9、设方程x 2— x — 4= 0 的两根是x 1 、x 2 ,x 12 + x 22 = _________10、若方程3x 2 —10 x + m = 0 的两根互为倒数 ,则m =11、不等式— + 1 < 0 的解集是 __________12、一件工作,甲、乙两人合作 3 小时完成,甲单独做4小时完成,设乙单独做x 小时完成,则列出的方程是13、若方程x 2 + (k —1)x — 3 = 0 的一个根是1,则方程的另 一个根为_______,k = ____14、方程组 的解为 __________________15、在方程 (xx —1)2 + = 3 中 ,设 y = xx —1 ,则原方程变形为 _________16、若方程组 有两组解,则m 的取值范围是 _______________二、单项选择题(共18分,每小题2分)1、下面方程中,有两个不等实数根的方程是 ( )(A) x 2— x + 1 =0 (B) x 2 + x —1=0 (C) x 2— x + 14 = 0 (D) x 2 + 1= 02、不等式组 的解集是 ( )(A) x < 5 (B) x > —1 (C) —1 < x < 5 (D) 空集3、方程组 y+1) 的解的个数是 ( )(A ) 1 (B ) 2 (C ) 3 (D ) 44、一元二次方程 ax 2 + bx + c = 0 的一个根是另一个根的两倍,则有 ( )(A ) 4b 2 = 9c (B )2b 2 = 9ac (C ) 2b 2 = 9a (D ) 9b 2 = 2ac5、如果 x 1 + x 2 = 83 ,x 1x 2 = —1,那么以x 1 、x 2 为根的 一元二次方程是 ( )(A ) 3x 2 + 8x —3 = 0 (B ) 3x 2— 8x — 3 = 0(C ) 3x 2 + 8x + 3 = 0 (D ) 3x 2—8x + 3 = 06、设(x + y)(x + 2 + y) —15 = 0,则x + y 的值为 ( )(A) — 5 或 3 (B )—3 或 5 (C ) 3 (D ) 57、关于 x 的方程 x 2 + b 2 =(a — x)2 (a ≠0) 的解为 ( )(A ) (B )a 2 b 22a (C )b 2— a 22a (D )8、关于x 的方程 x +1x-1= a + 的所有解是 ( )(A ) a (B )a a -1(C )a 和 (D ) a 和 9、解方程3x — 1x-1=1 时,需将方程两边都乘以同一个整式(最简公分母)约去分母,所乘的这个整式是 ( ) (A )x (B ) x —1 (C )x(x — 1) ( D ) x + 1三、(共20分,每小题5分)1、用换元法解方程 x 2 + 2x —= 12、解不等式组3、解方程组:4、解方程:2x 2 - 4x +3=15四、(共30分,每小题6分)1、某民营企业存入银行甲、乙两种不同年利率的存款共20万元,甲种存款的年利率为5.5% ,乙种存款的年利率为4.5% ,该企业一年可获利息收入9500元,求甲、乙两种存款各是多少万元.2、A、B两地相距15千米,甲、乙两人同时从A地出发去B地,1小时后,乙在甲后面2 千米,甲到达B 地比乙早15分钟,求甲、乙两人每小时各走多少千米?3、证明:关于x 的方程( k2+1) x2+2kx +k2+4 = 0 没有实数根.4、设x1、x2 是关于x 的方程x2 + px +q = 0的两根,x1+1 ,x2 +1 是关于x 的方程x2 +qx +p = 0的两根,求p、q 的值.5、求a 为值时,关于x 的方程3 (x —1) (x —a) = x (7 —a2 ) 的两根互为相反数.。

浙江省18年中考数学复习第一部分考点研究第三单元函数第11课时一次函数的实际应用含近9年中考真题试题_1162

浙江省18年中考数学复习第一部分考点研究第三单元函数第11课时一次函数的实际应用含近9年中考真题试题_1162

第一部分考点研究第二单元方程(组)与不等式(组)第11课时一次函数的实际应用浙江近9年中考真题精选(2009-2017)类型一阶梯费用问题(绍兴2考)1.(2017绍兴18题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?第1题图2.(2013绍兴18题8分)某市出租车的计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.第2题图类型二水流量、人流量问题(绍兴2016.19)3.(2016绍兴19题8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.第3题图4.(2013衢州23题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值;(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第4题图类型三行程问题(杭州2015.23,绍兴2考)5.(2015绍兴18题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?第5题图6.(2016丽水21题8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次过C点到第二次过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?第6题图7.(2014绍兴18题8分)已知甲、乙两地相距90 km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车.图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?第7题图8.(2015衢州23题10分)高铁的开通,给衢州市民出行带来了极大的方便,五·一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?第8题图9.(2015杭州23题12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图①所示.方成思考后发现了图①的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地.若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?第9题图类型四 分配类最优方案问题(温州2次)10.(2016湖州22题10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t .①若该养老中心建成后可提供养老床位200个,求t 的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?11.(2015温州22题10分)某农业观光园计划将一块面积为900 m 2的园圃分成A 、B 、C 三个区域,分别种甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株,已知B 区域面积是A 的2倍,设A 区域面积为x(m 2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式;(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.类型五方案选取12.(2017衢州21题8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.第12题图根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你帮助小明计算并选择哪个出游方案合算.答案1.解:(1)由图象得,当用水量为18立方米时,应交水费为45元;(3分)(2)由81元>45元,得用水量超过18立方米,设函数表达式为y=kx+b(x>18),∵直线y=kx+b过点(18,45),(28,75),∴⎩⎪⎨⎪⎧18k +b =4528k +b =75,解得⎩⎪⎨⎪⎧k =3b =-9,(5分) ∴y =3x -9(x >18),(6分)当y =81时,3x -9=81,解得x =30.答:这个月用水量为30立方米.(8分)2.解:(1)由图象得:出租车的起步价是8元;(2分)设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧8=3k +b 12=5k +b , 解得⎩⎪⎨⎪⎧k =2b =2, 故y 与x 的函数解析式为y =2x +2(x >3);(4分)(2)当y =32时,32=2x +2,解得x =15,答:这位乘客乘车的里程是15 km.(8分)3.解:(1)由题图可知暂停排水时间为30分钟(半小时).(1分)排水孔的排水速度为900÷3=300 m 3/h ;(3分)(2)由题图可知排水1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 m 3, 设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b ,把(2,450),(3.5,0)代入得⎩⎪⎨⎪⎧450=2k +b ,0=3.5k +b ,(6分) 解得⎩⎪⎨⎪⎧b =1050k =-300,∴当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =-300t +1050.(8分)4.解:(1)由图象知,640+16a -2×14a =520,所以a =10;(2分)(2)设过(10,520)和(30,0)的直线解析式为y =kx +b ,得⎩⎪⎨⎪⎧10k +b =52030k +b =0,解得⎩⎪⎨⎪⎧k =-26b =780, 因此y =-26x +780,当x =20时,y =260,即检票到第20分钟时,候车室排队等候检票的旅客有260人;(6分)(3)设需同时开放n 个检票口,由题意知:14n ×15≥640+16×15(7分)解得:n ≥4421, ∵n 为整数,∴n 最小=5.答:至少需要同时开放5个检票口.(10分)5.解:(1)由题图可知小敏去超市途中的速度是3000÷10=300 (米/分);在超市逗留的时间:40-10=30(分).答:小敏去超市途中的速度是300米/分,在超市逗留了30分.(2)设小敏返家过程中的函数解析式为y =kx +b (k ≠0),把点(40,3000),(45,2000)代入上式,得⎩⎪⎨⎪⎧40k +b =300045k +b =2000, 解得⎩⎪⎨⎪⎧k =-200b =11000, ∴小敏返家过程中的函数解析式为y =-200x +11000,当y =0时,-200x +11000=0,解得x =55.答:小敏上午8:55分返回到家.6.解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分钟,用时35分钟,∴a =0.3×35=10.5(千米).(2分)(2)①∵线段OA 经过点O (0,0),A (35,10.5),∴OA 的函数解析式是s =0.3t(0≤t≤35).∴当s =2.1时,0.3t =2.1,解得t =7.(3分)∵该运动员从第一次过C 点到第二次过C 点所用的时间为68分钟,∴该运动员从起点到第二次过C 点共用的时间是7+68=75(分钟).∴AB 经过(35,10.5),(75,2.1)两点.(4分)设AB 所在直线的函数解析式是s =kt +b ,∴⎩⎪⎨⎪⎧35k +b =10.575k +b =2.1,解得⎩⎪⎨⎪⎧k =-0.21b =17.85,(5分) ∴AB 所在直线的函数解析式是s =-0.21t +17.85.(6分)②∵该运动员跑完赛程所用的时间即为直线AB 与x 轴交点横坐标的值.∴当s =0时,-0.21t +17.85=0,解得t =85.∴该运动员跑完赛程用时85分钟.(8分)7.解:(1)由题图可知,A 比B 后出发1小时;(2分)B 的速度为60÷3=20 km/h ;(4分)(2)由题图可知点D (1,0),C (3,60),E (3,90),设直线OC 的解析式为s =kt ,则3k =60,解得k =20,∴直线OC 的解析式为s =20t ,设直线DE 的解析式为s =mt +n ,则⎩⎪⎨⎪⎧m +n =03m +n =90,解得⎩⎪⎨⎪⎧m =45n =-45, ∴直线DE 的解析式为s =45t -45,(6分)联立两函数解析式,得⎩⎪⎨⎪⎧s =20t s =45t -45, 解得⎩⎪⎨⎪⎧t =95s =36,∴在B 出发后95小时,两人相遇.(8分) 8.解:(1)根据函数图象可知,从衢州到杭州火车东站的距离为240千米,坐高铁共用时1小时,∴高铁的平均速度为240千米/小时;(2分)(2)由(1)知高铁的速度为240千米/小时,∴当颖颖出发0.5小时时,离衢州的距离为120千米,此时乐乐已出发1.5小时, 设乐乐离衢州的距离与乘车的时间之间的函数关系式为y =kt ,则有120=1.5k ,解得k =80,故y =80t ,(5分)当t =2时,y =80×2=160,从图象可知:衢州到游乐园的距离为216千米,∵216-160=56(千米),∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米;(7分)(3)当y =216时,t =2.7,18分钟=0.3小时,∵216÷(2.7-0.3)=90(千米/小时),∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.(10分)9.解:(1)由题图①可知B 、C 、D 三点的坐标,B (1.5,0)、C (73,1003)、D (4,0). 设直线BC 解析式为y =kt +b(k≠0),把B 、C 两点坐标分别代入得:⎩⎪⎨⎪⎧1.5k +b =073k +b =1003 ,解得⎩⎪⎨⎪⎧k =40b =-60,∴直线BC 的解析式为y =40t -60 (1.5≤t ≤73).(2分)设直线CD 解析式为y =k′t +b ′(k ′≠0),把C(73,1003)、D (4,0)两点坐标分别代入得⎩⎪⎨⎪⎧73k′+b′=10034k′+b′=0, 解得:⎩⎪⎨⎪⎧k′=-20b′=80,∴直线CD 的解析式为y =-20t +80(73≤t ≤4).(4分)(2)由直线CD 的解析式为y =-20t +80, 可得乙的速度为20 km/h. ∴A 点坐标为(1,20),(5分)由题图①可知,两人的距离y 满足20<y <30必是在第一次相遇之后到第二次相遇这段时间之内, 当20<y <30时, 20<40t -60<30 ① 20<-20t +80<30 ②(6分) 解①得:2<t <2.25, 解②得:2.5<t <3.∴当2<t <2.25和2.5<t <3 时,有20<y <30.(7分) (3)由直线BC 的解析式:y =40t -60,则乙在出发1.5小时后,两人之间的差距以每小时1003÷(73-1.5)=40 km 的速度拉开,又v 乙=20 km/h ,∴v 甲=20+40=60 km/h.(8分) ∴s 甲=60(t -1)=60t -60(1≤t ≤73),s 乙=20t(0≤t ≤4).(9分)在直角坐标系中画出它们的图象如解图.第9题解图(4)由前述题意可知:乙出发4小时可以从M 地到达N 地, ∵v 乙=20 km/h ,∴M 到N 的总路程为20×4=80 km , 当丙出发43小时,s 乙=20×43=803km ,∴s 丙=80-803=1603km ,∴v 丙=1603÷43=40 km/h.∴丙距M 地的距离为(80-40 t ) km ,若丙与甲相遇,则80-40 t=60t-60,解方程得t=1.4小时.(12分)10.解:(1)设该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,(2分)解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(4分)(2)①由题意得,t+4t+3(100-3t)=200,(7分)解得t=25(符合题意).答:t的值是25.(8分)②由题意得,提供养老床位y=t+4t+3(100-3t),其中10≤t≤30,y=-4t+300.因为k=-4<0,所以y随着t的增大而减小.当t=10时,y的最大值为300-4×10=260(个).当t=30时,y的最小值为300-4×30=180(个).答:建成后最多提供养老床位260个,最少提供养老床位180个.(10分)11.解:(1)若A区域的面积为x m2,则B区域的面积为2x m2,C区域的面积为(900-3x) m2,y=3x+12x+12(900-3x)=-21x+10800;(3分)(2)当y=6600时,-21x+10800=6600,解得x=200,∴2x=400,900-3x=300.答:A区域的面积为200 m2,B区域的面积为400 m2,C区域的面积为300 m2;(6分) (3)设甲、乙、丙三种花卉的单价分别为a元、b元、c元,由题意可知,⎩⎪⎨⎪⎧a +b +c =45600a +2400b +3600c =84000, 整理得b =5(19-c )3,∵a 、b 、c 为正整数, ∴a 、b 、c 可能取的值如下表,又∵a 、b 、c 的差不超过10, ∴a =20,b =15,c =10,(8分) ∵B 区域的面积为400 m 2,最大,∴种植面积最大的花卉总价为400×6×15=36000(元). 答:种植面积最大的花卉总价为36000元.(10分) 12.解:(1)由题意可知y 1=k 1x +80,(1分) 且图象过点(1,95), 则有95=k 1+80, ∴k 1=15,∴y 1=15x +80(x ≥0),(2分) 由题意易得y 2=30x (x ≥0).(4分) (2)当y 1=y 2时,解得x =163;(5分)当y 1>y 2时,解得x <163;(6分)当y 1<y 2时,解得x >163.(7分)∴当租车时间为163小时,选择甲、乙公司一样合算;当租车时间小于163小时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.(8分)(也可求出x =163之后,观察函数图象得到结论.)。

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_折线统计图-综合题专训及答案

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_折线统计图-综合题专训及答案

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_折线统计图-综合题专训及答案折线统计图综合题专训1、(2018绥化.中考真卷) 某校举办“打造平安校园”活动,随机抽取了部分学生进行校园安全知识测试将这些学生的测试结果分为四个等级:A级:优秀;B 级:良好;C级:及格;D级:不及格,并将测试结果绘制成如下统计图请你根据图中信息,解答下列问题:(1)本次参加校园安全知识测试的学生有多少人?(2)计算B级所在扇形圆心角的度数,并补全折线统计图;(3)若该校有学生1000名,请根据测试结果,估计该校达到及格和及格以上的学生共有多少人?2、(2017双桥.中考模拟) 某班要从甲、乙两名同学中选拔出一人,代表班级参加学校的一分钟踢毽子体能素质比赛,在一段时间内的相同条件下,甲、乙两人进行了六场一分钟踢毽子的选拔测试,根据他们的成绩绘制出如图的统计表和不完整的折线统计图.甲、乙两人选拔测试成绩统计表甲成绩(次/min)乙成绩(次/min)第1场87 87第3场91 87第4场85 89第5场91 100第6场92 85中位数91 n平均数m 91并计算出乙同学六场选拔测试成绩的方差:S乙2= =(1) m=,n=,并补全全图中甲、乙两人选拔测试成绩折线统计图;(2)求甲同学六场选拔测试成绩的方差S甲2;(3)分别从平均数、中位数和方差的角度分析比较甲、乙二人的成绩各有什么特点?(4)经查阅该校以往本项比赛的资料可知,①成绩若达到90次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?②该项成绩的最好记录是95次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?3、(2016邢台.中考模拟) 某班要从甲、乙两名同学中选拔出一人,代表班级参加学校的一分钟踢毽子体能素质比赛,在一段时间内的相同条件下,甲、乙两人进行了六场一分钟踢毽子的选拔测试,根据他们的成绩绘制出如图的统计表和不完整的折线统计图.甲、乙两人选拔测试成绩统计表甲成绩(次/min)乙成绩(次/min)第2场94 98第3场91 87第4场85 89第5场91 100第6场92 85中位数91 n平均数m 91并计算出乙同学六场选拔测试成绩的方差:2= =S乙(1) m=,n=,并补全全图中甲、乙两人选拔测试成绩折线统计图;2;(2)求甲同学六场选拔测试成绩的方差S甲(3)分别从平均数、中位数和方差的角度分析比较甲、乙二人的成绩各有什么特点?(4)经查阅该校以往本项比赛的资料可知,①成绩若达到90次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?②该项成绩的最好记录是95次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?4、(2019杭州.中考真卷) 称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的干克数记为负数.甲组为实际称量读数,乙组为记录数据。

中考数学第一轮复习基础知识训练(一)(附答案)

中考数学第一轮复习基础知识训练(一)(附答案)

中考数学第一轮复习基础知识训练(一)时间:30分钟你实际使用分钟班级姓名学号成绩一、精心选一选1.图(1)所示几何体的左视图...是()2.一对酷爱运动的夫妇,让他们刚满周岁的孩子拼排3块分别写有“20”、“08”、“北京”的字块.假如小孩将字块横着正排,则该小孩能够排成“2008北京”或“北京2008”的概率是()A.16B.14C.13D.123.一名宇航员向地球总站发回两组数据:甲、乙两颗行星的直径分别为46.110⨯千米和46.1010⨯千米,这两组数据之间()A.有差别B.无差别C.差别是40.00110⨯千米D.差别是100千米4.如图,把直线l向上平移2个单位得到直线l′,则l′的表达式为()A.112y x=+B.112y x=-C.112y x=--D.112y x=-+5.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.24204340x+⨯=⨯B.24724340x-⨯=⨯C.24724340x+⨯=⨯D.24204340x-⨯=⨯6.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿()A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多 D.无法确定7.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A.75° B.60° C.45° D.30°8.如图是一台54英寸的大背投彩电放置在墙角的俯视图.设DAO α=∠,彩电后背AD 平行于前沿BC ,且与BC 的距离为60cm ,若100cm AO =,则墙角O 到前沿BC 的距离OE 是( )A.()60100sin cm α+ B.()60100cos cm α+ C.()60100tan cm α+ D.以上答案都不对二、细心填一填9.某农场购置了甲、乙、丙三台打包机,同时分装质量相同的棉花,从它们各自分装的棉花包中随机抽取了10包,测得它们实际质量的方差分别为222S 11.05S 7.96S 16.32===乙甲丙,,.可以确定 打包机的质量最稳定.10.如图,照相时为了把近处的较高物体照下来,常常保持镜头中心不动,使相机旋转一定的角度,若A 点从水平位置顺时针旋转了30︒,那么B 点从水平位置顺时针旋转了__ ____度.图(1) 图(2)第6题第8题ABA D CE B 第7题11.林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知5380.5BAC AB =︒=∠′,米,则这棵大树的直径约为 _____ ____米.12.如图,一次函数11y x =--与反比例函数22y x =-的图象交于点(21)(12)A B --,,,,则使12y y >的x 的取值范围是三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(x 的值.第12题答案参考一、精心选一选 BCAD ACBA二、细心填一填9. 乙 10. __30___ 11. _ 0.5__12. 2x <-或01x <<. 三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.解:解不等式318x -->,得3x <-.解不等式1(5)32x +≤,得x ≤1.原不等式组的解集为3x <-.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(0x的值.解: 点AB 与点A 关于原点对称,∴点B 表示的数是,即x =3分00(((121x ==-=-. 6分第12题3- 2- 1- 0 1。

2018年中考一轮基础复习试卷专题二十九:方案设计问题(有答案)-(数学)

2018年中考一轮基础复习试卷专题二十九:方案设计问题(有答案)-(数学)

备考2018年中考数学一轮基础复习:专题二十九方案设计问题一、单选题(共5题;共10分)1.(2017•佳木斯)“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A. 4种B. 5种C. 6种 D. 7种2.(2017•黑龙江)某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有()A. 2种B. 3种C. 4种 D. 5种3.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A. 1B. 2C. 3D. 44.(2016•赤峰)8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A. 东风B. 百惠 C. 两家一样 D. 不能确定5.(2016•宜宾)宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A. 4B. 5C. 6D. 7二、综合题(共10题;共100分)6.(2017•广元)某市教育局对某镇实施“教育精准扶贫”,为某镇建中、小型两种图书室共30个.计划养殖类图书不超过2000本,种植类图书不超过1600本.已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书30本,种植类图书60本.(1)符合题意的组建方案有几种?请写出具体的组建方案;(2)若组建一个中型图书室的费用是2000元,组建一个小型图书室的费用是1500元,哪种方案费用最低,最低费用是多少元?7.(2017•恩施州)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?8.(2017•上海)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.9.(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B 两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?10.(2017•郴州)某工厂有甲种原料130kg,乙种原料144kg.现用这两种原料生产出A,B两种产品共30件.已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.11.(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.12.(2017•广安)某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t(件)的函数关系式.(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.13.(2017•绵阳)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.14.(2017•天门)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲, y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?15.(2017·衢州)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。

2018年中考数学23题例选(含祥细解答)

2018年中考数学23题例选(含祥细解答)

2018年中考数学23题例选(含答案)1.已知直线l :y =kx +2k +3(k ≠0),小明在画图时发现,无论k 取何值,直线l 总会经过一个定点A . (Ⅰ)点A 坐标为___▲____;(Ⅱ)抛物线y =c bx x ++22 (c >0) 经过点A ,与y 轴交于点B . (ⅰ)当4<b <6时,若直线l 经过点B ,求k 的取值范围.(ⅱ)当k =1时,若抛物线与直线l 交于另一点M,且AM ≤≤b 的取值范围.2. 已知:如图①,△ABC ∽△ADE ,∠BAC =∠DAE =90°,AB =6,AC =8,点D 在线段BC 上运动. (Ⅰ) 当AD ⊥BC 时(如图②),求证:四边形ADCE 为矩形; (Ⅱ)当D 为BC 的中点时(如图③),求CE 的长;(Ⅲ)当点D 从点B 运动到点C 时,设P 为线段DE 的中点,求在点D 的运动过程中,点P 经过的路径长(直接写出结论).3. 2010年8月19日第26届国际数学家大会在印度的海德拉巴市举行,并首次颁出陈省身奖,该奖项是首个以中国人名字命名的国际主要科学奖.根据蔡勒公式可以得出2010年8月19日是星期 .(注:蔡勒(德国数学家)公式:110)1(26424-+⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡++-⎥⎦⎤⎢⎣⎡=d m y y c c W 其中:W ——所求的日期的星期数(如大于7,就需减去7的整数倍),c ——所求年份的前两位,y ——所求年份的后两位,m ——月份数(若是1月或2月,应视为上一年的13月或14月,即143≤≤m ),d ——日期数,[]a ——表示取数a 的整数部分.)(第24题)(图②) (图③)(图①)MA4. 如图,AD 平分∠BAC ,BD ⊥AD ,垂足为点D .点P 是AD 上一点,PQ ⊥AC 于点Q ,连接BP ,DQ .(I) 求证:ABADAP AQ =; (II) 求证:⊿ABP ∽⊿QDP ;(III) 若BD =1,点P 在线段AD 上运动(不与A ,D 重合),设DP =t ,点P 到AB 的距离为d 1,点P 到DQ 的距离为d 2.记21d d S =,求S 与t 之间的函数关系式.B5. 已知二次函数)0( 2≠++=a c bx ax y 的图象与x 轴交于A ,B 两点,顶点为为等腰直角三角形.(I) 当A (-1,0),B (3,0)时,求a 的值; (II) 当a b 2-=,a <0时.(i ) 求该二次函数的解析式(用只含a 的式子表示);(ii ) 在31≤≤-x 范围内任取三个自变量321,,x x x ,所对应的的三个函数值分别为321,,y y y .若以321, , y y y 为长度的三条线段能围成三角形,求a 的取值范围.6.如图,在菱形ABCD ,∠A =60°,点E ,F 分别在边AD 和BC 上,且DE =CF ,延长BF 交AD 的延长线于点M(1)如图1,当点E 在AD 中点时,求证:BD =MD ; (2)若菱形的边长为4,且AE =3,求BM 的长.7. 如图1,在△ABC 中,∠BAC =90°,AB =AC =4,D 是BC 上一个动点,连接AD ,以AD 为边向右侧作等腰直角△ADE ,其中∠ADE =90°.(1)如图2,G ,H 分别是边AB ,BC 的中点,连接DG ,AH ,EH .求证:△AGD ∽△AHE ;(2)如图3,连接BE ,直接写出当BD 为何值时,△ABE 是等腰三角形; (3)在点D 从点B 向点C 运动过程中,求△ABE 周长的最小值.8. 已知二次函数y =ax 2+bx +t -1,t <0, (1)当t =-2时,① 若函数图象经过点(1,-4),(-1,0),求a ,b 的值; ② 若2a -b =1,对于任意不为零的实数a ,是否存在一条直线y =kx +p (k ≠0),始终与函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由.(2)若点A (-1,t ),B (m ,t -n )(m >0,n >0)是函数图象上的两点,且S △AOB =12n -2 t ,当-1≤x ≤m时,点A 是该函数图象的最高点,求a 的取值范围. 答案:1. (Ⅰ) (-2,3);(Ⅱ) (ⅰ) ∵抛物线y =c bx x ++22经过点A ,∴3=8-2b +c. ∴c =2b -5. ∴B (0, 2b -5). ∵直线l 经过点B ,∴2k +3=2b -5.∴k =4-b . 当b =4时,k =0, 当b =6时,k =2,∵4<b <6,∴0<k <2.(ⅱ)k =1时,直线l 的表达式为y =x +5,直线l 交y 轴于点F (0,5), 当点M 在点A 右侧,过点A 作x 轴平行线交y 轴于点E ,过点M 作y 轴的平行线交AE 于点D , ∵A (-2,3),∴AE =EF =2.∴∠EAF =45°. ∴当AM =2时,AD =MD =1.∴M (-1,4). 把M (-1,4)代入y =c bx x ++22,求得b =7,c =9. 由AM =42,A (-2,3),同上可得M (2,7),图1ABC D图2 图3 AB CDA B C D GH把A (-2,3),M (2,7)代入y =c bx x ++22,求得b =1,c =-3. 把A (-2,3) 代入y =c bx x ++22,得c =2b -5. 又∵c >0,∴25>b . ∴7b 25≤< 当点M 在点A 左侧时,由AM =2,A (-2,3),同上可得M (-3,2),把A (-2,3),M (-3,2)代入y =c bx x ++22,求得b =11,c =7, 由AM =42,A (-2,3),同上可得M (-6,-1),把A (-2,3),M (-6,-1)代入y =c bx x ++22,求得b =17,c =29, ∴17b 11≤≤. 综上所述,7b 25≤<或17b 11≤≤.2. 证明:∵AD ⊥BC ,∠DAE =90°,∴∠ADB =∠ADC =∠DAE =90°,∴AE ∥CD , ∵△ABC ∽△ADE ,∴∠AED =∠ACB ∵AD =DA ∴△ADC ≌△DAE .∴AE =DC . ∴四边形ADCE 为平行四边形,∵∠ADC =90°,∴□ADCE 为矩形. (Ⅱ)解:∵∠BAC =90°,AB =6,AC =8, ∴BC =10.∵D 为BC 的中点,∴ AD =BD =BC 21=5. ∵△ABC ∽△ADE ,∴AEAC AD AB =. ∵∠BAC =∠DAE =90°, ∴∠BAD =∠CAE .∴△ABD ∽△ACE. ∴AC AB =CEBD.即CE 586=.∴CE =320. (Ⅲ)路线为一条线段,长度为325. 3.星期四4. (I)证明∵AD 平分∠BAC ,∴∠P AQ =∠BAD ∵PQ ⊥AC ,BD ⊥AD∴∠PQA =∠BDA =90°∴△PQA ∽△BDA ∴ABADAP AQ = (II)由(I)得ABADAP AQ =又∵∠P AB =∠QAD ∴△P AB ∽△QAD ∴∠APB =∠AQD ∵∠APB =∠PDB +∠DBP ,∠AQD =∠AQP +∠DQP ∴∠PDB =∠AQP =90°∴∠DBP =∠DQP(III)解:过点P 分别作PG ⊥AB 于点G ,PH ⊥DQ 于点H .则PG =d 1,PH =d 2.∵AD 平分∠BAC ,PQ ⊥AC.∴d 1=PG =PQ . ∴PHPQd d S ==21. 由(II)得∠DBP =∠DQP ,∵∠BDP =∠QHP =90°.∴△DBP ∽△HQP ;∴PD PB PH PQ =.在Rt △BDP 中,BD =1,DP =t.∴12+=t PB ∴tt S 12+=.5. ∵A (-1,0),B (3,0),∴该二次函数图象的对称轴为1=x ,且AB =4. 过点C 作CH ⊥AB 于点H.∵△ABC 为等腰直角三角形,∴CH =21AB =2. ∴C (1,-2)或C (1,2)①如图1,当C (1,-2)时,可设2)1(2--=x a y . 把点B (3,0)代入可得:21=a . ②如图2,当C (1,2)时,可设2)1(2+-=x a y .把点B (3,0)代入可得:21-=a .综上所述,21=a 或21-.(II) 解:(i ) 当a b 2-=时,c ax ax y +-=22=a c x a -+-2)1(.∴C (1,c -a ) ∴B (1+c -a ,0).∴0)(2=-+-a c a c a .∴0)1)((2=+--a ac a c . ∵0≠-a c ,∴a a c 1-=.∴()ax a y 112--=. (ii )∵31≤≤-x ,a <0,∴当x =-1或3时,y 取得最小值aa 14-,当x =1时,y 取得最大值a1-. 若以321, , y y y 为长度的三条线段能围成三角形.则a a a 1)14(2->-. 整理得:0182<-a .∴042<<-a .6. (1)DE =CF ,可得⊿ABE ≌⊿DBF ,得∠DBF =∠ABE ,当点E 在AD 中点时,∠ABE =30°,∠DBF =30°, 可得∠M =30°,∴BD =MD ;(2)在AB 上取AH=AE ,可得⊿AEH 为等边三角形,∠BHE =120°,⊿BEH ∽⊿BDM ,又BH =1,BE ,由对应边成比例,可得:BM =7. (1)由题意知△ABC 和△ADE 都是等腰直角三角形,∴∠B =∠DAE =45°.∵G 为AB 中点,H 为BC 中点,∴AH ⊥BC .∴∠BAH =45°=∠DAE .∴∠GAD =∠HAE .在等腰直角△BAH 和等腰直角△DAE 中,AH AB ==,AE =.∴AH AE AG AD =.∴△AGD ∽△AHE .(2)当BD =0△ABE 是等腰三角形.(3)当点D 与点B 重合时,点E 的位置记为点M .此时,∠ABM =∠BAC =90°,∠AMB =∠BAM =45°,BM =∴∠BAD =∠MAE , 在等腰直角△BAM 和等腰直角△DAE 中,AM AE =.∴AM AE AB AD=.∴△ABD ∽△AME . ∴∠AME =∠ABD =45°∴点E 在射线MC 上.作点B 关于直线MC 的对称点N ,连接AN 交MC 于点E ′,∵BE +AE =NE +AE ≥AN =NE ′+AE ′=BE ′+AE ′, ∴△ABE ′就是所求周长最小的△ABE . 在Rt △ABN 中,∵AB =4,BN =2BM =2AB =8,∴AN =AN ∴△ABE 周长最小值为4AB AN +=+ 8.(1) ①a =1,b =-2.②因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3. 所以二次函数图象一定经过(-2,-1),(0,-3).设经过这两点的直线的表达式为y =kx +p (k ≠0),把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.(2)把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t ,所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t .解得m =3.所以A (-1,t ),B (3,t -n ).因为n >0,所以t >t -n .当a >0时,分别把A (-1,t ),B (3,t -n )代入y =ax 2+bx +t -1,得t =a -b +t -1,t -n =9a +3b +t -1.因为t >t -n ,所以a -b +t -1>9a +3b +t -1.可得2a +b <0. 即2a +(a -1)<0. 解得a <13.所以0<a <13. 当a <0时,由t >t -n ,可知:-b2a ≤-1.即-a -12a≤-1.解得a ≥-1.所以-1≤a <0.综上,0<a <13或-1≤a <0.。

2018年中考数学真题知识分类练习试卷:代数式(有答案)

2018年中考数学真题知识分类练习试卷:代数式(有答案)

代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略11。

安徽省中考数学一轮复习 第一讲 数与代数 第二章 方程(组)与不等式(组)2.3 一元二次方程测试

安徽省中考数学一轮复习 第一讲 数与代数 第二章 方程(组)与不等式(组)2.3 一元二次方程测试

2.3一元二次方程学用P17[过关演练](30分钟70分)1.(2018·山东临沂)一元二次方程y2-y-=0配方后可化为(B)A.=1B.=1C.D.【解析】将一元二次方程y2-y-=0配方后可化为=1.2.若1-是方程x2-2x+c=0的一个根,则c的值为(A)A.-2B.4-2C.3-D.1+【解析】∵关于x的方程x2-2x+c=0的一个根是1-,∴(1-)2-2(1-)+c=0,解得c=-2.3.(2018·山东泰安)一元二次方程(x+1)(x-3)=2x-5根的情况是(D)A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于3【解析】(x+1)(x-3)=2x-5,整理得x2-4x+2=0,即(x-2)2=2,解得x1=2+>3,x2=2-,故有两个正根,且有一根大于3.4.已知关于x的一元二次方程x2+2x+m-2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为(B)A.6B.5C.4D.3【解析】∵a=1,b=2,c=m-2,关于x的一元二次方程x2+2x+m-2=0有实数根,∴Δ=b2-4ac=22-4(m-2)=12-4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.5.若(a2+b2)(a2+b2-2)=8,则a2+b2的值为(B)A.4或-2B.4C.-2D.-4【解析】设a2+b2=x,可得x(x-2)=8,解得x1=4,x2=-2,因为a2+b2的值为非负数,所以a2+b2的值为4.6.(2018·辽宁大连)如图,有一张矩形纸片,长10 cm,宽6 cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32 cm2,求剪去的小正方形的边长.设剪去的小正方形边长是x cm,根据题意可列方程为(B)A.10×6-4×6x=32B.(10-2x)(6-2x)=32C.(10-x)(6-x)=32D.10×6-4x2=32【解析】设剪去的小正方形边长是x cm,则纸盒底面的长为(10-2x)cm,宽为(6-2x)cm,根据题意得(10-2x)(6-2x)=32.7.(2018·四川眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是 (C)A.8%B.9%C.10%D.11%【解析】设平均每次下调的百分率为x,由题意得6000(1-x)2=4860,解得x1=0.1,x2=1.9(舍去).即平均每次下调的百分率为10%.8.(2018·浙江嘉兴)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是(B)A.AC的长B.AD的长C.BC的长D.CD的长【解析】设AD=x,根据勾股定理得=b2+,整理得x2+ax=b2,则该方程的一个正根是AD的长.9.(2018·湖南常德)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是6(本题答案不唯一).(只写一个)【解析】∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴Δ=b2-4×2×3>0,解得b<-2或b>2.10.已知m2-2m-1=0,n2+2n-1=0且mn≠1,则的值为3.【解析】由n2+2n-1=0可知n≠0.∴1+=0.∴-1=0,又m2-2m-1=0且mn≠1,即m≠.∴m,是方程x2-2x-1=0的两根.∴m+=2.∴=m+1+=2+1=3.11.(2018·四川内江)已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)+b(x+1)+1=0的两根之和为1.【解析】设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3,即x3+x4=1.12.(6分)解方程:2(x-3)=3x(x-3).解:2(x-3)=3x(x-3),移项得2(x-3)-3x(x-3)=0,整理得(x-3)(2-3x)=0,∴x-3=0或2-3x=0,解得x1=3,x2=.13.(8分)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,请用配方法探索有实数根的条件,并推导出求根公式,证明x1·x2=.解:∵ax2+bx+c=0(a≠0),∴x2+x=-,∴x2+x+=-,即,∵4a2>0,∴当b2-4ac≥0时,方程有实数根,∴x+=±,∴当b2-4ac>0时,x1=,x2=;当b2-4ac=0时,x1=x2=-.∴x1·x2=,或x1·x2=,∴x1·x2=.14.(9分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2,3,4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.解:(1)设每个月生产成本的下降率为x,根据题意得400(1-x)2=361,解得x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1-5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.[名师预测]1.方程x-2=x(x-2)的解为(D)A.x=0B.x1=0,x2=2C.x=2D.x1=1,x2=2【解析】原方程变形为x-2-x(x-2)=0,(x-2)·(1-x)=0,x-2=0或1-x=0,解得x1=1,x2=2.2.若x=0是关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的一个根,则m的值为(B)A.1B.2C.1或2D.0【解析】把x=0直接代入方程得m2-3m+2=0,解得m=1或2,又由已知可得m≠1,故m=2.3.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是(C)A.20%B.25%C.50%D.62.5%【解析】设该店销售额平均每月的增长率为x,则2月份销售额为2(1+x)万元,3月份销售额为2(1+x)2万元,由题意可得2(1+x)2=4.5,解得x1=0.5=50%,x2=-2.5(不合题意,舍去).4.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛? (C)A.4B.5C.6D.7【解析】设共有x个班级参赛,根据题意得=15,解得x1=6,x2=-5(不合题意,舍去),则共有6个班级参赛.5.在实数范围内定义一种运算“*”,其规则为a*b=a2-b,根据这个规则,方程(x-1)*9=0的解为x1=-2,x2=4.【解析】由已知可得(x-1)*9=(x-1)2-9=0,即x-1=±3,解得x1=-2,x2=4.6.已知关于x的一元二次方程x2-(n+3)x+3n=0.(1)求证:此方程总有两个实数根;(2)若此方程有两个不相等的整数根,请选择一个合适的n值,写出这个方程并求出此时方程的根.解:(1)∵Δ=(n+3)2-12n=(n-3)2,又(n-3)2≥0,∴方程有两个实数根.(2)∵方程有两个不相等的实根,∴n≠3,取n=0,则方程化为x2-3x=0,因式分解为x(x-3)=0,∴x1=0,x2=3.7.阅读下列材料,解答问题.(2x-5)2+(3x+7)2=(5x+2)2.解:设m=2x-5,n=3x+7,则m+n=5x+2,则原方程可化为m2+n2=(m+n)2,所以mn=0,即(2x-5)(3x+7)=0,解得x1=,x2=-.请利用上述方法解方程(4x-5)2+(3x-2)2=(x-3)2.解:设m=4x-5,n=3x-2,则m-n=(4x-5)-(3x-2)=x-3,原方程化为m2+n2=(m-n)2,整理得mn=0,即(4x-5)(3x-2)=0,4x-5=0,3x-2=0,解得x1=,x2=.8.已知关于x的一元二次方程x2-5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.解:(1)∵方程有实数根,∴Δ=(-5)2-4×1×2m≥0,解得m≤,∴m的取值范围为m≤.(2)当m=时,原方程可化为x2-5x+5=0,设方程的两个根分别为x1,x2,则x1+x2=5,x1·x2=5,∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC=,∴该矩形外接圆的直径是.9.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),将(40,600),(45,550)代入y=kx+b,得解得∴年销售量y与销售单价x的函数关系式为y=-10x+1000.(2)设此设备的销售单价为x万元,则每台设备的利润为(x-30)万元,销售数量为(-10x+1000)台,根据题意得(x-30)(-10x+1000)=10000,整理得x2-130x+4000=0,解得x1=50,x2=80.∵此设备的销售单价不得高于70万元,∴x=50.答:该设备的销售单价应是50万元.。

2018年中考数学一轮复习:第三章 函数2

2018年中考数学一轮复习:第三章  函数2

第4节 二次函数的图象与性质(10年15卷3考,每年1道,4分) 玩转重庆10年中考真题(2008~2017年)命题点 二次函数图象与系数的关系(10年3考,均为判断结论的正误)1. (2011重庆7题4分)已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A . a >0B . b <0C . c <0D . a +b +c >0第1题图2. (2012重庆10题4分)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为x =-12,下列结论中,正确的是( )A . abc >0B . a +b =0C . 2b +c >0D . 4a +c <2b第2题图3. (2013重庆A 卷12题4分)一次函数y =ax +b (a ≠0)、二次函数y =ax 2+bx 和反比例函数y =kx (k ≠0)在同一直角坐标系中的图象如图所示,A 点的坐标为(-2,0).则下列结论中,正确的是( )A . b =2a +kB . a =b +kC . a >b >0D . a >k >0第3题图拓展训练二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴是直线x =1.下列结论:①2a +b =1;②b 2>4ac ;③4a +2b +c >0;④3a +c <0;⑤a +b +2c >0;⑥若方程ax 2+bx +c =0(a ≠0)的一个根为-12,则另一根为52.正确的结论有____________(填写正确的序号).第4题图答案1. D 【解析】抛物线开口方向向下,a <0;与y 轴的交点在x 轴上方,c >0;对称轴x =-b2a >0,∴b >0;x =1时,点(1,a +b +c )在x 轴上方,所以a +b +c >0.2. D 【解析】A .∵抛物线图象开口向上,∴a >0,∵图象与y 轴交于负半轴,∴c <0,∵对称轴在y 轴左侧,∴-b 2a <0,∴b >0,∴abc <0,故本选项错误;B .∵对称轴:x =-b 2a =-12,∴a =b ,而a ≠0,故本选项错误;C .当x =1时,a +b +c =2b +c <0,故本选项错误;D .∵对称轴为x =-12,图象与x 轴的一个交点横坐标的取值范围为x 1>1,∴与x 轴的另一个交点横坐标的取值范围为x 2<-2,∵当x =-2时,4a -2b +c <0,即4a +c <2b ,故本选项正确. 3. D 【解析】拓展训练 ②⑥ 【解析】①∵-b2a=1,∴2a +b =0,错误;②∵抛物线与x 轴有两个交点,∴b 2-4ac >0,∴b 2>4ac ,正确;③设抛物线与x 轴交点的横坐标分别为x 1,x 2,若-1<x 1<0,由对称性得,2<x 2<3,则4a +2b +c <0,错误;④∵-b2a =1,∴-b =2a ,∵a -b +c >0,∴3a +c >0,错误;⑤当x =1时,a +b +c <0,∵c <0,∴a +b +2c <0,错误;⑥若方程ax 2+bx +c =0(a ≠0)的一个根为-12,由对称性得,另一个根为52,故正确的结论有②⑥.第4节 二次函数的图象与性质课时1 二次函数图象与性质、抛物线与系数a 、b 、c 的关系(建议答题时间:20分钟)1. (2017长沙)抛物线y =2(x -3)2+4的顶点坐标是( )A. (3,4)B. (-3,4)C. (3,-4)D. (2,4)2. (2017金华)对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( ) A. 对称轴是直线x =1,最小值是2 B. 对称轴是直线x =1,最大值是2 C. 对称轴是直线x =-1,最小值是2 D. 对称轴是直线x =-1,最大值是23. (2017连云港)已知抛物线y =ax 2(a >0)过A (-2,y 1)、B (1,y 2)两点,则下列关系式一定正确的是( )A . y 1>0>y 2B . y 2>0>y 1C . y 1>y 2>0D . y 2>y 1>04. (人教九上41页第6题改编)对于二次函数y =-3x 2-12x -3,下面说法错误的是( )A . 抛物线的对称轴是x =-2B . x =-2时,函数存在最大值9C . 当x >-2时,y 随x 增大而减小D . 抛物线与x 轴没有交点5. (2017眉山)若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax ( )A . 有最大值a 4B . 有最大值-a4C . 有最小值a 4D . 有最小值-a46. (2017广州)a ≠0,函数y =a x与y =-ax 2+a 在同一直角坐标系中的大致图象可能是( )7. (2017重庆巴蜀月考)已知二次函数y =a 2x +bx +c (a ≠0)的图象如图所示,对称轴为直线x =1,下列结论中正确的是( )A . abc >0B . b =2aC . a +c >D . 4a +2b +c >0第7题图 第9题图 第11题图8. (2017乐山)已知二次函数y =x 2-2mx (m 为常数),当-1≤x ≤2时,函数值y 的最小值为-2,则m 的值是( )A . 32 B . 2 C . 32或 2 D . -32或 29. (2017日照)已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a +b +c =0;③a -b +c <0;④抛物线的顶点坐标为(2,b );⑤当x <2时,y 随x 增大而增大.其中结论正确的是( )A . ①②③B . ③④⑤C . ①②④D . ①④⑤10. (2017广州)当x =________时,二次函数y =x 2-2x +6有最小值________.11. (2017兰州)如图,若抛物线y =ax 2+bx +c 上的P (4,0),Q 两点关于它的对称轴x =1对称,则点Q 的坐标为________.课时2 抛物线的平移、解析式的确定、与方程(不等式)的关系(建议答题时间:20分钟)1. (2017重庆南开模拟)将二次函数y =(x -1)2+2的图象向左平移2个单位,再向下平移3个单位,则新的二次函数解析式为( )A . y =(x -3)2-1B . y =(x +1)2+5C . y =(x +1)2-1D . y =(x -3)2+52. (2017徐州)若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是( )A . b <1且b ≠0B . b >1C . 0<b <1D . b <13. (2017苏州)二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( )A . x 1=0,x 2=4B . x 1=-2,x 2=6C . x 1=32,x 2=52D . x 1=-4,x 2=04. (2017绵阳)将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A . b >8B . b >-8C . b ≥8D . b ≥-85. (2017天津)已知抛物线y =x 2-4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M ,平移该抛物线,使点M 平移后的对应点M ′落在x 轴上,点B 平移后的对应点B ′落在y 轴上,则平移后的抛物线解析式为( )A . y =x 2+2x +1B . y =x 2+2x -1C . y =x 2-2x +1D . y =x 2-2x -16. (2017随州)对于二次函数y =x 2-2mx -3,下列结论错误的是( )A . 它的图象与x 轴有两个交点B . 方程x 2-2mx =3的两根之积为-3C . 它的图象的对称轴在y 轴的右侧D . x <m 时,y 随x 的增大而减小7. (2018原创)在-2,-1,0,1,2五个数字中,任取一个作为a ,使不等式组⎩⎪⎨⎪⎧x +a ≥01-x >x +2无解,且函数y =ax 2+(a +2)x +12a +1的图象与x 轴只有一个交点,那么a 的值为( )A . 0B . 0或-2C . 2或-2D . 0,2或-28. (2017青岛)若抛物线y =x 2-6x +m 与x 轴没有交点,则m 的取值范围是________. 9. 注重开放探究(2017上海)已知一个二次函数的图像开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是________.(只需写一个)10. (2017武汉)已知关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是________.11. (2017鄂州)已知正方形ABCD 中A (1,1)、B (1,2)、C (2,2)、D (2,1),有一抛物线y =(x +1)2向下平移m 个单位(m >0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是________.12. (2017杭州)在平面直角坐标系中,设二次函数y 1=(x +a )(x -a -1),其中a ≠0. (1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式;(2)若一次函数y 2=ax +b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )在函数y 1的图象上.若m <n ,求x 0的取值范围.答案第1课时 二次函数图象与性质,抛物线与系数a 、b 、c 的关系1. A2. B3. C 【解析】画出抛物线y =ax 2(a >0)的草图如解图,根据图象可知,y 1>0,y 2>0,且y 1>y 2.第3题解图4. D 【解析】由y =-3x 2-12x -3=-3(x +2)2+9,可知对称轴是x =-2,选项A 正确;抛物线的开口向下,顶点坐标是(-2,9),当x =-2时,y 存在最大值9,选项B 正确;开口向下,当x >-2时,图象处于对称轴的右边,y 随x 增大而减小,选项C 正确;当y =0时,一元二次方程-3x 2-12x -3=0有实数解,所以抛物线与x 轴有交点,选项D 错误. 5. B 【解析】∵一次函数y =(a +1)x +a 的图象过第一、三、四象限,∴⎩⎪⎨⎪⎧a +1>0a <0,解得-1<a <0,∵二次函数y =ax 2-ax =a (x -12)2-a 4,又∵-1<a <0,∴二次函数y =ax 2-ax有最大值,且最大值为-a4.6. D 【解析】如果a >0,则反比例函数y =a x 图象在第一、三象限,二次函数y =-ax 2+a图象开口向下,排除A ;二次函数图象与y 轴交点(0,a )在y 轴正半轴,排除B ;如果a <0,则反比例函数y =a x 图象在第二、四象限,二次函数y =-ax 2+a 图象开口向上,排除C ;故选D .7. D 【解析】观察函数图象,抛物线开口向下,则a <0.对称轴在y 轴右边,则a 、b 异号,∴b >0.抛物线与y 轴的交点在x 轴上方,则c >0,∴abc <0,选项A 错误;由抛物线的对称轴x =-b2a =1,∴b =-2a ,选项B 错误;当x =-1时,y =a -b +c <0,∴a +c <b ,选项C 错误;根据对称性可知,当x =2时,y =4a +2b +c >0,选项D 正确.8. D 【解析】因为二次函数的对称轴为x =m ,所以对称轴不确定,因此需要讨论研究x 的范围与对称轴的位置关系,①当m ≥2时,此时-1≤x ≤2落在对称轴的左边,当x =2时y 取得最小值-2,即-2=22-2m ×2,解得m =32<2(舍);②当-1<m <2时,此时在对称轴x=m 处取得最小值-2,即-2=m 2-2m ·m ,解得m =-2或m =2,又-1<m <2,故m =2;③当m ≤-1时,此时-1≤x ≤2落在对称轴的右边,当x =-1时y 取得最小值-2,即-2=(-1)2-2m ×(-1),解得m =-32,综上所述,m =-32或 2.9. C 【解析】∵抛物线与x 轴交于(4,0),对称轴为x =2,∴抛物线与x 轴的另一个交点为(0,0).故①正确;∵抛物线经过原点,∴c =0.∵抛物线的对称轴为x =2,即-b2a =2,∴4a +b =0,∴4a +b +c =0,故②正确;当x =-1时,抛物线的函数图象在x 轴上方,∴a (-1)2+(-1)b +c >0,即a -b +c >0,故③错误;∵c =0,4a +b =0,∴抛物线的解析式为y =-b 4x 2+bx =-b 4(x -2)2+b ,∴抛物线的顶点坐标为(2,b ),故④正确;由图象可知,抛物线开口向上,对称轴为x =2,当x <2时,y 随x 的增大而减小.故⑤错误.综上所述,①②④正确.10. 1,5 11.(-2,0)第2课时 抛物线的平移、解析式的确定、与方程(不等式)的关系1. C2. A3. A 【解析】∵二次函数y =ax 2+1的图象经过点(-2,0),∴代入得a (-2)2+1=0,解得a =-14,∴所求方程为-14(x -2)2+1=0,解方程得x 1=0,x 2=4.4. D 【解析】将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的函数为y =(x -3)2-1,与一次函数联立得⎩⎪⎨⎪⎧y =(x -3)2-1y =2x +b ,整理得x 2-8x +8-b =0,∵两个函数图象有公共点,∴方程x 2-8x +8-b =0有解,则(-8)2-4(8-b )≥0,解得b ≥-8.5. A 【解析】∵抛物线与x 轴交于A 、B 两点,∴令y =0,即x 2-4x +3=0,解得,x 1=1,x 2=3,∴A (1,0),B (3,0),∵y =x 2-4x +3=(x -2)2-1,∴M (2,-1).∵要使平移后的抛物线的顶点在x 轴上,需将图象向上平移1个单位,要使点B 平移后的对应点落在y 轴上,需向左平移3个单位,∴M ′(-1,0),则平移后二次函数的解析式为y =(x +1)2,即y =x 2+2x +1.6. C 【解析】∵Δ=(-2m )2-4×1×(-3)=4m 2+12>0,∴图象与x 轴有两个交点,A 正确;令y =0得:x 2-2mx -3=0,方程的解即抛物线与x 轴交点的横坐标,由A 知图象与x 轴有两个交点,故方程有两个根,再根据一元二次方程根与系数的关系可得两根之积为c a =-31=-3,B 正确;根据抛物线对称轴公式可得对称轴为x =-b 2a =--2m2=m ,∵m 的值不能确定,故对称轴是否在y 轴的右侧不能确定,C 错误;∵a =1>0,抛物线开口向上,∴对称轴的左侧的函数值y 随x 的增大而减小,由C 知抛物线对称轴为x =m ,∴当x <m 时,y 随x 的增大而减小,D 正确,故选C .7. B 【解析】解不等式x +a ≥0得x ≥-a ,解不等式1-x >x +2得x <-12,因为不等式组无解,故-a ≥-12,解得a ≤12;当a ≠0时,b 2-4ac =(a +2)2-4a (12a +1)=0,解得a =2或-2,当a =0时,函数是一次函数,图象与x 轴有一个交点,所以当a =0,2或-2时,图象与x 轴只有一个交点,但a ≤12,∴a =0或-2.8. m >9 9. y =x 2-1(答案不唯一)10. 13<a <12或3<a <-2 【解析】令y =0,即ax 2+(a 2-1)x -a =0,(ax -1)(x +a )=0,∴关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的交点为(1a ,0)和(-a ,0),即m=1a 或m =-a ,又∵2<m <3,则13<a <12或-3<a <-2. 11. 2≤m ≤8 【解析】∵将抛物线y =(x +1)2向下平移m 个单位,得到抛物线y =(x +1)2-m ,由平移后抛物线与正方形ABCD 的边有交点,则当点B 在抛物线上时,m 取最小值,此时(1+1)2-m =2,解得m =2,当点D 在抛物线上时,m 取最大值,此时(2+1)2-m =1,解得m =8,综上所述,m 的取值范围是2≤m ≤8. 12. 解:(1)由题意知(1+a )(1-a -1)=-2, 即a (a +1)=2, ∵y 1=x 2-x -a (a +1), ∴y 1=x 2-x -2;(2)由题意知,函数y 1的图象与x 轴交于点(-a ,0)和(a +1,0),当y 2的图象过点(-a ,0)时,得-a 2+b =0;当y 2的图象过点(a +1,0)时,得a 2+a +b =0;(3)由题意知,函数y 1的图象的对称轴为直线x =12,所以点Q (1,n )与点(0,n )关于直线x=12对称.因为函数y 1的图象开口向上,所以当m <n 时,0<x 0<1.第5节 二次函数的综合应用(10年15卷13考,1道,12分) 玩转重庆10年中考真题(2008~2017年)命题点1 二次函数综合题(10年12考,仅2010~2012年未考)1. (2013重庆A 卷25题12分)如图,对称轴为直线x =-1的抛物线y =ax 2+bx +c (a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(-3,0). (1)求点B 的坐标;(2)已知a =1,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且S △POC =4S △BOC .求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.第1题图2. (2008重庆28题10分)已知:如图,抛物线y =ax 2-2ax +c (a ≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0). (1)求该抛物线的解析式;(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ ,当△CQE 的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.3. (2014重庆B卷25题12分)如图,已知抛物线y=-x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A、B、C三点的坐标;(2)若点P为线段BC上的一点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求△BPN的周长;(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在点Q,使得△CNQ为直角三角形,求点Q的坐标.4. (2014重庆A卷25题12分)如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段..AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P 在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=22DQ,求点F的坐标.第4题图5. (2015重庆B 卷26题12分)如图,抛物线y =-x 2+2x +3与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C .点D 和点C 关于抛物线的对称轴对称,直线AD 与y 轴相交于点E .(1)求直线AD 的解析式;(2)如图①,直线AD 上方的抛物线上有一点F ,过点F 作FG ⊥AD 于点G ,作FH 平行于x 轴交直线AD 于点H ,求△FGH 周长的最大值;(3)点M 是抛物线的顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A ,M ,P ,Q 为顶点的四边形是以AM 为边的矩形,若点T 和点Q 关于AM 所在直线对称,求点T 的坐标.第5题图拓展训练如图①,在平面直角坐标系中,抛物线y =12x 2-233x -2分别与x 轴交于A ,B 两点,与y轴交于C 点,直线EF 垂直平分线段BC ,分别交BC 于点E ,y 轴于点F ,交x 轴于D . (1)判定△ABC 的形状;(2)在线段BC 下方的抛物线上有一点P ,当△BCP 面积最大时,求点P 的坐标及△BCP 面积的最大值;(3)如图②,过点E 作EH ⊥x 轴于点H ,将△EHD 绕点E 逆时针旋转一个角度α(0°≤α≤90°),∠DEH 的两边分别交线段BO ,CO 于点T ,点K ,当△KET 为等腰三角形时,求此时KT 的值.命题点2二次函数的实际应用(10年4考,2009~2012连续考查)6. (2009重庆25题10分)某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系y=-50x+2600,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了m%,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).(参考数据:34≈5.831,35≈5.916,37≈6.083,38≈6.164)7. (2012重庆25题10分)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的污水量y 2(吨)与月份x (7≤x ≤12,且x 取整数)之间满足二次函数关系式y 2=ax 2+c ,其图象如图所示.1至6月,污水厂处理每吨污水的费用z 1(元)与月份x 之间满足函数关系式:z 1=12x ,该企业自身处理每吨污水的费用z 2(元)与月份x 之间满足函数关系式:z 2=34x -112x 2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y 1,y 2与x 之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W (元)最多,并求出这个最多费用; (3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a %,同时每吨污水处理的费用将在去年12月份的基础上增加(a -30)%.为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a 的整数值.(参考数据:231≈15.2,419≈20.5,809≈28.4)第7题图 答案1. 解:(1)∵点A (-3,0)与点B 关于直线x =-1对称, ∴点B 的坐标为(1,0);(2分) (2)∵a =1, ∴y =x 2+bx +c ,∵抛物线过点(-3,0),且对称轴为直线x =-1, ∴⎩⎪⎨⎪⎧-b 2=-19-3b +c =0,解得⎩⎪⎨⎪⎧b =2c =-3,∴抛物线解析式为y =x 2+2x -3, ∴点C 的坐标为(0,-3),(4分)①设点P 的坐标为(x ,y ),由题意得S △BOC =12OB ·OC =12×1×3=32,∴S △POC =4S △BOC =4×32=6,(6分)当x >0时,S △POC =12OC ·x =12×3×x =6,∴x =4,∴y =42+2×4-3=21;(7分)当x <0时,S △POC =12OC ·(-x )=12×3×(-x )=6,∴x =-4,∴y =(-4)2+2×(-4)-3=5,(8分) ∴点P 的坐标为(4,21)或(-4,5);(9分)②如解图,设点A 、C 所在直线的解析式为y =mx +n (m ≠0),第1题解图把A (-3,0)、C (0,-3)代入,得⎩⎪⎨⎪⎧-3m +n =0n =-3,解得⎩⎪⎨⎪⎧m =-1n =-3,∴y =-x -3,设点Q 的坐标为(x ,-x -3), 其中-3≤x ≤0,∵QD ⊥x 轴,且点D 在抛物线上, ∴点D 的坐标为(x ,x 2+2x -3),∴QD =-x -3-(x 2+2x -3)=-x 2-3x =-(x +32)2+94,(11分)∵-3<-32<0,∴当x =-32时,QD 有最大值94,∴线段QD 长度的最大值为94.(12分)2. 解:(1)∵抛物线y =ax 2-2ax +c 与y 轴交于点C (0,4)且经过A (4,0),可得⎩⎪⎨⎪⎧0=16a -8a +c 4=c ,解得⎩⎪⎨⎪⎧a =-12c =4,(2分) ∴所求抛物线的解析式为y =-12x 2+x +4;(3分)(2)设点Q 的坐标为(m ,0),过点E 作EG ⊥x 轴于点G ,如解图①. 由-12x 2+x +4=0,解得x 1=-2,x 2=4,∴点B 的坐标为(-2,0),(4分)第2题解图①∴AB =6,BQ =m +2, ∵QE ∥AC ,∴∠BQE =∠BAC ,∠BEQ =∠BCA , ∴△BQE ∽△BAC , ∴EG CO =BQ BA ,即EG 4=m +26, ∴EG =2m +43,(5分)∴S △CQE =S △CBQ -S △EBQ =12BQ ·CO -12BQ ·EG =12(m +2)(4-2m +43) =-13m 2+23m +83(6分)=-13(m -1)2+3.∵-2≤m ≤4,∴当m =1时,S △CQE 有最大值3,此时Q (1,0);(7分) (3)存在. 在△ODF 中,①若DF =DO , ∵A (4,0),D (2,0), ∴AD =OD =DF =2,又∵在Rt △AOC 中,OA =OC =4, ∴∠OAC =45°, ∴∠DFA =∠OAC =45°,∴∠ADF =90°,此时,点F 的坐标为(2,2), 由-12x 2+x +4=2,解得x 1=1+5,x 2=1-5,此时,点P 的坐标为:P (1+5,2)或P (1-5,2); (8分) ②若FO =FD ,过点F 作FM ⊥x 轴于点M ,如解图②,第2题解图②由等腰三角形的性质得:OM =12OD =1,∴AM =3,∴在等腰直角△AMF 中,MF =AM =3,∴F (1,3), 由-12x 2+x +4=3,解得x 1=1+3,x 2=1-3;此时,点P 的坐标为:P (1+3,3)或P (1-3,3);(9分) ③若OD =OF ,∵OA =OC =4,且∠AOC =90°, ∴AC =42,∴点O 到AC 的距离为22,而OF =OD =2<22, ∴此时不存在这样的直线l ,使得△ODF 是等腰三角形;综上所述,存在这样的直线l ,使得△ODF 是等腰三角形,所求点P 的坐标为:P (1+5,2)或P (1-5,2)或P (1+3,3)或P (1-3,3).(10分) 3. 解:(1)当y =0时,即-x 2+2x +3=0, 解得x 1=-1,x 2=3,∴A (-1,0),B (3,0),(2分) 当x =0时,y =3, ∴C (0,3),(3分)∴点A 、B 、C 的坐标分别是A (-1,0),B (3,0),C (0,3);(4分) (2)设△BCM 的面积为S ,点M 的坐标为(a ,-a 2+2a +3), 则OC =3,OB =3,ON =a ,MN =-a 2+2a +3,BN =3-a , 根据题意,得S △BCM =S四边形OCMN+S △MNB -S △COB =12(OC +MN )·ON +12MN ·NB -12OC ·OB =12[3+(-a 2+2a +3)]a +12(-a 2+2a +3)(3-a )- 12×3×3=-32a 2+92a =-32(a -32)2+278,∴当a =32时,S △BCM 有最大值,(6分)此时,ON =a =32,BN =3-a =32,∵OC =OB =3,∠COB =90°, ∴∠PBN =45°, ∴PN =BN =32,根据勾股定理,得PB =PN 2+BN 2=322,∴△BPN 的周长=PN +BN +PB =32+32+322=3+322;(8分)(3)抛物线y =-x 2+2x +3的对称轴为直线x =1,与x 轴交于点E (1,0),如解图,第3题解图设Q (1,y ),根据勾股定理CN 2=CO 2+ON 2=(32)2+32=454,过点Q 作QD ⊥y 轴于点D ,则D (0,y ),利用勾股定理可得:CQ 2=CD 2+DQ 2=(y -3)2+12=y 2-6y +10, NQ 2=QE 2+EN 2=y 2+14,∵△CNQ 为直角三角形, ∴有以下三种情况:①当CN 2+CQ 2=NQ 2,即∠NCQ =90°时,454+y 2-6y +10=y 2+14,解得y =72,∴Q (1,72);②当CN 2+NQ 2=CQ 2,即∠CNQ =90°时,454+y 2+14=y 2-6y +10,解得y =-14,∴Q (1,-14);③当CQ 2+NQ 2=CN 2,即∠CQN =90°时,y 2-6y +10+y 2+14=454,解得y =3±112,∴Q (1,3+112)或(1,3-112).综上所述,△CNQ 为直角三角形时,点Q 的坐标为(1,3+112)或(1,3-112)或(1,-14)或(1, 72).(12分)4. 解:(1)抛物线的解析式为y =-x 2-2x +3, 令x =0,得y =3,则C (0,3),(1分)令y =0,得-x 2-2x +3=0,解得x 1=-3,x 2=1, ∴A (-3,0),B (1,0);(3分)(2)由x =--22×(-1)=-1得,抛物线的对称轴为直线x =-1,(4分)设点M (x ,0),P (x ,-x 2-2x +3),其中-3<x <-1,∵P 、Q 关于直线x =-1对称,设Q 的横坐标为a ,则a -(-1)=-1-x , ∴a =-2-x ,∴Q (-2-x ,-x 2-2x +3),(5分)∴MP =-x 2-2x +3,PQ =-2-x -x =-2-2x , ∴C 矩形PMNQ =2(MP +PQ ) =2(-2-2x -x 2-2x +3) =-2x 2-8x +2 =-2(x +2)2+10,∴当x =-2时,C 矩形MNPQ 取最大值.(6分)此时,M (-2,0), ∴AM =-2-(-3)=1,设直线AC 的解析式为y =kx +b (k ≠0),则⎩⎪⎨⎪⎧3=b 0=-3k +b ,解得⎩⎪⎨⎪⎧b =3k =1,∴直线AC 的解析式为y =x +3, 将x =-2代入y =x +3,得y =1, ∴E (-2,1), ∴EM =1,(7分)∴S △AEM =12AM ·ME =12×1×1=12;(8分)第4题解图(3)由(2)知,当矩形PMNQ 的周长最大时,M 横坐标为x =-2,此时点Q (0,3),与点C 重合, ∴OQ =3,将x =-1代入y =-x 2-2x +3,得y =4, ∴D (-1,4),如解图,过点D 作DK ⊥y 轴于点K ,则DK =1,OK =4,∴QK =OK -OQ =4-3=1, ∴△DKQ 是等腰直角三角形,DQ =2,(9分) ∴FG =22DQ =22×2=4,(10分) 设F (m ,-m 2-2m +3),G (m ,m +3), ∵点G 在点F 的上方,∴FG =(m +3)-(-m 2-2m +3)=m 2+3m , ∵FG =4,∴m 2+3m =4,解得m 1=-4,m 2=1,当m =-4时,-m 2-2m +3=-(-4)2-2×(-4)+3=-5, 当m =1时,-m 2-2m +3=-12-2×1+3=0, ∴F 点的坐标为(-4,-5)或(1,0).(12分) 5. 解:(1)当y =0时,即0=-x 2+2x +3,解得x 1=-1,x 2=3. ∴A (-1,0),B (3,0). 当x =0时,y =3, ∴C (0,3).(1分)∵y =-x 2+2x +3=-(x -1)2+4, ∴抛物线的对称轴为x =1,顶点(1,4), ∴点C 关于直线x =1的对称点D (2,3).(2分)设直线AD 的解析式为y =kx +b (k ≠0),代入A (-1,0),D (2,3),得⎩⎪⎨⎪⎧0=-k +b 3=2k +b ,解得⎩⎪⎨⎪⎧k =1b =1, ∴直线AD 的解析式为y =x +1;(3分) (2)对于y =x +1,当x =0时,y =1, ∴OE =1=OA ,∴△AOE 为等腰直角三角形. ∵FG ⊥AD ,FH ∥x 轴,∴∠FHG =∠EAO ,∠FGH =∠EOA , ∴△FHG ∽△EAO ,∴△FGH 是等腰直角三角形, ∴FG ∶GH ∶FH =1∶1∶ 2.(4分) 设F (t ,-t 2+2t +3), 则点H 的纵坐标为-t 2+2t +3, 代入y =x +1,得x =-t 2+2t +2, ∴H (-t 2+2t +2,-t 2+2t +3),∴FH =(-t 2+2t +2)-t =-t 2+t +2,(5分) ∴C △FGH =FG +GH +FH =FH2+FH2+FH =(2+1)FH=(2+1)(-t 2+t +2)=-(2+1)(t -12)2+94(2+1),(6分)∴当t =12时,C △FGH 最大=94(2+1)=942+94;(7分)(3)(ⅰ)当点P 在AM 上方时,如解图①,过点M 作MP ⊥AM 交y 轴于P 点,过P 点作AM 的平行线、过A 点作PM 的平行线,交点为点Q ,直线AQ 交y 轴于点T . 由作法知四边形AMPQ 为平行四边形,且∠AMP =90°, ∴四边形AMPQ 是符合题意的矩形. 作MR ⊥y 轴于点R ,设AM 交y 轴于点S . ∵A (-1,0),M (1,4), ∴RM =OA =1,又∵∠MRS =∠AOS ,∠MSR =∠ASO , ∴△MRS ≌△AOS (AAS ), ∴SO =RS =12OR =2,∴SM =12+22=5=SA .(8分) ∵∠MSR =∠PSM ,∠MRS =∠PMS , ∴△PMS ∽△MRS , ∴PS MS =MS RS , ∴PS =MS 2RS =52.(9分)∵SM =SA ,∠PSM =∠TSA ,∠PMS =∠TAS =90°, ∴△PMS ≌△TAS (ASA ), ∴PM =AT ,PS =ST =52.∵OS =2, ∴OT =52-2=12,∴T (0,-12).在矩形AMPQ 中,PM =AQ , ∴AQ =AT . ∵QT ⊥AM ,∴点Q 、T 关于AM 成轴对称, ∴T (0,-12)为所求的点;(10分)第5题解图(ⅱ)当点P 在AM 下方时,如解图②作矩形APQM ,延长QM 交y 轴于点T .同(ⅰ)可知MQ =AP =TM ,且AM ⊥QT ,则点Q 关于AM 的对称点为点T ,此时ST 与解图①中的SP 相等,即TS =52,又OS =2, ∴OT =OS +TS =92,∴T (0,92).(11分)综上所述,点T 坐标为(0,-12)或(0,92).(12分)拓展训练 解:(1)结论:△ABC 是直角三角形. 理由如下:对于抛物线y =12x 2-233x -2,令y =0,即12x 2-233x -2=0,解得x =-233或23,∴A (-233,0),B (23,0),令x =0得y =-2, ∴C (0,-2),∴OA =233,OC =2,OB =23,AB =833,∴AC =OA 2+OC 2=433,BC =4,∴AC 2+BC 2=643,AB 2=643,∴AC 2+BC 2=AB 2, ∴△ABC 是直角三角形;(2)如解图①,设P (m ,12m 2-233m -2),解图①S △BCP =S △OCP +S △OBP -S △OBC =12×2m +12×23×(-12m 2+233m +2)-12×2×23=-32(m -3)2+332,∴m =3,即P (3,-52)时,△PBC 的面积最大,最大为332.(3)①如解图②,解图②∵EF 垂直平分BC ,∴E (0+232,-2+02)即E (3,-1),tan ∠EOH =HEOH =33, ∴∠EOH =30°,∠OEH =60°, 在Rt △BOC 中,tan ∠CBO =CO BO =33,∴∠CBO =30°, ∵EF ⊥BC ,∴∠FEB =90°,∠EDB =60°, ∵EH ⊥OB ,∴∠DEH =30°,∠OED =30°, ∵EH =1,∠DEH =30°,∴DH =33, 当点K 与点O 重合,点T 与点D 重合时,△EKT 为等腰三角形, 易知TE =TK =33·EB =233; ②如解图③中,当TE =KE 时,作KN ⊥CE 于N ,EQ ⊥OC 于Q ,则四边形OQEH 是矩形,解图③易知:HE =1,∠CKN =30°, ∵∠QEH =90°,∠KET =30°, ∴∠TEH =60°-∠QEK , ∵KN ∥DE ,∴∠EKN =∠DEK ,又∠KET =∠DEH , ∴∠DEK =∠TEH , ∴∠EKN =∠TEH ,∵ET =EK ,∠KNE =∠EHT =90°, ∴△KEN ≌△ETH (AAS ), ∴KN =EH =1,在Rt △CNK 中,易知CN =33,CK =233, ∴EN =2-33, ∴TH =EN =2-33, ∴OT =433-2,OK =2-233,∴KT 2=OK 2+OT 2=443-83,∴KT =443-83; ③当TK =EK 时,∠ETK =∠TEK =30°,∴∠EKT =120°,而T 在OB 上,K 在OC 上,∴∠EKT 最大为90°<120°,∴EK =TK 不成立.KT 的值为233或443-8 3. 6. 解:(1)设p 与x 的函数关系为p =kx +b (k ≠0),根据题意,得⎩⎪⎨⎪⎧k +b =3.95k +b =4.3,解得⎩⎪⎨⎪⎧k =0.1b =3.8, ∴p = 0.1x +3.8,(2分)设月销售金额为w 万元,则w =py =(0.1x +3.8)(-50x +2600)(3分) 化简,得w =-5x 2+70x +9880, ∴w =-5(x -7)2+10125,∴当x =7时,w 取得最大值,最大值为10125万元,答:该品牌电视机在去年7月份销往农村的销售金额最大,最大值为10125万元,(4分) (2)去年12月份每台的售价为 -50×12+2600=2000元, 去年12月份月销售量为0.1×12+3.8=5万台,(5分)根据题意, 得2000(1-m %)×〔5(1-1.5m %)+1.5〕×13%×3=936,(8分) 令m %=t ,原方程可化为7.5t 2-14t +5.3=0, 解得t 1=14+3715,t 2=14-3715,∴t 1≈1.339(舍去),t 2≈0.528. 答:m 的值约为52.8.(10分)7. 解:(1)y 1=12000x(1≤x ≤6,且x 取整数),(1分)y 2=x 2+10000(7≤x ≤12,且x 取整数);(2分)(2)当1≤x ≤6,x 取整数时,W =y 1·z 1+(12000-y 1)·z 2=12000x ·12x +(12000-12000x )·(34x -112x 2) =-1000x 2+10000x -3000.(3分) ∵a =-1000<0,x =-b2a =5,1≤x ≤6,∴当x =5时,W 最大=22000(元);(4分) 当7≤x ≤12,且x 取整数时,W =2×(12000-y 2)+1.5y 2=2×(12000-x 2-10000)+1.5×(x 2+10000) =-12x 2+19000,(5分)∵a =-12<0,x =-b2a=0,当7≤x ≤12时,W 随x 的增大而减小, ∴当x =7时,W 最大=18975.5(元), ∵22000>18975.5,∴去年5月用于污水处理的费用最多,最多费用是22000元;(6分) (3)由题意得12000(1+a %)×1.5×[1+(a -30)%]×(1-50%)=18000.(8分) 设t =a %,整理得10t 2+17t -13=0,解得t =-17±80920.∵809≈28.4,∴t 1≈0.57,t 2≈-2.27(舍去), ∴a ≈57.答:a 的整数值为57.(10分)第5节 二次函数的综合应用课时1 与线段、周长有关的问题(建议答题时间:40分钟)1. (2017滨州)如图,直线y =kx +b (k 、b 为常数)分别与x 轴、y 轴交于点A (-4,0)、B (0,3),抛物线y =-x 2+2x +1与y 轴交于点C . (1)求直线y =kx +b 的函数解析式;(2)若点P (x ,y )是抛物线y =-x 2+2x +1上的任意一点,设点P 到直线AB 的距离为d ,求d 关于x 的函数解析式,并求d 取最小值时点P 的坐标;(3)若点E 在抛物线y =-x 2+2x +1的对称轴上移动,点F 在直线AB 上移动,求CE +EF 的最小值.第1题图2. (2017宁波)如图,抛物线y =14x 2+14x +c 与x 轴的负半轴交于点A ,与y 轴交于点B ,连接AB ,点C (6,152)在抛物线上,直线AC 与y 轴交于点D .(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连接PQ 与直线AC 交于点M ,连接MO 并延长交AB 于点N ,若M 为PQ 的中点. ①求证:△APM ∽△AON ;②设点M 的横坐标为m ,求AN 的长.(用含m 的代数式表示)第2题图3. (2017东营)如图,直线y =-33x +3分别与x 轴、y 轴交于B 、C 两点,点A 在x 轴上,∠ACB =90°,抛物线y =ax 2+bx +3经过A 、B 两点. (1)求A 、B 两点的坐标; (2)求抛物线的解析式;(3)点M 是直线BC 上方抛物线上的一点,过点M 作MH ⊥BC 于点H ,作MD ∥y 轴交BC 于点D ,求△DMH 周长的最大值.第3题图4. (2017武汉)已知点A (-1,1),B (4,6)在抛物线y =ax 2+bx 上. (1)求抛物线的解析式;(2)如图①,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H ,设抛物线与x 轴的正半轴交于点E ,连接FH ,AE ,求证:FH ∥AE ;(3)如图②,直线AB 分别交x 轴,y 轴于C ,D 两点,点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒 2个单位长度,同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度,点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM =2PM ,直接写出t 的值.第4题图课时2 与面积有关的问题 (建议答题时间:40分钟)1. (2017深圳)如图,抛物线y =ax 2+bx +2经过点A (-1,0),B (4,0),交y 轴于点C . (1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D ,使S △ABD =32S △ABC ,若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°得到BE ,与抛物线交于另一点E ,求BE 的长.第1题图2. (2017盐城)如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =-12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点.①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求S 1S 2的最大值;②过点D 作DF ⊥AC ,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.3. (2017海南)抛物线y =ax 2+bx +3经过点A (1,0)和点B (5,0). (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y =35x +3相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N .①连接PC 、PD ,如图①,在点P 运动过程中,△PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.②连接PB ,过点C 作CQ ⊥PM ,垂足为点Q ,如图②, 是否存在点P ,使得△CNQ 与△PBM 相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由.第3题图4. (2017重庆南开一模) 已知抛物线y =-13x 2+13x +4交x 轴于点A 、B ,交y 轴于点C ,连接AC 、BC .(1)求交点A 、B 的坐标以及直线BC 的解析式;(2)如图①,动点P 从点B 出发以每秒5个单位的速度向点O 运动,过点P 作y 轴的平行线交线段BC 于点M ,交抛物线于点N ,过点N 作NK ⊥BC 交BC 于点K ,当△MNK 与△MPB 的面积比为1∶2时,求动点P 的运动时间t 的值;(3)如图②,动点P 从点B 出发以每秒5个单位的速度向点A 运动,同时另一个动点Q 从点A 出发沿AC 以相同速度向终点C 运动,且P 、Q 同时停止,分别以PQ 、BP 为边在x 轴上方作正方形PQEF 和正方形BPGH (正方形顶点按顺时针顺序),当正方形PQEF 和正方形BPGH 重叠部分是一个轴对称图形时,请求出此时轴对称图形的面积.第4题图课时3 与三角形、四边形形状有关的问题(建议答题时间:40分钟)1. (2017菏泽)如图,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x 轴正半轴于点B (4,0),与过A 点的直线相交于另一点D (3,52),过点D 作DC ⊥x 轴,垂足为C .(1)求抛物线的表达式;(2)点P 在线段OC 上(不与点O 、C 重合),过P 作PN ⊥x 轴,交直线AD 于M ,交抛物线于点N ,连接CM ,求△PCM 面积的最大值;(3)若P 是x 轴正半轴上的一动点,设OP 的长为t ,是否存在t ,使以点M 、C 、D 、N 为顶点的四边形是平行四边形?若存在,求出t 的值;若不存在,请说明理由.第1题图2. (2017广安)如图,已知抛物线y =-x 2+bx +c 与y 轴相交于点A (0,3),与x 正半轴相交于点B ,对称轴是直线x =1. (1)求此抛物线的解析式及点B 的坐标;(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向运动,同时动点N 从点O 出发,以每秒3个单位长度的速度沿y 轴正方向运动,当N 点到达A 点时,M 、N 同时停止运动.过动点M 作x 轴的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t 秒. ①当t 为何值时,四边形OMPN 为矩形;②当t >0时,△BOQ 能否为等腰三角形?若能,求出t 值;若不能,请说明理由.。

浙江省中考数学复习第一部分考点研究第五单元四边形第24课时矩形、菱形、正方形试题(2021年整理)

浙江省中考数学复习第一部分考点研究第五单元四边形第24课时矩形、菱形、正方形试题(2021年整理)

浙江省2018年中考数学复习第一部分考点研究第五单元四边形第24课时矩形、菱形、正方形试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学复习第一部分考点研究第五单元四边形第24课时矩形、菱形、正方形试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学复习第一部分考点研究第五单元四边形第24课时矩形、菱形、正方形试题的全部内容。

第五单元四边形第24课时矩形、菱形、正方形(建议答题时间:60分钟)基础过关1。

(2017益阳)下列性质中菱形不一定具有的性质是()A。

对角线互相平分B. 对角线互相垂直C。

对角线相等D。

既是轴对称图形又是中心对称图形2。

(2017海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长为( )A。

14 B。

16 C。

18 D. 20第2题图3。

(2017临沂)在△ABC中,点D是边BC上的点(与B、C两点不重合),过点D作DE ∥AC,DF∥AB,分别交AB,AC于E、F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若A D平分∠BAC,则四边形AEDF是菱形4. (2017河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O.固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()第4题图A。

(错误!,1) B。

浙江省2018年中考数学复习第一部分考点研究第四单元三角形第17课时三角形的基础知识含近9年中考真题试题

浙江省2018年中考数学复习第一部分考点研究第四单元三角形第17课时三角形的基础知识含近9年中考真题试题

第一部分考点研究第四单元三角形第17课时三角形的基础知识浙江近9年中考真题精选命题点1三角形的三边关系(杭州2考,温州2013.4,绍兴2016.22)1. (2013温州4题4分)下列各组数可能是一个三角形的边长的是( )A. 1,2,4B. 4,5,9C. 4,6,8D. 5,5,112. (2017嘉兴2题3分)长度分别为2、7、x的三条线段能组成一个三角形,x的值可以是( )A. 4B. 5C. 6D. 93. (2012杭州20题10分)有一组互不全等的三角形,它们的三边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三条边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.4. (2016绍兴22题12分)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2 cm,BC=5 cm,如图,量得第四根木条CD=5 cm,判断此时∠B与∠D是否相等,并说明理由;(2)若固定二根木条AB,BC不动,AB=2 cm,BC=5 cm,量得木条CD=5 cm,∠B=90°,写出木条AD的长度可能取到的一个值(直接写出一个即可);(3)若固定一根木条AB不动,AB=2 cm,量得木条CD=5 cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A,C,D能构成周长为30 cm的三角形.求出木条AD,BC的长度.第4题图命题点2三角形内角和及内外角关系(台州2013.13)5. (2012嘉兴8题4分)已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( )A. 40°B. 60°C. 80°D. 90°6.(2013台州13题5分)如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=________________________________________________________________________度.第6题图7.(2016丽水12题4分)如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC 相交于点D,E,若∠AEN=133°,则∠B的度数为________.第7题图命题点3三角形中的重要线段(杭州2015.22,台州3考,温州2013.18涉及)8. (2017台州5题4分)如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D.若PD =2,则点P到边OA的距离是( )A. 1B. 2C. 3D. 4第8题图9. (2012台州6题5分)如图,点D ,E ,F 分别为△ABC 三边的中点,若△DEF 的周长为10,则△ABC 的周长为( )A . 5B . 10C . 20D . 40第9题图10. (2014台州3题4分)如图,跷跷板AB 的支柱OD 经过它的中点O ,且垂直于地面BC ,垂足为D ,OD =50 cm ,当它的一端B 着地时,另一端A 离地面的高度AC 为( ) A . 25 cm B . 50 cm C . 75 cm D . 100 cm第10题图11. (2017湖州6题3分)如图,已知在Rt △ABC 中,∠C =90°,AC =BC ,AB =6,点P 是Rt △ABC 的重心,则点P 到AB 所在直线的距离等于( )A . 1B . 2C . 32D . 2第11题图12. (2013义乌15题4分)如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线交AD 于点O ,连接OC ,若∠AOC =125°,则∠ABC =________.第12题图13. (2015杭州22题12分)如图,在△ABC 中(BC >AC ),∠ACB =90°,点D 在AB 边上,DE ⊥AC 于点E .(1)若AD DB =13,AE =2,求EC 的长; (2)设点F 在线段EC 上,点G 在射线CB 上,以F ,C ,G 为顶点的三角形与△EDC 有一个锐角相等,FG 交CD于点P.问:线段CP 可能是△CFG 的高线还是中线?或两者都有可能?请说明理由.第13题图答案1.C 【解析】本题考查三角形三边关系:三角形任意两边之和大于第三边.A .∵1+2<4,∴本组数不能构成三角形.故本选项错误;B .∵4+5=9,∴本组数不能构成三角形.故本选项错误;C .∵4+6>8,∴本组数可以构成三角形.故本选项正确;D .∵5+5<11,∴本组数不能构成三角形.故本选项错误.2.C 【解析】根据三角形的三边关系:三角形的一边大于另外两边之差的绝对值,小于另外两边之和,可得:7-2<x<7+2,即5<x<9.3.解:(1)第三边长为6(2<边长<12中,任取整数边长即可);(3分)(2)设第三边长为L ,由三角形的性质可得:7-5<L<7+5,即2<L<12,而组中最多有n 个三角形且三边长均为整数,∴L =3,4,5,6,7,8,9,10,11,则n =9;(6分)(3)在这组三角形个数最多时,即n =9,要使三角形周长为偶数因两条定边的和为12, 所以第三边也必须为偶数,则L =4,6,8,10,∴P(A)=49.(10分) 4.解:(1)相等.第4题解图如解图,连接AC ,∵AB =DA =2,BC =CD =5,AC =AC ,∴△ABC ≌△ADC (SSS ),∴∠B =∠D ;(2分)(2)答案不唯一,只要满足29-5≤AD≤29+5即可,如AD =5 cm ;(5分) 【解法提示】∵AB =2 cm ,BC =5 cm ,且∠B=90°,∴AC =AB 2+BC 2=29,根据三角形三边关系可知,29-5≤AD ≤29+5.(3)设AD =x cm ,BC =y cm ,根据题意得,当点C 在点D 的右侧时,⎩⎪⎨⎪⎧x +2=y +5x +(y +2)+5=30,解得⎩⎪⎨⎪⎧x =13y =10,(7分) 当点C 在点D 的左侧时,⎩⎨⎧y =x +5+2x +()y +2+5=30,解得⎩⎪⎨⎪⎧x =8y =15,(9分)此时AC =17 cm ,CD =5 cm ,AD =8 cm ,∵5+8<17,∴不合题意.∴AD =13 cm ,BC =10 cm .(10分)5.A6.36 【解析】∵AB ∥DC ,DE ∥GF ,∠B =∠F =72°,∴∠DCE =∠B =72°,∠DEC =∠F =72°,在△CDE 中,∠D =180°-∠DCE -∠DEC =180°-72°-72°=36°.7.70° 【解析】∵MN ∥BC ,∴∠B =∠ADE ,∵∠A =63°,∠AEN =133°,∴∠ADE =∠AEN -∠A =133°-63°=70°,∴∠B =70°.8.B 【解析】如解图,过点P 作PG ⊥OA 于点G ,根据角平分线上的点到角的两边距离相等可得,PG =PD =2.第8题解图9.C 【解析】由点D 、E 、F 分别为△ABC 三边的中点可知DF 、EF 、DE 分别为BC 、AB 、AC的中位线,所以DF =12BC ,EF =12AB ,DE =12AC ,又DF +EF +DE =10,所以BC +AB +AC =20.故答案为C .10.D 【解析】∵O 是AB 的中点,AC ⊥BC ,OD ⊥BC ,∴OD 是△ABC 的中位线,∴AC =2OD =100 cm .11.A 【解析】如解图连接线段CP 交AB 于点D ,则CD 是AB 边上的中线,C D =AD =3,又∵△ABC 是等腰直角三角形,∴CD 是AB 边上的高,∵CP =2DP ,∴DP 为1,即点P 到AB 所在直线的距离等于1.12.70° 【解析】∵AD ⊥BC ,∠AOC =125°,∴∠C =∠AOC -∠ADC =125°-90°=35°,∵D 为BC 的中点,AD ⊥B C ,∴OB =OC ,∴∠OBC =∠C =35°,∵OB 平分∠ABC ,∴∠ABC =2∠OBC =2×35°=70°.13.解:(1)∵∠ACB =90°,DE ⊥AC ,∴DE ∥BC ,∴AD DB =AE EC,(3分) ∵AD DB =13,AE =2, ∴2EC =13, 解得EC =6;(5分)(2)分三种情况:①当∠ECD =∠CFG 时,即∠1=∠4,如解图①,∴CP =FP ,第13题解图①∵∠FCG =90°,∴∠1+∠2=90°,∠3+∠4=90°,又∵∠1=∠4,∴∠2=∠3,(7分)∴CP =PG ,∴CP =FP =PG ,∴CP 是△CFG 的中线;(9分)②当∠ECD =∠CGF 时,如解图②,第13题解图②∵∠ACD+∠DCB=90°,∴∠CGP+∠PCG=90°,∴CP⊥FG,∴CP是△CFG的高线;(11分)③当CD为∠ACB的平分线时,如解图③第13题解图③CP既是△CFG的高线又是中线.综上,以F、C、G为顶点的三角形与△EDC有一个锐角相等时,线段CP可能是△CFG的高线,也可能是中线.(12分)。

2018年中考数学试题及答案word

2018年中考数学试题及答案word

2018年中考数学试题及答案word一、选择题(每题3分,共30分)1. 已知a=2,b=-3,计算a+b的值。

A. 5B. -1C. 1D. -5答案:B2. 下列哪个选项是二次根式?A. √2B. 2√3C. √3/2D. √(-1)答案:A3. 计算下列哪个选项的结果是正数?A. (-2)^3B. (-3)×(-4)C. (-5)÷(-1/3)D. -6+(-7)答案:B4. 已知x=1,y=2,计算(x+y)^2的值。

A. 9B. 4C. 1D. 16答案:A5. 计算下列哪个选项的结果是0?A. |-3|-3B. 3-|-3|C. 2×0D. 0÷5答案:C6. 如果一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A7. 一个数的绝对值是4,这个数可能是?A. 4或-4B. 只有4C. 只有-4D. 0答案:A8. 计算下列哪个选项的结果是负数?A. 3-(-2)B. -3+2C. 4×(-1)D. 5÷(-1/5)答案:C9. 已知a=-2,b=3,计算|a-b|的值。

A. 1B. 5C. 4D. 3答案:B10. 计算下列哪个选项的结果是1?A. √1B. √4C. √9D. √16答案:A二、填空题(每题3分,共30分)11. 一个数的平方是9,这个数是______。

答案:±312. 一个数的立方是-8,这个数是______。

答案:-213. 一个数的倒数是2,这个数是______。

答案:1/214. 一个数的相反数是5,这个数是______。

答案:-515. 一个数的绝对值是3,这个数是______。

答案:±316. 已知a=-1,b=4,计算a+b的值是______。

答案:317. 已知x=2,y=-3,计算(x-y)^2的值是______。

答案:2518. 计算(-2)^3的值是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档