样品前处理--固相微萃取技术综述

合集下载

GC-MS分析样品前处理方法——固相微萃取(SPME)

GC-MS分析样品前处理方法——固相微萃取(SPME)

GC-MS分析样品前处理⽅法——固相微萃取(SPME)固相微萃取(Solid-Phase Microextraction,简写为SPME)是⽬前较为常⽤的⾹⽓⾹味提取技术,具有简单,快速,集采样、萃取、浓缩、进样与⼀体的特点。

1990年由加拿⼤Waterloo⼤学的Arhturhe和Pawliszyn⾸创,1993年由美国Supelco公司推出商品化固相微萃取装置,1994年获美国匹兹堡分析仪器会议⼤奖。

内容提要:⼀、固相微萃取 (SPME)基本原理⼆、固相微萃取(SPME)操作⽅法三、固相微萃取(SPME)特点四、固相微萃取(SPME)应⽤范围五、固相微萃取(SPME)操作条件选择六、固相微萃取(SPME)操作注意事项七、固相微萃取(SPME)定量⽅法⼋、固相微萃取(SPME)⼲扰物九、固相微萃取(SPME)应⽤实例⼀固相微萃取 (SPME)基本原理固相微萃取主要针对有机物进⾏分析,根据有机物与溶剂之间“相似者相溶”的原则,利⽤⽯英纤维表⾯的⾊谱固定相对分析组分的吸附作⽤,将组分从试样基质中萃取出来,并逐渐富集,完成试样前处理过程。

在进样过程中,利⽤⽓相⾊谱进样器的⾼温将吸附的组分从固定相中解吸下来,由GC/GCMS来进⾏分析。

⼆固相微萃取(SPME)操作⽅法有⼿动和全⾃动两种⽅式,下⾯以⼿动操作为例。

1、样品萃取①将SPME针管穿透样品瓶隔垫,插⼊瓶中。

②推⼿柄杆使纤维头伸出针管,纤维头可以浸⼊⽔溶液中(浸⼊⽅式)或置于样品上部空间(顶空⽅式),萃取时间⼤约2-30分钟。

③缩回纤维头,然后将针管退出样品瓶2、GC/GCMS分析①将SPME针管插⼊GC/GCMS仪进样⼝。

②推⼿柄杆,伸出纤维头,热脱附样品进⾊谱柱。

③缩回纤维头,移去针管。

3、全⾃动固相微萃取(SPME),⾃动提取和进样解析:三固相微萃取(SPME)特点简单,快速,集采样、萃取、浓缩、进样与⼀体。

⼀般不需要有机溶剂。

⼀般⾹⽓⾹味组分(挥发性特强的部分除外)提取⽐静态顶空的灵敏度⾼好多倍或能够提取出来。

药物分析中固相微萃取法的应用

药物分析中固相微萃取法的应用

药物分析中固相微萃取法的应用药物分析中,固相微萃取法(Solid-Phase Microextraction,SPME)是一种灵敏、快速、有效的样品前处理技术。

它的原理是利用特殊的固相萃取纤维,在样品中吸附目标分析物,然后在热解仪或气相色谱仪中进行分离和检测。

本文将探讨固相微萃取法在药物分析中的应用。

一、固相微萃取原理固相微萃取是基于分子扩散和吸附原理。

它使用特定材料的固相萃取纤维作为吸附剂,将目标分析物从样品中吸附到纤维表面上。

固相纤维通常包括聚二甲基硅氧烷(PDMS)和聚酰胺(PA)等材料。

在吸附平衡达到后,纤维上的吸附物质可以通过热解仪或气相色谱仪进行分析。

二、固相微萃取的优点1. 灵敏度高:固相微萃取能够集中目标分析物,提高检测灵敏度。

2. 快速:相比传统的样品前处理方法,固相微萃取不需要繁琐的提取步骤,缩短了分析时间。

3. 低成本:固相纤维的制备和使用成本相对较低。

4. 高选择性:通过选择不同类型的固相纤维,可以实现对不同化合物的选择性吸附和富集。

三、固相微萃取在药物分析中的应用1. 药物残留分析:固相微萃取常用于食品和环境样品中药物残留的提取与测定。

例如,可以用于蔬菜中农药残留的分析,以及水体中抗生素和激素残留的检测。

2. 药物药代动力学研究:固相微萃取可以用于药物在生物样品(如血液、尿液)中的提取和浓缩,从而实现对药物的药代动力学研究。

这对于了解药物在体内的分布和代谢过程具有重要意义。

3. 药物质量控制:固相微萃取可用于药物质量控制中的固定和有机污染物的检测。

例如,可用于药物片剂中批号不合格或有疑问的成分的提取和分析。

4. 药物研发:固相微萃取可以用于药物研发过程中各阶段的样品前处理。

通过对合成中间体和产物等样品的分析,可以帮助研发人员快速了解反应过程和产物纯度。

5. 药物安全性评价:固相微萃取可以用于药物安全性评价中的药物代谢产物的提取和分析。

对于了解药物代谢途径、副作用等有重要作用。

固相微萃取

固相微萃取

四、SPME萃取步骤方法
固相微萃取主要有 4种基本萃取方式:直接萃取(direct immersion, DI)、顶空萃取 (headspace, HS)、膜保护萃取和衍生化法。
直接萃取法:是将涂有萃取固定相的石英纤维直接插入到样品基质中, 目标组分 直接从样品基质中转移到萃取固定相中; 方法适用于气体样品或洁净水样品中有 机化合物的测定。
顶空萃取法: 其模式分为两步: 一是被分析组分从液相中先扩散穿透到气相中, 二是被分析组分从气相转移到萃取固定相中。方法可避免萃取固定相受到某些样 品基质中高分子物质和不挥发性物质的污染; 方法适应脏水、 油脂、 血液、 污泥、 土壤的前处理。
膜保护萃取 :是通过一个选择性的高分子材料膜将试样与萃取头分离从而实现萃 取; 在分析很脏的样品时可使萃取固定相不受到污染; 方法对难挥发性物质组分的 萃取富集更为有利。 衍生化法 :根据 SPME 特点和衍生化反应发生的位置,衍生化萃取法分为在样 品基质中直接进行衍生化、 在萃取涂层纤维上进行衍生化( 即萃取的同时衍生化 或先萃取再进行衍生化) 、 在 GC 进样室中进行衍生化等 3 种方式。衍生化与 SPME 的结合为极性、 难挥发性有机物的分析提供了可能性。
二、SPME的萃取原理
固相微萃取主要针对有机物进行分析, 根据有机 物与溶剂之间“相似者相溶” 的原则, 利用石英纤维表 面的色谱固定相对分析组分的吸附作用, 将组分从试 样基质中萃取出来, 并逐渐富集, 完成试样前处理过 程。在进样过程中, 利用气相色谱进样室的高温将吸 附的组分从固定相中解吸下来由色谱仪进行分析。
五、固相微萃取的影响因素
表 1 典型的固相微萃取萃取头涂层及其应用
1. SPME 萃取涂层的选择原则 涂层的种类是影响分析灵敏度和选 择性的最重要因素。涂层的选择遵 循“相似者相溶” 这一规则, 表 1 列出了典型的 SPME 萃取头涂层及 其应用 。

固相萃取和固相微萃取

固相萃取和固相微萃取

固相萃取和固相微萃取一、概述固相萃取(SPE)和固相微萃取(SPME)是两种常见的样品前处理技术,它们可以用于分离和富集目标化合物。

SPE通常用于大样品量的分析,而SPME则适用于小样品量的分析。

二、固相萃取1. 原理固相萃取是一种样品前处理技术,通过将目标化合物从复杂的混合物中吸附到特定的固相材料上,然后再用洗脱剂将其洗脱出来。

这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。

2. 步骤(1)选择适当的固相材料;(2)将样品加入到固相柱中;(3)用洗脱剂洗脱目标化合物;(4)将洗脱液收集并进行进一步分析。

3. 固相材料常见的固相材料包括C18、C8、Silica gel等。

不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。

4. 应用领域SPE广泛应用于环境、食品、药物等领域的样品前处理中。

例如,可以用SPE技术来富集水中的有机污染物、食品中的农药残留等。

三、固相微萃取1. 原理固相微萃取是一种无机溶剂的萃取技术,通过将特定的固相材料包裹在针头上,然后将其插入样品中进行吸附和富集目标化合物。

这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。

2. 步骤(1)选择适当的固相材料;(2)将固相材料包裹在针头上;(3)将针头插入样品中进行吸附和富集目标化合物;(4)用洗脱剂洗脱目标化合物;(5)将洗脱液收集并进行进一步分析。

3. 固相材料常见的固相材料包括PDMS、CAR等。

不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。

4. 应用领域SPME广泛应用于环境、食品、药物等领域的样品前处理中。

例如,可以用SPME技术来富集水中的有机污染物、食品中的农药残留等。

四、比较1. 样品量SPE适用于大样品量的分析,而SPME则适用于小样品量的分析。

2. 富集效率SPE和SPME都可以有效地去除其他干扰物质,并提高目标化合物的浓度。

固相微萃取综述

固相微萃取综述

涂层种类介绍

2 非商品化涂层 尽管传统涂层型的 SPME 纤维涂层呈现蓬勃发展的前景, 但它的应用仍有 一定的局限性, 如现有有机涂层的耐热性较差, 限制了解吸温度的范围; 吸附质 的成本高, 吸附量小, 制作程序要求严格, 使用寿命短等原因使其在推广上受到 一定的限制。因此, 制备适合较大范围的 SPME 实验条件、具有较高稳定性、 容量相对较大、且在萃取过程中能快速地萃取被分析物、解吸过程中与被分 析物能快速地进行分离的涂层, 这些是SPME 发展的关键。 Mangani 等报道了使用石墨化碳黑( GBC) 作为固定相涂层, 从气相或液 相中萃取并分析有机污染物,该涂层具有较好的萃取效果。Djozan 等 将一种 活性炭多孔层( PLAC) 涂在 SPME 萃取头上, 并与气相色谱联用萃取挥发性有 机物。Buszewski 等研制出了环氧 聚二甲基硅氧烷( PDES) 和聚亚胺酯丙烯酸 涂层( polyurethaneacrylate) , PDES 适合萃取非极性化合物,萃取时间比聚 亚胺丙烯酸涂层短。Lee 等则将HPLC 的固定相用于 SPME 涂层上。他们发 现纯硅胶很难从水中萃取出非极性化合物, 但当硅胶表面键合了C8 或 C18固 定相后则可以从水中吸附非极性化合物。又如 Popp 等使用一种新的 C8 涂 层, 对多种挥发性和中等挥发性的有机物进行了萃取, 并与一些商品化涂层进 行了比较, 发现它对多种化合物都可以萃取, 但效率都不是最高的。Chong 等 使用溶胶 凝胶技术( sol- gel) , 将键合了 PDMS 的溶胶凝胶涂层作为萃取头, 萃取了 PAHS 和烷烃等化合物, 均得到了满意的结果。几种非商品化涂层的比 较见表 2。
与商用100mpdms萃取头相比该萃取头显示出了更高的萃取效率分析原因可能归因于萃取头长度15cm和苯基增强了涂层与分析物之间的相互作用固相微萃取在药品和生物样品分析中的应用应用于spme方面的生物样品大多数是血液尿液唾液还有头发等品种多组成复杂介质干扰大分析成分与生物样品一般都具有很强的亲和力且分析成分多为大分子强极性高沸点难挥发热不稳定这对spme技术具有很大的挑战性

固相萃取技术与应用

固相萃取技术与应用

固相萃取技术与应用
固相萃取技术是一种常用的样品前处理方法,用于分离、富集和净化目标化合物。

其基本原理是利用吸附剂(固相材料)对溶液中的目标化合物进行选择性吸附,并将其与其他成分分离。

固相材料常采用多孔性或非孔性材料,如硅胶、聚合物、环氧酚醛树脂等。

固相萃取技术主要包括两种形式:固相微萃取和固相萃取柱。

固相微萃取是将固相材料固定在适当的支撑体上,形成微量固相吸附剂,通过直接接触或间接扩散的方式,实现目标化合物的富集。

固相萃取柱则是将固相材料填充在柱内,通过液相的力驱动目标化合物在固相上进行吸附和洗脱。

固相萃取技术广泛应用于环境分析、食品安全、药物代谢研究等领域。

在环境领域,固相萃取常用于水体和土壤中有机物的萃取和浓缩,如挥发性有机物、农药残留等。

在食品安全领域,固相萃取被用于食品中有毒有害物质残留的分析,如重金属、农药残留、塑化剂等。

在药物代谢研究中,固相萃取则用于体内和体外样品中药物及其代谢物的富集。

固相萃取技术具有操作简单、富集效果好、选择性强等优点,因此得到了广泛的应用和发展。

未来,固相萃取技术还有望在蛋白质富集、环境污染物分析和分离纯化等方面有更多的应用。

食品安全检测样品前处理技术综述

食品安全检测样品前处理技术综述

食品安全检测样品前处理技术综述完整的样品分析过程样品采集、样品前处理、分析测定、数据处理、结果表达。

进行样品前处理可以纯化和浓缩样品,使被分析物适于所选分析方法。

样品前处理包括食品样品的无机化处理和样品中干扰成分的去除。

其中样品无机化处理主要用于食品或食品原料中无机元素的测定,又称为有机化破坏法。

样品中干扰成分的去除主要测定食品中各种有机成分,可采用多种方法,主要是将主要成分与样品中的干扰物质分离后再进行检测。

一、食品样品的无机化处理:有机物破坏法根据具体操作步骤的不同可以分为干法灰化和湿法消化两大类。

选择原则是:方法简便,使用试剂越少越好;方法耗时短,有机物破坏越彻底越好;被测元素不受损失,破坏后的溶液容易处理不影响后续测定的步骤。

1、干法灰化用高温灼烧的方法破坏样品中的有机物,又叫灼烧法。

即将一定数量的样品置于坩埚中加热使其中有机物脱水、炭化、分解、氧化之后,再置于高温的灰化炉中灼烧灰化,使有机成分彻底分解为二氧化碳、水和其他气体而挥发,直至残渣为白色或浅灰色为止,所得的残渣即为无机成分,可供测定用。

为提高回收率可根据被测组分的性质,采取适宜灰化温度灰化样品,尽可能在低温下进行。

同时可以采用助灰剂灰化法,可在坩埚中加入助灰剂以防止被测组分挥发损失和坩埚吸收。

另外,在规定时间内如样品不能完全灰化,可待坩埚冷却后,加入适当的酸或水,改变盐的组分或帮助灰分溶解解除对碳的包裹。

2、湿法消化在他、样品中加入强氧化性物质加热破坏有机物,使待测的无机成分释放出来,形成不挥发的无机化合物。

常用的消化试剂有硝酸、高氯酸、硫酸等,有时还可加入强氧化剂如高锰酸钾、过氧化氢及硫酸铜、硫酸汞等催化剂。

在消化过程中,有敞口消化法,回流消化法、冷消化法、密封罐消化、微波消解法等几种消化方法。

二、样品中干扰成分的去除1、溶剂提取法根据相似相溶原理,用适当的溶剂将某种待测成分从固体样品或样品浸提液中提取出来从而分离其他基体成分。

固相萃取技术在食品检测前处理中的应用进展

固相萃取技术在食品检测前处理中的应用进展

固相萃取技术在食品检测前处理中的应用进展一、固相萃取技术概述固相萃取技术是一种基于化学吸附和脱附原理的样品前处理技术。

其主要原理是在固相吸附剂上吸附目标物质,然后将干净的溶剂或溶液用于脱附目标物质,从而实现对目标物质的富集和提取。

固相萃取技术具有操作简便、高效、选择性好、成本低等优点,因此在食品检测前处理中得到了广泛应用。

它主要包括萃取柱、固相萃取膜、固相微萃取等形式。

二、固相萃取技术在食品检测前处理中的应用1. 农药残留检测固相萃取技术在食品中农药残留检测中起到了重要作用。

通过将样品中的农药残留物质富集到固相萃取柱上,在适当的条件下再脱附出来,可以提高检测的灵敏度和准确性,减少干扰物质对检测结果的影响。

固相萃取技术还可以有效地降低检测的限量标准,提高检测效率。

2. 食品添加剂检测在食品添加剂检测中,固相萃取技术也有着重要的应用。

利用固相萃取技术可以对食品中的防腐剂、色素、甜味剂等添加剂进行富集提取,从而保证检测的准确性和灵敏度。

3. 食品中毒素检测固相萃取技术对食品中毒素的检测具有很高的适用性。

通过固相萃取技术可以将食品中的毒素富集提取出来,避免了复杂的样品前处理过程。

在安全性和准确性方面都具有明显的优势。

2. 缩短分析时间固相萃取技术具有快速、简便的特点,可以有效地缩短食品检测前处理的分析时间,提高工作效率。

3. 降低检测成本相对于传统的检测方法,固相萃取技术具有操作简便、易于自动化和成本低等优势,可以大大降低检测的成本。

4. 减少对环境的影响固相萃取技术使用的溶剂量少,不会产生大量有害废弃物,对环境影响小。

四、固相萃取技术在食品检测前处理中的发展趋势未来,固相萃取技术在食品检测前处理中将会有更广泛的应用。

随着科技的不断进步,固相萃取技术的自动化程度将会更高,操作更简便,准确性更高。

固相萃取技术也将更多地结合其他技术,如色谱技术、质谱技术等,构建更完善的检测体系。

对新型固相吸附剂的研究也将会推动固相萃取技术的发展,提高其适用性和选择性。

固相微萃取法

固相微萃取法

固相微萃取法固相微萃取法是一种新型的样品前处理技术,它将传统的液液萃取方法简化为一步操作,具有操作简便、时间短、灵敏度高、选择性好等优点。

本文将从以下几个方面详细介绍固相微萃取法。

一、固相微萃取法的基本原理固相微萃取法是利用固定在小柱或膜上的吸附剂对样品中的目标物进行富集和分离。

其基本原理是,将样品溶解于适当的溶剂中,通过注射器或自动进样器将样品进入吸附柱或吸附膜中,在适当条件下使目标物质被吸附在柱或膜上,然后用洗脱剂将目标物质洗出,并进行分析。

二、固相微萃取法的优点1. 操作简便:只需将样品加入到吸附柱或膜中即可完成富集和分离过程,省去了传统液液萃取方法复杂的步骤。

2. 时间短:整个富集和分离过程只需几分钟至几十分钟不等。

3. 灵敏度高:由于富集的目标物质被高度净化和富集,所以检测灵敏度得到大幅提高。

4. 选择性好:通过选择不同的吸附剂,可以实现对不同化合物的选择性富集和分离。

5. 可靠性高:固相微萃取法不受样品矩阵的影响,因此在复杂矩阵中也能实现目标物质的富集和分离。

三、固相微萃取法的应用1. 环境监测:固相微萃取法可用于水、土壤、空气等环境样品中有机污染物的富集和分离。

2. 食品安全:固相微萃取法可用于食品中农药、兽药、食品添加剂等有害物质的检测。

3. 药物分析:固相微萃取法可用于药物血浆、尿液等生物样品中药物代谢产物的富集和分离。

4. 化学分析:固相微萃取法可用于化学反应体系中产生的有机产物或催化剂残留等有害成分的富集和分离。

四、固相微萃取法与其他技术的比较1. 与传统液液萃取法相比,固相微萃取法操作简便、时间短、灵敏度高、选择性好。

2. 与固相萃取法相比,固相微萃取法使用的吸附剂量更少,富集时间更短,且不需要使用大量有机溶剂。

3. 与固相微萃取法相比,固相微萃取-气相色谱/质谱联用技术具有更高的灵敏度和更好的分离效果。

五、总结固相微萃取法作为一种新型的样品前处理技术,在环境监测、食品安全、药物分析、化学分析等领域得到了广泛应用。

固相微萃取原理及使用

固相微萃取原理及使用

固相微萃取原理及使用固相微萃取(SPME,Solid-Phase Microextraction)是一种新型的样品前处理技术,通过固定在纤维上的固相吸附剂从气态、液态或固态样品中萃取目标分析物,并将其直接转移到气相色谱仪(GC)或液相色谱仪(LC)进行定性和定量分析。

固相微萃取的原理基于固相吸附剂对目标分析物的亲合性。

通常使用的固相吸附剂是聚二甲基硅氧烷(PDMS)或其他官能化的聚合物。

PDMS 纤维富含非极性表面,能够吸附疏水性的目标分析物。

在样品中,目标分析物与固相吸附剂表面发生吸附作用,达到平衡后,可以将纤维直接放入分析仪器进行进一步分析。

固相微萃取的使用步骤包括样品处理、纤维曝气和分析步骤。

样品处理通常涉及样品的预处理,如溶解、稀释、搅拌等,以便将目标分析物从样品基质中释放出来。

然后将固相吸附剂纤维插入样品中,使其与目标分析物接触,并允许吸附达到平衡。

曝气步骤是将纤维暴露在空气或惰性气体中,以去除吸附在纤维上的水分和挥发性杂质。

最后,将纤维放入色谱仪进行分析。

固相微萃取的优点包括简便、快速、高效、灵敏、环境友好以及无需有机溶剂等。

相比于传统的样品前处理方法,如液-液萃取和固相萃取,固相微萃取不需要大量的溶剂、操作步骤和设备,大大简化了样品前处理的流程。

此外,由于固相微萃取仅使用微量吸附剂,其分析结果更具可重复性和可比性。

同时,固相微萃取可以在不破坏或减少样品中目标分析物含量的情况下实现富集,避免了样品基质对分析结果的干扰。

固相微萃取在环境、食品、生物、医药等领域中得到了广泛应用。

例如,可以用于食品和饮料中残留农药和有害物质的分析,环境水样中的挥发性有机物的监测,空气中的挥发性有机物的测定,以及生物样品中药物或代谢物的分析等。

此外,固相微萃取还可以与其他技术结合,如气相色谱质谱联用、高效液相色谱质谱联用等,以实现更高的分析灵敏度和选择性。

总之,固相微萃取是一种新颖的样品前处理技术,具有简便、高效、灵敏且环境友好的特点,被广泛应用于各种样品的分析和监测,并为分析化学领域带来了极大的便利。

固相微萃取技术的原理、应用及发展

固相微萃取技术的原理、应用及发展

固相微萃取技术的原理、应用及发展
固相微萃取技术是一种高效、灵敏且环保的样品预处理方法,可用于分离和富集液相中的目标化合物。

其原理基于固相萃取和微萃取技术的结合,通过固相材料选择性地吸附和富集目标化合物,然后用适当的溶剂洗脱,最终得到高纯度的目标化合物。

固相微萃取技术的应用非常广泛。

首先,在环境分析领域,它可以用于水、土壤和空气中有机污染物的检测与分析。

其次,在食品安全领域,它可用于检测食品中的农药残留、有机污染物和食品添加剂等物质。

此外,固相微萃取技术还可以应用于药物分析、生物体内代谢产物的分离与鉴定,以及痕量有机物的分析等领域。

固相微萃取技术的发展主要体现在以下几个方面。

首先,固相材料的不断改进和创新,如纳米材料、金属有机框架材料等的引入,使得固相微萃取技术具有更高的吸附容量和更好的选择性。

其次,新型萃取模式的出现,如固相微萃取与固相微柱结合的技术,提高了样品处理的效率和分析的灵敏度。

再次,自动化设备的发展使得固相微萃取技术更加便捷和高效。

最后,与其他分析技术的结合,如气相色谱-固相微萃取和液相色谱-固相微萃取联用技术,使得分析方法更加全面和准确。

总之,固相微萃取技术在分析领域具有广泛的应用前景,并且在不断
发展中。

随着固相材料和萃取模式的创新,以及自动化设备的进一步完善,固相微萃取技术将能够更好地满足分析的需求,并在分析领域中发挥更大的作用。

固相微萃取

固相微萃取

8.1.4.1 固相微萃取的原理固相微萃取(solid—phase microextraction,SPME)技术是20世纪90年代初期兴起的一项样品前处理与富集技术,它最先由加拿大Waterloo大学Pawliszyn教授的研究小组于1989年首次研制成功,属于非溶剂型选择性萃取法,是一种集采样、萃取、浓缩、进样于一体的分析技术。

SPME装置略似进样器,在特制注射器筒内的不锈钢细管顶端分别连接一根穿透针和纤维固定针,针头上连接一根熔融石英纤维,上面涂布一层多聚物固定相,注射器的柱塞控制纤维的进退。

当纤维暴露在样品中时,涂层可从液态/气态基质中吸附萃取待测物,经过一段时间后,已富集了待测物的纤维可直接转移到仪器(通常是气相色谱仪,即SPME—GC)中,通过一定的方式解吸附,然后进行分离分析。

典型的SPME装置如图8一12所示。

SPME熔融石英纤维涂布固定相与样品或其顶空充分接触,待测物在两相间分配达到平衡后,两相中待测物浓度关系如下式:N。

一KⅥV。

C。

/(KU+V。

) (8—2)式中,N。

为固定相中待测物的分子数;K为两相间待测物的分配系数;V。

为固定液体积;U为样品体积;c。

为样品中待测物浓度。

因为U》V。

,故式(8—2)可简化为:N。

=Ku%(8-3)由式(8-3)可知,固定液吸附待测物分子数与样品中待测物浓度呈线性关系,即样品中待测物浓度越高,SPME吸附萃取的分子数越多。

当样品中待测物浓度一定时,萃取分子数主要取决于固定液体积和分配系数。

同时,方法的灵敏度和线性范围的大小也取决于这两个参数。

固定液厚度越大(即y。

越大),萃取选择性越高(K越大),则方法的灵敏度越高。

由此可见,选择合适的固定液对于萃取结果是很重要的。

目前,SPME装置已实现商品化。

该装置主要由两部分组成:一部分是作为支撑用的微量注射器底座;另一部分是类似于注射针头形状的熔融石英纤维,其半径一般为15mm,上面涂布着固定体积(/g度为10~100ttm)的聚合物固定液。

固相微萃取技术及其应用

固相微萃取技术及其应用

固相微萃取技术及其应用一、引言固相微萃取技术是一种新型的样品前处理方法,其基本原理是利用微量有机溶剂在固相萃取柱中与水样中的目标分子进行反应,将目标分子从水样中萃取出来。

该技术具有操作简单、提取效率高、耗时短等优点,因此在环境监测、食品安全检测等领域得到了广泛应用。

二、固相微萃取技术原理1. 固相萃取柱固相微萃取技术的核心是固相萃取柱,其主要成分为聚合物吸附剂。

聚合物吸附剂具有较大的比表面积和良好的化学稳定性,能够有效地吸附分子。

因此,在样品前处理过程中,将待测样品通过固相萃取柱时,目标物质会被吸附在柱上。

2. 微量有机溶剂微量有机溶剂通常用于洗脱被吸附在固相萃取柱上的目标物质。

由于微量有机溶剂对目标物质具有较强的亲和力,因此可以有效地将目标物质从固相萃取柱上洗脱下来。

3. 水样处理水样处理是固相微萃取技术的关键步骤之一。

在水样处理过程中,通常需要将水样进行预处理,以便更好地提取目标物质。

例如,在环境监测中,可以通过调节水样pH值、添加盐酸等方法,使目标物质更容易被吸附在固相萃取柱上。

三、固相微萃取技术应用1. 环境监测固相微萃取技术在环境监测中得到了广泛应用。

例如,在地下水中检测有机污染物时,可以使用该技术对水样进行前处理,提高检测灵敏度和准确性。

2. 食品安全检测固相微萃取技术也可以用于食品安全检测。

例如,在葡萄酒中检测残留的农药时,可以使用该技术对葡萄酒进行前处理,提高检测灵敏度和准确性。

3. 药物分析固相微萃取技术也可以用于药物分析。

例如,在生物组织或体液中检测药物时,可以使用该技术对样品进行前处理,提高检测灵敏度和准确性。

四、固相微萃取技术优缺点1. 优点固相微萃取技术具有操作简单、提取效率高、耗时短等优点。

此外,该技术还可以对样品进行预处理,以提高检测灵敏度和准确性。

2. 缺点固相微萃取技术的缺点主要包括:样品处理量较小、柱寿命较短、柱的选择性有限等。

五、总结总之,固相微萃取技术是一种新型的样品前处理方法,具有操作简单、提取效率高等优点,在环境监测、食品安全检测等领域得到了广泛应用。

关于固相微萃取技术及其在分析中的应用(综述)

关于固相微萃取技术及其在分析中的应用(综述)

3 定量方法
由于固相微萃取属于一种动态平衡技术,因此定量需要对某些外部条件进行校正。当分析气体试样时,因为试样既不是在开放的空间,体积又不是很大,结果只和分析组分和固定相之间的分配系数有关,它决定于温度和湿度,故分析结果在对温湿度校正后直接以气相色谱测定值定量。分析杂质较少的液体试样可采用外标法,将标准加至相对清洁的基质中进行固相微萃取,制作校正曲线,试样通过查找校正 曲线上的点而定量。基质比较复杂的试样一般使用标准添加法或内标法。使用标准添加法需注重,试样中的分析组分不一定能象加入的标准那样轻易被提取,分析时要筛选条件保证分析组分的提取率。使用内标法需要筛选出和分析组分分配系数相同或相近的内标物,在这方面成功的实验方法较多,例如Ishii在检验人体液中的麻醉、止痛剂phencyclidine的量时选用diphenylpyraline hydrochloride作为内标,〔11〕Kumazawa在检测人体液中的乙醇量时选用异丁醇作为内标。〔26〕
2.1.3 萃取时间 萃取时间是从石英纤维和试样接触到吸附平衡所需要的时间。为保证试验结果重现性良好,应在试验中保持萃取时间一定。影响萃取时间的因素很多,例如分配系数、试样的扩散速度、试样量、容器体积、试样本身基质、温度等。在萃取初始阶段,分析组分很轻易且很快富集到石英纤维固定相中,随着时间的延长,富集的速度越来越慢, 接近平衡状态时即使时间延长对富集也没有意义了,因此在摸索实验方法时必须做富集—时间曲线,从曲线上找出最佳萃取时间点,即曲线接近平缓的最短时间。一般萃取时间在5~60 min以内,但也有非凡情况。
2.1.5 改变pH值 改变pH值同使用无机盐一样能改变分析组分和试样介质、固定相之间的分配系数,对于改善试样中分析成分的吸附是有益的。由于固定相属于非离子型聚合物,故对于吸附中性形式的分析物更有效。调节液体试样的pH值可防止分析组分离子化,提高被固定相吸附的能力。例如,Garcia在实际检测中发现,pH=4时对酒香味组成成分检测效果最好;〔24〕Pan在分析极性化合物脂肪酸时选用了一系列pH值,其中pH=5.5效果最佳。〔22〕

固相微萃取

固相微萃取

固相微萃取一、概述固相微萃取(solid-phase microextraction, SPME)技术是20世纪90年代兴起的一项新颖的样品前处理与富集技术, 最先由加拿大Waterloo大学的Pawliszyn教授的研究小组于1989年首次进行开发研究,属于非溶剂型选择性萃取法,是一个基于待测物质在样品及萃取涂层中平衡的萃取过程。

它以固相萃取为基础,利用了固相萃取吸附的几何微区效应,其装置结构的超微化决定了它能避开经典固相萃取的许多弱点。

将纤维头浸入样品溶液中或顶空气体中一段时间,同时搅拌溶液以加速两相间达到平衡的速度,待平衡后将纤维头取出插入气相色谱汽化室,热解吸涂层上吸附的物质。

被萃取物在汽化室内解吸后,靠流动相将其导入色谱柱,完成提取、分离、浓缩的全过程。

由于聚合物涂层的种类很多,因而可对样品组分进行选择性富集和采集。

与固相萃取技术相比其特点:固相微萃取操作更筒单、携带更方便、操作费用也更加低廉,另外克服了固相萃取回收率低、吸附剂孔道易堵塞的缺点,因此成为目前所采用的试样预处理中应用最为广泛的方法之一。

SPME已开始应用于分析水、土壤、空气等环境样品的分析。

二、原理固相微萃取主要针对有机物进行分析,根据有机物与溶剂之间“相似者相溶”的原则,基于萃取涂层与样品之间的吸附/溶解-解吸平衡而建立起来的集进样、萃取、浓缩功能于一体的技术。

将组分从试样基质中萃取出来,并逐渐富集,完成试样前处理过程。

与固相萃取不同,固相微萃取不是将待测物全部萃取出来,其原理是建立在待测物在固定相和水相之间达成的平衡分配基础上。

设固定相所吸附的待测物的量为W S,因待测物总量在萃取前后不变,固得到:C0•V2=C1•V1+C2•V2(1)式中,C0是待测物在水样中的原始浓度;C1、C2分别为待测物达到平衡后在固定相和水相中的浓度;V1、V2分别为固定相液膜和水样的体积。

吸附达到平衡时,待测物在固定相与水样间的分配系数K有如下关系:K= C1 / C2(2)平衡时固相吸附待测物的量W S= C1•V1,固C1 = W S / V1由式(1)得:C2= (C0• V2–C1• V1)/ V2将C1、C2代入式(2)并整理后得:K= W S• V2/[V1• (C0• V2–C1• V1)]= W S• V2/(C0• V2• V1–C1 V12)(3)由于V1«V2,式3中C1• V12可忽略,整理后得:W S =K• C0• V1(4)由式(4):WS =K •C0 •V1 ,可知WS与C0呈线性关系,并与K和呈正比。

新型的样品前处理技术_固相微萃取[1]

新型的样品前处理技术_固相微萃取[1]

理化检验-化学分册P TCA(PAR T B:CH EM.ANAL.)2005年 第41卷11综 述新型的样品前处理技术2固相微萃取谈金辉,刘文涵3(浙江工业大学化学工程学院,杭州310032)摘 要:文中对固相微萃取,作为一种试样预处理的新技术,在1990~2004年的进展作了评述,介绍了固相微萃取技术的装置、试验方法、原理、涂层、影响因素、应用及发展趋势,引用文献39篇。

关键词:固相微萃取;无溶剂;样品前处理中图分类号:O652.7 文献标识码:A 文章编号:100124020(2005)1020783205SOL ID P HASE M ICRO2EXTRAC TION———A N EW TEC HN IQU E O F SAMPL E2PR ETR EA TM EN TTAN Jin2hui,L IU Wen2han3(College of Chem.Engineering,Zhej iang Universit y of I ndust ry,H angz hou310032,Chi na)Abstract:A review covering the period f rom1990to2004,is presented of the solid phase micro2extraction (SPM E)as a new technique of sample pre2treatment which can be used in combination with GC,HPL C and etc.The principle of SPM E and its performance technique,instrumentation,experimental methods,coatings,influential factors are introduced systematically.The progress and trends in f uture applications are also considered(39ref.cited).K eyw ords:Solid phase micro2extraction;Extraction without organic solvents;Sample pretreatment 固相微萃取技术(Solid Phase Micro2Ext rac2 tion,SPM E)是80年代末发展起来的一种新型无溶剂化样品前处理技术,最先由加拿大Waterloo大学的Art hur和Pawliszyn等[1]提出,1993年,美国Supelco公司推出了商业化的固相微萃取设备。

固相微萃取原理

固相微萃取原理

固相微萃取原理
固相微萃取(SPE)是一种用于样品前处理的技术,它在分析化学领域中得到
了广泛的应用。

固相微萃取的原理是利用固相萃取材料对目标化合物进行选择性吸附和脱附,从而实现对样品的富集和净化。

这种方法具有操作简便、富集效果好、消耗少量有机溶剂等优点,因此在环境监测、食品安全、药物分析等领域得到了广泛的应用。

固相微萃取的原理基于化学吸附和脱附过程。

在固相微萃取过程中,样品溶液
首先通过固相萃取柱,目标化合物会与固相材料发生化学吸附,而其他干扰物质则会被排除。

接着,通过改变溶剂的极性或pH 值等条件,使得目标化合物发生脱附,从而得到富集的目标化合物。

固相微萃取的原理主要包括亲合吸附、离子交换、疏水相互作用等。

亲合吸附
是指固相萃取材料与目标化合物之间存在化学亲和力,从而实现选择性吸附。

离子交换则是利用固相材料上的功能基团与溶液中的离子发生反应,实现目标离子的选择性吸附。

疏水相互作用则是通过固相材料的疏水性实现对目标化合物的富集。

固相微萃取的原理虽然简单,但在实际应用中需要根据样品的特性选择合适的
固相材料、溶剂和萃取条件。

固相微萃取技术的发展也在不断完善,例如固相萃取柱的材料不断更新,新型固相萃取材料的研发等,为该技术的应用提供了更多的选择。

总的来说,固相微萃取技术以其简便、高效、环保的特点,成为了样品前处理
中的重要手段。

通过对固相微萃取原理的深入理解,可以更好地应用该技术于实际分析中,为分析化学领域的发展提供更多可能性。

药物分析中的固相微萃取技术应用

药物分析中的固相微萃取技术应用

药物分析中的固相微萃取技术应用随着现代医药科学的不断发展,药物的研究和分析工作也变得越来越重要。

药物分析的关键是提取和检测目标物质,而固相微萃取技术(Solid Phase Microextraction, SPME)作为一种快速、高效的样品前处理方法,在药物分析领域中得到了广泛的应用。

本文将介绍固相微萃取技术在药物分析中的应用,并探讨其在该领域中的优势和未来发展。

一、固相微萃取技术的原理和方法固相微萃取技术是一种基于活性固相吸附剂的分析方法,其原理是利用具有吸附性能的固相材料从样品中吸附目标化合物,然后通过热解析或溶解脱附,将目标化合物转移至分析仪器中进行定量分析。

一般来说,固相微萃取技术主要包括直接注射法、固相内标法和固相封闭容器法等。

其中,直接注射法是指将样品直接吸附于固相材料上,然后通过吸热解析或溶解脱附将目标化合物引入检测仪器;固相内标法则是在微萃取过程中同时引入内标化合物,通过内标化合物与目标化合物的相对峰面积比值进行定量分析;固相封闭容器法是将样品与固相材料密封在一个容器中,通过吸附和脱附的循环过程提高分析效率。

二、固相微萃取技术在药物分析中的应用1.药物残留分析固相微萃取技术在药物残留分析中有着广泛的应用。

传统的药物残留分析方法通常需要复杂的操作步骤和大量的有机溶剂,而固相微萃取技术可以在不使用有机溶剂的情况下,通过简单的操作步骤并且具有良好的选择性和灵敏度,实现对药物残留的准确分析。

例如,可以利用固相微萃取技术对食品中的抗生素残留进行检测,有效保障食品安全。

2.药物代谢物分析药物代谢物是药物在体内转化过程中产生的化合物,对了解药物的代谢动力学和药效学具有重要意义。

固相微萃取技术可以有效地对药物代谢物进行富集和预处理,提高代谢物的检测灵敏度。

例如,可以利用固相微萃取技术对尿液中的代谢产物进行分析,从而了解药物在人体内的代谢过程。

3.药物含量测定固相微萃取技术还可以用于药物含量的测定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固相微萃取(SPME)技术综述2010级分析化学专业杜亚辉作为一种较新的样品前处理技术,固相微萃取技术(SPME)具有操作简单、快速,集采样、萃取、浓缩和进样于一体等诸多优点,目前已被广泛应用。

下面详细阐述了SPME的技术原理、操作流程、影响因素、应用领域和新的进展。

固相微萃取(Solid-phase microextraction,SPME)是一项新型的无溶剂化样品前处理技术。

固相微萃取以特定的固体(一般为纤维状萃取材料)作为固相提取器将其浸入样品溶液或顶空提取,然后直接进行GC、HPLC等分析。

SPME由Pawliszyn在1989年首次报道,近10年来固相微萃取技术已成功应用于气体,液体及固体样品的前处理[2]。

1.1 固相微萃取技术及原理固相微萃取法是以固相萃取为基础发展起来的方法,固相微萃取利用了固相萃取吸附的几何效应,其装置结构的超微化决定了它能避开经典固相萃取的许多弱点。

固相微萃取技术多在一根纤细的熔融石英纤维表面涂布一层聚合物并将其作为萃取介质(萃取头),再将萃取头直接浸入样品溶液(直接浸没-固相微萃取方法,简称DI-SPME)或采用顶空-固相微萃取方法(HS-SPME)采样[8]。

由于聚合物涂层的种类很多,因而可对样品组分进行选择性富集和采集,固相微萃取的原理是一个基于待测物质在样品及萃取涂层中分配平衡的萃取过程[3]。

固相微萃取利用表面未涂渍或涂渍吸附剂的熔融石英纤维或其它纤维材料作为固定相,当涂渍纤维暴露于样品时,根据“相似相溶”原理,水中或溶液中的有机物以及挥发性物质,从试样基质中扩散吸附在萃取纤维上逐渐浓缩富集。

萃取时,被测物的分布受其在样品基质和萃取介质中的分配平衡所控制,被萃取量(n)与其他因素的关系可以用下式描述: n=kV f C0V s/(kV f+ V s) 式中:k为被测物在基质和涂层间的分配系数,V f和V s分别为涂层和样品的体积,C0为被测物在样品中的浓度。

如果样品体积很大时(VskV f)上式可以简化成: n=kV f C0萃取的被测物量与样品的体积无关,而与其浓度呈线性关系,因而从分析结果中得到的萃取纤维表面的吸附量,就能算出被萃取物在样品中的含量,可方便地进行定量分析[1]。

1.2 固相微萃取操作条件的选择萃取头的构成应由萃取组分的分配系数、极性、沸点等参数来确定,在同一个样品中,因萃取头的不同可使其中一个组分得到最佳萃取而使其他组分受到抑制。

平衡时间往往由众多因素所决定,如分配系数、物质扩散速度、样品基质等。

此外,温度、离子浓度、样品的搅拌效率和pH值等因素都可影响萃取效率[1]。

1.3 影响固相微萃取萃取率的因素1.3.1 萃取头的种类及膜厚固相微萃取的核心部分-萃取头材料特性或涂层的种类和厚度对灵敏度的影响最为关键,因此,对其选择要十分慎重。

目前,世界上已有七种商品萃取头问世,固定相可分为非键合型、键合型、部分交联型以及交联型四种。

非键合型固定相对于某些水溶性有机溶剂是稳定的,但是当使用非极性有机溶剂时会引起轻度溶胀现象。

对于键合型固定相,除了某些非极性溶剂以外,对所有的有机溶剂均很稳定。

部分交联型固定相在大多数水溶性有机溶剂和某些非极性有机溶剂中很稳定。

高度交联固定相类似于部分交联固定相,只不过在同一交联中心产生了多个交联键[4]。

最常用的也是最早使用的高分子涂层材料为聚二甲基硅氧烷(PDMS)和聚甲基丙烯酸甲酯(PA)。

其中,100μm的PDMS适用于分析低沸点、低极性物质,7μm的PDMS适用于分析中沸点及高沸点物质,PA适用于分析强极性物质。

以后,又陆续出现了聚酰亚胺、聚乙二醇等涂层材料。

混合固定相应用也较广泛,如聚乙二醇——膜板树脂,聚乙二醇——二乙烯基苯,聚二甲基硅氧烷——模板树脂以及环糊精等。

为了开发聚合物的导电性质,一些科学家还尝试用聚砒咯涂层来萃取极性甚至离子型待测物。

此外,还开发了纤维双液相涂层,它可以克服单一液相涂层萃取有机化合物范围狭窄的缺点,萃取范围更广,是目前研究和发展的趋势和方向。

萃取头涂层越厚,对待测物吸附量越大,可降低最低检出限。

但涂层越厚,所需平衡萃取时间越长,使分析速度减慢。

因此,应综合考虑各种情况。

1.3.2 萃取时间萃取时间即萃取达到平衡所需的时间由待分析物的分配系数、物质的扩散速率、样品基质、样品体积、萃取头膜厚等因素决定。

一般萃取过程均在刚开始时吸附量迅速增加,出现一转折点后上升就很缓慢。

因此,可根据实际操作目的对灵敏度的需求不同,适当缩短萃取时间。

1.3.3 搅拌和加热在萃取过程中对样品进行搅拌和加热有助于样品均一化,缩短平衡时间。

对顶空固相微萃取(HS-SPME)加热可提高液面上易挥发有机化合物的浓度,而提高萃取效率。

1.3.4 无机盐向样品中加入(NH4)2SO4,Na2SO4,NaCl和K2CO3等无机盐可降低有机化合物与基质的亲和力而提高萃取效率。

1.3.5 pH缓冲溶液萃取酸性或碱性物质时,通过调节样品的pH值可改善组分的亲脂性,从而大大提高萃取效率。

1.4 固相微萃取操作模式根据被分析样品的物理性质和状态,进行固相微萃取时可以采取不同的操作方式,常见的操作方式有如下三种。

1.4.1 固相微萃取直接法将固相微萃取的纤维头直接浸入水相或暴露于气体中进行萃取的方法称为SPME直接法,对于气体样品或较干净的水样,能在1min内迅速达到萃取平衡,因而常使用直接固相微萃取模式[5]。

1.4.2 顶空固相微萃取法把萃取头置于待分析物样品的上部空间进行萃取的方法叫做固相微萃取顶空法。

这种方法只适于被分析物容易逸出样品进入上部空间的挥发性分析物,对黏度大的废水、体液、泥浆或固体样品,则只能采用上空取样的顶空固相微萃取模式,萃取从基质中释放到样品上空的化合物。

1.4.3 衍生化固相微萃取法通过衍生化作用来降低极性化合物的极性后进行固相微萃取的方法叫做衍生化固相微萃取法,极性化合物通过在其水溶液基质中加入衍生剂或将纤维涂层浸入适当的衍生化试剂被衍生后进行萃取,衍生化后极性分析物极性降低,萃取后更适于色谱分析[7]。

1.5 固相微萃取与其它分析方法相结合固相微萃取萃取待测物可与气相色谱(GC)、液相色谱(LC)等分析分离技术联用进行分离[3]。

使用的检测器可以是质谱(MS)、氢火焰离子化检测器(FID)、火焰光度检测器(EPD)、电子捕获检测器(ECD)、原子发射光谱检测器(AED)、紫外光谱(UV)、红外光谱(IR)等[9]。

1.6 固相微萃取的应用固相微萃取法(solid phasemicroextraction, SPME)技术是一种无溶剂的样品处理技术,实现了样品的吸附浓缩和解析、进样于一体,几乎不产生二次污染,它是以固相萃取为基础发展起来的新方法[3]。

固相微萃取是一种新型的无溶剂萃取技术,用一个类似于气相色谱微量进样器的萃取装置在样品中萃取出待测物后直接与气相色谱(GC) 或高效液相色谱(HPLC)联用, 在进样口将萃取的组分解吸后进行色谱分离与分析检测。

可实现对多种样品的快速分离分析。

通过控制各种萃取参数 ,可实现对痕量被测组分的高重复性、高准确度的测定。

固相微萃取的特点[1](1)固相微萃取技术具有操作简单、分析时间短、样品用量小、重现性好等优点;(2)固相微萃取优于固相萃取的特点是质传递快,避免了堵塞,能够大幅度地降低空白值,缩短分析时间,操作步骤简单,只有样品在吸着剂和样品之间的分配作用以及浓缩分析物的脱附作用,同时SPME 不需要溶剂;(3)固相微萃取容易自动化以及与其它分析技术联用,不仅可与GC 联用,还能与HPLC 相联,从而扩大了SPME 技术在分析化学领域的应用范围;(4)固相微萃取无须使用有机溶剂,易于实现自动化,特别适合于在野外采样;(5)固相微萃取不是将待测物全部分离出来,而是通过样品与固相涂层之间的平衡来达到分离的目的;(6)固相微萃取可以萃取挥发性样品,如顶空固相微萃取法;与吹气捕集法相比, 它又可处理挥发性低的样品, 而且设备小巧, 不需额外面积与空间。

固相微萃取的过程[1]固相微萃取是一个基于待测物质在样品及萃取涂层中的平衡分配的萃取过程,SPME 的萃取模式可分为三种:(1)直接法:即将石英纤维暴露在样品中,主要用于半挥发性的气体、液体样品萃取;(2)顶空法:将石英纤维放置在样品顶空中,主要用于挥发性固体或废水水样萃取;(3)膜方法:将石英纤维放在经过微波萃取及膜处理过的样品中,主要用于难挥发性复杂样品萃取。

方法分为萃取过程和解吸过程两步:(如下图)(1)萃取过程:将萃取器针头插入样品瓶内, 压下活塞, 使具有吸附涂层的萃取纤维暴露在样品中进行萃取, 经一段时间后, 拉起活塞, 使萃取纤维缩回到起保护作用的不锈钢针头中,然后拔出针头完成萃取过程。

(2)解吸过程:在气相色谱分析中采用热解吸法来解吸萃取物质。

将已完成萃取过程的萃取器针头插入气相色谱进样装置的气化室内, 压下活塞, 使萃取纤维暴露在高温载气中,并使萃取物不断地被解吸下来, 进入后序的气相色谱分析。

1.6.1 固相微萃取在有机金属形态分析中的应用[12]固相微萃取步骤(a )SPME 萃取过程 (b )SPME 解吸过程1.刺穿样品瓶盖2.暴露出纤维/萃取3.缩回纤维/拔出萃取器4.插入GC 气化室5.暴露出纤维/解吸6.索贿纤维/拔出萃取器样品预处理对于得到准确而又重现性好的分析结果非常重要。

在进行形态分析时,为保证样品中各种形态在样品预处理过程中不发生变化,一般需要采用较为温和的消化或浸提的方法将待测有机金属化合物释放到液相中,常用的有酸/碱(常用HCl)浸提、微波或超声波辅助消化、CO2超临界流体萃取等技术,浸提法简便但结果的准确性难以考证,后几种方法需要借助于其它仪器,操作不便,费用较高。

固相微萃取用于样品中金属及有机金属形态分析是最近几年才开始,其应用具有很大的潜力。

将SPME用于有机金属的分析最早是由Cai Y 等人于1994年在第十六届国际毛细管色谱大会上提出的,将SPME用于鱼体和水样中汞及水体中的有机锡的萃取,降低了测定的检测限,但精密度差,RSD在24.1~68.8之间。

1995年报导了汞及甲基汞中加人四乙基硼化钠衍生,而后由SPME萃取,GC-MS进行测定的方法。

从此,SPME用于各种有机金属的萃取方法逐渐建立。

Tutschku等研究了环境样品中有机锡和有机铅的萃取方法,Tadeusz Gorecki和Janusz Pawliszyn用SPME-GC测定了水中四乙基铅及无机物。

Dumemann等人将SPME用于烷基铅、汞、锡的分离,样品被消化和分解后加入四乙基硼化钠衍生(pH值在4~5)以提高分析物的挥发性,10min后室温下将SPME萃取头放在样品的上部空间。

相关文档
最新文档