寿险精算第一章资料

合集下载

寿险精算原理 第一章

寿险精算原理    第一章


4、实际利率、名义利率、实际贴现率、名 义贴现率、利息强度和折现因子之间的等 价关系(单位时间为1年的情况下):
m
m
i 1 m

d 1 i 1 v 1 d p 1 1
p

p
e

例3、已知年度实际利率为8%,求等价的 利息强度。 例4、一笔业务按利息强度6%计息,求投 资500元经8年的积累值。
a
a
n

1 i

n
dn
n a
a
n 1
1 i
n
1 i
n
n 1
n
1 i

i 1 i
※ d n 与 n无关,为常数,通常把这种情 况下的贴现率叫做复贴现率。
②与实际贴现率 d 等价的实际利率为 1 d 。 如果某人以实际贴现率 d 借款1元,则 实际上的本金为1 d ,而利息(贴现,意 味着期初支付)金额为 d ,则实际利率为:
例2、某银行以单利计息,年息为2%,某 人存入5000元,问5年后的积累值是多少?

例3、如果例2中银行以复利计息,其他条 件不变,问5年后的积累值是多少?
1.1.3 实际贴现率
某一个度量期的实际贴现率,是指该度量 期内得到的利息金额与此度量期期末积累 值金额之比。实际利率通常用字母 d 表示。 从投资日算起第 n 个度量期的实际贴侠率 用 d n 表示,则有
In a
n
a
n
n 1
1 i a
1 i n
n

1 i
n 1
i 1 i
1

保险精算第二版复习ppt

保险精算第二版复习ppt
死亡即刻赔付的含义
死亡即刻赔付就是指如果被保险人在保障期内发 生保险责任范围内的死亡 ,保险公司将在死亡事 件发生之后,立刻给予保险赔付。它是在实际应 用场合,保险公司通常采用的理赔方式。
4.1.1 精算现值的概念
精算现值即趸缴纯保费,未来保险金给付 在签单时的现值,即一次性缴清的纯保费, 它是以预定利率和预定死亡率为基础计算 的。
续存活的时间,称为剩余寿命,记作T(x)。
分布函数 t qx :
t qx Pr(T (X ) t) pr(x X x t X x) s(x) s(x t) s(x)
剩余寿命的生存函数 t px :
t px Pr(T (x) t) Pr(X x t X t) s(x t) s(x)
vt , t n
1 , t n bt 0 , t n
zt
btvt
0
,
tn
符号:
1
A x:n
厘定:
1
n
Ax:n E(zt ) 0 zt fT (t)dt
n 0
vt
t
px xt dt
en t
0
t
px xt dt
方差公式:
Var(zt ) E(zt2 ) E(zt )2
0
e2 t
fT
(t)dt
E(zt
)2

2 Ax
0
e2 t
fT
(t )dt
所以方差等价为
Var(zt )2Ax ( Ax )2
4.1.4 延期终身寿险
定义
保险人对被保险人在投保m年后发生的保险责任范围内的死亡均 给付保险金的险种。
假定: (x)岁的人,保额1元,延期m年的终身寿险 基本函数关系

1、社会保障精算(第一章)寿险精算基础(3)

1、社会保障精算(第一章)寿险精算基础(3)
0.005000 0.004500 0.004000
死亡率
0.003500 0.003000 0.002500 0.002000 0.001500 0.001000 0.000500 0.000000
12
16
20
24
28
32
36
40
44
48
0
4
8
年龄
1.2.1 基本函数(生命表的基本内容) 基本函数(生命表的基本内容)
已知: 已知: 求: 解:
1|
l20 = 1000
1|
l21 = 998
l22 = 992
q 20
d 20 +1 d 21 l 21 − l 22 = = = l 20 l 20 l 20
998 − 992 = = 0 . 006 1000
q 20
q 20
1|
已知40岁的死亡率为0.04,41岁的死亡率 已知40岁的死亡率为0.04,41岁的死亡率 40岁的死亡率为0.04 0.06,42岁的人生存到43岁的概率为0.92。 岁的人生存到43岁的概率为0.92 为0.06,42岁的人生存到43岁的概率为0.92。如果 40岁生存人数为100人 岁生存人数为100 43岁时的生存人数 岁时的生存人数。 40岁生存人数为100人,求43岁时的生存人数。
0
x
定义式
死亡 时点
ω −1
105
时间
s( x) = Pr( X > x)
s ( 0) = 1
s (105) = 0
lx s( x) = l0
s ( x ) = x p0
s( x) = 1 − F ( x)
岁的人在0~ 之间存活的概率 之间存活的概率) (表示0岁的人在 ~x之间存活的概率) 表示 岁的人在

第一章 生命表

第一章 生命表
60p20,2|3q50
1.1.4
离散型未来寿命的分布
取整余命( K):K(x)=[T(x)]
Pr[ K ( x ) k ] Pr[ k T ( x ) k 1] Pr[ k T ( x ) k 1] k 1 q x k q x k p x k 1 p x k|q x
1.1.5
死力
几种常见的假设:
1)de Moivre假设(1729):
xt
1 0 x 1 , e x E [T ( x )]
0
xt
x
,
s(x) 1

,
f T (t )
x
2
x
其中的ω 为极限年龄,即假定在此年龄下,所 有的人均已死亡。
1.1.5
0
1
2
3
… …
q0
q1
i
q2
q3
q
i0

1,
qi 0
1.1.2

含义
生存函数
s(x)=1- F(x)=Pr(X>x), x≥0
新生婴儿x岁以后死亡的概率 新生婴儿活过x岁的概率
性质 a. s ( 0 ) 1,
x
lim s ( x ) 0
b. 单调递减函数
死力
xt
2)Gompertz假设(1825):
xt B C
,
B 、 C 为常数
3)Makeham假设(1860):
xt A B C
xt
,
A 、 B 、 C 为常数
4)Weibull假设(1939):
xt k ( x t ) ,

社会保险基金精算(第一章)寿险精算基础(2)

社会保险基金精算(第一章)寿险精算基础(2)
2
n −1
− nv
n
= a n − nv n
a n − nv ( Ia ) n = i
n
对于期首付等差递增年金来说, 对于期首付等差递增年金来说, 期首付等差递增年金来说
a n − nv ( Ia ) n = d
n
期末付等差递增年金的终值 期末付等差递增年金的终值 (FV) 等差递增年金的
(1 + i) n
(1 + i) n
(1 + i ) 2
(1 + i )
1 0
1 1
1 2
1 3
L
1 n-2
1 n-1 n
付款额 时间
L
思路1 思路
sn
= (1 + i ) + (1 + i ) 2 + L + (1 + i ) n
1 − (1 + i) n 1 + i (1 + i) n − 1 (1 + i) n − 1 s n = (1 + i) ⋅ = ⋅ = 1 − (1 + i) i 1 d
1000
0 1
1100 1200
2 3
L
1700
8
1800
9
1900
10
付款额
L
时间
900 100
0 1
900 200
2
900 300
3
L
900 800
8
900 900
9
900 1000
10
付款额
L
时间
900
900 200
2
900 300
3

01第一章寿险定价.ppt

01第一章寿险定价.ppt
费率过高的情况。
3. 公平性原则
❖ 费率的公平性,指保险市场上保险产品价格的公平, 保险人对被保险人所承担的责任与投保人交纳的保 费对等,对出险概率高、赔付成本高的被保险人收 取更多的保险费,反之亦然。
❖ 在竞争激烈的保险市场上,投保人有充分的选择保 险公司和保险产品的权利和条件,保险费率的公平 性将在这种自由和充分的选择中得到保证。
2. 定价策略和利润目标
❖ 产品的定价策略,指在定价中反映开发新产品期望实现 的效果或期望达到的目标。如:在定价中反映实现公司 盈利水平或者提升公司形象的目标等。
❖ 产品的利润目标,在英国和澳州体系中,利润用增加值 (value created)衡量,是产品在预期的整个生命周期内 所能带来的法定利润(statutory profit)的现值,用于衡 量新产品为公司创造的新价值。
寿险定价的 基本原则
1. 充足性原则
❖ 费率充足,指保险费率足够用于保单所承诺的赔付 或给付、退保金、费用、税金、红利等各项支出, 同时保险公司还要获取合理的利润。
❖ 如果费率不充足,就会导致保险公司缺乏偿付能力, 从而会使被保险人的利益受损。
❖ 为测定寿险费率是否充足,必须将实际给付率与预 定给付率进行比较。
❖ 保额。大额保单的失效率通常较低。 ❖ 保费支付方式。一般交费频率越高,失效率越高。 ❖ 风险分类。次标准体的风险更高,保费也更高,则
失效率在保单前几年更高。 ❖ 性别、佣金支付方式、产品类型……
3. 利率
❖ 利率假设可以看做是保单持有人未来的收益率。寿 险公司假设的利率能否实现,要看其未来投资收益。
通常,是否吸烟比性别对死亡率的影响更大,吸烟程度严重 者的死亡率可能是非吸烟者的3倍。
2. 失效率

人寿保险的基本概念及其精算学PPT(31张)

人寿保险的基本概念及其精算学PPT(31张)
受益人是指人身保险合同中由被保险人或 者投保人指定的享有保险金请求权的人,投保 人、被保险人可以为受益人。
寿险合同的基本内容包括保险人名称和 住所,投保人、被保险人名称和住所,人身 保险受益人名称和住所, 保险责任和责任免 除,保险期间和保险责任开始时间,保险以 及支付办法,保险金赔偿或者给付办法,违 约责任和争议处理,订立合同的具体时间等。

14、一个人的知识,通过学习可以得到;一个人的成长,就必须通过磨练。若是自己没有尽力,就没有资格批评别人不用心。开口抱怨很容易,但是闭嘴努力的人更加值得尊敬。

15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。

16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。
本课程只讨论人寿保险。 人寿保险是以人的生存和死亡为保险 事故的保险。若被保险人在保险期内死亡 或生存到一定年龄,保险人依照契约规定 给付保险金。
纯粹的生存保险 生存保险
生存年金 人寿保险 死亡保险(定期、终身、延期)
生死合险(两全保险、养老保险) 人身保险 健康保险(疾病保险)
人身意外伤害保险
第0章 总 论
本章主要内容: ● 人寿保险的基本概念 ●精算学及其应用领域 ● 寿险精算学的基本思想 ● 精算师和精算工作
一、 人寿保险的基本概念
1、 基本概念 • 保险是指投保人根据合同约定,向保险人支
付保费,保险人对于合同约定的可能发生的 事故因其发生所造成的财产损失承担保险赔 偿责任,或者当被保险人死亡、伤残、疾病 或者达到合同约定的年龄、期限时承担给付 保险金责任的商业行为。
投保人是指与保险人订立保险合同,并 按照保险合同负有支付保险费义务的人。

寿险精算(第一章)

寿险精算(第一章)

定理1.3.2. 假设个体的年龄及是否死亡为已 知,个体的其他信息均未告知. x岁的个体生 存了 t 年后, 其再继续生存时间的分布和x+t 岁的个体的未来生存时间的分布相同, 即
P(T ( x) s t | T ( x) t ) P(T ( x t ) s), s [0, )
(3) p P (T ( x) t ) t x
P (T ( x) h) P (T ( x) t | T ( x) h) P (T ( x) h) P (T ( x h) t h | T ( x h) 0) P (T ( x) h) P (T ( x h) t h) h px t h px h .
第一部分 生存模型和多元衰减模型
第一章 单生命生存模型 第二章 多生命生存模型 第三章 多元衰减模型 大意梗概:人寿保险是以人的寿命、身体或健康 为保险标的(指具体的保险目标)的保险, 因此, 研究人的寿命的延续规律是制定保险保费的重要 基础。人的寿命往往是不确定的,可以看作随机 变量,因此,用概率统计方法研究寿命是普遍方 法。
T ( x)
2) T(x)的死亡力
s ( x)
x (t )
fT ( x ) (t ) 1 FT ( x ) (t )
X与T(x)的分布、密度、生存、死亡函数的 关系
结论1.3.1
f X (x t) fT ( x ) (t ) , t 0; s ( x)

t
( x s ) ds sT ( x ) (t ) e 0 ;
还可证明:
由于 X (t ) ( x t )
sT ( x ) '(t ) sT ( x ) (t ) (ln sT ( x ) (t )) ',

寿险精算实务精华版

寿险精算实务精华版

寿险精算实务讲义第一章 人寿保险的主要类型1.1传统的人寿保险1.1.1 定期寿险定期寿险是指以死亡为给付保险金条件,且保险期限为固定年限的人寿保险。

1.1.2 终身寿险终身寿险是指以死亡为给付保险金条件,且保险期限为终身的人寿保险。

1.1.3 终身寿险两全保险是指在保险期限内以死亡或生存为支付保险金条件的人寿保险。

1.1.4 年金保险年金保险指以生存为支付保险金条件,按约定分期支付生存保险金,且分期支付生存保险金的间隔不超过一年(含一年)的人寿保险。

1.2 新型人寿保险1.2.1分红保险 1.2.2投资连结保险第二章 保单现金价值与红利2.1 保单现金价值2.1.1 保单现金价值的含义现金价值又称解约金、退保金、不丧失保单利益、不丧失价值或不丧失现金价值。

现金价值是指投保人或保险公司解除保险合同时,由保险公司向投保人退还的那部分金额。

现金价值往往特指以现金方式支付的不丧失保单利益。

,0kk k k CV V SC CV =-≥一般情况下,现金价值不大于责任准备金,主要原因是费用在毛保费中重新调整造成的。

其他原因:①财务风险;②死亡率风险;③效益风险;④退保成本。

2.1.2 保单现金价值的计算⑴ 调整保费法 ....()()()()k k C V A k P a k V P P a k αα=-=--, 1..A E P aα+=根据NAIC1941年规则:10.4m in(,0.04)0.25m in(,,0.04)0.02x E P P P ααα=++; 1980年规则:1 1.25m in(,0.04)0.01E P =+优点:是计算现金价值的主要方法,详细定义了费用的确定,得到的不丧失价值更为准确公平; 缺点:计算相对复杂。

⑵ 准备金比例法 k k k C V f V =⨯优点:①简单,便于管理;②不受公司定价假设的影响;③准备金是保单责任的保守估计,对客户较为公平;④能够及时地反映定价时市场利率的变化。

保险精算1-5章答案(第二版)李秀芳

保险精算1-5章答案(第二版)李秀芳

第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算学讲义(doc 90页)

保险精算学讲义(doc 90页)

保险精算学讲义(doc 90页)第一章:利息理论基础第一节:利息的度量一、利息的定义利息产生在资金的所有者和使用者不统一的场合,它的实质是资金的使用者付给资金所有者的租金,用以补偿所有者在资金租借期内不能支配该笔资金而蒙受的损失。

二、利息的度量利息可以按照不同的标准来度量,主要的度量方式有1、按照计息时刻划分:期末计息:利率期初计息:贴现率2、按照积累方式划分:(1)线性积累:单利计息(2)一年转换次:名义利率(名义贴现率)(3)连续计息(一年转换无穷次):利息效力特别,恒定利息效力场合有三、变利息1、什么是变利息2、常见的变利息情况(1)连续变化场合(2)离散变化场合第二节:利息问题求解原则一、利息问题求解四要素1、原始投资本金2、投资时期的长度3、利率及计息方式4、本金在投资期末的积累值二、利息问题求解的原则1、本质任何一个有关利息问题的求解本质都是对四要素知三求一的问题。

2、工具现金流图:一维坐标图,记录资金按时间顺序投入或抽出的示意图。

3、方法建立现金流分析方程(求值方程)4、原则在任意时间参照点,求值方程等号两边现时值相等。

第三节:年金一、年金的定义与分类1、年金的定义:按一定的时间间隔支付的一系列付款称为年金。

原始含义是限于一年支付一次的付款,现已推广到任意间隔长度的系列付款。

2、年金的分类:(1)基本年金约束条件:等时间间隔付款付款频率与利息转换频率一致每次付款金额恒定(2)一般年金不满足基本年金三个约束条件的年金即为一般年金。

二、基本年金1、分类(1)付款时刻不同:初付年金/延付年金(2)付款期限不同:有限年金/永久年金2、基本年金公式推导3、变利率年金问题(1)时期变利率(第个时期利率为)(2)付款变利率(第次付款的年金始终以利率计息)三、一般年金1、分类(1)支付频率不同于计息频率(2)变额年金2、支付频率不同于计息频率年金(1)支付频率小于计息频率的年金分析方法一:利率转换方法二:年金的代数分析(2)支付频率大于计息频率的年金分析方法一:利率转换方法二:年金的代数分析(3)连续年金特别,在常数利息效力场合3、变额年金(1)等差年金初始投资P元,等差Q元的年金的一般公式:现时值:积累值:特别地,递增年金:P=Q=1现时值:积累值:递减年金:P=n,Q=-1现时值:积累值:(2)等比年金(下一期年金值为前一期年金值的()倍)现时值:积累值:第四节:收益率一、收益率的概念1、贴现资金流与现金流动表2、收益率的定义:使得投资返回净现时值等于零时的利率称为收益率。

社会保险精算原理第一章 寿险精算基础

社会保险精算原理第一章  寿险精算基础
dxshxsxsllnlihlim????xxpdtxsxsh0???????整值平均余寿与中值余寿15?x岁的整值平均余寿是指x岁未来平均存活的整数年数不包括不满一年的零数余寿它是整值余寿随机变量kx的期望值以ex表示?pkekxe??0kkkek?k???k??中值余寿是x的余寿tx的中值x在这一年龄之前死亡和之后死亡的概率均等于50以mx表示x岁的中值余寿则prtxmxprtxmx12xkkxxkxqq??????0123选择生命表和终极生命表?在保险精算中反映被保险人死亡规律的经验生命表与人口生命表是不同的保险只提供给符合健康标准的人因此在年龄相等时有理由认为刚买保险的人比已经买若干年保险的人死亡率更低因此在对被保险人依一定的健死亡率更低
nLx x岁的人在x~x+n岁生存的人年数
dx x岁的人群未来累积生存人年数
2021/7/3
社会保险精算原理
9
1.2.2生存分布
生存函数
• x岁余寿的生存函数 • x岁整值余寿的概率函数 • 死亡力 • 整值平均余寿与中值余寿
2021/7/3
社会保险精算原理
10
生存函数
• 生命表描述了人口在整数年龄上存活和死亡的规律,但实际上年龄是人出生后存活 时间的度量,它是一个连续随机变量,如果设新生儿未来存活时间或者说新生儿的 死亡年龄为X,它是一个连续的随机变量,其分布函数为: F(x)=Pr(X≤x) ;s(x)=1- F(x)=Pr(X>x) (x≥0) 它是新生儿活到x岁的概率,以概率表示为xp0,s(x)称为生存函数。
• 中值余寿是(x)的余寿T(x)的中值,(x)在这一年龄之前死亡和之后死亡的概率均等于5 0 %,以m(x)表示x岁的中值余寿,则Pr[T(x)≤m(x)]= Pr[T(x)>m(x)]=1/2

寿险精算第一章(word版)

寿险精算第一章(word版)

第一章 生存分布与生命表学习目标□了解常有生命表函数的概率意义、函数表达式及相互关系 □了解生存分布与生命表之间的关系□了解寿险生命表的特点与构造原理,掌握分数年龄生命表函数的计算方法1.1 引言寿险精算的主要研究都建立在生命个体(如被保险人)的生存情况的基础上。

精算学的发展始于对生存分布和生命表的研究。

在开始生存分布和生命表的讨论之前,我们先介绍几个基本的概念和符号。

首先,我们用符号(x )表示x 岁的生命,用T (x )表示(x )从现在直到死亡之间的时间长度。

显然,(x )在何时死亡是未知的、是不确定的,因此T (x )不是一个确定的数,而是一个随机变量,我们称T (x )为(x )的未来生命时间长度随机变量。

用X 表示(x )死亡时的年龄。

显然,X 也是一个随机变量,并且有T (x )=X-x 。

称X 为(x )的寿险随机变量。

如果(x )=(0),即一个新生婴儿,那么很显然,新生婴儿的未来生命时间长度恰好等于其寿命,即T (0)=X 。

既然X 和T (x )均为随机变量,所以,我们可以研究他们的概率分布情况。

基于概率统计的基础知识,我们记X 的分布函数为x F (x ),于是()()x r F x P X x =≤ 0x ≥ (1—1)显然,{X x ≤} 表示新生儿将于x 岁之前死亡的随机事件。

于是,概率分布函数()x F x 对应的是一种死亡概率。

与上述死亡概率对应,我们可以定义函数()X S x 为:()1()Pr()X X S x F x X x =-=≥ 0x ≥ (1--2)显然,{}X x ≥表示新生儿将于x 岁之后死亡——即新生儿将在x 岁还生存的随机事件,所以()X S x 为新生儿将在x 岁仍然活着的概率。

基于此,我们称()X S x 为生存函数,为方便起见,有时省略下标记为()X S x 。

注意到分布函数x F (x )和生存函数()X S x 之间的简单关系,可以知道这二者对于相应的随机变量X 的意义和地位,它们有相同的作用!因此,基于概率统计的经验,我们知道,为了研究随机变量X ,研究分布函数x F (x )或生存函数()X S x二者中之一即可。

保险精算第一章

保险精算第一章

通常把死亡保险和养老保险,或简称为年金。健康保险又称为疾病 保险,是指被保险人在保险期内因疾病不能从事正 常工作或因疾病造成伤残或死亡时由保险人负责 给付的保险。意外伤害保险指被保险人在保险 期内因遭受外来的、突发的意外事故,致使其 身体伤残或死亡时,依照保险契约,由保险人 给付保险金的保险。健康保险和意外伤害保险 也可以进一步分类,因与本书讨论的精算方 法无关,这里不再赘述。
因此保险是补偿和减轻发生 危险事故带来损失的有效手段,是 一种互助共济的社会保障制度。
人身保险是指保险企业在被保险方人身伤 亡、疾病、养老或保险期满时向被保险方 或其受益人给付保险金的保险。 ”保险中需弄清保险人,投保人,被保险 人,受益人及保险标的等几个基本概念。

保险人又称保险方、承保人,是经营保险业务的 各种组织。保险人负责与投保人签订保险契约并收 取保险费,在保险事故发生时负责给付保险金。 投保人又称要保人、保单持有人、投保方,投保人 代表被保险人签订保险契约,并根据契约保险费。 被保险人是以自己的生命和身体为保险标的、受保 险契约直接保障并享受保险金的人。投保人和被保 险人可以是同一个人,也可以是两个人。
计划以退休、退职、在职伤残、死亡等任一事件发 生为给付条件,并且各种情况下的给付额存在 差异,因此需要较复杂的结算技术。本书只讨论养 老金计划的基本理论。本书人身保险精算分为两部 分,分别讨论单被保险人型人身保险和多被保 险人型人身保险精算技术。
本章小结
人身保险是以人的身体和生命为保险标的, 以人的生、老、死、残为保险事故的保险* 主要分为以生存为给付条件的生存保险, 以死亡为给付条件的死亡保险,以生死为 给付条件的养老保险,以病残为给付条件 的健康保险和对意外事故的保险几种。人 身保险精算的数理基础是大数法则,平衡 公式是保险人与被保险人权利义务对等关 系。人身保险精算的基本内容是投保人的 保险费和保险人的责任准备金。

寿险精算(第一章).

寿险精算(第一章).

fX (x t). s(x)
根据死亡力的定义,
X
(t)
fT (x) (t) 1 FT (x) (t)
1
fX (x t) (1 s(x
/ s(x) t) / s(x))
fX (x t) / s(x) fX (x t) s(x t) / s(x)) s(x t)
(x t).
还可证明:
例1.3.1
设新生儿寿命X的密度函数为
fX
(t )
1
,0
t
.
求 FT ( x) (t), fT ( x) (t), t 0.
X岁的个体又生存了t年时,年龄为x+t岁,该个体与其他年龄 为x+t的个体的生存分布之间的关系:
定理1.3.2. 假设个体的年龄及是否死亡为已 知,个体的其他信息均未告知. x岁的个体生 存了 t 年后, 其再继续生存时间的分布和x+t 岁的个体的未来生存时间的分布相同, 即
t
t
s(t) e0 (s)ds , f X (t) (t)e0 (s)ds .
证明:
由于 (t) f X (t) (FX (t)) ' (1 FX (t)) '
1 FX (t)
s(t )
s(t )
s '(t) , (ln(s(t))) ' (t),
s(t )
故存在常数C,满足
生存函数与分布函数的关系:
s(t) 1 FX (t), t [0, ) s(0) 1, FX (0) 0.
(生命体的)死亡力:一个活到某岁的个体恰 在此年龄死亡的概率(瞬时死亡概率).
f (t)
(t) X ,t (0, )
1 FX (t)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

uxt
整值剩余寿命
定义:(x未) 来存活的完整年数,简记 K (x)
K(X ) k, k T (x) k 1, k 0,1,
概率函数
Pr(K ( X ) k) Pr(k T (x) k 1) q k1 x k qx k px p k 1 x k px qxk k qx
1
S0x t S0x
S0
x S0x S0x
t
精算符号
剩余寿命的生存函数 t p:x
t px Pr T x
t
Sx
t
S0 x S0
t x
1
t
qx
特别:
x p0 S0 x
精算符号
px :x岁的人至少能活到x+1岁的概

px 1 px
qx
:x岁的人将q在x 11年qx内死亡的概率
t u qx
剩余寿命的期望与方差
完全平均余寿:(x)剩余寿命的期望值(均值),简

o
ex
o
ex E(T (x)) td (1 t px ) t pxdt
0
0
剩余寿命的方差
o2
Var(T (x)) E(T (x)2) E(T (x))2 2 t t pxdt ex
0
整值剩余寿命的期望与方差
定义:已经活到x岁的人(简记(x)),还 能继续存活的时间,称为剩余寿命,记 作T(x)。
分布函数
定义
F0 (t) Pr[T 0 t]
意义:新生儿在 t岁之前死亡的概率。
定义: Fx (t) PrT x t
意义:x在 年t 之内死亡的概率。
定义:密度函数 f (x) F(x)
De Moivre模型(1724)
f
x
t
1
x
uxt
1
xt
Gompertze模型(1825)
xt t px x
t qx
t
x
x Bcx
s(x) exp{B(cx 1) / ln c} , B 0,c 1,x 0
有关寿命分布的参数模型
Makeham模型(1860)
x A Bcx
新生儿将在t岁至z岁之间死亡的概率:
Pr[t T 0 z] F0z F0t
生存函数
定义 S0 (t) Pr[T 0 t]
意义:新生儿能活过 t岁的概率。
与分布函数的关系: S0 (t) 1 F0 (t)
与密度函数的关系: f0 (t) S0 (t)
新生儿将在t岁至z岁之间死亡的概率:
使用这些参数模型推测未来的寿命状况会产生 很大的误差
寿险中通常不使用参数模型拟合寿命分布,而 是使用非参数方法确定的生命表拟合人类寿命 的分布。
在非寿险领域,常用参数模型拟合物体寿命的 分布。
生命表起源
生命表的定义
根据已往一定时期内各种年龄的死亡统计资料编制成的由每 个年龄死亡率所组成的汇总表.
第一章
生存分布理论基础
本章重点
生命表函数
生存函数 剩余寿命 死亡效力
生命表的构造
有关寿命分布的参数模型 生命表的起源 生命表的构造 选择与终极生命表
有关分数年龄的三种假定
本章中英文单词对照
死亡年龄 生命表 剩余寿命 整数剩余寿命 死亡效力 极限年龄 选择与终极生命表
:X岁的人将在x+t岁至x+t+u岁之
间死亡的t u概qx率 q tu x t qx t px tu px
t 1 qx t qx
死亡效力
定义:(x的) 瞬时死亡率,简记 x
ux
S0 x S0 x
f0x 1 F0 x
ln
S0 x
死亡效力与生存函数的关系
x
s(x) exp{ sds} 0
s(x) exp{Ax B(cx 1) / ln c} , B 0,A -B,c 1,x 0 Weibull模型(1939)
x kxn
s(x) ex 0
参数模型的问题
至今为止找不到非常合适的寿命分布拟合模型。 这四个常用模型的拟合效果不令人满意。
取整平均余寿:(x取) 整余寿的期望值(均值),简
记 ex
ex E(K (x)) k k px qxk p k1 x
k 0
k 0
取整平均余寿的方差
Var(K (x)) E(K 2 ) E(K )2 (2k 1) k1 px ex2 k 0
第二节
生命表
有关寿命分布的参数模型
Age-at-death Life table Time-until-death Curtate-future-lifetime Force of mortality Limiting ate Select-and-ultimate
tables
第一节 寿命与生存分布
剩余寿命
定义:新生儿(即0岁的人)未来存活的 时间,简称为寿命,记作T(0) 。
生命表的发展历史
1662年,Jone Graunt,根据伦敦瘟疫时期的洗礼和死亡名单,写 过《生命表的自然和政治观察》。这是生命表的最早起源。
1693年,Edmund Halley,《根据Breslau城出生与下葬统计 表对人类死亡程度的估计》,在文中第一次使用了生命表的 形式给出了人类死亡年龄的分布。人们因而把Halley称为生 命表的创始人。
与 S0的t 关系:
Sx t Pr T x t Pr T 0 x t T 0 x
Pr T 0 x t S0 x t
Pr T 0 x
S0 x
即 S0 x t S0 xSx t Sx u t Sx tSxt u
精算符号
q 分布函数: t x
t qx Fxt PrTx t1 Sxt
xt
t px exp{ sds} x
死亡效力
死亡效力与密度函数的关系
t
f0 t S0 t ut ute0uydy
死亡效力表示剩余寿命的密度函数 fx t
Fx
t
1t
px
S0
x S0x S0x
t
fx
t
dFx t
dt
d dt
S0
x S0x S0x
t
S0x t S0x
uxt
t
px
Prt T 0 z S0t S0z
特性:1、S0 0 1 S0 0
2、 是S0关t于t的递减函数;一般还是
关于t的连续函数
生存函数
定义
Sx (t) Pr[T x t]
意义:x至少活到 x 岁 t的概率。
与分布函数的关系: Sx (t) 1 Fx (t)
与密度函数的关系: fx (t) Sx (t)
相关文档
最新文档