因数和倍数奥数题及标准答案(有难度)

合集下载

小学奥数题库《数论》因数和倍数-倍数-1星题(含解析)

小学奥数题库《数论》因数和倍数-倍数-1星题(含解析)

数论-因数和倍数-倍数-1星题课程目标知识提要倍数•定义对于整数a和b,如果a∣b,我们就称b是a的倍数。

精选例题倍数1. 有n个自然数相加:1+2+⋯+n=aaa,那么a=.【答案】36【分析】1+2+3+⋯+n=(1+n)n÷2=111a,(1+n)n=2×3×37×a,a取1~9.n 和n+1中有一个是37的倍数,如果n=37k,那么37k2+k=6a⩽54,所以k=1,此时a不是整数.只有n+1=37k,那么37k2−k=6a,同样地k只能能取1,此时a=6.所以n= 36.2. 2021年3月11日,日本发生里氏9级大地震.在3月15日,日本本州岛东海岸附近海域再次发生5级地震.里氏地震级数每升2级,地震释放能量扩大到原来的1000倍,那么3月11日的大地震释放能量是3月15日东海岸地震的倍.【答案】1000000【分析】1000×1000=10000003. 一个四位数2abc扩大3倍后,变成了abc8,这个四位数是.【答案】2856【分析】根据题意,c×3的个位数字是8,知道c=6,b×3的个位数字是6−1=5,所以b= 5,a×3的个位数字是5−1=4,所以a=8,因此这个四位数是2856.4. 阿凡达有一个出了故障的计算器.当翻开电源时,视窗上显示数字0.如果按下“+〞键那么它会加上51;按下“−〞键那么它会减去51;按下“×〞键那么它会加上85;按下“÷〞键那么它会减去85;而其他的按键那么无效.阿凡达翻开计算器电源,任意操作上述按键,那么他可以得到最接近2010的数是.【答案】2006【分析】该题关键在于发现51与85均为17的倍数,因为初始显示是0,那么不管怎么按+,−,×,÷四个按键,得到的一定是17的倍数,而最接近2010的17的倍数为2006,并且2006= 17×118是可以操作出来的.如按23次“×〞键,再按一次“+〞键.5. 〔1〕1~1000中有个3的倍数.〔2〕1~100中有个是2的倍数也是3的倍数的数.【答案】〔1〕333;〔2〕67【分析】〔1〕高斯记号作为“记号〞的应用实例,[1000÷3]=333;〔2〕2的倍数的个数:[100÷2]=50;3的倍数的个数:[100÷3]=33;6的倍数的个数:[100÷6]=16;所以50+33−16=67.6. abc是三位数,假设a是奇数,且abc是3的倍数,那么最小是.【答案】102【分析】a为奇数,且要求最小,那么a=1,b=0.又要求为3的倍数,那么a+b+c为3的倍数,所以b=0,c=2.7. 一个五位数恰好等于它各位数字和的2007倍,那么这个五位数是多少?【答案】36126;54189【分析】这个五位数是abcde,那么abcde=(a+b+c+d+e)×2007.因2007=3×3×223=9×223,所以abcde是9的倍数,那么数字和也是9的倍数,(a+b+ c+d+e)数字和的可能是:9、18、27、36、45.逐一试验.数字和是9,那么数是:2007×9=18063,不符;数字和是18,那么数是:2007×18=36126,符合;数字和是27,那么数是:2007×27=54189,符合;数字和是36,那么数是:2007×36=72252,不符;数字和是45,那么数是:2007×45=90315,不符.8. 在算式“路亨+路亨=刘吉吉〞中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.刘吉吉是8的倍数,那么四位数亨吉刘路是多少?【答案】2417【分析】易知“刘是〞1,且“吉〞是偶数.那么“刘吉吉〞可能是100、122、144、166、188.其中只有144是8的倍数.那么算式应该是72+72=144,要求的四位数是2417.9. 以下哪些数是2的倍数?哪些是3的倍数?哪些是5的倍数?12 46 60 120 35 320 42 165 3120【答案】见解析.【分析】2的倍数:12 46 60 120 320 42 3120;3的倍数:12 60 120 42 165 3120;5的倍数:60 120 35 320 165 3120.10. 在算式12×23▫=▫32×21的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.【答案】12×231=132×21【分析】21有质因数7,所以23▫应该是7的倍数,只能填1或8,经检验,应填1.11. 在1、2、3、4、⋯、2002、2003这2003个自然数中,〔1〕最多可以取出多少个数,使得其中任意两个数的和都是160的倍数?〔2〕写出你所取的所有数.【答案】〔1〕13〔2〕80,240,400,560,720,880,1040,1200,1360,1520,1680,1840,2000【分析】因为选出的数中任意两个数的和都是160的倍数,那么有两种情况,第一种:这些数都是160的倍数,第二种:这些数除以160的余数都是80.从1~2003之间,满足第一种情况]=12个.满足第二种情况的数共有13个,所以最多为13个.的数共有[200316012. 一个三位数恰好等于它各位数字和的27倍,那么这个三位数是多少?【答案】243;486【分析】这个四位数是abc,那么abc=(a+b+c)×27.因27=3×3×3=9×3,所以abc是9的倍数,那么数字和也是9的倍数,(a+b+c)数字和的可能是:9、18、27、36、45.逐一试验.数字和是9,那么数是:27×9=243,符合;数字和是18,那么数是:27×18=486,符合;数字和是27,那么数是:27×27=729,不符;13. 从1~10这10个自然数中,每次取出两个不同的自然数,使它们的和是5的倍数.一共有多少种不同的取法?【答案】9【分析】从1~10这10个自然数中,每次取出两个不同的自然数有10×9÷2=45种,和是5的倍数有三类可能,第一类,和是5,有1+4,2+3;第二类,和是10,是5的2倍数,有1+9,2+8,3+7,4+6;第三类,和是15,是5的3倍数,有5+10,6+9,7+8,把它们的数加起来共9种.14. 一个四位数恰好等于它各位数字和的207倍,那么这个四位数是多少?【答案】3726;5589【分析】这个四位数是abcd,那么abcde=(a+b+c+d)×207.因207=3×3×23=9×23,所以abcd是9的倍数,那么数字和也是9的倍数,(a+b+c+ d)数字和的可能是:9、18、27、36、45.逐一试验.数字和是9,那么数是:207×9=1863,不符;数字和是18,那么数是:207×18=3726,符合;数字和是27,那么数是:207×27=5589,符合;数字和是36,那么数是:207×36=7452,不符.15. 如图,点B 是正方形一条边上的四等分点.连结AB 、BC ,点D 、E 又是AB 、BC 的四等分点,连结CD 、DE .如果正方形边长为24厘米,那么:〔1〕三角形ABC 的面积是多少?〔2〕三角形CDE 的面积是多少?【答案】〔1〕288平方厘米;〔2〕162平方厘米.【分析】〔1〕△ABC 的面积是正方形面积的一半,即242÷2=288(平方厘米); 〔2〕△BCD 的面积是△ABC 面积的34,即34×288=216(平方厘米); △CDE 的面积是△BCD 面积的34,即 34×216=162(平方厘米). 16. 〔1〕1~100中有个是3的倍数也是5的倍数的数.〔2〕计算{1÷5}+{2÷5}+{3÷5}+⋯+{19÷5}+{23÷5}.【答案】〔1〕47;〔2〕9.2【分析】〔1〕3的倍数的个数:[100÷3]=33;5的倍数的个数:[100÷5]=20;15的倍数的个数:[100÷15]=6;所以33+20−6=47.〔2〕一共有23÷5=4⋯⋯3.原式=(0.2+0.4+0.6+0.8+0)×4+0.2+0.4+0.6=9.2. 17. 猜猜看小侦探柯楠在侦破一个案件的时候,发现与案件有关的一个保险箱设有一个六位数的密码是:A B C D E F他又发现主人为了防范忘记密码在自己的日记本中做了如下的提示,A 是5的最大因数,B 的所有因数是1,2,4,8,C 是最小的自然数.D 只有一个因数,E 既是质数,又是偶数,F 既是9的因数又是9的倍数.你能帮助小侦探找到密码翻开这个保险箱吗?并说明你推理的理由是什么?【答案】580129;理由见解析.【分析】A 是5的最大因数,因为5的最大因数是5,所以A 是5;B 的所有因数是1,2,4,8,根据一个数最大的因数是它本身,可知B 是8;C 是最小的自然数,最小的自然数是0,所以C 是0;D 只有一个因数,是1;E 是2;F 既是9的因数又是9的倍数,所以F 是9;由此即可写出答案.。

五年级奥数春季实验班第7讲 数论综合之高难度因数与倍数问题

五年级奥数春季实验班第7讲 数论综合之高难度因数与倍数问题

第七讲数论综合之高难度因数与倍数问题模块一、因数与倍数的综合问题例1.对于正整数a 、b ,[a ,b ]表示最小公倍数,(a ,b )表示最大公约数,求解下列关于未知数m ,n 的方程:[,]55 (,)[,](,)70 m n m n m n m n m n m n ⎧++=⎪⎪⎪-=⎨⎪>⎪⎪⎩①②③。

解:设m =ap ,n =bp ,a ,b 互质,则[m ,n ]=abp ,(a ,b )=p ,则5570ab ap bp abp p ++=⎧⎨-=⎩,由p ×(ab −1)=70,所以p |70,70=2×5×7,若p =2,则ab =36,a ≠b ,得a =12,b =3,代入①式矛盾,舍去;若p =7,则ab =11,a ≠b ,得a =11,b =1,代入①式矛盾,舍去;若p =5,则ab =15,a ≠b ,得a =5,b =3,于是m =25,n =15,[m ,n ]=75,(m ,n )=5,所以原方程的解是2515m n =⎧⎨=⎩。

例2.n 为非零自然数,a =8n +7,b =5n +6,且最大公约数(a ,b )=d >1,求d 的值。

解:用辗转相除的方法,(8n +7,5n +6)=(3n +1,5n +6)=(3n +1,2n +5)=(n −4,2n +5)=(n −4,n +9)=(13,n +9), 所以(a ,b )=13.例3.M n 为1、2、3、……、n 的最小公倍数,对于样的正整数n ,M n −1=M n 。

解:如果n 是一个合数,且n 不是某一整数的k 次方,则M n −1=M n 。

因为n 是一个合数,所以n =a ×b ,a ,b 都小于n ,且a 、b 互质,于是a <n −1,b <n −1,所以a |M n −1,b |M n −1,于是(a ×b )|M n −1,所以M n −1=M n 。

五下__第二单元因数和倍数能力提高题和奥数题(附答案)

五下__第二单元因数和倍数能力提高题和奥数题(附答案)

五下__第⼆单元因数和倍数能⼒提⾼题和奥数题(附答案)第⼆单元因数与倍数提⾼题和奥数题板块⼀因数和倍数例题1.⼀个数在150⾄250之间,且是18的倍数,这个数可能是多少?最⼤是多少?练习1.⼀个数是25的倍数,它位于110⾄160之间,这个数是多少?例题2.有⼀个数,它是40的因数,⼜是5的倍数,这个数可能是多少?练习2.既是7的倍数,⼜是42的因数,这样的数有哪些?例题3.妈妈买来30个苹果,让⼩明把苹果放⼊篮⼦⾥。

不许⼀次拿完,也不许⼀个⼀个地拿,要每次拿的个数相同,拿到最后正好⼀个不剩。

⼩明共有⼏种拿法?每种拿法每次各拿多少个?练习3.五(1)班有学⽣42⼈,把他们平均分成⼏个学习⼩组,每组多于2⼈且少于8⼈。

可以分成⼏个⼩组呢?板块⼆ 2、5、3的倍数的特征例题1.⼀个五位数29ABC(A、B、C是0~9中不同的数字)同时是2、5、3的倍数,这个数可能是多少?练习1.在17的后⾯添上三个数字组成五位数,使这个五位数既是偶数,⼜同时含有因数3和5。

这个五位数最⼤是多少?最⼩是多少?例题2.5□□0是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最⼩是多少?最⼤是多少?练习2.4□□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最⼩是多少?最⼤是多少?板块三奇数和偶数例题1.⼀只⼩船每天从河的南岸摆渡到北岸,再从北岸摆渡到南岸,不断往返。

已知⼩船最初在南岸。

(1)摆渡15次后,⼩船是在南岸还是在北岸?为什么?(2)⼩明说摆渡2016次后,⼩船在北岸。

他说得对吗?为什么?练习1.傍晚⼩亮开灯做作业,本来拉⼀次开关,灯就该亮了,但是他连续拉了5次开关,灯都没有亮,原来是停电了。

你知道来电的时候,灯应该亮着还是不亮呢?例题2.有36个苹果,把它们放在9个盘⼦⾥,每个盘⼦⾥只放奇数个苹果,能做到吗?练习2.(1)1×2+3×4+5×6+…+199×200的和是奇数还是偶数?(2)有2016个烟花,每次燃放奇数个,想在9次后恰好全部放完,能做到吗?为什么?例题3.桌⼦上放着5个杯⼦,全部是杯底朝上,如果每次翻动2个杯⼦,称为⼀次翻动,经过多次翻动能使5个杯⼦的杯⼝全部朝上吗?如果每次翻动3个杯⼦呢?练习3.如家宾馆现在有10间客房的灯开着,每次同时拨动4个房间的开关,能不能把这10个房间的灯全部关闭?如果能,⾄少需要⼏次?板块四质数和合数例题1.三个不同质数的和是82,这三个质数的积最⼤是多少?练习1.(1)两个质数的和是⼩于100的奇数,并且是11的倍数,这两个质数可能是什么数?(2)两个质数的和是2001,这两个质数的积是多少?(3)⼀个长⽅形的长和宽都是质数,并且周长是36厘⽶,这个长⽅形的⾯积最⼤是多少?例题2.⽤0、1、4、5这四个数字组成两个质数,每个数字只能⽤⼀次,求这两个质数。

小学奥数题库《数论》因数和倍数-最小公倍数-3星题(含解析)

小学奥数题库《数论》因数和倍数-最小公倍数-3星题(含解析)

数论-因数和倍数-最小公倍数-3星题课程目标知识提要最小公倍数•定义公倍数就是几个数公共的倍数。

最小公倍数就是其中最小的公倍数。

•求最小公倍数的方法〔1〕枚举法〔2〕分解质因数法〔3〕短除法〔4〕公式法•最小公倍数的性质〔1〕两个数的任意公倍数都是它们最小公倍数的倍数;〔2〕两个互质的数的最小公倍数是这两个数的乘积;〔3〕两个数具有倍数关系,那么它们的最大公因数是其中较小的数,最小公倍数是较大的数.精选例题最小公倍数1. 一次考试,参加的学生中有 17 得优,14 得良,13 得中,其余的得差,参加考试的学生不满 100 人,那么得差的学生有 人.【答案】 23【分析】 由题意“参加的学生中有 17 得优,14 得良,13 得中〞,可知参加考试的学生人数是 7,4,3 的倍数,因为 7,4,3 的最小公倍数为 84〔小于 100 人〕,所以参加的学生总数为 84 人.那么得差的学生有:84−12−21−28=23(人).2. 两个自然数的最大公约数是 100,最小公倍数是 20100,这两个自然数的差是 6400,那么这两个自然数的和是 .【答案】 7000【分析】 详解:设这两个自然数分别为 100x 和 100y(x >y),那么 (x,y)=1,[x,y]=xy =20100÷100=201,x −y =6400÷100=64.只能是 x =67,y =3,两个自然数分别是 6700 和 300,它们的和是 7000.3. 一个自然数,它是 3 和 7 的倍数,并且被 5 除余 2,满足这些条件的最小的自然数是 .【答案】 42【分析】 3 和 7 的最小公倍数是 21,21 的倍数中满足被 5 除余 2 的最小数为 42.4. x 是最简真分数,假设它的分子加 a ,化简得 13;假设它的分母加 a ,化简得 14,那么 x = .【答案】 415【分析】 由题可知,对于两种变化而言,分子分母之和相等,第一次变化和为1+3=4,第二次变化和为1+4=5,因 4 和 5 的最小公倍数是 20,故13=515,14=416, 因此x =415.5. 自然数 a,b 之差为 120,它们的最小公倍数是其最大公因数的 105 倍,那么 a,b 中较大的值是 .【答案】 225【分析】 设 (a,b)=d ,那么有 a =md,b =nd ,且 (m,n)=1.由题意,得 md −nd =(m −n)d =120,mnd =105d ,即 (m −n)d =120,mn =105.105=3×5×7,所有 m,n 有下面四组不同组合;105,1;35,3;21,5;15,7.因为 (m −n) 是 120 的因数,120=23×3×5,上面四组只有 15−7=8 是 120 的因数,所以 m =15,n =7,d =120÷(m −n)=15.a,b 中较大的数是 a ,它的值 md =15×15=225.6. 一个自然数,它是 5 和 7 的倍数,并且被 3 除余 1,满足这些条件的最小的自然数是 种.【答案】 70【分析】 5 和 7 的最小公倍数是 35,35 的倍数中满足被 3 除 余 1 的最小数为 70.7. 某个三位数是 2 的倍数,加 1 是 3 的倍数,加 2 是 4 的倍数,加 3 是 5 的倍数,加 4 是 6 的倍数,那么这个数最小为 .【答案】 122【分析】 这个三位数减去 2 得到 3、4、5、6 的公倍数,取三位数 120,所以最小值为 122.8. 某些整数分别被 35,57,79,911 除后,所得的商化作带分数时,分数局部分别是 25,27,29,211,那么满足条件且大于 1 的最小整数是 .【答案】 3466【分析】 设最小整数为 A ,分别被 57,79,911,1113 除后,所得的商分别为 75A ,97A ,119A ,1311A 那么75A =1+25+75(A −1),97A =1+27+97(A −1),119A =1+29+119(A −1), 1311A =1+211+1311(A −1). 显然,当 A −1=[5,7,9,11] 的时候满足题意,所以 A −1=3465,A =3466.9. 两个数的最大公约数和最小公倍数分别是 3 和 135,那么这两个数的差最小是 .【答案】 12【分析】 最大公约数和最小公倍数分别是 3 和 135,135÷3=45,45=3×3×5,差最小是3×(9−5)=12,那么这两个数的差最小是 12.10. A 数有 7 个因数,B 数有 12 个因数,且 A 、B 的最小公倍数 [A,B]=1728,那么 B =【答案】 108【分析】 1728=26×33,所以 A 、B 质因数只能有 2 和 3,又由于 A 有 7 个因数,而 7 是一个质数,所以 A 分解质因数的形式只能有 A =26,设 B =2k ×33, 那么(k +1)×(3+1)=12,得 k =2,所以B =22×33=108.11. a 和 b 的最大公约数是 4,a 与 b 及 b 与 c 的最小公倍数都是 100,而且 a 小于等于 b ,那么满足条件的有序自然数对 (a,b,c) 共有 组.【答案】 9【分析】(a,b)=4,[a,c]=100=22×52,[b,c]=100=22×52,a⩽b,a可以是4或20或100,b可以是4或20或100,c可以是25或50或100;枚举如下:当a=4,b=4,c=25或50或100都成成立,有3种情况;当a=4,b=20,c=25或50或100都成成立,有3种情况;当a=4,b=100,c=25或50或100都成成立,有3种情况;故共有9种情况.12. 大于0的自然数n是3的倍数,3n是5的倍数,那么n的最小值是.【答案】15【分析】因为3n是5的倍数,所以n也是5的倍数,那么n是3和5的共同倍数,那么n 最小为15.13. 有一根长240厘米的木棒,先从左端开始每隔7厘米划一条线,再从右端开始每隔6厘米划一条线,并且从划线处截断木棒,那么所截得得小木棒中,长度是3厘米的木棒有根【答案】12【分析】240刚好能被6整除,所以“从右端开始每隔6厘米划一条线〞等价于“从左端开始每隔6厘米划一条线〞,6跟7的最小公倍数为42,所以每42厘米一个周期.分析一个周期的截口长度:端点,6米,7厘米,12厘米,14厘米,18厘米,21厘米,24厘米,28厘米,30厘米,35厘米,36厘米,42厘米.21−18=3(厘米),24−21=3(厘米),所以一个周期有2段3厘米的木棒.240÷42=5(组)⋯⋯30(厘米),5组里面共有5×2=10(段).余下的30厘米中,还有2段3厘米的.故共有10+2=12段3厘米的木棒.14. 有一箱苹果,甲班分,每人3个还剩10个;乙班分,每人4个还剩11个;丙班分,每人5个还剩12个.那么这箱苹果至少有个.【答案】 67【分析】 10≡1 (mod 3)=1,11≡3 (mod 4)=3,12≡2 (mod 5)=2,苹果数除以 3 余 1,除以 4 少 1,除以 5 多 2.满足除以 3 余 1,除以 4 少 1 的数最小是 7,7 刚好除以 5 余 2,有因为苹果数大于 12.设苹果总数为 N ,N −7=[3,4,5]=60,N =67.15. —个自然数被 3 除余 2,被 5 除余 4,并且这个数大于 100 且小于 125,那么这个数是 .【答案】 104 或 119【分析】 被 3 除余 2,被 5 除余 4,求出 3 和 5 的最小公倍数 15,估算 15 的哪一个倍数大于 100 小于 125,经计算可知,105 和 120 介于 100 到 125 之间,再用 105 和 120 分别减 1 即可,这个自然数是 104 或 119.16. 两个自然数的最小公倍数是 60,最大公约数是 6,这两个数的和是 42,那么这两个数的差是 .【答案】 18【分析】 详解:由最大公约数是 6,可设这两个数分别为 6x 和 6y(x ⩾y,且x,y 互质),那么x ×y =60÷6=10,x +y =42÷6=7,不难看出 {x =5y =2,所以两个自然数分別为 30 和 12,差为 18.17. 甲、乙两数的最小公倍数是 170,甲、丙两数的最小公倍数是 204,乙、丙两数的最小公倍数是 60,那么甲、乙、丙三个数的和最小是 .【答案】 39【分析】 详解:从约数方面考虑,甲既要是 170 的约数,又要是 204 的约数,所以甲是 (170,204)=34 的约数;类以的,乙是 10 的约数,丙是 12 的约数.另一方面,甲、乙的最小公倍数是 170,要求甲有约数 17,乙有约数 5,且甲、乙至少一个是 2 的倍数;甲、丙的最小公倍数是 204,说明丙一定是 12 的倍数,只能是 12,于是甲、乙、丙三个数的和最小是 17+5×2+12=39.18. 我国南宋数学家杨辉在其?续古摘奇算法?上记载了这样一个问题:“二数余一,五数余二,七 数余三,九数余四,问本数.〞用现代语言表述就是:“有一个数用 2 除余 1,用 5 除余 2,用 7 除余 3,用 9 除余 4,问这个数是多少?〞请将满足条件的最小的自然数写在这里 .【答案】157【分析】〔解法一〕先考虑除以5余2,除以7余3,除以9余4;用剩余定理得5×7×5+5×9×1+7×9×4=472[5,7,9]=315,故472±315k都符合除以5余2,除以7余3,除以9余4最小是472−315=157,且也符合除以2余1.〔解法二〕除以2余1的数有:1,3,5,7,9,11,13,15,17,⋯;除以5余2的数有:2,7,12,17⋯;除以7余3的数有:3,10,17⋯;所以满足“用2除余1,用5除余2,用7除余3〞的数的形式为[2,5,7]n+17=70n+17〔n为自然数〕此时只需要找一个最小的n,满足除以9余4即可.当n=2时,满足除以9余4,所以满足条件的最小的自然数为70⋯2+17=15719. 某班共有30名学生去看电影,他们的学号依次为1,2,⋯⋯,30;他们手中的电影票恰好为某排的1号,2号,⋯⋯,30号.现在按如下要求将电影票发给这些同学:对于任意两人甲、乙,假设甲的学号能被乙的学号整除,那么甲的电影票号码也能被乙的电影票号码整除.那么电影票共有种不同的发放方式.【答案】48【分析】1号学生有29人是其倍数,故1号学生只能拿1号电影票;2号学生有14人是其倍数,故2号学生只能拿2号电影票;3号学生有9人是其倍数,故3号学生只能拿3号电影票;4号学生有6人是其倍数,故4号学生只能拿4号电影票;5号学生有5人是其倍数,故5号学生只能拿5号电影票;6号学生有4人是其倍数,故6号学生只能拿6号电影票;7号学生有3人是其倍数,故7号学生只能拿7号电影票;8号学生必须是2号学生〔2〕的倍数,也必须是4号学生〔4〕的倍数,同时有2人是其倍数,综上,8号学生只能拿8号电影票;9号学生必须是3号学生〔3〕的倍数,还不能是6,同时有2人是其倍数,综上,9号学生只能拿9号电影票;10号学生必须是2号学生〔2〕的倍数,也必须是5号学生〔5〕的倍数,同时有2人是其倍数,综上,10号学生只能拿10号电影票;12号学生必须是3号学生〔3〕的倍数,也必须是4号学生〔4〕的倍数,同时有1人是其倍数,综上,12号学生只能拿12号电影票;同时24号学生只能拿24号电影票;14号学生必须是2号学生〔2〕的倍数,也必须是7号学生〔7〕的倍数,同时有1人是其倍数,综上,14号学生只能拿14号电影票;同时28号学生只能拿28号电影票;15号学生必须是3号学生〔3〕的倍数,也必须是5号学生〔5〕的倍数,同时有1人是其倍数,综上,15号学生只能拿15号电影票;同时30号学生只能拿30号电影票;之后的数,[2,9]=18,18 必拿 18 号,同时是 9 的倍数的 27 号只能拿 27;20=[4,5],20 必拿 20;21=[3,7],21 必拿 21 号;24=[3,8],24 必拿 24,同时是 8的倍数的 16 号只能拿 16;28=[4,7], 28 必拿 28;30=[5,6], 30 必拿 30,同时是 5 的倍数的 25 号只能拿 25 号.目前还没有确定的数有:11、22、13、26、17、19、23、29 号.11、22 互为一组成倍数,13、26 亦互为一组成倍数,有两种拿法:11 号拿 11,22 号拿 22,13 号拿 13,26 号拿 26;或 11 号拿 13,22 号拿 26,13 号拿 11,26 号拿 22.17、19、23、29 是大质数,没有限制,可随意拿,有 A 44=24(种) 拿法.故共有 2×24=48(种) 拿法.20. 在所有是 20 的倍数的自然数中,不超过 3000 并且是 14 的倍数的数之和是 .【答案】 32340【分析】 是 20 的倍数也是 14 的倍数,那么这些数是 [14,20]=140 的倍数.最小的是 0,最大的是 2940,有 (2940−0)÷140+1=22 个.所以这些数的和是(0+2940)×22÷2=32340.21. 动物园的饲养员给三群猴子分花生,如只分给第一群,那么每只猴子可得 12 粒;如只分给第二群,那么每只猴子可得 15 粒;如只分给第三群,那么每只猴子可得 20 粒.那么平均给三群猴子,每只可得多少粒?【答案】 5 粒【分析】 依题意得:花生总粒数 =12× 第一群猴子只数 =15× 第二群猴子只数 =20× 第三群猴子只数,由此可知,花生总粒数是 12,15,20 的公倍数,其最小公倍数是 60.花生总粒数是 60,120,180,⋯,那么:第一群猴子只数是 5,10,15,⋯;第二群猴子只数是 4,8,12,⋯;第三群猴子只数是 3,6,9,⋯;所以,三群猴子的总只数是 12,24,36,⋯ 因此,平均分给三群猴子,每只猴子所得花生粒数总是 5 粒.22. 有甲、乙、丙 3 人,甲每分钟行走 120 米,乙每分钟行走 100 米,丙每分钟行走 70 米.如果 3 个人同时同向,从同地出发,沿周长是 300 米的圆形跑道行走,那么多少分钟之后,3 人又可以相聚在跑道上同一处?【答案】 30【分析】 由题意知道:甲走完一周需要时间为 300÷120=52(分钟);乙走完一周需要时间为 300÷100=3(分钟);丙走完一周需要时间为 300÷700=307(分钟);那么三个人想再次相聚在跑道同一处需要时间为:[52,307,3]=[5,30,3](2,7,1)=301=30(分钟).23. 甲、乙两数的最小公倍数是60,乙、丙两数的最小公倍数是70,甲、丙两数的最小公倍数是84,那么甲数是多少?【答案】12【分析】简答:甲、乙两数的最小公倍数是22×3×5,乙、丙两个数的最小公倍数是2×5×7,甲、丙两数的最小公倍数是22×3×7,比照三个条件可知甲数为22×3=12.24. 15和35的最小公倍数是多少?25和150的最小公倍数是多少?15,25,35的最小公倍数是多少?【答案】105;150;525【分析】用短除法,得105.25是150的约数,所以最小公倍是150.15,25,35的最小公倍是525=5×(3×5×7).25. 三个正整数a、b、c,a与b,a与c,b与c的最小公倍数分别是5b、28和300,那么a 的值是多少?【答案】726. 甲、乙两个数的最小公倍数是90,乙、丙两个数的最小公倍数是105,甲、丙两个数的最小公倍数是126.请问:甲数是多少?【答案】18【分析】详解:90=2×32×5,105=3×5×7,126=2×32×7.首先可知这三个数的质因数只有2、3、5、7,而且甲中没有7,没有5;乙中没有2,没有7,最多有1个3.因为甲、乙的最小公倍数是90,而乙中没有2,最多有1个3,可以判断出甲中有1个2,2个3,甲是18.27. 有甲、乙、丙三个人在操场跑道上步行,甲每分钟走80米,乙每分钟走120米,丙每分钟走70米.操场跑道周长为400米,如果三个人同时同向从同一地点出发,问几分钟后,三个人可以首次相聚?【答案】40【分析】由题意,甲、乙、丙相聚时他们两两路程之差恰好是400米的倍数,甲和乙每分钟差120−80=40(米),那么需要400÷40=10(分钟)乙才能第一次追上甲;同理,乙每分钟比丙多走 120−70=50(米),那么需要 400÷50=8(分钟) 乙才能追上丙;同理,甲每分钟比丙多走 80−70=10(米),那么需要 400÷10=40(分钟) 甲才能追上丙;而想要三人再次相遇,所需的时间那么为 10,8,40 的公倍数.因为 [10,8,40]=40,所以三人相聚需要过 40 分钟,即 40 分钟后,三个人可以首次相聚.28. 一堆石子,2 个 2 个数余 1 个,3 个 3 个数余 2 个,5 个 5 个数余 4 个,这堆石子至少有多少个?【答案】 29【分析】 观察这些数,我们发现,如果再多一个石子,那么就可以被 2,3,5 整除.[2,3,5]=30.去掉那一个,这堆石子至少有 29 个.29. 两个自然数的和为 54,它们的最小公倍数与最大公因数的差为 114,求这两个自然数.【答案】 24,30【分析】 设这两个自然数分别是 ma 、mb ,其中 m 为它们的最大公因数,a 与 b 互质〔不妨设 a ⩽b 〕,根据题意有:{mb +ma =m(a +b)=54mab −m =m(ab −1)=114所以可以得到 m 是 54 和 114 的公因数,所以是 (54,114)=6 的因数.m =1,2,3或6.如果 m =1,由 m ×(a +b)=54,有 a +b =54;又由 m ×(ab −1)=114,有 ab =115. 115=1×115=5×23,但是 1+115=116≠54,5+23=28≠54,所以 m ≠1.如果 m =2,由 m ×(a +b)=54,有 a +b =27;又由 m ×(ab −1)=114,有 ab =58. 58=1×58=2×29,但是 1+58=59≠27,2+29=31≠27,所以 m ≠2.如果 m =3,由 m ×(a +b)=54,有 a +b =18;又由 m ×(ab −1)=114,有 ab =39. 39=1×39=3×13,但是 1+39=40≠18,3+13=16≠18,所以 m ≠3.如果 m =6,由 m ×(a +b)=54,有 a +b =9;又由 m ×(ab −1)=114,有 ab =20. 20 表示成两个互质的数的乘积有两种形式:20=1×20=4×5,虽然 1+20=21≠9,但是有 4+5=9,所以取 m =6 是适宜的,此时 a =4,b =5,这两个数分别为 24 和 30.30. 3 条圆形跑道,圆心都在操场中的旗杆处,甲、乙、丙 3 人分别在里圈、中圈、外圈沿同样的方向跑步.开始时,3 人都在旗杆的正东方向,里圈跑道长 15 千米,中圈跑道长 14 千米,外圈跑道长 38 千米.甲每小时跑 312 千米,乙每小时跑 4 千米,丙每小时跑 5 千米.问他们同时出发,几小时后,3 人第一次同时回到出发点?【答案】 6 小时【分析】 甲跑完一圈需 15÷312=235 小时,乙跑一圈需 14÷4=116 小时,丙跑一圈需 38÷5=340 小时,他们同时回到出发点时都跑了整数圈,所以经历的时间为 235,116,340 的倍数,即为它们的公倍数.而[235,116,340]=[2,1,3](35,16,40)=61=6.所以,6小时后,3人第一次同时回到出发点.31. 假设两个自然数的平方和是637,最大公约数与最小公倍数的和为49,那么这两个数是多少?【答案】14、21【分析】根据短除模型,这两个数的最大公约数是49的约数,从而最大公约数为1或7.如果最大公约数为1,那么最小公倍数为48,可能为1和48或3和16,这两种情况都不符合平方和为637;如果最大公约数为7,那么最小公倍数为42,可能为7和42或14和21,此时142+212=637,满足题意,所以这两个数分别为14和21.32. 狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳412米,黄鼠狼每次跳234米,它们每秒钟都只跳一次.在比赛道路上,从起点开始每隔1238米设有一个陷阱.请问:当它们之中有一个掉进陷阱时,另一个跳了多少米?【答案】40.5米.【分析】我们发现,狐狸、黄鼠狼每次跳的路程以及两个陷阱之间的距离都是18米的整数倍,因而定义一个新的单位“新米〞,规定:18米=1新米.于是狐狸每次跳36新米,黄鼠狼每次跳22新米,每隔99新米有一个陷讲.[36,99]=396新米,[22,99]=198新米,也就是说狐狸跳了396÷36=11秒后掉坑里,黄鼠狼跳了198÷22=9秒后掉坑里.所以黄鼠狼先掉坑里,这时候狐狸跳了36×9=324新米,合324÷8=40.5米.33. 鼹鼠和老鼠分别从长157米的小路两端A、B开始向另一端挖洞.鼹鼠每隔三米挖一个洞,老鼠每隔5米挖一个洞,老鼠对鼹鼠说:“你挖完后,我再挖.〞这样一来,由于老鼠原来要挖的一些洞恰好也是鼹鼠要挖的洞,所以老鼠可以少挖多少个洞?【答案】10个【分析】因为157除以5的余数是2,可得以下图:由图中很明显可知,鼹鼠和老鼠重合的第一个洞在距离A点12米处.因为[ 3,5 ] =15,(157−12)÷15=145÷15=9⋯10,所以,老鼠和鼹鼠要挖的洞里重合的有9+1=10(个).34. 甲乙两数的最大公约数是75,最小公倍数是450,假设它们的差最小,求这两个数.【答案】150、225【分析】短除模型,设这两个数是a、b,a=75x,b=75y,那么有\[ \left\{\begin{gathered}\left( {x,y} \right) = 1 \hfill \\75xy = 450 \hfill \\\end{gathered} \right. \]得x、y两数是2、3或1、6〔舍去〕,故a、b是150和225.35. 两个不成倍数关系的自然数的积为240,最小公倍数为60,那么这两个数分别是多少?【答案】12和20【分析】简答:最大公约数是240÷60=4,然后设两个数为4a和4b,且a、b互质,求解即可.36. 求下面各组数的最大公约数和最小公倍数.48和36;35和65;120和80.【答案】48和36最大公约数12,最小公倍数144.35和65最大公约数5,最小公倍数455.120和80最大公约数40,最小公倍数240.【分析】48和36最大公约数12,最小公倍数144.35和65最大公约数5,最小公倍数455.120和80最大公约数40,最小公倍数240.37. 有一个电子钟,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子钟既响铃又亮灯.问:下一次既响铃又亮灯是几点钟?【答案】下午3点【分析】简答:[9,60]=180,再过180分钟既响铃又亮灯.38. 两个数的最大公约数是6,最小公倍数是420,如果这两个数相差18,那么较小的数是多少?【答案】42【分析】详解:设这两个自然数分别是6a和6b,且a和b互质,那么有6ab=420,6a−6b=18〔不妨设a比b大〕,可解出a10,b=7,较小的数是42.39. 恰好能被6,7,8,9整除的五位数有多少个?【答案】179【分析】6、7、8、9的最小公倍数是504,五位数中,最小的是10000,最大为99999.因为10000÷504=19⋯⋯424,99999÷504=198⋯⋯207.所以,五位数中,能被504整除的数有198−19=179(个).所以恰好能被6,7,8,9整除的五位数有179个.40. 两个自然数的最大公因数是13,最小公倍数是78,求这两个数【答案】13,78或26,39【分析】假设这两个数是13a和13b且(a,b)=1, 易得13×a×b=78,所以a×b=6, 又a,b互质,那么就有6=1×6=2×3两种情况,所以这两个数为13×1=13, 13×6= 78或13×2=26, 13×3=39.41. 一个数被5除余3,被7除余4,被9除余5,这个数最小是几?【答案】158【分析】在7和9的公倍数中,除以5余1的最小数是126;在5和9的公倍数中,除以7余1的最小数是225;在5和7的公倍数中,除以9余1的最小数是280;那么126×3+225×4+280×5=2678.[5,7,9]=315.所以,最小的数为2678−315×8=158.42. 大雪后的一天,小明和爸爸同时步测一个圆形花圃的周长,他俩的起点和步行方向完全相同,小明每步长54厘米,爸爸每步长72厘米.由于两人脚印有重合的,所以各走完一圈后,雪地上留下60个脚印.求圆形花圃的周长.【答案】2160厘米【分析】必须求出相邻两次脚印重合所走的路程以及走完全程脚印重合的次数.两人从起点出发到第一次脚印重合所走的路程是相同的,是两人步长的最小公倍数,为[54,72]=216厘米.在216厘米里,两人留下的脚印数分别是:216÷54=4(个),216÷72=3(个),由于两人有1个脚印重合,所以实际上只有4+3−1=6(个)脚印.60÷6=10,即走完全程共重合10次,因此,花圃周长为:216×10=2160(厘米).43. 加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?【答案】10名【分析】为了使生产均衡,那么三道工序每小时生产的零件个数应相等,应为6,10,15的最小公倍数,即[6,10,15]=30.30÷6=5,30÷10=3,30÷15=2.所以三道工序最少共需要5+3+2=10(名)工人.44. 有一个自然数,它除以15、17、19所得到的商(>1)与余数(>0)之和都相等,这样的数最小可能是多少?【答案】1081【分析】设这个数为A,根据题意可得:〔1〕A=15a+b,A=17c+d,A=19e+f;〔2〕a+b=c+d=e+f;有前两个条件可得14a=16c=18e,最小公倍数为1008,所以a=72,c=63,e=56;而b最小为1时,d=10,f=17,A=15×72+1=1081.45. 两个数的最小公倍数是420,这两个数分别除以它们的最大公约数,得到的两个商的和是9,这两个整数是多少?【答案】60和210【分析】设这两个数分别为ma,mb〔m为a,b的最大公约数〕,那么a,b互质,所以有mab=420,a+b=9.420=2×2×3×5×7,因为2+7=9,所以它们的最大公约数是:2×3×5=30;所以一个整数是:2×3×5×2=60,另一个整数是:2×3×5×7=210.46. 兄弟三人在外工作,大哥6天回家一次,二哥8天回家一次,小弟12天回家一次.兄弟三人同时在十月一日回家,下一次三人再见面是哪一天?【答案】10月25日.【分析】同时团结一次需要[6,8,12]=24天.十月一日再过24天,就是10月25日.47. 两个正整数的差是21,它们最大公约数与最小公倍数的和为287,那么这两个数的和是多少?【答案】91【分析】设这两个数为A、B,它们的最大公约数为d,A=dx,B=dy,由题有:$\left\{ \begin{gathered}dx - dy = 21 \hfill \\d + dxy = 287 = 7 \times 41 \hfill \\\end{gathered} \right.$,所以可得d=7,进而解得 $\left\{ \begin{gathered}x = 8 \hfill \\y = 5 \hfill \\\end{gathered} \right.$,故而这两个数的和为7×(8+5)=91.48. 计算:(28,72),[28,72];(28,44,260),[28,44,260].【答案】4,504;4,2002049. 甲、乙两数的最大公因数是6,最小公倍数是36,甲、乙两数可以各是多少?【答案】6,36或12,18【分析】设两数分别为6a,6b,那么(a,b)=1,且a×b=36÷6=6,6分解成两个互质的数有两种情况即1和6、2与3,所以这两个数有几种情况:6×1=6、6×6=36〔符合题意〕,6×2=12、6×3=18〔符合题意〕.50. a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c.【答案】60,24,15或120,12,15.【分析】因为12,15都是a的约数,所以a应当是12与15的公倍数,即是[12,15]=60的倍数.再由[a,b,c]=120知,a只能是60或120.[a,c]=15,说明c没有质因数2,又因为[a,b,c]=120=23×3×5,所以c=15.因为a是c的倍数,所以求a,b的问题可以简化为:“a是60或120,(a,b)=12,[a,b]=120,求a,b.〞当a=60时,b=(a,b)×[a,b]÷a=12×120÷60=24;当a=120时,b=(a,b)×[a,b]÷a=12×120÷120=12.所以a,b,c为60,24,15或120,12,15.51. 两个自然数的积为240,最小公倍数为60,求这两个数.【答案】4和60或12和20【分析】由于两个自然数的积=两数的最大公因数×两数的最小公倍数,可以得到,最大公约数是240÷60=4,设这两个数分别为4a、4b,那么(a,b)=1,且a×b=60÷4=15,所以a和b可以取1和15或3和5,所以这两个数是4和60或12和20.52. A、B两个数的最小公倍数是1000;A、C两数的最小公倍数和B、C两个数的最小公倍数都是2000;满足这个要求的数C有四个,分别是多少?【答案】2000、400、80、16【分析】根据题意可知:1000=8×125,2000=2×8×125说明C一定多乘1个2,即C应该是16的倍数.所以16×125=2000;c=16×25=400;c=16×5=80;c=16×1=16,所以满足要求的数C分别是:2000,400,80,16.53. 〔1〕两个互质的自然数的最小公倍数是432.求这两个数.〔2〕假设两个不成倍数关系的自然数,最大公约数是45,最小公倍数是900.求这两个数.【答案】〔1〕16和27〔2〕180和225【分析】简答:互质的两数的乘积是432,只能是16和27;〔2〕设两个自然数分别是45a和45b,且a、b互质,然后列方程即可.54. 试求120、180、300的最小公倍数.【答案】1800【分析】(120,180,300)=30×2×2×3×5=1800.55. 63,105和165的最大公约数是多少?最小公倍数是多少?【答案】3;3465【分析】63=7×9,105=3×5×7,165=3×5×11.三者的最大公约数是3,最小公倍数是7×5×9×11=3465.56. a与b的最大公因数是4,a与c、b与c的最小公倍数都是100,而且a⩽b.满足条件的自然数a、b、c共有多少组?【答案】9【分析】设a=4m,b=4n,[a,c]=100,[b,c]=100,100=22×52,100÷4=25,m∣25,m为1、5或25,同理n为1、5或25;因为a⩽b,所以m⩽n.当m=1时,n=5,a=4,b=20,c可能为52、52×2、52×4;当m=5时,n=25,a=20,b=100,c可能为52、52×2、52×4;当m=n=1时,a=b=4,c可能为52、52×2、52×4,一共有3+3+3=9〔组〕.57. 甲数是36,甲、乙两数最大公因数是4,最小公倍数是288,那么乙数是多少?【答案】32【分析】根据两个自然数的积=两数的最大公因数×两数的最小公倍数,有:甲数×乙数=4×288,所以,乙数=4×288÷36=32.58. 两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?【答案】147或105【分析】假设这两个数是21a和21b,易得21×a×b=126,所以a×b=6,由a和b 互质,那么就有6=1×6=2×3两种情况.所以甲、乙是:21×1=21,21×6=126或21×2=42,21×3=63两种情况.它们的和是147或105.59. 在A到B的公路段上,每30千米设一个慢车站,每50千米设一个快车站,如果相邻两个车站间的路程大于15千米,那么在这段路程的中点设一个维修点.如果一个车站既是慢车站也是快车站,那么在这个车站设一家商店.从A到B共设有7家商店,A和B既是慢车站也是快车站.问:〔1〕从A到B的路程有多少千米?〔2〕从A到B的途中共设有多少个维修点?【答案】900;30【分析】〔1〕计算从A到B的路程和快车站、慢车站的站数.易知A是第1个商店,其余各商店到A的路程是30和50的公倍数,而[30,50]=150,B是第7个商店,所以,从A到B的路程是(7−1)×150=6×150=900(千米).〔2〕途中的5个商店将全路程等分成6等份,每个等份中快车站、慢车站的设置完全相同,由于A是第1个商店,因此只要考虑从A到第2个商店这一段150千米的路程上的快车站与慢车站的分布情况就可以了.设第2个商店为C点,那么AC=150千米.在AC这一段上〔不包括A,C〕,有4个慢车站,2个快车站,如以下图所示,▫表示快车站,△表示慢车站.从图上可以看出:相邻两站的路程为30千米的路段有3段;相邻两站的路程为20千米的路段有2段;相邻两站的路程为10千米的路段也有2段.其中相邻两站的路程大于15千米的路段共有5段,因此在AC这一路段上应该设有5个维修站点.从A到B全路程上应该设有5×6=30(个)维修站点.60. 计算:(36,99),[36,99];(24,28,42),[24,28,42].【答案】9,396;2,16861. 两个整数的最小公倍数是1925,这两个整数分别除以它们的最大公约数,得到2个商的和是16,这两个整数分别是多少?【答案】175和385【分析】设这两个数分别为ma,mb〔m为a,b的最大公约数〕,那么a,b互质,所以有mab=1925,a+b=16.因为1925=5×5×7×11,由于商的和是16,看约数情况,这里只能是11+5=16;所以2个商应该是11和5,所以这两个数应该是5×7×5和5×7×11;这样除以最大公约数5×7就剩下5和11;所以这两个数就是5×7×5=175和5×7×11=385.62. 恰好能同时被4、5、6整除的三位数有多少个?【答案】15.【分析】4,5,6的最小公倍数是60,三位数中60的倍数有999÷60−1≈15个.63. 甲乙两数的乘积是120,甲、乙两数最大公因数是2,那么甲乙两数的最小公倍数是多少?【答案】60【分析】根据两个自然数的积=两数的最大公因数×两数的最小公倍数,有最小公倍数= 120÷2=60;64. 两个自然数的和是72,它们的最大公因数与最小公倍数的和是216,这两个数分别是几?〔按由小到大的顺序写出〕【答案】30、42【分析】设这两个自然数分别是ad和bd,其中d是这两个自然数的最大公因数.由题意有(a+b)d=72,(1+ab)d=216.所以1+ab=3(a+b),化简得(a−3)(b−3)=8.由于a+b必是72的因数.所以a=5,b=7,d=6,所以这两个自然数分别是5×6=30和7×6=42.65. 两个数的最大公约数是4,最小公倍数是252,其中一个数是28,另一个数是多少?【答案】36【分析】运用公式,可知4×252÷28=36.66. 设a,b是两个正整数,它们的最小公倍数是9504,那么这样的有序正整数对(a,b)共有几组.【答案】231【分析】9504=25×33×11,(a,b)所含2的幂的情况可能是(0,5),(1,5),(2,5),(3,5),(4,5),(5,5);(5,0),(5,1),(5,2),(5,3),(5,4)共11种,同理3的幂的情况有7种,11的幂的情况有3种,所以总共有11×7×3=231(种).67. 在200至300之间,有三个连续的自然数,其中,最小的能被3整除,中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数分别是多少?。

小学奥数题库《数论》因数和倍数-最小公倍数-5星题(含解析)

小学奥数题库《数论》因数和倍数-最小公倍数-5星题(含解析)

数论-因数和倍数-最小公倍数-5星题课程目标知识提要最小公倍数•定义公倍数就是几个数公共的倍数。

最小公倍数就是其中最小的公倍数。

•求最小公倍数的方法〔1〕枚举法〔2〕分解质因数法〔3〕短除法〔4〕公式法•最小公倍数的性质〔1〕两个数的任意公倍数都是它们最小公倍数的倍数;〔2〕两个互质的数的最小公倍数是这两个数的乘积;〔3〕两个数具有倍数关系,那么它们的最大公因数是其中较小的数,最小公倍数是较大的数.精选例题最小公倍数1. 某班共有30名学生去看电影,他们的学号依次为1,2,⋯⋯,30;他们手中的电影票恰好为某排的1号,2号,⋯⋯,30号.现在按如下要求将电影票发给这些同学:对于任意两人甲、乙,假设甲的学号能被乙的学号整除,那么甲的电影票号码也能被乙的电影票号码整除.那么电影票共有种不同的发放方式.【答案】48【分析】1号学生有29人是其倍数,故1号学生只能拿1号电影票;2号学生有14人是其倍数,故2号学生只能拿2号电影票;3号学生有9人是其倍数,故3号学生只能拿3号电影票;4号学生有6人是其倍数,故4号学生只能拿4号电影票;5号学生有5人是其倍数,故5号学生只能拿5号电影票;6号学生有4人是其倍数,故6号学生只能拿6号电影票;7号学生有3人是其倍数,故7号学生只能拿7号电影票;8号学生必须是2号学生〔2〕的倍数,也必须是4号学生〔4〕的倍数,同时有2人是其倍数,综上,8号学生只能拿8号电影票;9号学生必须是3号学生〔3〕的倍数,还不能是6,同时有2人是其倍数,综上,9号学生只能拿9号电影票;10号学生必须是2号学生〔2〕的倍数,也必须是5号学生〔5〕的倍数,同时有2人是其倍数,综上,10号学生只能拿10号电影票;12号学生必须是3号学生〔3〕的倍数,也必须是4号学生〔4〕的倍数,同时有1人是其倍数,综上,12号学生只能拿12号电影票;同时24号学生只能拿24号电影票;14号学生必须是2号学生〔2〕的倍数,也必须是7号学生〔7〕的倍数,同时有1人是其倍数,综上,14号学生只能拿14号电影票;同时28号学生只能拿28号电影票;15号学生必须是3号学生〔3〕的倍数,也必须是5号学生〔5〕的倍数,同时有1人是其倍数,综上,15号学生只能拿15号电影票;同时30号学生只能拿30号电影票;之后的数,[2,9]=18,18必拿18号,同时是9的倍数的27号只能拿27;20=[4,5],20必拿20;21=[3,7],21必拿21号;24=[3,8],24必拿24,同时是8的倍数的16号只能拿16;28=[4,7],28必拿28;30=[5,6],30必拿30,同时是5的倍数的25号只能拿25号.目前还没有确定的数有:11、22、13、26、17、19、23、29号.11、22互为一组成倍数,13、26亦互为一组成倍数,有两种拿法:11号拿11,22号拿22,13号拿13,26号拿26;或11号拿13,22号拿26,13号拿11,26号拿22.17、19、23、29是大质数,没有限制,可随意拿,有A44=24(种)拿法.故共有2×24=48(种)拿法.2. 鼹鼠和老鼠分别从长157米的小路两端A、B开始向另一端挖洞.鼹鼠每隔三米挖一个洞,老鼠每隔5米挖一个洞,老鼠对鼹鼠说:“你挖完后,我再挖.〞这样一来,由于老鼠原来要挖的一些洞恰好也是鼹鼠要挖的洞,所以老鼠可以少挖多少个洞?【答案】10个【分析】因为157除以5的余数是2,可得下列图:由图中很明显可知,鼹鼠和老鼠重合的第一个洞在距离A点12米处.因为[ 3,5 ] =15,(157−12)÷15=145÷15=9⋯10,所以,老鼠和鼹鼠要挖的洞里重合的有9+1=10(个). 3. :A+B=667,[A,B](A,B)=120,求A,B的值.【答案】115与552或者232与435.【分析】 $\begin{gathered}m\left| \!{\underline {\,{\begin{array}{*{20}{c}}A&B\end{array}} \,}} \right. \hfill \\\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{}&a\end{array}}&b\end{array} \hfill \\\end{gathered}$,A=ma,B=mb.所以ma+mb=667.因此,mabm =120.解得:m(a+b)=667=23×29,ab=120=1×120=2×60=3×40=4×30=5×24=6×20=8×15=10×12.①当m=23时,a+b=29=5+24因此,A,B的值为115,552;②当m=29时,a+b=23=8+15因此,A,B的值为232,435;综上所述,满足条件的解有两组:115与552,232与435.4. A、B两个数的最小公倍数是1000;A、C两数的最小公倍数和B、C两个数的最小公倍数都是2000;满足这个要求的数C有四个,分别是多少?【答案】2000、400、80、16【分析】根据题意可知:1000=8×125,2000=2×8×125说明C一定多乘1个2,即C应该是16的倍数.所以16×125=2000;c=16×25=400;c=16×5=80;c=16×1=16,所以满足要求的数C分别是:2000,400,80,16.5. 用1、2、3、4、5、6这6个数字各一次组成两个三位数A和B.请问:A、B、630这三个数的最大公约数最大可能是多少?最小公倍数最小可能是多少?【答案】最大公约数最大可能是21,最小公倍数最小可能是6930.【分析】〔1〕这三个数的最大公约数也是630的约数,630=2×32×5×7.由于1+2+3+4+5+6=21,所以不可能组成两个都是9的倍数的三位数;由于只有1个5,所以不可能组成两个都是5的倍数的三位数,因此该最大公约数至多为2×3×7=42,可能为21或6等.假设最大公约数为3的倍数,那么由同余法知两个三位数的三位除以3的余数分别是0、1、2;假设还为7的倍数,尝试可知231和546、315和462等都满足条件;而无法再满足为2的倍数,所以最大公约数为21.〔或者枚举出123∼654之间所有有符合题意的42的倍数也可以看出没有符合题意的,进一步枚举出123∼654之间所有符合题意的21的倍数即可找出符合的情况〕.〔2〕解法一:枚举最小公倍数为630、630×2、630×3、…的情况.假设最小公倍数为630,那么A、B均为630的三位约数,630的三位约数是105、126、210、315、630,没有符合题意的.假设最小公倍数为630×2,那么A、B均为630的三位约数,630×2的三位约数是105、126、140、180、210、252、315、420、630,没有符合题意的.……假设最小公倍数为630×11,那么A、B均为630的三位约数,630×11的三位约数是105、110、126、154、165、198、210、231、315、330、385、462、495、630、693、770、990,其中315和462符合题意.〔当然这组数在〔1〕中出现时分解质因数过的话,这种情况就可以直接写出来了.相信绝大多数在〔2〕中打算按这个方式来做的人都会提前分解一下231和546、315和462,同时一般多问的题目的前面问题的解决对后面问题会有帮助.〕所以最小公倍数最小可能为630×11=6930.解法二:1∼6这六个数字的分组有10种情况,分别为(123,456)、(124,356)、(125,346)、(126,345)、(134,256)、(135,246)、(136,245)、(145,236)、(146,236)、(156,234),每一种分组中的两个三位数又各自有六种可能性,分别枚举这些情况,即可找到想要的答案.由于我们已经知道315和462这组可以让最小公倍数小到630×11,所以枚举其他组的时候只要看能不能使得最小公倍数更小即可.对于(123,456),由于123这边的数字较小,所以考虑123的变化.123含41;132=22×3×11,最小公倍数最小也是630×22;213含71;231=3×7×11,可能使得最小公倍数是630×11;312含13;321含107.由于没有1个可以使得最小公倍数比630×11更小,所以(123,456)这种情况排除.同理,分别验证其他情况,发现最小公倍数最小只能到达630×11.6. 有甲、乙两个数,它们的最小公倍数是甲的27倍.甲数是2、4、6、8、10、12、14、16的倍数,但不是18的倍数;乙数是两位数.乙数是多少?【答案】81【分析】设M是甲、乙的最大公因数,甲=Ma,乙=Mb,[甲,乙]=M×a×b.\[\begin{gathered}m\left| \!{\underline {\,{\begin{array}{*{20}{c}}甲&乙\end{array}} \,}} \right. \hfill \\\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{}&a\end{array}}&b\end{array} \hfill \\\end{gathered}\]甲:[2,4,6,8,10,12,14,16]=24×3×5×7,M×a×b÷Ma=b=27,18=2×32;因为甲内有3,但不能有32,所以乙内有3,综上乙数是27×3=81.7. a、b、c是三个非零自然数.a和b的最小公倍数是300,c和a、c和b的最大公约数都是20,且a>b>c.请问:满足条件的a、b、c共有多少组?【答案】7组.【分析】a和b都是20的倍数,且它们的最小公倍数是300.枚举a、b,共4种可能,依次是300和20;300和60;300和100;100和60.假设a、b分别是300、20时,c只能是20,但此时b=c,不符合题意.假设a、b分别是300、60时,c可以是20和40.假设a、b分别是300、100时,c可以是20、40和80.假设a、b分别是100、60时,c可以是20和40.综上,共7组.8. 两个自然数的和是72,它们的最大公因数与最小公倍数的和是216,这两个数分别是几?〔按由小到大的顺序写出〕【答案】30、42【分析】设这两个自然数分别是ad和bd,其中d是这两个自然数的最大公因数.由题意有(a+ b)d=72,(1+ab)d=216.所以1+ab=3(a+b),化简得(a−3)(b−3)=8.由于a+b必是72的因数.所以a=5,b=7,d=6,所以这两个自然数分别是5×6=30和7×6=42.9. 甲、乙、丙三个人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米,如果三个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那几分钟之后,三个人又可以相聚?【答案】30【分析】由于每相遇一次,快者都比慢者多行300米,那么甲乙每次相遇时间是:300÷(120−100)=15(分钟),甲丙每相遇一次需要300÷(120−70)=6(分钟),乙丙每相遇一次需要300÷(100−70)=10(分钟),那么他同时相遇需要的时间应是6、10、15的公倍数.6、10、15的最小公倍数是30,即至少30分钟后,三人又可相聚.10. 某住宅区有12家住户,他们的门牌号分别是1,2,3,⋯,12.他们的号码依次是12个连续的六位自然数,并且每家的号码都能被这家的门牌号码整除.这些的首位数字都小于6,并且门牌号码是9的这一家的号码能被13整除.请问:这一家的号码是多少?【答案】388089【分析】设第一家住户的号码为n+1,那么1∣n+1,2∣n+2,3∣n+3,⋯,12∣n+12,由此可知n能被1∼12同时整除,而1∼12的最小公倍数为23×32×5×7×11=27720,那么n= 27720m,其中m为正整数.由条件“门牌号码是9的这一家的号码能被13整除〞可得,13∣27720m+9.而27720m+9≡4m+9(mod13),所以m=14时满足条件,这一家的号码为27720×14+9=388089.11. 〔丢番图是古希腊数学家,被誉为“代数学之父〞.而丢番图的墓碑,就包含了一个很有趣的数学问题〕以下就是丢番图的墓碑原文,同学们能从其中看出丢番图一共活了多少岁吗?上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.【答案】84【分析】题目中的数量都与丢番图的年龄直接相关,因此可以考虑列方程求解:设丢番图活了x岁.可以根据题目条件列出方程1 6x+112x+17x+5+12x+4=x移项后得到328x=9,解得x=84.所以丢番图一共活了84岁.巧解:由题目条件也可简单地列出算术式:(5+4)÷(1−16−112−17−12)=9÷328=84(岁)或者利用6、12、7的最小公倍数是84.也可以快速算出!12. 定义运算“⊙〞如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a⊙b.比方:10和14,最小公倍数为70,最大公约数为2,那么10⊙14=70−2=68.〔1〕求12⊙21,5⊙15;〔2〕说明,如果c整除a和b,那么c也整除a⊙b;如果c整除a和a⊙b,那么c也整除b;〔3〕6⊙x=27,求x的值.【答案】〔1〕81;10;〔2〕见解析;〔3〕x=15【分析】〔1〕为求12⊙21,先求出12与21的最小公倍数和最大公约数分别为84,3,因此12⊙21=84−3=81,同样道理5⊙15=15−5=10.〔2〕如果c整除a和b,那么c是a和b的公约数,那么c整除a,b的最大公约数,显然c也整除a,b 最小公倍数,所以c整除最小公倍数与最大公约的差,即c整除a⊙b.如果c整除a和a⊙b,由c整除a推知c整除a,b的最小公倍数,再由c整除a⊙b推知,整除a,b的最大公约数,而这个最大公约数整除b,所以c整除b.〔3〕由于运算“⊙〞没有直接的表达式,解这个方程有一些困难,我们设法逐步缩小探索范围.因为6与x的最小公倍数不小于27+1=28,不大于27+6=33,而28到33之间,只有30是6的倍数,可见6和x的最小公倍数是30,因此它们的最大公约数是30−27=3.由“两个数的最小公倍数与最大公约数的积=这两个数的积〞,得到30×3=6×x.所以x=15.13. 有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,其余各位同学都说这个数能被自己的编号数整除.1号作了检验:只有编号连续的两位同学说的不对,其余同学都对,问:〔1〕说的不对的两位同学,他们的编号是哪两个连续自然数?〔2〕如果告诉你1号写的数是五位数,请找出这个数.【答案】〔1〕8和9;〔2〕60060【分析】〔1〕为了表达方便,不妨设1号同学写的自然数为a.根据2~15号同学所述结论,2∼15中只有两个连续的自然数不能整除a,其他的数都能整除a.由于2∼7中的每一个数的2倍都在15以内,如果2∼7中有某个数不能整除a,那么这个数的2倍也不能整除a,然而2∼7中的这个数与它的2倍不可能是两个连续的自然数,所以2∼7中每一个数都是a的约数.由于2与5互质,那么2×5=10也是a的约数.同理可知,12、14、15也都是a的约数.还剩下的四个数为8、9、11、13,只有8、9是两个连续的自然数,所以说的不对的两位同学,他们的编号分别是8和9.〔2〕1号同学所写的自然数能被2,3,4,5,6,7,10,11,12,13,14,15这12个数整除,也就是它们的公倍数.它们的最小公倍数是:22×3×5×7×11×13=60060.因为60060是一位五位数,而这12个数的其他公倍数都是它们的最小公倍数60060的倍数,且最小为2倍,所以均不是五位数,那么1号同学写的五位数是60060.。

小学奥数题库《数论》因数和倍数-因数的个数定理-4星题(含解析)

小学奥数题库《数论》因数和倍数-因数的个数定理-4星题(含解析)

数论-因数和倍数-因数的个数定理-4星题课程目标知识提要因数的个数定理•因数的个数定理因数的个数等于不同质因数的指数分别加1后再相乘的积。

•因数个数性质当因数个数为奇数的时候,这个数一定是完全平方数.精选例题因数的个数定理1. A数有7个因数,B数有12个因数,且A、B的最小公倍数[A,B]=1728,那么B=.【答案】108【分析】1728=26×33,所以A、B质因数只能有2和3,又由于A有7个因数,而7是一个质数,所以A分解质因数的形式只能有A=26,设B=2k×33,那么(k+1)×(3+1)=12,得k=2所以B=22×33=108.2. 整除2015的数称为2015的因数,1和2015显然整除2015,称为2015的平凡因数,除了平凡因数,2015还有一些非平凡因数,那么,2015的所有非平凡因数之和为.【答案】672【分析】〔解法一〕2015=5×13×312015所有的约数和为(50+51)×(130+131)×(310+311)=6×14×32=26882015的所有非平凡因数之和为2688−1−2015=672〔解法二〕由于该数比拟小,可以直接写出2015的所有约数2015=1×2015=5×403=13×155=31×652015的所有非平凡因数之和为5+403+13+155+31+65=6723. 有一列数,第1个是1,从第2个数起,每个数比它前面相邻的数大3,最后一个数是100,将这些数相乘,那么在计算结果的末尾中有个连续的零.【答案】9【分析】这一列数为1,4,7,⋯,100,要求他们相乘的积中0的个数,找到因数2和5的个数即可,又因为因数2的个数远多于5的个数,所以找到5的个数即为积中末尾0的个数,5的倍数有10,25,40,55,70,85,100共9个5,所以有9个0.4. 60的不同约数〔1除外〕的个数是.【答案】11【分析】60=1×60=2×30=3×20=4×15=5×12=6×10.60的约数〔1除外〕有:2、3、4、5、6、10、12、15、20、30、60,共11个.5. 数学小组原方案将72个苹果发给学生,每人发的苹果数量一样多,后来又有6人参加小组,这样每个学生比原方案少发了1个苹果.那么,原来有名学生.【答案】18【分析】前后两次每人分到的苹果数量相差1,且都是72的因数,72的相差1的因数对有(1,2)、(2,3)、(3,4)和(8,9),经试因数对(3,4)符合要求:前后人数分别为72÷4=18(人)和72÷3=24(人).6. 自然数甲有10个约数,那么甲的10倍的约数个数可能是.【答案】40、22、18、30或24【分析】详解:甲含有约数2、5的情况与否,会影响最终的约数个数,分情况讨论,得约数个数有五种可能:40、22、18、30和24.例如:29、24×5、24×7、2×74、79的10倍分别有22、18、24、30、40个约数.7. 老师用0至9这十个数字组成了五个两位数,每个数字恰用一次;然后将这五个两位数分别给了A、B、C、D、E这五名聪明且老实的同学,每名同学只能看见自己的两位数,并依次发生如下对话:A说:“我的数最小,而且是个质数.〞B说:“我的数是一个完全平方数.〞C说:“我的数第二小,恰有6个因数.〞D说:“我的数不是最大的,我已经知道ABC三人手中的其中两个数是多少了.〞E说:“我的数是某人的数的3倍.〞那么这五个两位数之和是.【答案】180【分析】A的话可知,A的十位是1,又因为是质数,所以A有可能是13,17,19;C能断定自己的数第二小,且有6个因数,所以可能是20,28,32;B是完全平方数,但不能含有1和2,所以B有可能是36,49,64;D能断定自己不是最大的,说明他的数是53或54或十位数不超过4,但大于等于34;E是某人的数的3倍,由上面信息可知,只能是A,且推得A为19,那么E为57最后根据D能知道ABC三人手中两个数,试验可知,BCD手中数分别为36,28,40综上所述,五个两位数之和是1808. 能被210整除且恰有210个约数的数有个.【答案】24个【分析】210=2×3×5×7,所以原数肯定含有2,3,5,7这四个质因子,而且幂次一定按照某种顺序是1,2,4,6,可以任意排列,所以有4!=24个9. 所有70的倍数中,共有多少个数恰有70个因数?【答案】6【分析】设70的N倍恰有70个因数.70=2×5×7,有:(1+1)×(1+1)×(1+1)=23= 8,因为8不整除70,所以N内可能有2、5、7.假设有4个不同质因数,但70只能表示为2×5×7,所以N内必含2、5、7中几个,即70N=2a+1×5b+1×7c+1,(a+1+1)×(b+1+1)×(c+1+1)=70,a,b,c分别是0,3,5中一个.N为23×53,23×73,25×23,25×73,53×75,55×73,一共6组.10. [A]表示自然数A的约数的个数.例如4有1,2,4三个约数,可以表示成[4]=3.计算:([18]+[22])÷[7]=.【答案】5【分析】因为18=2×32,有约数个为(1+1)×(2+1)=6(个),所以[18]=6,同样可知[22]=4,[7]=2.原式=(6+4)÷2=5.11. 两数乘积为2800,而且己知其中一数的因数个数比另一数的因数个数多1,那么这两个数分别是、.【答案】16、175【分析】先将2800分解质因数:2800=24×52×7,由于其中一数的因数个数比另一数的因数个数多1,所以这两个数中有一个数的因数为奇数个,这个数必为完全平方数.又是2800的因数,故这个数只能为22、24、52、22×52或24×52,另一个数相应地为22×52×7、52×7、24×7、22×7或7.经检验,只有两数分别为24和52×7时符合条件,所以这两个数分别是16和175.12. 算式1×8×15×22×⋯×2010的乘积末尾有个连续的0.【答案】72【分析】详解:乘数15、50、85、⋯、2010中含有因数5,都除以5得到3、10、17、⋯、402;其中10、45、⋯、395还含有因数5,都除以5,得到2、9、16、⋯、79.其中30、65里还含有因数5.我们第一次除掉了2010−1535+1=58个5,第二次除掉了395−1035+1=12个5,最后还剩下两个因数5.说明1×8×15×22×⋯×2010含有58+12+2=72个约数5,由于其中含有的约数2是足够多的,因而的0的个数就等于约数5的个数,是72个.13. 1001的倍数中,共有个数恰有1001个约数.【答案】6个【分析】1001的倍数可以表示为1001k,由于1001=7×11×13,如果k有不同于7,11,13的质因数,那么1001k至少有4个质因数,将其分解质因数后,根据数的约数个数的计算公式,其约数的个数为(a1+1)(a2+1)(a3+1)(a4+1)⋯(a n+1),其中n⩾4.如果这个数恰有1001个约数,那么(a1+1)(a2+1)(a3+1)(a4+1)⋯(a n+1)=1001=7×11×13,但是1001不能分解成4个大于1的数的乘积,所以n⩾4时不合题意,即k不能有不同于7,11,13的质因数.那么1001k只有7,11,13这3个质因数.设1001k=7a×11b×13c,那么(a+1)(b+1)(c+1)=1001,a+1、b+1、c+1分别为7,11,13,共有3!=6种选择,每种选择对应一个1001k,所以1001的倍数中共有6个数恰有1001个约数.14. 四位数双成成双的所有因数中,有3个是质数,其它39个不是质数.那么,四位数成双双成有个因数.【答案】12【分析】双成成双共有3+39=42个因数,且有3个质因数,所以它的质因数分解形式为双成成双=a×b2×c6,而双成成双=双00双+成成0̅=双×1001+成×110=11×(双×91+成×10)所以三个质因数中有一个是11,所以双成成双=a×b2×c6,至少是11×32×26=6336,稍微大一点点就是11×52×26=17600,已经是五位数了,所以双成成双=6336,双=6,成=3所以成双双成=3663=32×11×37,有3×2×2=12个因数.15. 2010的全部约数有个,这些约数的和数是.【答案】16;4896【分析】详解:2010=2×3×5×67,约数有(1+1)×(1+1)×(1+1)×(1+1)=16个,约数之和是(1+2)×(1+3)×(1+5)×(1+67)=4896.16. 自然数N有20个正约数,N的最小值为.【答案】240【分析】先将20写成几个数相乘的形式,再写成几个和的积的形式,最后利用约数个数的公式解题:①20=20×1=19+1,N的最小值为:219=524288,②20=2×10=(9+1)×(1+1),N的最小值为:29×3=1536,③20=4×5=(4+1)×(3+1),N的最小值为:24×33=432,④20=2×2×5=(4+1)×(1+1)×(1+1),N的最小值为:24×31×51=240.17. 有20个约数,且被42整除最小的自然数是.【答案】336【分析】因为被42整除,所以一定含有质因数2,3,7.20=1×20=2×10=4×5=2×2×5,有20个约数的自然数有:因为必须含有3个不同的质因数,所以最小的只能是:2×2×2×2×3×7=336;所以有20个约数且被42整除的最小自然数是336.18. S=19+199+1999+⋯+199⋯9⏟10000个9那么S的小数点后第2016位是.【答案】6【分析】首先,1 99⋯9⏟n个9=0.0⋅0⋯0⏟n−1个01⋅即小数点后第n,2n,3n,…位都是1,其它为都是0所以当n是2016的因数时,199⋯9⏟n个9化成小数后,小数点后第2016位是1,其余情况小数点后第2016位是0.2016=25×32×7,有36个因数,在不考虑进位的情况下,这一位上有36个1相加,这一位的数字是6,下面考虑进位,因为2017是质数,所以2017位上只有2个1相加,单独不构成进位,而2018=1009×2,有4个因数,本身也缺乏以向第2018位进位,显然2019位即以后都缺乏以进位到2016为,所以第2016位是6【解】19. 自然数N有45个正约数,N的最小值为.【答案】3600【分析】正约数个数的求法:分解质因数后,每个指数加1的连乘积45=3×3×5,容易知道,指数比拟小,原数比拟小.质因子比拟小,原数比拟小,因此原数最小是24×32×52=3600.20. 一个自然数有10个不同的因数〔即约数,指能够整除它的自然数〕,但质因数〔即为质数的因数〕只有2与3.那么,这个自然数是.【答案】162或48【分析】设这个数为2a×3b〔a、b均为正整数〕,由题意可知(a+1)×(b+1)=10=2×5所以a=1,b=4或a=4,b=1所以这个自然数是21×34=162或24×31=4821. 从2016的因数中选出不同的假设干个数写成一圈,要求相邻位置的两个因数互质,那么最多可以写出个因数.【答案】12【分析】2016=25×32×7,所以2016的奇因数有(2++1)×(1+1)=6个2016的偶因数有5×(2++1)×(1+1)=30个.假设排列最多的可能一定是“奇偶奇偶……〞,所以最多一圈有12个;假设有13〔或以上〕个因数,那么必有两偶数相邻,构造12个数的情况:1,2,3,14,9,4,7,8,21,16,63,32圈成一圈.22. 恰好有12个不同因数的最小的自然数为.【答案】60【分析】12=12×1=6×2=4×3=3×2×2所以,有12个因数的数对应的质因数分解形式分别是:A11,A5×B,A3×B2,A2×B×C,这四种形式下的最小自然数分别是:2048,96,72,60,所以符合要求的数是60.23. 能够被1到11的所有自然数整除的最小自然数为.【答案】27720【分析】1到11这11个数分解质因数后所包含的质数有2、3、5、7、11,因此这个自然数最少包含质因数2、3、5、7、11.1=11,2=21,3=31,4=22,5=51,6=2×3,7=71,8=23,9=32,10=2×5,11=111,所以这个自然数最小为23×32×51×71×111=27720,那么符合条件的A最小是.24. 一个正整数除以3!后所得结果中因数个数变为原来因数个数的13【答案】12【分析】设A=2x×3y×p1a1×p2a2×p3a3×⋯⋯×p n a n,那么B=A÷3!=2x−1×3y−1×p1a1×p2a2×p3a3×⋯⋯×p n a n,那么(x+1)(y+1)(a1+1)(a2+1)⋯⋯(a n+1)=3[xy(a1+1)(a2+1)(a n+1)],即(x+1)(y+1)=3xyxy都取1不满足此式,所以取x=2,y=1,a1=a2=⋯=a n=0得到最小值1225. A和B是两个非零自然数,A是B的24倍,A的因数个数是B的4倍,那么A与B的和最小是.【答案】100【分析】{B=2A=48=24×3B的因数个数为2,A的因数个数为5×2=10不符合要求;{B=3A=72=23×32B的因数个数为2,A的因数个数为4×3=12不符合要求;{B=4=22A=96=25×3B的因数个数为3,A的因数个数为6×2=12,符合要求;可见A+B的最小值为4+96=10026. 在三位数中,恰好有9个因数的数有多少个?【答案】7个【分析】由于9=1×9=3×3,根据因数个数公式,可知9个因数的数可以表示为一个质数的8次方,或者两个不同质数的平方的乘积,前者在三位数中只有28=256符合条件,后者中符合条件有22×52=100、22×72=196、22×112=484、22×132=676、32×52=225、32×72=441,所以符合条件的有7个.27. 3600有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?【答案】45;30;27;21【分析】详解:3600=24×32×52,有(4+1)×(2+1)×(2+1)=45个约数.3600=3×(24×3×52),有(4+1)×(1+1)×(2+1)=30个约数是3的倍数.3600=24×32×52=4×(22×32×52),有(2+1)×(2+1)×(2+1)=27个.28. 在1到100中,恰好有6个因数的数有多少个?【答案】16个【分析】6=1×6=2×3,故6只能表示为(5+1)或(1+1)×(2+1),所以恰好有6个因数的数要么能表示成某个质数的5次方,要么表示为某个质数的平方再乘以另一个质数,100以内符合前者的只有32,符合后者的数枚举如下:22×322×522×722×1122×1322×1722×1922×23⋯⋯8个32×232×532×732×11⋯⋯4个52×252×3⋯⋯2个72×2⋯⋯1个所以符合条件的自然数一共有1+8+4+2+1=16个.29. 如果你写出12的所有因数,1和12除外,你会发现最大的因数是最小因数的3倍.现有一个整数n,除掉它的因数1和n外,剩下的因数中,最大因数是最小因数的15倍,那么满足条件的整数n有哪些?【答案】60和135.【分析】设整数n除掉因数1和n外,最小因数为a,可得最大因数为15a,那么n=a×15a=15a2=3×5×a2.那么3、5、a都为n的因数.因为a是n的除掉因数1外的最小因数,那么a⩽3.当a=2时,n=15×22=60;当a=3时,n=15×32=135.所以满足条件的整数n有60和135.30. 在小于1000的正整数中,有多少个数有奇数个约数?【答案】31【分析】详解:平方数有奇数个约数.1000以内的平方数有12,22,32,⋯,312,因此有31个数有奇数个约数.31. 以下各数分别有多少个约数?18、47、243、196、450【答案】6;2;6;9;18【分析】简答:分解质因数后,指数加1连乘即可.32. 240有多少个约数?其中有多少个奇约数?有多少个约数是3的倍数?【答案】20个;4个;10个【分析】简答:240=24×3×5,有(4+1)×(1+1)×(1+1)=20个约数.奇约数即不含有因子2,有(1+1)×(1+1)=4个奇约数,有(4+1)×(1+1)=10个约数是3的倍数.33. 有一个整数,它恰好是它约数个数的2011倍,这个正整数的最小值是多少?【答案】16088【分析】设这个数为x,其约数的个数为n,那么有x=2011×n,因为2011是质数,那么n的最小值的约数个数大概率为偶数,经试验当n=8时,那么x=2011×23⇒n=2×4=8成立因此x=2011×8=16088.34. 16200有多少个因数?因数中有多少个奇因数?有多少个偶因数?因数中有多少个是3的倍数?有多少个是6的倍数?有多少个不是5的倍数?【答案】60;15;45;48;36;20【分析】把16200分解质因数:16200=23×34×52,根据因数个数定理,16200的因数个数为:(3+1)×(4+1)×(2+1)=60个;奇因数:(4+1)×(2+1)=15个;偶因数:60−15=45个;因数中3的倍数:3×1×4×(2+1)=48(个);因数中6的倍数,也就是2,3都得选;3×4×(2+1)=36(个);不是5的倍数,(3+1)×(4+1)=20(个).35. 79、128、180分别有多少个约数?【答案】2;8;18【分析】简答:提示,牢记计算约数个数的公式.并能准确分解质因数.36. 数270的因数有多少个?这些因数中奇因数有多少个?【答案】16个,8个【分析】270=33×2×5,因数的个数为(3+1)×(1+1)×(1+1)=16(个),奇因数个数为(3+1)×(1+1)=8(个).37.数360的约数有多少个?这些因数中偶因数有多少个?【答案】24个,18个【分析】360=23×32×5,因数的个数为(3+1)×(2+1)×(1+1)=24(个),奇因数个数为(2+1)×(1+1)=6(个),偶因数有24−6=18(个).38. 有一个自然数,它的个位是零,并且它有8个因数,这个数最小可能是多少?【答案】30【分析】因数个数定理:8=1×8=2×4=2×2×2,分解质因数后:a7、ab3、abc,因为这个自然数的个位是零,因此必有质因数2和5,因此可能是23×51或21×31×51,比拟可知最小的数是21×31×51=30.39. 有一个整数,它恰好是它约数个数的2012倍,这个正整数的最小值是多少?【答案】40220【分析】设这个数为x,其约数的个数为n,那么有x=2012×n=22×503×n,其约数个数总大于(2+1)×(1+1)=6个,经试验当n=20时,那么x=24×5×503⇒n=5×2×2= 20成立因此x=2011×20=40220.40. 数学老师把一个两位数的约数个数告诉了墨莫,聪明的墨莫仔细思考了一下后算出了这个数.同学们,你们知道这个数可能是多少吗?【答案】64或36【分析】假设约数个数为2个,是质数,这样的两位数有很多.假设约数个数为3个,可以用a2来表示,也有很多.约数个数为4个的两位数也有很多.约数个数为5个的数可以表示为a4,有16和81,不唯一.约数个数为6个的两位数也不唯一.约数个数为7个的两位数表示为a6,只有26=64,是唯一的.同样的,约数个数为9个的两位数也是唯一的,只有36.约数个数更多的两位数,或者不唯一,或者不存在.因此这个数可能为64或36.41. 求出所有恰好含有10个因数的两位数,并求出每个数的所有因数之和.【答案】124或186【分析】10=9+1=2×5,表达式为a9或者ab4,29>100,2×34>100,只可能是24×3=48或24×5=80.48的因数之和:(20+21+22+23+24)×(30+31)=124,80的因数之和:(20+21+22+ 23+24)×(50+51)=186.42. 有12个约数的数最小是多少?有多少个两位数的约数个数是12个?【答案】60;5【分析】详解:有12个约数的数分解质因数后,可能是▫11、▫×▫5、▫2×▫3、▫×▫×▫2;对应的最小数分别是2048、96、72、60,那么最小的就是60,其中两位数除了60、72、96之外还有84和90,共5个.43. 1000以内恰有10个因数的数有多少个?【答案】22【分析】10=1×10=2×5,对于第一种情况29=512;第二种情况为a4×b,a只能取2和3,经试验分别有17种和4种可能,综合共有22个.44. A有7个约数,B有12个约数,且A、B的最小公倍数是1728,求B.【答案】108【分析】1728=26×33,由于A数有7个约数,而7为质数,所以A为某个质数的6次方,由于1728只有2和3两个质因数,如果A为36,那么1728不是A的倍数,不符合题意,所以A=26,那么33为B的约数,设B=2k×33,那么(k+1)×(3+1)=12,解得k=2,所以B=22×33=108.45. 3456共有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?【答案】32;24;24;11【分析】简答:3456=27×33,约数有8×4=32个.其中3的倍数有8×3=24个,4的倍数有6×4=24个,6的倍数有7×3=21个.那么有32−21=11个不是6的倍数.46. 一个正整数,它的2倍的约数恰好比自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个,那么这个正整数为多少?【答案】12【分析】这个数只能含2和3的因子,因为如果它还有别的因子,例如5,那么最后增加的个数要比给定的数字大.设x=2a⋅3b,它的约数有(a+1)(b+1)个,它的2倍为2a+1⋅3b,它的约数有(a+1+1)(b+1)个.(a+1+1)(b+1)−(a+1)(b+1)=b+1=2,b=1同样的,它的3倍为2a⋅3b+1,它的约数为(a+1)(b+1+1)个,比原数多3个(a+1)(b+1+1)−(a+1)(b+1)=a+1=3,a=2,所以这个数的形式是22×3=12.47. 在小于200的正整数中,有多少个数有偶数个约数?【答案】185【分析】简答:平方数有奇数个约数.小于200的平方数有12,22,⋯,32,142,共14个,因此有偶数个约数的数有185个.48. 在所有30的倍数中,共有个数恰好有30个因数?【答案】6【分析】设30的N倍恰有30个因数.因为30=2×3×5,所以N内可能有2、3、5.根据因数个数定理,(1+1)×(2+1)×(4+1)=30,所以N内必含2、3、5中几个,即30N=2a×3b×5c,(a+1)×(b+1)×(c+1)=30,a,b,c分别是1,2,4中一个.N为21×32×54,21×34×52,22×31×54,22×34×51,24×31×52,24×32×51,一共6个.49. 360共有多少个奇约数?所有这些奇约数的和是多少?【答案】6、78【分析】360=23×32×5,奇约数有:(2+1)×(1+1)=6(个),奇约数的和是:(30+31+32)×(50+51)=78.50. 偶数A不是4的倍数,它的约数个数为12,求4A的约数个数.【答案】24【分析】由于A是偶数但是不是4的倍数,所以A只含1个因子2,可将A分解成A=21×B,其中B奇数,根据约数个数定理,它的约数个数为(1+1)×N=12,那么4A=8B=23×B,所以它的约数个数为(1+3)×N=24个.51. a,b均为质数且不相等,假设A=a3b2,那么a有多少个因数?假设B=9A,那么B有多少个因数?假设C有6个因数,那么C2有多少个因数?【答案】12;36个或18个或20个;11个或15个【分析】A有(3+1)×(2+1)=12个因数.B=9A=32a3b2,假设a和b都不是3,那么B有(2+1)×(3+1)×(2+1)=36个因数;假设a=3,那么B=35b2,那么B有(5+1)×(2+1)=18个因数,假设b=3,那么B=34a3,B有(4+1)×(3+1)=20个因数.综上B的因数可能有36个、18个或20个;6=2×3=1×6,那么假设C=p1×p22,C2=p12×p24,有(2+1)×(4+1)=15个因数;或C=p5,C2=p10,有11个因数.52. 11个连续的两位数乘积的末4位都是0,那么这11个数的总和最小是多少?【答案】220【分析】末4位都是0.这个乘积分解质因数后,至少有4个因数2和4个因数5.而连续的11个数中至少有5个偶数,所以因数2的个数足够了,因而问题在于因数5是不是够4个.由于连续的11个自然数中,最多有3个数是5的倍数,而乘积中要出现4个因数5,说明这3个数中,至少一个数含有两个因数5,这个数最小是25,所以所求的11个连续自然数的总和最小是25+24+23+⋯+15=220.53. 一个数的完全平方数有39个约数,求该数的约数个数是多少?【答案】14个或者20个.【分析】设该数为p1a1×p2a2×⋯×p n a n,那么它的平方就是p12a1×p22a2×⋯×p n2a n,因此(2a1+1)×(2a2+1)×⋯×(2a n+1)=39.由于39=1×39=3×13,⑴所以,2a1+1=3,2a2+1=13,可得a1=1,a2=6;故该数的约数个数为(1+1)×(6+1)=14个;⑵或者,2a1+1=39,可得a1=19,那么该数的约数个数为19+1=20个.所以这个数的约数个数为14个或者20个.54. 一个自然数,它最大的约数和次大的约数之和是111,这个自然数是多少?【答案】74【分析】最大的约数是这个自然数本身,因此它是次大约数的倍数.它们的和也应该为次大约数的倍数.111=3×37,次大约数为37时满足条件,这个自然数为74.55. 10000的所有因数的和为多少?所有因数的积为多少?【答案】24211;1000012×100【分析】10000=24×54,因数和:(20+21+22+23+24)×(50+51+52+53+54)=24211因数积为(1002)n×100,其中n=[(4+1)×(4+1)−1]÷2=12所以因数的积为1000012×10056. 数120的因数有多少个?这些因数中奇因数有多少个?【答案】16个;4个【分析】120=23×3×5,因数的个数为(3+1)×(1+1)×(1+1)=16(个),奇因数个数为(1+1)×(1+1)=4(个).57. 数240的因数有多少个?这些因数中偶因数有多少个?【答案】20个;16个【分析】240=24×3×5,因数的个数为(4+1)×(1+1)×(1+1)=20(个),奇因数个数为(1+1)×(1+1)=4(个),偶因数有20−4=16(个).58. 求所有能被30整除,且恰有30个不同约数的自然数的个数.【答案】6个【分析】30=2×3×5,所以原数肯定只含有2,3,5,这三个质因子,并且指数分别为1,2,4,可以任意排列所以有3!=6个.59. 算式(1+2+3+⋯+n)+2007的结果可表示为n(n>1)个连续自然数的和.请问:共有多少个满足要求的自然数n?【答案】5个.【分析】1+2+3+⋯+n是项数为n的等差数列之和,我们考虑将2007平均分成n份,加到每一项上即可.2007=32×223,有6个约数,分别为1、3、9、223、669、2007.其中1舍去,有5个满足要求的自然数.60. 有3599只甲虫,依次编号为1,2,3,⋯,3599,开始时头都朝东.第1秒钟,编号为1的倍数的甲虫向右转90度;第2秒钟,编号为2的倍数的甲虫向右转90度;第3秒钟,编号为3的倍数的甲虫向右转90度,⋯,如此进行.那么,1小时后,第3599号甲虫头朝哪个方向?【答案】东.【分析】要求编号为n的甲虫转动的次数实际上是要求n的因数的个数,先将3599分解质因数:3599=3600−1=602−12=59×61,所以3599只有(1+1)×(1+1)=4个因数,那么在1小时即3600秒内,第3599号甲虫共转动了4次,由于每次转90度,所以共转了360度,还是朝向原来的方向,所以1小时后,第3599号甲虫头朝东.61. 2008÷a=b⋯⋯6,a、b均为自然数,a有多少种不同的取值?【答案】14【分析】由2008÷a=b⋯⋯6可知:ab+6=2008,ab=2002,又因为2002=2×7×11×13,而且a>6,所以a的取值有:7、11、13、2×7、2×11、2×13、7×11、7×13、11×13、2×7×11、2×7×13、2×11×13、7×11×13、2×7×11×13,共14种不同的取值.62. 28有多少个因数?和28因数个数相同的两位数还有那些?【答案】6个;共16个,分别是:12,18,20,28,32,44,45,50,52,63,68,75,76,92,98,99.【分析】28=22×7,共6个因数,枚举6个因数的两位数.6=1×6=2×3,原数为a5或b2c形式共16个,分别是:12,18,20,28,32,44,45,50,52,63,68,75,76,92,98,99.63. 200以内恰有10个因数的数有多少个?【答案】5【分析】10=1×10=2×5,对于第一种情况29=512>200;第二种情况为a4×b,a只能取2和3:24×3、24×5、24×7、24×11、24×13=208>200;34×2、34×5=405> 200,综上,共有5个.。

小学奥数题库《数论》因数和倍数-因数的个数定理-5星题(含解析)

小学奥数题库《数论》因数和倍数-因数的个数定理-5星题(含解析)

数论-因数和倍数-因数的个数定理-5星题课程目标知识提要因数的个数定理•因数的个数定理因数的个数等于不同质因数的指数分别加1后再相乘的积。

•因数个数性质当因数个数为奇数的时候,这个数一定是完全平方数.精选例题因数的个数定理1. 1001的倍数中,共有个数恰有1001个约数.【答案】6个【分析】1001的倍数可以表示为1001k,由于1001=7×11×13,如果k有不同于7,11,13的质因数,那么1001k至少有4个质因数,将其分解质因数后,根据数的约数个数的计算公式,其约数的个数为(a1+1)(a2+1)(a3+1)(a4+1)⋯(a n+1),其中n⩾4.如果这个数恰有1001个约数,那么(a1+1)(a2+1)(a3+1)(a4+1)⋯(a n+1)=1001=7×11×13,但是1001不能分解成4个大于1的数的乘积,所以n⩾4时不合题意,即k不能有不同于7,11,13的质因数.那么1001k只有7,11,13这3个质因数.设1001k=7a×11b×13c,那么(a+1)(b+1)(c+1)=1001,a+1、b+1、c+1分别为7,11,13,共有3!=6种选择,每种选择对应一个1001k,所以1001的倍数中共有6个数恰有1001个约数.2. 四位数双成成双的所有因数中,有3个是质数,其它39个不是质数.那么,四位数成双双成有个因数.【答案】12【分析】双成成双共有3+39=42个因数,且有3个质因数,所以它的质因数分解形式为双成成双=a×b2×c6,而双成成双=双00双+成成0̅=双×1001+成×110=11×(双×91+成×10)所以三个质因数中有一个是11,所以双成成双=a×b2×c6,至少是11×32×26=6336,稍微大一点点就是11×52×26=17600,已经是五位数了,所以双成成双=6336,双=6,成=3所以成双双成=3663=32×11×37,有3×2×2=12个因数.3. 两数乘积为2800,而且己知其中一数的因数个数比另一数的因数个数多1,那么这两个数分别是、.【答案】16、175【分析】先将2800分解质因数:2800=24×52×7,由于其中一数的因数个数比另一数的因数个数多1,所以这两个数中有一个数的因数为奇数个,这个数必为完全平方数.又是2800的因数,故这个数只能为22、24、52、22×52或24×52,另一个数相应地为22×52×7、52×7、24×7、22×7或7.经检验,只有两数分别为24和52×7时符合条件,所以这两个数分别是16和175.4. 能够被1到11的所有自然数整除的最小自然数为.【答案】27720【分析】1到11这11个数分解质因数后所包含的质数有2、3、5、7、11,因此这个自然数最少包含质因数2、3、5、7、11.1=11,2=21,3=31,4=22,5=51,6=2×3,7=71,8=23,9=32,10=2×5,11=111,所以这个自然数最小为23×32×51×71×111=277205. 老师用0至9这十个数字组成了五个两位数,每个数字恰用一次;然后将这五个两位数分别给了A、B、C、D、E这五名聪明且老实的同学,每名同学只能看见自己的两位数,并依次发生如下对话:A说:“我的数最小,而且是个质数.〞B说:“我的数是一个完全平方数.〞C说:“我的数第二小,恰有6个因数.〞D说:“我的数不是最大的,我已经知道ABC三人手中的其中两个数是多少了.〞E说:“我的数是某人的数的3倍.〞那么这五个两位数之和是.【答案】180【分析】A的话可知,A的十位是1,又因为是质数,所以A有可能是13,17,19;C能断定自己的数第二小,且有6个因数,所以可能是20,28,32;B是完全平方数,但不能含有1和2,所以B有可能是36,49,64;D能断定自己不是最大的,说明他的数是53或54或十位数不超过4,但大于等于34;E是某人的数的3倍,由上面信息可知,只能是A,且推得A为19,那么E为57最后根据D能知道ABC三人手中两个数,试验可知,BCD手中数分别为36,28,40综上所述,五个两位数之和是1806. 有20个约数,且被42整除最小的自然数是.【答案】336【分析】因为被42整除,所以一定含有质因数2,3,7.20=1×20=2×10=4×5=2×2×5,有20个约数的自然数有:因为必须含有3个不同的质因数,所以最小的只能是:2×2×2×2×3×7=336;所以有20个约数且被42整除的最小自然数是336.7. 所有70的倍数中,共有多少个数恰有70个因数?【答案】6【分析】设70的N倍恰有70个因数.70=2×5×7,有:(1+1)×(1+1)×(1+1)=23= 8,因为8不整除70,所以N内可能有2、5、7.假设有4个不同质因数,但70只能表示为2×5×7,所以N内必含2、5、7中几个,即70N=2a+1×5b+1×7c+1,(a+1+1)×(b+1+1)×(c+1+1)=70,a,b,c分别是0,3,5中一个.N为23×53,23×73,25×23,25×73,53×75,55×73,一共6组.8. 如果你写出12的所有因数,1和12除外,你会发现最大的因数是最小因数的3倍.现有一个整数n,除掉它的因数1和n外,剩下的因数中,最大因数是最小因数的15倍,那么满足条件的整数n有哪些?【答案】60和135.【分析】设整数n除掉因数1和n外,最小因数为a,可得最大因数为15a,那么n=a×15a=15a2=3×5×a2.那么3、5、a都为n的因数.因为a是n的除掉因数1外的最小因数,那么a⩽3.当a=2时,n=15×22=60;当a=3时,n=15×32=135.所以满足条件的整数n有60和135.9. 一个正整数,它的2倍的约数恰好比自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个,那么这个正整数为多少?【答案】12【分析】这个数只能含2和3的因子,因为如果它还有别的因子,例如5,那么最后增加的个数要比给定的数字大.设x=2a⋅3b,它的约数有(a+1)(b+1)个,它的2倍为2a+1⋅3b,它的约数有(a+1+1)(b+1)个.(a+1+1)(b+1)−(a+1)(b+1)=b+1=2,b=1同样的,它的3倍为2a⋅3b+1,它的约数为(a+1)(b+1+1)个,比原数多3个(a+1)(b+1+1)−(a+1)(b+1)=a+1=3,a=2,所以这个数的形式是22×3=12.10. 在三位数中,恰好有9个因数的数有多少个?【答案】7个【分析】由于9=1×9=3×3,根据因数个数公式,可知9个因数的数可以表示为一个质数的8次方,或者两个不同质数的平方的乘积,前者在三位数中只有28=256符合条件,后者中符合条件有22×52=100、22×72=196、22×112=484、22×132=676、32×52=225、32×72=441,所以符合条件的有7个.11. 在1到100中,恰好有6个因数的数有多少个?【答案】16个【分析】6=1×6=2×3,故6只能表示为(5+1)或(1+1)×(2+1),所以恰好有6个因数的数要么能表示成某个质数的5次方,要么表示为某个质数的平方再乘以另一个质数,100以内符合前者的只有32,符合后者的数枚举如下:22×322×522×722×1122×1322×1722×1922×23⋯⋯8个32×232×532×732×11⋯⋯4个52×252×3⋯⋯2个72×2⋯⋯1个所以符合条件的自然数一共有1+8+4+2+1=16个.12. 有一个整数,它恰好是它约数个数的2012倍,这个正整数的最小值是多少?【答案】40220【分析】设这个数为x,其约数的个数为n,那么有x=2012×n=22×503×n,其约数个数总大于(2+1)×(1+1)=6个,经试验当n=20时,那么x=24×5×503⇒n=5×2×2= 20成立因此x=2011×20=40220.13. 有3599只甲虫,依次编号为1,2,3,⋯,3599,开始时头都朝东.第1秒钟,编号为1的倍数的甲虫向右转90度;第2秒钟,编号为2的倍数的甲虫向右转90度;第3秒钟,编号为3的倍数的甲虫向右转90度,⋯,如此进行.那么,1小时后,第3599号甲虫头朝哪个方向?【答案】东.【分析】要求编号为n的甲虫转动的次数实际上是要求n的因数的个数,先将3599分解质因数:3599=3600−1=602−12=59×61,所以3599只有(1+1)×(1+1)=4个因数,那么在1小时即3600秒内,第3599号甲虫共转动了4次,由于每次转90度,所以共转了360度,还是朝向原来的方向,所以1小时后,第3599号甲虫头朝东.14. 有一个整数,它恰好是它约数个数的2011倍,这个正整数的最小值是多少?【答案】16088【分析】设这个数为x,其约数的个数为n,那么有x=2011×n,因为2011是质数,那么n的最小值的约数个数大概率为偶数,经试验当n=8时,那么x=2011×23⇒n=2×4=8成立因此x=2011×8=16088.15. 有一个自然数,它的个位是零,并且它有8个因数,这个数最小可能是多少?【答案】30【分析】因数个数定理:8=1×8=2×4=2×2×2,分解质因数后:a7、ab3、abc,因为这个自然数的个位是零,因此必有质因数2和5,因此可能是23×51或21×31×51,比拟可知最小的数是21×31×51=30.。

五年级奥数.数论.因数与倍数(A级答案

五年级奥数.数论.因数与倍数(A级答案

五年级奥数.数论.因数与倍数(A级答案因数与倍数课前预习因数与倍数⼀天,因数和倍数⾛到了⼀起。

倍数傲慢地对因数说:“哎,哥们,见了我怎么也不下拜呀?”“我为什么要拜你,你算⽼⼏呀?”因数⽓愤地回答。

“我是⽼⼤呀。

”“你是⽼⼤?为什么”“你说,⼀个数的倍数有多少个呀?”“这我知道,⼀个数的倍数有⽆数个。

”只见倍数慢条斯理地说:“这就对嘛,⼀个数的因数的个数就那么可怜的⼏个。

⽽⼀个数的倍数有⽆数个.你的家庭成员这么少,⽽我的家庭是这样的庞⼤。

你说,你不应该拜我吗?”“是的,你的家庭是庞⼤的,可是,你知道吗?因为你的家庭的庞⼤,你知道你是⽼⼏吗?我们的家庭成员是有限的,可是,我们都知道我们⾃⼰的位置。

再说,离开我们这些因数,你们这些倍数还成⽴吗?”因数理直⽓壮地回答。

只见倍数挠着⽿朵,想了想,说:“对,其实我们是密不可分的好伙伴,我们谁都离不开谁。

刚才是我不对,我向你道歉了。

”“没有关系,没有关系,你知道⾃⼰错了就好。

在⾃然数中,我们谁离开了谁都是不存在的。

没有倍数,我是谁的因数呢?同样,没有因数,你们⼜是谁的倍数呢?让我们共同携⼿,紧密团结在⼀起,永远做好兄弟!”因数诚恳地说。

因数和倍数两位好伙伴的⼿紧紧地握在了⼀起。

⼀、约数的概念与最⼤公约数0被排除在约数与倍数之外1.求最⼤公约数的⽅法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=??,22252237=??,所以(231,252)3721=?=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=?=;③辗转相除法:每⼀次都⽤除数和余数相除,能够整除的那个余数,就是所求的最⼤公约数.⽤辗转相除法求两个数的最⼤公约数的步骤如下:先⽤⼩的⼀个数除⼤的⼀个数,得第⼀个余数;再⽤第⼀个余数除⼩的⼀个数,得第⼆个余数;⼜⽤第⼆个余数除第⼀个余数,得第三个余数;这样逐次⽤后⼀个余数去除前⼀个余数,直到余数是0为⽌.那么,最后⼀个除数就是所求的最⼤公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最⼤公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最⼤公约数是15.2.最⼤公约数的性质①⼏个数都除以它们的最⼤公约数,所得的⼏个商是互质数;②⼏个数的公约数,都是这⼏个数的最⼤公约数的约数;③⼏个数都乘以⼀个⾃然数n ,所得的积的最⼤公约数等于这⼏个数的最⼤公约数乘以n .3.求⼀组分数的最⼤公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最⼩公倍数a ;求出各个分数的分⼦的最⼤公约数b ;b a即为所求.⼆、倍数的概念与最⼩公倍数1. 求最⼩公倍数的⽅法①分解质因数的⽅法;例如:2313711=??,22252237=??,所以[]22231,252237112772==;②短除法求最⼩公倍数;例如:2181239632,所以[]18,12233236==;知识框架③[,](,)a b a b a b ?=. 2. 最⼩公倍数的性质①两个数的任意公倍数都是它们最⼩公倍数的倍数.②两个互质的数的最⼩公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最⼤公约数是其中较⼩的数,最⼩公倍数是较⼤的数.3. 求⼀组分数的最⼩公倍数⽅法步骤先将各个分数化为假分数;求出各个分数分⼦的最⼩公倍数a ;求出各个分数分母的最⼤公约数b ;b a即为所求.例如:35[3,5]15[,]412(4,12)4== 注意:两个最简分数的最⼤公约数不能是整数,最⼩公倍数可以是整数.例如:[]()1,414,4232,3??== 三、最⼤公约数与最⼩公倍数的常⽤性质1.两个⾃然数分别除以它们的最⼤公约数,所得的商互质。

五下 第二单元因数和倍数能力提高题和奥数题(附答案)

五下 第二单元因数和倍数能力提高题和奥数题(附答案)

五下第二单元因数和倍数能力提高题和奥数题(附答案)第二单元《因数和倍数》1. 整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

最小的自然数是02. 因数、倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

例:12÷2=6, 12是6的倍数,6是12的因数。

为了方便,在研究因数和倍数时,我们所说的数是自然数(一般不包括0)。

数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

一个数的最大因数=最小倍数=它本身3. 2、3、5的倍数特征1)奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

①自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数,叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

②最小的奇数是1,最小的偶数是0.③奇数、偶数的运算性质:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数(大减小)奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是(984),最小的是(450)②在能被3整除的数中,最大的是(984),最小的是(405)③在能被5整除的数中,最大的是(980),最小的是(405)2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能( 4 )种填法。

4. 质数和合数①质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质素和(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

【奥数专题】精编人教版小学数学五年级上册 因数与倍数(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册 因数与倍数(试题)含答案与解析

经典奥数:因数与倍数(专项试题)一.选择题(共6小题)1.有两根绳子,一根长36厘米,另一根长48厘米,把它们剪成长度相等的小段,且没有剩余,每小段最长()厘米.A.24B.6C.122.红旗小学六年级有男生48人,女生36人.男、女生分别站成若干排,要使每排的人数相同,每排最多有()人.A.4B.6C.12D.163.有一张长方形纸,长70cm,宽50cm.如果要剪成若干同样大小的正方形而没有剩余,剪成的小正方形的边长最大是()厘米.A.5B.10C.15D.204.学校图书室新购进一些图书,如果每24本一包,能够正好包完.如果每16本一包,也能正好包完.图书室至少买了()本图书.A.48B.64C.96D.245.淘气与笑笑同时从环形跑道的起点出发,淘气跑一圈需要4分钟,笑笑跑一圈需要6分钟,至少()分钟后两人还能在起点相遇.A.8B.10C.12D.246.如果把两根长度分别为40厘米和56厘米的塑料管截成长度相等的吸管,并且都没有剩余,每根吸管最长是()厘米.A.1B.2C.4D.8二.填空题(共6小题)7.某条道路上,每隔900米有一个红绿灯,所有的红绿灯都按绿灯30秒黄灯5秒,红灯25秒的时间周期同时重复变换,一辆汽车在第一个路口处遇到绿灯后,要想在所有的红绿灯路口都遇到绿灯,则他最快该以每小时千米的速度行驶.8.暑期,东东和明明到图书馆看书,东东每4天去一次,明明每6天去一次.8月13日两人在图书馆相遇,8月日他们下次相遇.9.六一班有学生48人,六二班有学生54人.如果把两个班的学生分别分成若干小组去大扫除,要使两个班每个小组的人数相同,每组最多人.10.王老师有一盒铅笔,如果平均分给2名同学余1支,如果平均分给3名同学余2支,如果平均分给4名同学余3支,如果平均分给5名同学余4支。

王老师这盒铅笔至少有。

11.有些自然数。

它加1是2的倍数,它的2倍加1是3的倍数,它的3倍加1是5的倍数,那么所有这样的自然数中最小的一个是。

五下 第二单元因数和倍数能力提高题和奥数题(附答案)

五下 第二单元因数和倍数能力提高题和奥数题(附答案)

第二单元因数与倍数提高题和奥数题板块一因数和倍数例题1.一个数在150至250之间,且是18的倍数,这个数可能是多少?最大是多少?练习1.一个数是25的倍数,它位于110至160之间,这个数是多少?例题2.有一个数,它是40的因数,又是5的倍数,这个数可能是多少?练习2.既是7的倍数,又是42的因数,这样的数有哪些?例题3.妈妈买来30个苹果,让小明把苹果放入篮子里。

不许一次拿完,也不许一个一个地拿,要每次拿的个数相同,拿到最后正好一个不剩。

小明共有几种拿法?每种拿法每次各拿多少个?练习3.五(1)班有学生42人,把他们平均分成几个学习小组,每组多于2人且少于8人。

可以分成几个小组呢?板块二 2、5、3的倍数的特征多少?练习1.在17的后面添上三个数字组成五位数,使这个五位数既是偶数,又同时含有因数3和5。

这个五位数最大是多少?最小是多少?例题2.5□□0是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?练习2.4□□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?板块三奇数和偶数例题1.一只小船每天从河的南岸摆渡到北岸,再从北岸摆渡到南岸,不断往返。

已知小船最初在南岸。

(1)摆渡15次后,小船是在南岸还是在北岸?为什么?(2)小明说摆渡2016次后,小船在北岸。

他说得对吗?为什么?练习1.傍晚小亮开灯做作业,本来拉一次开关,灯就该亮了,但是他连续拉了5次开关,灯都没有亮,原来是停电了。

你知道来电的时候,灯应该亮着还是不亮呢?例题2.有36个苹果,把它们放在9个盘子里,每个盘子里只放奇数个苹果,能做到吗?练习2.(1)1×2+3×4+5×6+…+199×200的和是奇数还是偶数?(2)有2016个烟花,每次燃放奇数个,想在9次后恰好全部放完,能做到吗?为什么?例题3.桌子上放着5个杯子,全部是杯底朝上,如果每次翻动2个杯子,称为一次翻动,经过多次翻动能使5个杯子的杯口全部朝上吗?如果每次翻动3个杯子呢?练习3.如家宾馆现在有10间客房的灯开着,每次同时拨动4个房间的开关,能不能把这10个房间的灯全部关闭?如果能,至少需要几次?板块四质数和合数例题1.三个不同质数的和是82,这三个质数的积最大是多少?练习1.(1)两个质数的和是小于100的奇数,并且是11的倍数,这两个质数可能是什么数?(2)两个质数的和是2001,这两个质数的积是多少?(3)一个长方形的长和宽都是质数,并且周长是36厘米,这个长方形的面积最大是多少?例题2.用0、1、4、5这四个数字组成两个质数,每个数字只能用一次,求这两个质数。

六年级下册数学试题-奥数专练:因数与倍数(含答案)全国通用

六年级下册数学试题-奥数专练:因数与倍数(含答案)全国通用

一、约数(因数)和倍数⑴整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除。

⑴如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数(因数)。

例如:12÷3=4,12能被3整除,12是3的倍数,3是12的约数。

⑴最大公约数:几个数公有的约数叫做这几个数的公约数,其中最大的一个,叫做这几个数的最大公约数。

例如:12和18的公约数有1、2、3、6,其中最大的是6,所以12和18的最大公约数是6,记作(12,18)=6⑴最小公倍数:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公约数。

例如:12和18的公倍数有36、72、108、144、180、……,其中最小的是36,所以12和18的最小公倍数是36。

记作[12,18]=36二、关于最大公约数1.求最大公约数的方法。

⑴分解质因数法;例如求9和12的最大公约数。

9=3×312=2×2×3所以,(9,12)=3例如求12和18的最大公约数。

12=2×2×318=2×3×3所以,(12,18)=2×3=6⑴短除法:例如:求12和18的最大公约数。

所以(12,18)=2×3=6例如:求231和252的最大公约数。

所以(231,252)=3×7=212.最大公约数的性质⑴两个自然数分别除以他们的最大公约数,所得的商互质。

⑵几个数的公约数,都是这几个数的最大公约数的约数。

因数与倍数⑶两个数的最大公约数与最小公倍数的乘积,等于这两个数的乘积。

即:(12,18)×[12,18]=12×18(a,b)×[a,b]=a×b三、关于最小公倍数求最小公倍数的方法。

⑴分解质因数法;例如:求9和12的最小公倍数。

9=3×312=2×2×3所以,[9,12]=2×2×3×3=36例如求12和18的最小公倍数。

小学奥数题库《数论》因数和倍数-因数和-1星题(含解析)

小学奥数题库《数论》因数和倍数-因数和-1星题(含解析)

数论-因数和倍数-因数和-1星题课程目标知识提要因数和•概念因数和:即一个整数的所有因数的和。

因数和公式:a3×b2×c的因数的和为〔1+ a + a2 + a3〕×〔1+ b + b2〕×〔1+ c〕精选例题因数和1. 大于0的自然数,如果满足所有因数之和等于它们自身的2倍,那么这样的数称为完美数或完全数.比方,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数,是否有无限多个完美的数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,81的所有因数之和为.【答案】121【分析】81的所有因数为:1,3,9,27,81,所以因数之和为1+3+9+27+81=121.2. 计算以下数的约数和:108、144.【答案】〔1〕280;〔2〕403【分析】详解:〔1〕108=22×32,它的所有约数之和是(1+2+4)×(1+3+9+27)= 280.〔2〕144=24×32,它的所有约数之和是(1+2+4+8+16)×(1+3+9)=403.3. 数360的因数有多少个?这些因数的和是多少?【答案】24个;1170【分析】360分解质因数:360=2×2×2×3×3×5=23×32×5;360的因数可以且只能是2a×3b×5c,〔其中a,b,c均是整数,且a为0~3,b为0~2,c为0~1〕.因为a、b、c的取值是相互独立的,由计数问题的乘法原理知,因数的个数为(3+1)×(2+1)×(1+1)= 24.我们先只改动关于质因数3的因数,可以是1,3,32,它们的和为(1+3+32),所以所有360因数的和为(1+3+32)×2y×5w;我们再来确定关于质因数2的因数,可以是1,2,22,23,它们的和为(1+2+22+23),所以所有360因数的和为(1+3+32)×(1+2+22+ 23)×5w;最后确定关于质因数5的因数,可以是1,5,它们的和为(1+5),所以所有360的因数的和为(1+3+32)×(1+2+22+23)×(1+5).于是,我们计算出值:13×15×6= 1170.所以,360所有因数的和为1170.4. 因数和是指一个数所有因数的和,例如“6”的因数和是1+2+3+6=12.〔1〕24的因数和是多少?〔2〕一个自然数有5个因数,求因数和最小是多少?〔3〕一个数的因数和是78,求这个数是多少?【答案】〔1〕60;〔2〕31;〔3〕45【分析】〔1〕24=23×3⇒(1+2+4+8)×(1+3)=60;〔2〕拥有5个自然数形如a4,最小为24,所以因数和最小为1+2+4+8+16=31;〔3〕78=6×13⇒(1+5)×(1+3+9)=45.。

小学因数与倍数奥数题100道及答案(完整版)

小学因数与倍数奥数题100道及答案(完整版)

小学因数与倍数奥数题100道及答案(完整版)题目1:一个数既是12 的倍数,又是48 的因数,这个数可能是多少?答案:这个数可能是12、24 或48。

题目2:两个数的最大公因数是6,最小公倍数是36,其中一个数是12,另一个数是多少?答案:另一个数是18。

因为最小公倍数乘以最大公因数等于两个数的乘积,所以另一个数为36×6÷12 = 18 。

题目3:有一个自然数,除以5 余3,除以7 余4,这个数最小是多少?答案:23 。

从除以7 余4 的数中找除以5 余3 的数,最小为23 。

题目4:已知A = 2×3×5,B = 2×5×7,A 和 B 的最大公因数和最小公倍数分别是多少?答案:最大公因数是10,最小公倍数是210 。

题目5:一个数在80 到100 之间,既是6 的倍数,又是9 的倍数,这个数是多少?答案:90 。

6 和9 的最小公倍数是18 ,在80 到100 之间18 的倍数是90 。

题目6:两个自然数的积是360,最小公倍数是120,这两个数分别是多少?答案:3 和120 或15 和24 。

题目7:有一个数,它的最大因数和最小倍数之和是60,这个数是多少?答案:30 。

一个数的最大因数和最小倍数都是它本身,所以这个数是30 。

题目8:把48 块糖和38 块巧克力分别分给同一组同学,结果糖剩3 块,巧克力少了2 块,这个组最多有几名同学?答案:5 名。

48 - 3 = 45 ,38 + 2 = 40 ,45 和40 的最大公因数是5 。

题目9:一个数除以4 余1,除以5 余2,除以6 余3,这个数最小是多少?答案:57 。

这个数加上3 就能被4、5、6 整除,4、5、6 的最小公倍数是60 ,所以这个数最小是57 。

题目10:甲、乙两数的最大公因数是8,最小公倍数是48,甲数是24,乙数是多少?答案:16 。

乙数= 8×48÷24 = 16 。

因数和倍数奥数题及标准答案(有难度)

因数和倍数奥数题及标准答案(有难度)

因数和倍数奥数题荟萃总体难度有点大,如果有兴趣可以试试!1、某校举行数学竞赛,共有20道题。

评分标准规定,答对一题给3分,不答给1分。

答错一题倒扣1 分,全校学生都参加了数学竞赛,请你判断,所有参赛学生得分的总和是奇数还是偶数?2、有四个连续奇数的和是2008,则其中最小的一个奇数是_________。

3、张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。

最后橘子分完了,苹果还剩下12个。

那么一共分给了________ _名小朋友。

4、小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。

他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得_________分才能使四份训练题的平均成绩达到105分。

5、三个连续自然数的乘积是210,求这三个数.6、自然数123456789是质数,还是合数?为什么?7、一个数用3、4、5除都能整除,这个数最小是多少?8、一个两位数去除251,得到的余数是41.求这个两位数。

9、一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?10、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

答案:1、解:以一个学生得分情况为例。

如果他有m 题答对,就得3m 分,有n题答错,则扣n分,那么,这个学生未答的题就有(20-m-n)道,即还应得(20-m-n)分。

所以,这个学生得分总数为:3m-n+(20-m-n)=3m-n+20-m-n=2m-2n+20 =2(m-n+10)不管(m-n+10)是奇数还是偶数,则2(m-n+10)必然是偶数,即一个学生得分为偶数。

由此可见,不管有多少学生参赛,得分总和一定是偶数。

2、解:499。

2008÷4—3=4993、解:6。

12÷(3—1)=6(名)。

2022-2023学年小学五年级奥数(全国通用)测评卷10《因数和倍数》(解析版)

2022-2023学年小学五年级奥数(全国通用)测评卷10《因数和倍数》(解析版)

【五年级奥数举一反三—全国通用】测评卷10《因数和倍数》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共10小题,满分30分,每小题3分)1.三个不同正整数的和为564,其中一个数除以3余数为1,另一个数除以5的余数为3,第三个数除以7的余数为5,商都相同,则相同的商为()A.15 B.21 C.35 D.37【解答】解:---÷++=(564135)(357)37故选:D。

2.某班有50多人上体育课,他们站成一排,老师让他们按1,2,3,4,5,6,7循环报数,最后一人报的数是4,这个班有()人上体育课.A.51 B.50 C.53 D.57【解答】解:接近50的7的倍数有:49和56,+=不符合题意,+=,5646049453所以这个班有53人上体育课.故选:C。

3.从1~11这11个整数中任意取出6个数,则下面结论正确的共()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.A.3 B.2 C.1 D.0【解答】解:根据上面的分析可知:从1~11这11个整数中任意取出6个数,①其中必有两个数互质;此说法正确.③其中必有一个数的2倍是其中另一个数的倍数.此说法正确.故选:B。

4.商店有三种糖,甲种糖每袋1.5千克,乙种糖每袋2千克,丙种糖每袋2.5千克,为了方便顾客,将大袋改为小袋,把它们全改为0.5千克的小袋,这样奶糖正好装了126袋,水果糖正好装104袋,酥糖正好205袋,原来的甲、乙、丙三种糖的品种依次是()A.酥糖、水果糖、奶糖B.奶糖、水果糖、酥糖C.奶糖、酥糖、水果糖 D.水果糖、奶糖、酥糖【解答】解:由题意,甲种糖一袋改3小袋,乙种糖一袋改4小袋,丙种糖一袋改5小袋,因为奶糖正好装了126袋,水果糖正好装104袋,酥糖正好205袋,而126能被3整除,104能被4整除,205能被5整除,所以甲、乙、丙三种糖的品种依次是奶糖、水果糖、酥糖,故选:B。

小学奥数题库《数论》因数和倍数-因数-5星题(含解析)

小学奥数题库《数论》因数和倍数-因数-5星题(含解析)

数论-因数和倍数-因数-5星题 课程目标知识提要因数• 定义对于整数a 和b ,如果a ∣b ,我们就称a 是b 的因数。

精选例题因数1. 三个最简真分数的分母分别是6,15和20,它们的乘积是130,那么在这三个最简真分数中,最大的数是.【答案】56. 【分析】设这三个真分数分别为a 6,b 15,c 20,其中a 不含因数2和3;b 不含因数3和5;c 不含因数2和5,且a,b,c 均为非0自然数.依题意:a 6×b 15×c 20=130,abc =60=22×3×5.所以a =5,b =4,c =3.所以最大数为:56.2. 有80颗珠子,5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完.姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差颗.【答案】4【分析】设5年前妹妹的年龄为x ,那么5年前今年妹妹x x +5姐姐x +2x +75年前与今年分别按照年龄的比例分配,且恰好分完,所以2x +2与2x +12均为80的因数,且这两个因数的差为10,80的因数有1,2,4,5,8,10,16,20,40,80,所以只有10与20的差为10,所以2x+2=10,x=4,5年前按照4:6的比例分配,姐姐分80÷(4+6)×6=48(颗),今年按照9:11的比例分配,姐姐分到80÷(9+11)×11=44(颗),两次分配相差48−44=4(颗).3. 有20个约数,且被42整除最小的自然数是.【答案】336【分析】因为被42整除,所以一定含有质因数2,3,7.20=1×20=2×10=4×5=2×2×5,有20个约数的自然数有:因为必须含有3个不同的质因数,所以最小的只能是:2×2×2×2×3×7=336;所以有20个约数且被42整除的最小自然数是336.4. 请将1、2、3、4、5、6、7、8、9、10、11按适宜的顺序写成一行,使得这一行数中的任何一个都是它前面所有数之和的约数.【答案】其中一个答案是6、1、7、2、8、3、9、4、10、5、11.【分析】设填好后的数从左往右依次为a1,a2,⋯,a11,所有数的和为66,那么有a11∣66−a11,故a11∣66,可以设a11=11,那么其余数的和为55,那么倒数第二个数肯定是55的约数,可以填5;还剩50,那么倒数第三个数肯定是50的约数,可以填10,最后经过尝试得到6、1、7、2、8、3、9、4、10、5、11和8、1、9、3、7、2、6、4、10、5、11等答案.观察6、1、7、2、8、3、9、4、10、5、11这组答案,可以发现一个一般的规律:假设所给数是1∼2n+1,那么n+1,1,n+2,2,⋯,2n,n,2n+1符合题意;假设所给数是1∼2n,那么n+1,1,n+2,2,⋯,2n,n符合题意.5. 一个自然数至少有4个约数,并且该数等于其最小的4个约数的平方之和,请找出这样的自然数.【答案】130【分析】最小的那个约数肯定是1,接着感觉到还是不好下手,先考虑奇偶分析.〔或随便尝试几种情况后肯定会想到奇偶分析〕如果这个数不含因数2,即为奇数.由于12+奇2+奇2+奇2=偶,矛盾.如果这个数含因数2,即为偶数,由于12+22+奇2+奇2=奇,12+22+偶2+奇2=偶,12+22+奇2+偶2=偶,12+22+偶2+偶2=奇,那么只有1、2、偶、奇和1、2、奇、偶这两种情况可能,故这个数最小的四个约数从小到大依次为:1、2、4、p或1、2、p、2p.〔其中p为1个非2的质数〕对于1、2、4、p,说明p∣12+22+42+p2,即p∣21+p2,所以p∣21,那么p是3或7,经验证都不对.对于1、2、p、2p,说明p∣12+22+p2+(2p)2,即p∣5+5p2,整理得p∣5(1+p2),很明显p不能整除1+p2,所以p只能是5,所以这个数是5×(1+52)=130.6. 有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,其余各位同学都说这个数能被自己的编号数整除.1号作了检验:只有编号连续的两位同学说的不对,其余同学都对,问:〔1〕说的不对的两位同学,他们的编号是哪两个连续自然数?〔2〕如果告诉你1号写的数是五位数,请找出这个数.【答案】〔1〕8和9;〔2〕60060【分析】〔1〕为了表达方便,不妨设1号同学写的自然数为a.根据2~15号同学所述结论,2∼15中只有两个连续的自然数不能整除a,其他的数都能整除a.由于2∼7中的每一个数的2倍都在15以内,如果2∼7中有某个数不能整除a,那么这个数的2倍也不能整除a,然而2∼7中的这个数与它的2倍不可能是两个连续的自然数,所以2∼7中每一个数都是a的约数.由于2与5互质,那么2×5=10也是a的约数.同理可知,12、14、15也都是a的约数.还剩下的四个数为8、9、11、13,只有8、9是两个连续的自然数,所以说的不对的两位同学,他们的编号分别是8和9.〔2〕1号同学所写的自然数能被2,3,4,5,6,7,10,11,12,13,14,15这12个数整除,也就是它们的公倍数.它们的最小公倍数是:22×3×5×7×11×13=60060.因为60060是一位五位数,而这12个数的其他公倍数都是它们的最小公倍数60060的倍数,且最小为2倍,所以均不是五位数,那么1号同学写的五位数是60060.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因数和倍数奥数题荟萃
总体难度有点大,如果有兴趣可以试试!
1、某校举行数学竞赛,共有20道题。

评分标准规定,答对一题给3分,不答给1分。

答错一题倒扣1 分,全校学生都参加了数学竞赛,请你判断,所有参赛学生得分的总和是奇数还是偶数
2、有四个连续奇数的和是2008,则其中最小的一个奇数是_________。

3、张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。

最后橘子分完了,苹果还剩下12个。

那么一共分给了____ _____名小朋友。

4、小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。

他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得_________分才能使四份训练题的平均成绩达到105分。

5、三个连续自然数的乘积是210,求这三个数.
7、一个数用3、4、5除都能整除,这个数最小是多少
8、一个两位数去除251,得到的余数是41.求这个两位数。

9、一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少
10、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

答案:
1、解:以一个学生得分情况为例。

如果他有m 题答对,就得3m 分,有n 题答错,则扣n分,那么,这个学生未答的题就有(20-m-n)道,即还应得(2 0-m-n)分。

所以,这个学生得分总数为:
3m-n+(20-m-n)
=3m-n+20-m-n
=2m-2n+20 =2(m-n+10)
不管(m-n+10)是奇数还是偶数,则2(m-n+10)必然是偶数,即一个学生得分为偶数。

由此可见,不管有多少学生参赛,得分总和一定是偶数。

2、解:499。

2008÷4—3=499
3、解:6。

12÷(3—1)=6(名)。

4、解:110。

当第四份训练题得满分即120分时,对第三份训练题的得分要求最低,所以第三份训
练题至少要得105×4一(90+100+120)=110(分)。

5、解:∵210=2×3×5×7
∴可知这三个数是5、6和7。

6、
因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。

7、分析由题意可知,要求的数是3、4、5的公倍数,且是最小的公倍数。

解:∵[3,4,5]=3×4×5=60,
∴用3、4、5除都能整除的最小的数是60。

8、分析这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。

解:∵被除数÷除数=商…余数,
即被除数=除数×商+余数,
∴251=除数×商+41,
251-41=除数×商,
∴210=除数×商。

∵210=2×3×5×7,
∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70。

9、解法1:∵相邻两个奇数相差2,
∴150是这个要求数的2倍。

∴这个数是150÷2=75
解法2:设这个数为x,设相邻的两个奇数为2a+1,2a-1(a≥1).则有
(2a+1)x-(2a-1)x=150,
2ax+x-2ax+x=150,
2x=150,
x=75。

∴这个要求的数是75。

10、分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。

解:顺水速度:208÷8=26(千米/小时)
逆水速度:208÷13=16(千米/小时)
船速:(26+16)÷2=21(千米/小时)
水速:(26-16)÷2=5(千米/小时)
答:船在静水中的速度为每小时21千米,水流速度每小时5千米。

相关文档
最新文档