实验二、单容水箱液位PID控制系统

合集下载

单容水箱液位定值控制系统

单容水箱液位定值控制系统

单容水箱液位定值控制系统一、实验目的1.理解单容水箱液位定值控制的基本方法及原理;2.了解压力传感器的使用方法;3.学习PID控制参数的配置。

二、实验设备1.控制理论实验平台2.数据采集卡一块3.PC机1台4.THBDY-1单容水箱液位控制系统三、实验原理单容水箱液位定值控制系统的控制对象为一阶单容水箱,主要的实验项目为单容水箱液位定值控制。

其执行机构为微型直流水泵,正常工作电压为24V。

直流微型水泵控制方式主要有调压控制以及PWM控制,在本实验中采用PWM控制直流微型水泵的转速来实现对单容水箱液位的定值控制。

PWM调制与晶体管功率放大器的工作原理参考实验十三的相关部分。

控制器采用了工业过程控制中所采用的最广泛的控制器——PID控制器。

通过计算机模拟PID控制规律直接变换得到的数字PID控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。

水箱液位定值控制系统一般有由电流传感器构成大电流反馈环。

在高精度液位控制系统中,电流反馈是必不可少的重要环节。

这里为了方便测量与观察反馈信号,通常把电流反馈信号转化为电压信号:反馈端输出端串接一个250Ω的高精度电阻。

本实验电压与液位的关系为:H液位=(V反馈-1)×12.5 单位:mm 水箱液位控制系统方框图为:四、实验步骤1.实验接线1.1 将水箱面板上的“LT –”与实验台的“GND”相连接;水箱面板上的“LT +”与实验台的“AD1”相连接。

1.2将水箱面板上的“输入–”与实验台的“GND”相连接;水箱面板上的“输入+”与实验台的“DA1”相连接。

1.3将水箱面板上的“输出–”与“水泵电源–”连接;水箱面板上的“输出+”与“水泵电源+”连接。

1.4打开实验平台的电源总开关。

2.压力变送器调零本实验在开始实验前必须对压力变送器调零操作。

具体方法为:2.1 将水箱中打满水,然后再全部放到储水箱中;2.2 旋开压力变送器的后盖,用小一字螺丝刀调节压力变送器中电路板上有“Z”标识的调零电位器,让压力变送器的输出电压为1V;2.3 再次向水箱中打水,并观察水箱液位与压力变送器输出电压的对应情况,其对应关系为:H液位=(V反馈-1)×12.5(当液位为10cm时,输出电压应为1.8V左右),如不对应,再重复步骤2.1、2.2直到对应为至;2.4 如果步骤1)、2)、3)还不能调好水箱液位与压力变送器输出电压的对应情况,那么可适度调节压力变送器中电路板上有“S”标识的增益电位器,再重复步骤2.1、2.2、2.3直到对应为至。

单容水箱液位pid控制实验报告

单容水箱液位pid控制实验报告

单容水箱液位pid控制实验报告实验报告:单容水箱液位PID控制实验实验目的:本实验旨在通过PID控制器对单容水箱的液位进行控制,验证PID控制算法在液位控制中的应用效果,并了解PID控制器参数调节的方法和影响因素。

实验装置和仪器:1. 单容水箱:用于存放水并模拟液位变化。

2. 液位传感器:用于实时监测水箱的液位。

3. 控制器:采用PID控制器,用于调节水箱液位。

4. 电源和信号线:提供电力和信号传输。

实验步骤:1. 将水箱与液位传感器连接,并确保传感器能够准确测量液位。

2. 将PID控制器与液位传感器连接,建立控制回路。

3. 设置PID控制器的参数,包括比例系数(P)、积分时间(I)和微分时间(D)。

4. 将控制器调至手动模式,并将控制器输出设定值调整为合适的初始值。

5. 开始实验,记录初始液位和控制器输出设定值。

6. 观察液位的变化,并记录实时液位值。

7. 根据液位变化情况,调整PID控制器的参数,使液位尽可能接近设定值。

8. 结束实验,记录最终液位和控制器参数。

实验结果:通过实验,我们得到了如下的结果和观察:1. PID控制器的参数调节对液位控制有重要影响,不同的参数组合会导致液位的不同响应和稳定性。

2. 比例系数P的增大可以增加控制器对液位误差的敏感程度,但过大的P值可能引起震荡或超调。

3. 积分时间I的增大可以减小稳态误差,但过大的I值可能导致震荡或系统不稳定。

4. 微分时间D的增大可以提高系统的动态响应速度,但过大的D值可能引起噪声干扰或导致系统不稳定。

5. 通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,使液位尽可能接近设定值并保持稳定。

结论:本实验通过PID控制器对单容水箱的液位进行控制,验证了PID控制算法在液位控制中的应用效果。

通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,并使液位保持稳定。

实验结果表明,PID控制器的参数调节对液位控制有重要影响,需要根据实际情况进行调整和优化。

单容水箱液位定值PID数字控制系统

单容水箱液位定值PID数字控制系统

制 ,输 出的信号通 过D A 换器和保持器后输 出P M /转 W 信
号,用所 产生 的P M W 控制驱动 电机的转速进 而控制微 型水泵来控制水流量的大小 。这 样实现对 单容 水箱液 位 的定值控制。
先进 的控制技术 ,即当被控对象的结构和参数不 能完 全 掌握 ,或得不到精确的数学模型时 ,控 制理论 的其

PD数 字控 制 系统 对水箱水 位的控 制 I
( 控制流程 图 一)


{蛐


小 ;液 位 h 的变 化 反 映 了 由 于 q与 q不 相 等 而 引起 的
液位在单容 水箱 内的积 累 。设 h 为被控 量 ,q为输 入 l
量,q为扰动量,构成单输入有扰动 的系统 。 。 单容水箱液位控制结构图见 图3 :
这 是累计流量的关系式。
系统研究更关心 的是在某平衡 状态下的增量式 , 设各个参数分别为q。 。 。 、q。 ,则增量为 : 、h
△ l q —q 。 g l l
di pv, SV, ei, ex, ey, K, Ti, Td, q m O,
q ,q ,o ,h l 2 p
传统 的水箱液位控制多采用包含手动控制方式的
单回路控制, 同时采用 传统 的指针式机械仪表来显示 液位的当前值 ,如浮子式、磁 电式 、接近开关式 、电 容式 、声波式等 。而2 世纪发展 中的P D 1 I 控制 是~项
机 中用V S r p 编程 ,所采集 的信 号通过数字P D B c it I 控
— —


( ) 4
T R C ”液位h % ”,h TAE =f s=O v l 水箱液位 的控制高度 ,单位c m

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告一、实验目的本实验旨在通过单容量水箱液位pid控制实验,掌握PID控制器的基本原理及其在工程中的应用,熟悉液位传感器的使用方法,了解单容量水箱液位pid控制系统的组成和工作原理。

二、实验原理1. PID控制器PID控制器是一种用于工业过程自动化控制的常见算法。

PID是Proportional-Integral-Derivative(比例-积分-微分)三个英文单词的缩写。

PID算法通过对过程变量进行采样和比较,计算出误差,并根据误差大小进行调整。

其中比例项P、积分项I和微分项D分别代表了对过程变量偏差大小、偏差持续时间以及偏差变化率的反馈调整。

2. 液位传感器液位传感器是一种用于测量液体或固体物料高度或深度的设备。

常见的液位传感器有浮球式、压力式、电容式等多种类型。

本实验中采用电容式液位传感器进行测量。

3. 单容量水箱液位pid控制系统单容量水箱液位pid控制系统由水箱、液位传感器、PID控制器和执行机构(如电磁阀)组成。

系统的工作原理是:液位传感器采集水箱内的液位信号,将其转换为电信号并传输给PID控制器;PID控制器通过比较设定值和实际值之间的误差,输出相应的控制信号给执行机构,使其调节水箱内的水流量,从而维持水箱液位稳定在设定值。

三、实验步骤1. 搭建实验装置将单容量水箱与电磁阀、电容式液位传感器等连接起来,组成完整的单容量水箱液位pid控制系统。

2. 设置PID参数根据实际情况,设置合适的PID参数。

其中比例系数Kp、积分系数Ki 和微分系数Kd需要进行适当调整以达到最佳效果。

3. 进行实验测试将设定值设置为一定值,并记录下当前的反馈值。

根据反馈值计算出误差,并通过PID控制器输出相应的调节信号给执行机构。

随着时间的推移,观察液位是否能够稳定在设定值附近。

4. 调整PID参数如果发现液位不能够稳定地保持在设定值附近,需要对PID参数进行适当调整。

可以通过增大或减小比例系数、积分系数和微分系数来调整系统的响应速度和稳定性。

实验二、单容水箱液位PID控制系统

实验二、单容水箱液位PID控制系统

单容水箱液位PID 控制系统一、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、研究系统分别用P 、PI 和PID 调节器时的阶跃响应。

3、研究系统分别用P 、PI 和PID 调节器时的抗扰动作用。

4、定性地分析P 、PI 和PID 调节器的参数变化对系统性能的影响。

图7-1、单容水箱液位控制系统的方块图单容水箱液位控制系统。

这是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。

单回路控制系统由于结构简单、投资省、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛地应用。

当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常工作。

因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

图7-2单容液位控制系统结构图 系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定值无偏差存在。

一般言之,具有比例(P )调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI )调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti 选择合理,也能使系统具有良好的动态性能。

比例积分微分(PID )调节器是在PI 调节器的基础上再引入微分D 的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

在单位阶跃作用下,P 、PI 、PID 调节系统的阶跃响应分别如图7-3中的曲线①、②、③所示。

图7-3、P 、PI 和PID 调节的阶跃响应曲线四、实验内容与步骤1、比例(P)调节器控制1)、按图7-1所示,将系统接成单回路反馈系统(接线参照实验一)。

单容水箱液位控制综合报告

单容水箱液位控制综合报告

单容水箱液位过程控制综合报告自动化专业实验单容水箱液位过程控制综合报告I. 实验目的一、 了解单容水箱液位控制系统的结构与组成。

二、 掌握单容水箱液位控制系统调节器参数的整定方法。

三、 研究调节器相关参数的变化对系统静、动态性能的影响。

四、 了解P 、PI 、PD 和PID 四种调节器分别对液位控制的作用。

II. 单容水箱系统模型一、单容水箱物理模型单容水箱的结构图如下:由图2-1可知,对象的被控制量为水箱的液位H ,控制量(输入量)是流入水箱中的流量Q 1,手动阀V 1和V 2的开度都为定值,Q 2为水箱中流出的流量。

根据物料平衡关系,在平衡状态时10200Q Q -= (1)动态时,则有12d V Q Q d t-=(2)式中V 为水箱的贮水容积,dtdV 为水贮存量的变化率,它与H 的关系为Adh dV =,即d V d h Ad td t= (3)A 为水箱的底面积。

把式(3)代入式(2)得12d h Q Q Ad t-= (4)基于Q 2=SR h ,R S 为阀V2的液阻,则上式可改写为1Sh d h Q AR d t-=即1sd h A R h K Qd t+=或写作1()()1H s K Q s T S =+ (5)式中s T A R =,它与水箱的底积A 和V 2的R S 有关;s K R =。

二、 电动调节阀流量特性物理模型电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要环节。

电动调节阀接受调节器输出4~20mADC 的信号,并将其转换为相应输出轴的角位移,以改变阀节流面积S 的大小。

图2-9为电动调节阀与管道的连接图。

图2-9 电动调节阀与管道的连接图图中:u----来自调节器的控制信号(4~20mADC ) θ---阀的相对开度 s ---阀的截流面积q----液体的流量由过程控制仪表的原理可知,阀的开度θ与控制信号的静态关系是线性的,而开度θ与流量Q 的关系是非线性的。

单容水箱液位过程控制报告 2

单容水箱液位过程控制报告 2

目录前言一.过程控制概述 (2)二.THJ-2型高级过程控制实验装置 (3)三.系统组成与工作原理 (5)(一)外部组成 (5)(二)输入模块ICP-7033和ICP-7024模块 (5)(三)其它模块和功能 (8)四.调试过程 (9)(一)P调节 (9)(二)PI调节 (10)(三)PID调节 (11)五.心得体会 (13)前言现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。

首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。

通过对基础训练设施的集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。

其次,工程实训的内容应一定程度地体现技术发展的时代特征。

为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。

应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。

第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。

以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

本次工程实践就是针对单容水箱液位进行恒高度控制通过调试,来熟悉THJ-2型高级过程控制实验装置。

通过本次工程实践,来熟悉工业过程控制的工作流程以及其控制原理。

一过程控制概述在工业生产中,有一类按照一定的工艺流程(或程序)进行连续不间断的生产的工业生产过程,例如电力、石油、化工、冶金等,这些工业在经济发展中占有举足轻重的地位,我们称之为连续过程工业。

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告实验目的:通过单容量水箱液位PID控制实验,学习PID控制器的原理和调节方法,掌握PID控制器在液位控制中的应用。

实验器材:1. 单容量水箱2. 水泵3. 液位传感器4. 控制器5. 电脑实验原理:PID控制器是由比例(P)、积分(I)和微分(D)三个部分组成的控制器。

根据物体的反馈信号与设定值之间的差异,PID控制器会计算出相应的控制量,以使系统的输出信号趋近于设定值,从而实现对物体的控制。

实验步骤:1. 搭建实验装置:将单容量水箱与水泵和液位传感器连接,将控制器与电脑连接。

2. 设置实验参数:根据实验需求,设置控制器的比例增益、积分时间常数和微分时间常数,并将设定值设定为所需的液位。

3. 开始实验:启动水泵,观察水箱液位的变化,并记录在实验报告中。

4. 数据分析:根据液位传感器的反馈信号,计算实际液位与设定值之间的差异,并根据PID控制器的算法计算出相应的控制量。

5. 调整控制参数:根据实验数据分析的结果,调整PID控制器的参数,如增大比例增益、调整积分时间常数和微分时间常数,再次进行实验。

6. 重复步骤3-5,直到达到所需的控制效果。

实验结果与分析:根据实验数据,绘制出液位随时间变化的曲线图。

通过分析曲线形状和数据变化趋势,判断控制系统的稳定性和响应时间。

如果液位在设定值附近波动较小,并且响应时间较短,则说明PID控制系统的参数调节较为合适。

结论:通过单容量水箱液位PID控制实验,我们学习了PID控制器的原理和调节方法,并掌握了PID控制器在液位控制中的应用。

同时,我们还了解到PID控制器的参数调节对控制系统的稳定性和响应时间有很大影响,需要通过实验数据的分析来进行参数调整。

这些知识和技能对于后续的控制系统设计和实施有着重要的指导意义。

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告本次实验以单容水箱液位PID控制系统为研究对象,通过实验来探究PID控制系统在单容水箱液位控制中的应用。

实验采用的硬件设备包括一台多功能数据采集仪、一个电动水泵、一个水箱、一个液位传感器以及一台电脑。

液位传感器负责实时监测水箱的液位高度,然后将液位信号传输给多功能数据采集仪,再通过电脑处理分析数据。

电动水泵负责将水加入到水箱中,实现液位的上升。

在实验中我们需要采用PID控制算法对液位进行控制。

PID控制器是由比例控制器(P)、积分控制器(I)和微分控制器(D)三个部分组成的一种常见的控制算法。

比例控制器根据当前偏差值来进行控制,积分控制器主要解决由于比例控制器的积累误差,使系统达到静态稳态的需求,微分控制器则是对系统输出信号的变化率进行调整,在系统响应速度方面起到了重要的作用。

PID控制器综合了三种控制器的优点,因此在工业自控领域中得到了广泛的应用。

在实验的开始,我们首先需要计算PID控制参数,包括比例系数Kp、积分时间Ti和微分时间Td。

计算出这些参数之后,我们需要将它们输入到控制器中,使得控制器能够根据当前的液位值来进行控制。

实验过程中,需要适当控制电动水泵的运行时间和运行速度,使得液位能够平稳地上升,同时又不超过设定的上限值。

在实验中,我们首先对比例系数进行了调整。

我们发现当比例系数过大时,液位的波动会变得非常剧烈,表现为液位的快速上升和下降。

当比例系数过小时,系统的响应速度将会比较慢,导致液位不能够很好地达到设定值。

通过实验我们调整了比例系数,使得液位能够更加稳定地上升,并且在液位接近设定值时,系统能够迅速地响应。

我们也对积分时间和微分时间进行了调整,并且通过分析实验数据,我们最终确定了比例系数为1.8、积分时间为0.2秒和微分时间为0.1秒。

通过本次实验,我们深入了解了PID控制系统在单容水箱液位控制中的应用,也体验了PID控制系统参数调整的过程。

我们相信,在实际工程中,PID控制系统的应用会带来更大的效益。

PID自动控制系统参数整定实验报告

PID自动控制系统参数整定实验报告

T13. PID自动控制系统参数整定(化工仪表与自动化,指导教师:卢红梅)实验一:一阶单容上水箱对象特性测试实验实验二:上水箱液位PID整定实验一、实验目的1)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2)、分析分别用P、PI和PID调节时的过程图形曲线。

3)、定性地研究P、PI和PID调节器的参数对系统性能的影响。

4)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

5)、分析分别用P、PI和PID调节时的过程图形曲线。

6)、定性地研究P、PI和PID调节器的参数对系统性能的影响。

二、实验设备THKJ100-1型过程控制实验装置配置:上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。

型参数为串联釜数N三、实验原理实验一原理:阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过控制器或其他操作器,手动改变对象的输入信号(阶跃信号)。

同时,记录对象的输出数据或阶跃响应曲线,然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。

实验二原理:图13.1单回路上水箱液位控制系统图13.1为单回路上水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

因此,当一个单回路系统组成好以后,如何整定好控制器参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

单容水箱液位组态控制实验报告

单容水箱液位组态控制实验报告

4 单容水箱液位组态控制实验报告学院:自动化学院班级:学号:姓名:单容水箱液位组态一.实验目的:1.熟悉单容水箱液位调节阀PID 控制系统工作原理2.熟悉单用户项目组态过程3.掌握WINCC 画面组态设计方法4.掌握WINCC 过程值归档的组态过程5.掌握WINCC 消息系统的组态过程6.掌握WINCC 报表系统的组态过程二:单容水箱实验原理1、实验结构介绍水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变。

被调量为水位H 。

分析水位在调节阀开度扰动下的动态特性。

直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。

(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。

)调整水箱出口到一定的开度。

突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。

通过物料平衡推导出的公式:μμk Q H k Q i O ==,那么 )(1H k k Fdt dH -=μμ, 其中,F 是水槽横截面积。

在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dtdH RC =+。

公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 02=就是水阻。

给定值 图4-1单容水箱液位数学模型的测定实验如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: )1()(0+=TS S KR S G 。

相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。

2、控制系统接线表测量或控制量 测量或控制量标号使用PLC 端口 使用ADAM 端口下水箱液位 LT103 AI0 AI0调节阀FV101 AO0 AO03参考结果单容水箱水位阶跃响应曲线,如图4-2所示:图4-2 单容水箱液位飞升特性此时液位测量高度184.5 mm ,实际高度184.5 mm -3.5 mm =181 mm 。

实际开口面积5.5x49.5=272.25 mm²。

a3000实验水箱液位调节阀之PID篇

a3000实验水箱液位调节阀之PID篇

单容水箱液位控制系统的实验一、实验设备AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。

二、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、分析分别用P、PI和PID调节时的过程图形曲线。

3、定性地研究P、PI和PID调节器的参数对系统性能的影响。

三、实验原理图2-15为单回路水箱液位控制系统单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。

对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。

单容水箱液位控制系统的PID算法

单容水箱液位控制系统的PID算法

自动控制原理课程设计报告单容水箱液位控制系统的PID算法摘要随着科技的进步,人们对生产的控制精度要求越来越高,水箱液位系统是过程控制中一种典型的控制对象,提高液位控制系统的性能十分重要。

本文针对理想的单容水箱液位系统,将包括单容水箱、电动机等在内的部分分别建立数学模型,并加入常规PID对系统性能进行调节。

但由于实际单容水箱液位系统具有时滞性和非线性,实际生产中若要对其建立精确的数学模型比较困难。

因此,将模糊控制的方法引用到对单容水箱液位系统的PID控制中,通过Simulink仿真验证了算法的有效性。

结果表明,和常规PID控制相比,模糊PID控制具有良好的动静态品质。

关键词单容水箱液位; PID控制; MA TLAB; Simulink; 模糊控制.PID control method in water level system of single-tankABSTRACT With the development of technology, the control precision is more and more important. And the water level system of single-tank is a typical control target in process control. The article mainly deals with the water level system of single-tank. It establishes mathematics model for every part of the system, and uses the traditional PID to improve the function . But in actual industry,it’s hard to establishes precise mathematics model. So, it introduces fuzzy PID control in this system. The result suggests that fuzzy PID control is more suitable than the traditional one.KEY WORDS the water level of single-tank; PID control; MA TLAB ; Simulink; fuzzy control.在工业过程控制中,被控量通常有:液位、压力、流量和温度。

fx5u pid控制案例

fx5u pid控制案例

FX5U PLC在PID控制方面的应用非常广泛,以下是一个基本的PID控制案例:案例:水箱液位PID控制一、系统描述此案例为一个单容水箱液位控制系统,其目标是通过PID控制算法来维持水箱内的液位在设定值。

当液位低于设定值时,PID控制器将增加进水阀的开度,以增加进水量;当液位高于设定值时,PID控制器将减小进水阀的开度,以减少进水量。

二、硬件配置FX5U PLC:作为主控制器,负责接收液位传感器的信号,并根据PID算法计算结果控制进水阀的开度。

液位传感器:采用模拟量输出型液位传感器,其输出信号为4-20mA,对应液位的0-100%。

进水阀:采用电动调节阀,其开度可通过PLC输出的模拟量信号进行控制。

三、软件编程PLC程序需要首先读取液位传感器的模拟量输入信号,并将其转换为实际的液位值。

由于FX5U的PLC本体模拟量输入是电压类型,所以需要通过外部电路将传感器的4-20mA电流信号转换为0-10V的电压信号,然后再通过PLC的A/D转换功能将其转换为数字量。

在获取到实际的液位值后,PLC程序需要将其与设定值进行比较,并根据偏差值计算出PID 控制器的输出。

FX5U PLC内置了PID控制功能块,可以直接调用进行PID计算。

PLC程序最后将PID控制器的输出转换为电动调节阀的开度控制信号,通过PLC的D/A转换功能将其转换为模拟量电压信号输出给电动调节阀。

四、调试与优化在系统投入运行前,需要对PID控制器的参数进行调试与优化。

一般来说,PID控制器的参数包括比例增益、积分时间和微分时间三个部分。

这三个参数的设置需要根据系统的实际情况进行调整,以达到最佳的控制效果。

在调试过程中,可以先将积分时间和微分时间设为0,只调整比例增益,使系统达到基本的稳定状态;然后再逐步增加积分时间和微分时间,以改善系统的动态性能。

在调整参数时,需要注意观察系统的响应情况,避免出现超调或振荡等不稳定现象。

单容水箱液位控制系统实验设计

单容水箱液位控制系统实验设计

单容水箱液位控制系统实验设计【摘要】通过对单容水箱液位控制系统特性的测试掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。

根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。

【关键词】单容水箱;液位控制;数字模型1.单容水箱液位控制系统组成本实验装置由被控对象和上位控制系统两部分组成。

系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、气动调节阀、直流电磁阀、PA电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。

1.1被控对象被控对象由不锈钢储水箱、圆筒形有机玻璃水箱和敷塑不锈钢管路组成。

水箱:包括上水箱和储水箱。

上水箱采用淡蓝色圆筒型有机玻璃,不但坚实耐用,而且透明度高,便于学生直能接观察到液位的变化和记录结果。

分别是缓冲槽,工作槽,出水槽。

管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。

有效提高了实验装置的使用年限。

其中储水箱底有一个出水阀,当水箱需要更换水时,将球阀打开让水直接排出。

1.2检测装置压力传感器、变送器:采用SIEMENS带PROFIBUS-PA通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。

1.3执行机构调节阀:采用SIEMENS带PROFIBUS-PA通讯协议的气动调节阀,用来进行控制回路流量的调节。

它具有精度高、体积小、重量轻、推动力大、耗气量少、可靠性高、操作方便等。

水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为32升/分,扬程为8米,功率为180W。

泵体完全采用不锈钢材料,以防止生锈,使用寿命长。

可移相SCR调压装置:采用可控硅移相触发装置,输入控制信号为4~20mA标准电流信号。

输出电压用来控制加热器加热,从而控制锅炉的温度。

电磁阀:在本装置中作为气动调节阀的旁路,起到阶跃干扰的作用。

单容水箱液位过程控制实验报告

单容水箱液位过程控制实验报告

单容水箱液位过程控制实验报告一、实验目的1、了解单容水箱液位控制系统的结构与组成。

2、掌握单容水箱液位控制系统调节器参数的整定方法。

3、研究调节器相关参数的变化对系统静、动态性能的影响。

4、了解PID调节器对液位、水压控制的作用。

二、单容水箱系统模型2.1液位控制的实现本实验采用计算机PID算法控制。

首先山差压传感器检测出水箱水位,水位实际值通过A/D转换,变成数字信号后,被输入计算机中,最后,在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值经过D/A模块转换成模拟信号,进而控制电机转速,从而形成一个闭环系统,实现水位的计算机自动控制。

2. 2被控对象本实验是单容水箱的液位控制。

被控对象为图1中的上水箱,控制量为流入水箱的流量,执行机构为调节阀。

山图1所示可以知道,单容水箱的流量特性:水箱的出水量与水压有关,而水压乂与水位高度近乎成正比。

这样,当水箱水位升高时,其出水量也在不断增大。

所以,若阀开度适当,在不溢岀的情况下,当水箱的进水量恒定不变时,水位的上升速度将逐渐变慢,最终达到平衡。

由此可见,单容水箱系统是一个自衡系统。

三、电动调节阀流量特性物理模型电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要环节。

电动调节阀接受调节器输出4〜20mADC的信号,并将其转换为相应输岀轴的角位移,以改变阀节流面积S的大小。

图2为电动调节阀与管道的连接图。

电动调节阀图2图中:u——来自调节器的控制信号(4〜20mADC)0----阀的相对开度s----阀的截流面积q ------- 液体的流量山过程控制仪表的原理可知,阀的开度0与控制信号的静态关系是线性的,而开度0与流量Q的关系是非线性的。

四、单容水箱系统PID控制规律及整定方法数字PID控制是在实验研究和生产过程中采用最普遍的一种控制方法,在液位控制系统中也有着极其重要的控制作用。

本章主要介绍PID控制的基本原理,液位控制系统中用到的数字PID控制算法及其具体应用。

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告一、实验目的本实验旨在设计并实现一个单容水箱液位PID控制系统,通过对水箱液位的测量和控制,达到稳定控制水箱液位的目的。

二、实验原理1. 液位测量原理:利用浮球开关检测水箱内部液位高度,并将其转换为电信号输出。

2. PID控制原理:PID控制器是一种经典的控制算法,它根据当前误差、误差变化率和误差积分值来计算输出信号,从而调节被控对象的状态。

三、实验步骤1. 设计电路:根据所需控制系统的功能要求,设计出相应的电路图。

本实验采用Arduino开发板作为主要控制器,通过连接电路板上的传感器和执行器来完成液位测量和PID调节功能。

2. 编写程序:在Arduino开发环境中编写程序代码。

首先需要进行传感器数据采集和处理,然后根据PID算法计算出输出信号,并将其发送到执行器上进行调节。

3. 调试系统:在完成硬件连接和程序编写后,需要对系统进行调试。

首先进行传感器测试,确保能够准确地检测到液位高度,并将其转换为电信号输出。

然后进行PID算法测试,通过手动调节控制器的参数,观察系统的响应情况,并逐步优化控制器的参数。

4. 实验结果:通过实验验证,本设计的单容水箱液位PID控制系统能够准确地检测到水箱内部液位高度,并能够根据设定值进行自动调节。

在实验过程中,我们不断优化控制器的参数,最终实现了稳定控制水箱液位的目标。

四、实验总结本实验通过设计和实现单容水箱液位PID控制系统,深入了解了传感器数据采集、PID算法计算和执行器控制等相关知识。

在实验过程中,我们遇到了很多问题,但通过不断尝试和优化,最终成功完成了任务。

这次实验对我们的学习和提高有很大帮助,在今后的学习和工作中也将会有所裨益。

单容水箱液位定值控制系统

单容水箱液位定值控制系统

实验八单容水箱液位定值控制系统一、实验目的1. 理解单容水箱液位定值控制的基本方法及原理;2. 了解压力传感器的使用方法;3. 学习PID控制参数的配置;。

二、实验设备1. THBDC-1型控制理论·计算机控制技术实验台平台2. THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根)3. PC机1台(含上位机软件“THBDC-1”)4. THBDY-1单容水箱液位控制系统三、实验原理单容水箱液位定值控制系统的控制对象为一阶单容水箱,主要的实验项目为单容水箱液位定值控制。

其执行机构为微型直流水泵,正常工作电压为24V。

直流微型水泵控制方式主要有调压控制以及PWM控制,在本实验中采用PWM控制直流微型水泵的转速来实现对单容水箱液位的定值控制。

PWM调制与晶体管功率放大器的工作原理参考实验十三的相关部分。

控制器采用了工业过程控制中所采用的最广泛的控制器——PID 控制器。

通过计算机模拟PID控制规律直接变换得到的数字PID控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。

水箱液位定值控制系统一般有由电流传感器构成大电流反馈环。

在高精度液位控制系统中,电流反馈是必不可少的重要环节。

这里为了方便测量与观察反馈信号,通常把电流反馈信号转化为电压信号:反馈端输出端串接一个250Ω的高精度电阻。

本实验电压与液位的关系为:H液位=(V反馈-1)×12.5 单位:mm四、实验步骤1. 调节好单容水箱的出水口阀门的大小,连接实验电路:1.1 将水箱面板上的“LT –”与实验台的“GND”相连接;水箱面板上的“LT +”与实验台的“AD1”相连接。

1.2将水箱面板上的“输入–”与实验台的“GND”相连接;水箱面板上的“输入+”与实验台的“DA1”相连接。

1.3将水箱面板上的“输出–”与“水泵电源–”连接;水箱面板上的“输出+”与“水泵电源+”连接。

2. 启动计算机,在桌面双击图标THTJ-1,运行实验软件。

单容下水箱液位调节阀PID控制

单容下水箱液位调节阀PID控制

西安郵電大学PLC课程设计报告书题目:单容下水箱液位调节阀PID控制院(系)名称:自动化学院1号:郭丽丽 9号:朱雅学生姓名:29号:宋党朋专业名称:测控技术与仪器班级:测控1003班2013 年 09 月 09 日至时间:2013 年 09 月22 日单容下水箱液位调节阀PID 单回路控制1.无原理图框;2.无程序流程图;3.两组报告完全一样;一、艺过程(1)单容下水箱液位 PID 控制流程图,如图1所示图 1 控制流程图水介质由泵P102从水箱V104中加压获得压头,经由调节阀FV-101进入水箱V103,通过手阀QV-116回流至水箱V104而形成水循环;其中,水箱V103的液位由LT-103测得,用调节手阀QV-116 的开启程度来模拟负载的大小。

本例为定值自动调节系统,FV-101为操纵变量,LT-103为被控变量,采用PID调节来完成。

二、上位组态组态流程图界面,如图2所示图 2 组态流程图三、操作过程和调试1)在现场系统上,打开手阀QV102、QV105,调节下水箱闸板QV116开度(可以稍微大一些),其余阀门关闭。

2)在控制系统上,将IO面板的下水箱液位输出连接到AI0,IO 面板的电动调节阀控制端连到AO0。

3)启动计算机组态软件,进入测试项目界面。

启动调节器,设置各项参数,将调节器切换到自动控制。

4)设置比例参数,待系统稳定后,对系统加扰动信号(一般可通过改变设定值实现),选择合适的P,得到较满意的过渡过程曲线。

5)固定比例P值,改变PI调节器的积分时间Ti,对系统加扰动信号选择合适的I,得到较满意的响应曲线。

6)固定I于某一中间值,微调P的大小,观察加扰动后被调量输出的动态波形,得到满意的响应曲线。

7)在PI调节器控制的基础上,再引入适量的微分作用(设置D 参数),得到满意的响应曲线。

四.测试结果及分析1)选择合适的P值,响应曲线图如图3、图4所示P=22,I=∞,D=0P=20,I=∞,D=0图 3 P 值不同的组态图 4 P 值不同的组态分析:根据图3.4、3.5可知,P=20、P=22与P=24的响应曲线相比较,峰值时间)()()(202224t t t pp p ===P P P ,即t p 越小,响应速度越快;但P=24的响应曲线有振荡的趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二、单容水箱液位PID 控制系统
一、实验目的
1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、研究系统分别用P 、PI 和PID 调节器时的阶跃响应。

3、研究系统分别用P 、PI 和PID 调节器时的抗扰动作用。

4、定性地分析P 、PI 和PID 调节器的参数变化对系统性能的影响。

二、实验设备
1、THKGK-1型过程控制实验装置:
GK-02、 GK-03、 GK-04、 GK-07(2台)
2、万用表一只
3、计算机系统
三、实验原理
1、单容水箱液位控制系统
图7-1、单容水箱液位控制系统的方块图
图7-1为单容水箱液位控制系统。

这是一个单回路反
馈控制系统,它的控制任务是使水箱液位等于给定值所要
求的高度;并减小或消除来自系统内部或外部扰动的影
响。

单回路控制系统由于结构简单、投资省、操作方便、
且能满足一般生产过程的要求,故它在过程控制中得到广
泛地应用。

当一个单回路系统设计安装就绪之后,控制质量的好
坏与控制器参数的选择有着很大的关系。

合适的控制参
数,可以带来满意的控制效果。

反之,控制器参数选择得
不合适,则会导致控制质量变坏,甚至会使系统不能正常
工作。

因此,当一个单回路系统组成以后,如何整定好控
制器的参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

图7-2单容液位控制系统结构图 系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定值无偏差存在。

一般言之,具有比例(P )调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密
切相关。

比例积分(PI )调节器,由于积分
的作用,不仅能实现系统无余差,而且只要t(s)T( c)
.10e ss
23
1
参数δ,Ti选择合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在
PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图
7-3中的曲线①、②、③所示。

图7-3、P、PI和PID调节的阶跃响应曲线
四、实验内容与步骤
1、比例(P)调节器控制
1)、按图7-1所示,将系统接成单回路反馈系统(接线参照实验一)。

其中被控对象是上水箱,被控制量是该水箱的液位高度h1。

2)、启动工艺流程并开启相关的仪器,调整传感器输出的零点与增益。

3)、在老师的指导下,接通单片机控制屏,并启动计算机监控系统,为记录过渡过程曲线作好准备。

4)、在开环状态下,利用调节器的手动操作开关把被控制量“手动”调到等于给定值(一般把液位高度控制在水箱高度的50%点处)。

5)、观察计算机显示屏上的曲线,待被调参数基本达到给定值后,即可将调节器切换到纯比例自动工作状态(积分时间常数设置于最大,积分、微分作用的开关都处于“关”的位置,比例度设置于某一中间值,“正-反”开关拔到“反”的位置,调节器的“手动”开关拨到“自动”位置),让系统投入闭环运行。

6)、待系统稳定后,对系统加扰动信号(在纯比例的基础上加扰动,一般可通过改变设定值实现)。

记录曲线在经过几次波动稳定下来后,系统有稳态误差,并记录余差大小。

7)、减小δ,重复步骤6,观察过渡过程曲线,并记录余差大小。

8)、增大δ,重复步骤6,观察过渡过程曲线,并记录余差大小。

9)、选择合适的δ值就可以得到比较满意的过程控制曲线。

10)、注意:每当做完一次试验后,必须待系统稳定后再做另一次试验。

2、比例积分调节器(PI)控制
1)、在比例调节实验的基础上,加入积分作用(即把积分器“I”由最大处“关”旋至中间某一位置,并把积分开关置于“开”的位置),观察被控制量是否能回到设定值,以验证在PI控制下,系统对阶跃扰动无余差存在。

2)、固定比例度δ值(中等大小),改变PI调节器的积分时间常数值Ti,然后观察加阶跃扰动后被调量的输出波形,并记录不同Ti值时的超调量σp。

3)、固定积分时间T i于某一中间值,然后改变δ的大小,观察加扰动后被调量输出的动态波形,并列表记录不同δ值下的超调量σp。

4)、选择合适的δ和Ti值,使系统对阶跃输入扰动的输出响应为一条较满意的过渡过程曲线。

此曲线可通过改变设定值(如设定值由50%变为60%)来获得。

3、比例积分微分调节(PID)控制
1)、在PI调节器控制实验的基础上,再引入适量的微分作用,即把D打开。

然后加上与前面实验幅值完全相等的扰动,记录系统被控制量响应的动态曲线,并与实验步骤(二)所得的曲线相比较,由此可看到微分D对系统性能的影响。

2)、选择合适的δ、Ti和Td,使系统的输出响应为一条较满意的过渡过程曲线(阶跃输入可由给定值从50%突变至60%来实现)。

3)、用计算机记录实验时所有的过渡过程实时曲线,并进行分析。

五、注意事项
1、实验线路接好后,必须经指导老师检查认可后才能接通电源。

2、必须在老师的指导下,启动计算机系统和单片机控制屏。

3、若参数设置不当,可能导致系统失控,不能达到设定值。

六、实验报告要求
1、绘制单容水箱液位控制系统的方块图。

2、用接好线路的单回路系统进行投运练习,并叙述无扰动切换的方法。

3、P调节时,作出不同δ值下的阶跃响应曲线。

4、PI调节时,分别作出Ti不变、不同δ值时的阶跃响应曲线和δ不变、不同Ti值时的阶跃响应曲线。

5、画出PID控制时的阶跃响应曲线,并分析微分D的作用。

6、比较P、PI和PID三种调节器对系统余差和动态性能的影响。

相关文档
最新文档