高中数学必修五总复习-知识点+题型.ppt
高中数学必修5全册复习( 版) PPT课件 图文
xy
xy
yx
yx
yx
当且仅x当 y,即 xy1时,不等式取等号
yx
2
所以11的最小值 4 为 xy
基本不等式的应用题:一般跟面积长度等相关
例6:某单位建造一间背面靠墙的小房,地面面积为 12㎡,房屋正面每平方米的造价为1200元,房屋侧面 每平方米的造价为800元,屋顶造价为5800元,如果 墙高3m,且不计房屋背面和地面的费用,问如何设计 才能使总造价最低,并求出最低总造价。
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位
高中数学必修5等差数列知识点总结和题型归纳
等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。
等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。
—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。
≤d<3 D.<d≤36、。
在数列中,,且对任意大于1的正整数,点在直上,则=_____________。
人教高中数学 必修五 2.1 第二课时 数列的递推公式(共17张PPT)
(1)a 1 =0, a n 1 = a n +(2n-1) (n∈N);
(2)
a1
=1,
a n1=
2 an
an
2
(n∈N);
(3) a 1 =3,a n 1 =3a n -2 (n∈N,).
解:(1) a 1=0, a 2 =1,a 3 =4,a 4 =9,a 5=16, ∴ a n =(n-1)2 ;
1,1, 2, 3, 5, 8, 13, 21,… 斐波那契数列
an2an1an,
例5:已知数列 an 满足:a1=5,an=an-1+3(n≥2)
(1)写出这个数列an 的前五项为
。
(2)这个数列 an 的通项公式是 an 3n2
。
累差叠加法 ( n 2 ) a n a n 1 f( n ) 或 a n 1 a 者 n f( n )
(1)a1=0,an+1=an+(2n-1),n∈N+;
(2)a1=1,a n 1
2an an 2
,
n∈N+;
解:(1)因为a1=0,an+1=an+(2n-1),n∈N+; 所以, a2=1 , a3=4, a4=9, a5=16 ,
归纳出它的通项公式是an=(n-1)2 。
(2)a1=1,a n 1
又 a1a2a3 9
解得 a 3
9 4
同理可得 a 4
16 9
,
a5
25 16
a3
a5
92561 4 16 16
(2) 2 5 6 是此数列中的项吗?
225
解:(2)令
256 225
n2 (n 1)2
高中数学必修5知识点总结归纳(人教版最全)
高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
高中数学必修5全册复习课件
{an} 中,若
an an 1 则 an最小. an an 1
a n a n 1 an an 1
则
an最大.
3.数列的通项公式、递推公式、数列与函数的关系。
n(a1 an ) n(n 1)d Sn na1 2 2
求和 公式
a1 (1 q n ) a1 an q Sn 1 q 1 q na1
q 1 q 1
关系式
an、Sn
S n S n1 n 2 an n 1 S1
适用所有数列
R
y
x1 x2
y
O
图像:
x
O
x x=-b/2a
x
基础知识回顾
三、二元一次不等式(组)与简单的线性规划问题:
1、用二元一次不等式(组)表示平面区域的方法:
(1)画直线(用实线或虚线表示),(2)代点(常代坐标原点(0,0))确定区域.
2、简单的线性规划问题:
要明确:(1)约束条件; (2)目标函数; (3)可行域; (4)可行解; (5)最优解等概念和判断方法.
c
B
SABC
1 1 1 ab sin C bc sin A ac sin B 2 2 2
ha
a
b
C
课堂小结 本章知识框架图
正弦定理
解 三 角 形
余弦定理 应 用 举 例
新课标人教版A必修5复习课 第二章 数列
知识回顾
一、数列的概念与简单的表示法:
1.数列的概念:按照一定的顺序排列着的一列数称为 数列,数列中的每一个数叫做这个数列的项。 2.数列的分类:有穷数列;无穷数列;递增数列;递减 数列;常数列;摆动数列.
高中数学必修5课件:第2章2-5-1等比数列的前n项和
数学 必修5
第二章 数列
4.在等比数列{an}中,a3-a1=8,a6-a4=216,Sn=40. 求公比q,a1及n.
解析: 显然公比q≠1,由已知可得:
a1q2-a1=8, aa11q115---qaq1nq=3=4201,6,
a1=1, 解得q=3,
n=4.
数学 必修5
第二章 数列
等比数列前n项和的基本运算
第二章 数列
新课引入
一个穷人到富人那里去借钱,原以为富人会不愿意,哪知富 人一口应承了下来,但提出了如下条件:在 30 天中,每天借给穷 人 10 万元.借钱第一天,穷人还 1 分钱,第二天,还 2 分钱,以 后每天所还的钱数都是前一天的 2 倍,30 天后,互不相欠.穷人 听后觉得很划算,本想一口气定下来,但又想到富人平时是吝啬 出了名的,怕上当受骗,所以很为难.本节课我们来想个办法帮 助这个穷人.
数学 必修5
第二章 数列
(2)由题意知:SS奇 奇+ -SS偶 偶= =- 802,40, ∴SS奇 偶= =- -8106, 0. ∴公比q=SS偶 奇=--18600=2.
答案: (1)28
数学 必修5
第二章 数列
用错位相减法求数列的和
求和Sn=x+2x2+3x3+…+nxn.
[思路点拨]
[规范解答] (1)当x=0时,Sn=0.
∴aa111111- -- -qqqq36= =7262, 3.
① ②
②÷①得1+q3=9,∴q=2.
将q=2代入①中得a1=12, ∴an=a1qn-1=12·2n-1=2n-2,即an=2n-2.
数学 必修5
第二章 数列
(3)由Sn=
a11-qn 1-q
2020秋新版高中数学人教A版必修5课件:第一章解三角形 1.2.4 .pptx
在三角形中,当涉及两边的和、两边的积或两边的平方和或三角
形的面积时,常用余弦定理解答.
-11-
第4课时 几何计算问题
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
题型一 题型二 题型三 题型四
【变式训练1】 设△ABC的内角A,B,C所对的边长分别为a,b,c,且
(1)若△ABC 的面积等于 3, 求������, ������的值;
(2)若sin C+sin(B-A)=2sin 2A,求△ABC的面积. 分析(1)利用余弦定理和面积公式列关于a,b的方程组求解; (2)先利用正弦定理得a与b的关系,再利用余弦定理得a与b的另一 个关系,列方程组求解a,b,进而求面积.
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
反思1.有关长度问题,要有方程意识.设未知数,列方程求解是经常 用到的方法.列方程时,要注意一些隐含关系的应用.
2.要灵活运用正、余弦定理及三角形面积公式.
-18-
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
解(1)由余弦定理及已知条件得a2+b2-ab=4.
又因为△ABC 的面积等于 3,
所以
1 2
������������sin
人教a版高中数学必修5配套课件:2.5.1等比数列的前、n项和
【变式与拓展】
1.(2013 年新课标Ⅰ)设首项为 1,公比为23的等比数列{an}
的前 n 项和为 Sn,则( D ) A.Sn=2an-1 C.Sn=4-3an
2.5 等比数列的前 n 项和
2.5.1 等比数列的前 n 项和
【学习目标】 1.掌握等比数列{ an}前 n 项和公式. 2.通过等比数列的前 n 项和公式的推导过程,体会错位相 减法以及分类讨论的思想方法.
等比数列{ an}的前 n 项和
等比数列前 n 项和公式为___S_n=__a_1_1_1-_-_q_q_n___ (q≠1),
解:由题意,得
若q=1,则S3=3a1=6,符合题意.此时,a3=2. 若 q≠1,则 S3=a111--qq3=211--qq3=6. 解得q=1(舍去)或q=-2.此时a3=8.
综上所述,a3=2,q=1或a3=8,q=-2.
[方法·规律·小结] 1.用等比数列前 n 项和公式,应注意公比 q 是否等于 1. 2.用错位相减法不仅能推导等比数列求和公式,还可以在 其他特定类型的数列求和中应用.
在解决等差、等比数列的综合题时,重点在 于读懂题意,而正确利用等差、等比数列的定义、通项公式及 前 n 项和公式是解决问题的关键.
【变式与拓展】 3.已知在等比数列{an}中,a1=13,q=13. (1)Sn 为数列{an}前 n 项的和,证明:Sn=1-2an;
(2)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公
B.Sn=3an-2 D.Sn=3-2an
题型 2}的各项均为正数,其前 n 项中,数 值最大的一项是 54,若该数列的前 n 项之和为 Sn,且 Sn=80, S2n=6560,求: (1)前 100 项之和 S100; (2)通项公式 an.
高中数学必修5 优秀复习课PPT课件
等差数列:
1.定义:an an1 d (n 2)
2.通项公式:an a1 (n 1)d
推广 an am (n m)d
d an am nm
an dn b 数列{an}等差(充要条件).
点此播放讲课视频
3.前n项和公式: Sn
或
Sn
na1
1 2
n(n
n(a1 2
3 2
z
周期是 ,最小值是- 2,相应的x的集合是
{x | 2x 2 , Z} {x | x , Z}
4
(2)Q 函数y
2 2sinz的递减区间是[2k
+
,
8 2k
3
]
2
2
2 2x- 3 2 得 3 x 7
2
4
递减区间是[
32
,
7
](
8
Z)
8
8
8
数列
=2(n-15
31n) 2(n 31)2
1 2
)2
-2
(
31 2
)2
2
2
( 31)2 2
∴当n=15或=16时,Sn最小.
例2、已知Sn=-2n2+25n,当Sn最大时,求n的值
解:Sn
2(n2
25 2
n)
2(n
6
1)2 4
2 ( 25)2 4
∴当n=6时,Sn最大.
等比数列:
1.定义:an q (n 2,Q q 0,无0项) an1
乘负数改变方向 a b,c 0 ac bc
正数可叠乘 a b 0,c d 0 ac bd
5.正数可乘方 a b 0 an bn
6.正数可开方 a b 0 n a n b
1.1.2余弦定理-人教A版高中数学必修五课件
试一试
若三角形的三边为7,8,3,试判断此三角形的形
状.
钝角三角形
四.小结
四类解三角形问题:
(1)已知两角和任意一边,求其他两边和一角; (2)已知两边和其中一边的对角,求其他的边和 角。 (3)已知两边和它们的夹角,求第三边和其他两 个角; (4)已知三边,求三个角。
五、题型探究
题型一 余弦定理的简单应用
解:由余弦定理知,有 cos B a 2 c 2 b2 , 2ac
代入c a cos B, 得c a a 2 c 2 b2 , b2 c 2 a 2 2ac
△ABC是以A为直角的直角三角形,sin C c a
又 b a sin C, b a c c. a
△ ABC也是等腰三角形
又 2cos Asin B sin C,且sin B 0 cos A sin C c . 2sin B 2b
由余弦定理,有 cos A b2 c 2 a 2 , 2bc
c b2 c 2 a 2 ,即c 2 b2 c 2 a 2 , a b
2b
2bc
又 (a b c)(a b c) 3ab,且a b
例3、在△ABC中,a2>b2+c2,那么A是( A )
A、钝角
B、直角
C、锐角
D、不能确定
结论:一般地,判断△ABC是锐角,直角还是钝角
三角形,可用如下方法.
设a是最长边,则由 cos
A
b2
c2
a2
可得
2bc
(1)A为直角⇔a²=b²+c²
(2)A为锐角⇔a²<b²+c²
(3)A为钝角⇔a²>b²+c²
又 2cos Asin B sin C,
高中必修五数学知识点笔记整理
高中必修五数学知识点笔记整理高中必修五数学知识点一、基础知识(1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.(2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.(3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.二、重难点与易错点重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.(1)区分逆命题与命题的否定;(2)理解充分条件与必要条件;(3)椭圆、双曲线与抛物线的定义;(4)椭圆与双曲线的几何性质,特别是离心率问题;(5)直线与圆锥曲线的位置关系问题;(6)直线与圆锥曲线中的弦长与面积问题;(7)直线与圆锥曲线问题中的参数求解与性质证明;(8)轨迹与轨迹求法;(9)运用空间向量求空间中的角度与距离;(10)立体几何中的动态问题探究.高中必修五数学必背知识点一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
新课标高中数学人教A版必修五全册课件2.1数列的概念与简单表示法
简单表示法(二)
第一页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
A. 380
B. 39 C. 32 D. 18
第二页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
第十三页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式: a1 1,
第十四页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2,
第十五页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
给出,
写出这个数列的前五项.
第二十四页,编辑于星期日:十三点 十七分。
讲解范例:
例1.已知数列{an}的第一项是1,以后
的各项由公式
1 an 1 an1 给出,
写出这个数列的前五项.
1, 2, 3 , 5 , 8 . 235
第二十五页,编辑于星期日:十三点 十七分。
小结:
若记数列 {an }的前n项之和为 Sn ,则
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,,
第十六页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,, an an1 2
第十七页,编辑于星期日:十三点 十七分。
他项.
3. 用递推公式求通项公式的方法: 观察法、累加法、迭乘法.
2020新人教A版高中数学必修5同步课件:第二章 习题课(一) 求数列的通项公式
∴an=
2.
2������ -1
(2)∵an+1=3an+2,∴an+1+1=3(an+1).
又a1+1=2≠0,
∴数列{an+1}是首项为2,公比为3的等比数列.
∴an+1=2·3n-1.
∴an=2·3n-1-1.
=
������ (������ -1)
22 .
反思已知数列的递推公式求通项,通常有以下几种情
形:(1)an+1-an=f(n),常用累加法求通项;(2)
������������ +1 ������������
=
������(n),常用累乘法求
通项;(3)an+1=pan+q,通常构造等比数列求通项.
习题课(一) 求数列的通项公式
1.巩固等差数列与等比数列的通项公式. 2.掌握求数列通项公式的常见方法,并能用这些方法解决一些简 单的求数列通项公式的问题.
1.等差数列的通项公式
若数列{an}为等差数列,其首项为a1,公差为d,则an=a1+(n1)d=am+(n-m)d (n,m∈N*).
【做一做1】 已知数列{an}是等差数列,且a2=6,a11=24,则
给项是分数,那么先把它们统一为相同的形式,再分子、分母分别
寻找规律.
题型一 题型二 题型三
【变式训练1】 根据下面数列的前几项,写出数列的一个通项公
式.
பைடு நூலகம்
(1)1,1,
5 7
,
7 15
,
9 31
,
…
;
(2)2,22,222,2 222,…;
(3)3,0,-3,0,3,….
高中数学必修五全册复习ppt
1 2 S n 1 2 1 1 4 2 1 2 7 2 1 3 (3n5)21n1 ( 3 n 2 ) 2 1 n
两式相减:
1 2Sn132 1 132 1 2 321 n 1(3n2)2 1 n131 2(1 1 2 1 1 n 1)3n 2 n2 2
33 n 2 6 6 n 4
设这三个数为,a , a , aq 则 a a aq 8 即:a38 a2
q
q
(1)若2是 2 ,2q 的等差中项,则 2 2q 4 即:q22q10
q
q
q 1 与已知三数不等矛盾
(2)若2q为2, 2 的等差中项,则 1 1 2q 即:2q2q10
q
q
q 1 三个数为 4,1,2 或 2,1,4 2
S= 3 AB BC ,且存在实数λ使得
2
a+c=λb,求λ的取值范围.
2021/7/17
(1,2]
15
作业: P20习题1.2A组:12,13,14.
2021/7/17
16
第一章 解三角形 单元复习
第三课时
2021/7/17
17
2021/7/17
18
例题分析
例1 如图,在高出地面30m的小山顶 上建有一座电视塔AB,在地面上取一点C, 测得点A的仰角的正切值为0.5,且∠ACB =45°,求该电视塔的高度.
2021/7/17
25
数学必修⑤《数列》 单元总结复习
2021/7/17
26
一、知识回顾
等差数列
等比数列
定义 通项 通项推广
an1an d ana1(n1)d
anam(nm)d
an1an q
an a1qn1 an amqnm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
an a1q n1
或an am (n m)d 或an amq nm
若a,A,b三项成等差, 若a,G,b三项成等比,
则2A a b
则G2 ab
2a n a p aq
an2 apaq
m+n=p+q a n am a p aq
anam apaq
等差数列
等比数列
前n项和
Sn
a1
例:
答案:A
数列与指对数结合
例:等比数列{an}的各项均为正数,且a5a6 a4a7 18, 则log 3a1 log 3 a2 log 3 a10 __1_0___
解:因为数列{an}为等比数列,a5a6 a4a7 18 所以a5a6 a4a7 9 而 log 3 a1 log 3 a2 log 3 a10 log 3 a1a2 a9a10
②求角的形式:
cos A b2 c 2 a 2 2bc
cos B a 2 c 2 b2 2ac
cosC a 2 b2 c 2 2ab
3、三角形面积公式(条件:两边一夹角)
S 1 absin C 1 bcsin C 1 acsin B
2
2
2
1、解三角形的四类题
题型一 已知三边,求三角(余弦定理) 题型二:已知两边一夹角,求边和角(余弦定理) 题型三:已知两边一对角,求角用(正弦定理),
解:当n 1时,a1 S1 21 1 1
当n 1时,an Sn Sn1 (2n 1) (2n1 1) 2n 2n1
2 2n1 2n1 2n1
∵ a1 1满足an 2n1 所以an 2n1
例 1:若 an an1 2n 1,且 a1 1,求 an
解:因为an an1 2n 1 an1 an2 2n 3
log 3 (a1a10 )(a2a9 ) (a5a6 ) log 3 95 log 3 310 10
2an
2、数列的通项公式
(1)等差数列、等比数列,直接用公式
等差要先求出a1和d,等比要先求出a1和q
(2)由Sn求an
当n 1时,an
Sn
Sn1
检验②式满不满足①式, 满足的话写一个式子,
题目条件有边有角,需用正余弦定理进行边角互化, (或全部化为边,或全部化为角)
例:
C
判断三角形形状
例: 2、在△ABC中,a,b,c分别是A、B、C的对 边,若a=2bcosC ,则此三角形一定是( ) A、等腰直角三角形 B、直角三角形 C、等腰三角形 D、等腰三角形或直角三角形
答案:C
补充:若△ ABC 的三个内角满足 sin A:sin B :sinC 5:11:13 ,
必修五 总复习
第一部分 解三角形
1、解三角形、求面积 2、边角互化 3、应用题
解三角形公式
1、正弦定理 a b c
sin A sin B sin C
2、余弦定理
①求边的形式: a2 b2 c2 2bccosA
b2 a2 c2 2accosA c2 a2 b2 2abcosA
当n 1时,a1 S1
不满足写分段的形式
(3)根据递推公式(an与an+1的关系式)求通项公式
1、定义法(例如:an+1-an=2 等差 an+1-an=2an 等比 )
2、迭加法、迭乘法、构造法等
例:复习卷第二部分第3题
答案:B
由Sn求an
当n 1时,an Sn Sn1
补充:求
a
?
n
当n 1时,a1 S1
cosC a 2 b2 c 2 52 112 132 0
2ab
2 511
故角C为钝角
三角形为钝角三角形
例:
答案:
3、应用题
解:在三, A 30
由余弦定理
B
A
b2 c2 a 2 2bc cosA
即(100 3)2 c2 100 2 2 100 3 c cos30
an 2
n
Sn
a1n
n(n 1) d 2
若q≠1
Sn
a1 (1 q n ) 1 q
a1 an q 1 q
若q 1, Sn na1
性质
(片段和) Sn ,S2n Sn ,S3n S2n Sn ,S2n Sn ,S3n S2n
成等差数列
成等比数列
等差和等比通项的规律:
等差数列的通项公式的特点:关于n的一次函数
an an1 f (n)
迭加法
a3 a2 5 a2 a1 3 这n 1个式子相加得
an a1 (2n 1) (2n 3) 5 3 (2n 1) 3 (n 1) n2 1 2
an n2 1 a1 n2 1 1 n2
例 2、若 an1
解
:因
为a
an
n1
则△ ABC ( C)
(A)一定是锐角三角形. (B)一定是直角三角形. (C)一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形.
解析:要判断是钝角三角形还是锐角三角形,主要看最大角
由正弦定理:sinA : sin B:sinC a:b:c 5:11:13
故最长的边为边c,最大的角为角C
a n 3n 2 首项:__5_____ 公差:___3____ a n 2n 首项:__-_2____ 公差:__-_2____
等比数列的通项公式的特点:关于n的指数幂
an
1 2n1 3
1
首项:___27____
1
1
公比:___9____
1
a n 4n 首项:___4____ 公比:___4____
2n
求得c=100或200
30° 60°
C
答:渔船B与救护船A的距离为100或200海里
第二部分 数列
1、等差数列与等比数列 2、数列的通项公式 3、数列的和
1、等差数列和等比数列
等差数列
等比数列
定义 通项公式
中项性质 下标
2n=p+q
an1 an d
an1 q(q 0) an
an a1 (n 1)d
只求边用(余弦定理) 题型四:已知两角一边,求边用(正弦定理) 总之,如果边的条件比较多,优先考虑余弦
如果角的条件比较多,优先考虑正弦 (如果题目告知了两个角,先用内角和180°求出第三角) 注意: 用正弦定理求角,可能多解
例:
也可先求边b, 再算sinC
用S=
1 2
absinC
求面积
2、边角互化