完全平方公式与平方差公式综合练习题

合集下载

(完整版)平方差、完全平方公式专项练习题(精品)

(完整版)平方差、完全平方公式专项练习题(精品)

平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差与完全平方公式专练

平方差与完全平方公式专练

平方差与完全平方公式专练一、平方差公式平方差公式是指一个差的平方可以展开为两个数的平方的差。

即对于任意实数a和b,有(a+b)(a-b)=a^2-b^2下面通过一些例题来让我们更好地理解和运用平方差公式。

例题1:计算下列各式的值:(1)(6+3)(6-3)(2)(5+2)(5-2)(3)(9+4)(9-4)解答:(1)(6+3)(6-3)=6^2-3^2=36-9=27(2)(5+2)(5-2)=5^2-2^2=25-4=21(3)(9+4)(9-4)=9^2-4^2=81-16=65例题2:已知两个数字的和为17,差为7,求这两个数字。

解答:设两个数字分别为x和y,根据题意可以得到两个方程:x+y=17x-y=7我们可以使用平方差公式对第二个方程进行变形:(x+y)(x-y)=(17)(7)可以得到:x^2-y^2=119将第一个方程代入上述方程中:17^2-y^2=119289-y^2=119y^2=289-119y^2=170y=±√170代入第一个方程中可以解得:x=17-y如果y=√170,则x=17-√170如果y=-√170,则x=17+√170所以。

通过以上例题的练习,我们可以发现平方差公式在解决方程和计算中的巧妙运用,可以简化计算过程,提高解题效率。

二、完全平方公式完全平方公式是指一个二次多项式可以写成一个二次项的平方。

即对于任意实数a和b,有a^2 + 2ab + b^2 = (a + b)^2下面通过一些例题来让我们更好地理解和运用完全平方公式。

例题1:计算下列各式的值:(1)2^2+2(2)(3)+3^2(2)(-5)^2+2(-5)(4)+4^2(3)12^2+2(12)(5)+5^2解答:(1)2^2+2(2)(3)+3^2=(2+3)^2=5^2=25(2)(-5)^2+2(-5)(4)+4^2=(-5+4)^2=(-1)^2=1(3)12^2+2(12)(5)+5^2=(12+5)^2=17^2=289例题2:已知一个二次多项式x^2+10x+k是一个完全平方,求k的值。

平方差公式与完全平方公式试题(含答案)1

平方差公式与完全平方公式试题(含答案)1

乘法公式的复习一、复习:(a+b)(a-b)=a2-b2(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2(a+b)(a2-ab+b2)=a3+b3(a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,x y y x x2y2②符号变化,x y x y x2y2x2y2③指数变化,x2y2x2y2x4y4④系数变化,2a b2a b4a2b2⑤换式变化,xy z m xy z mxy2z m2x2y2z m z mx2y2z2zm zm m2x2y2z22zm m2⑥增项变化,x y z x y zx y2z2x y x y z2x2xy xy y2z2x 22xy y 2z 2⑦ 连用公式变化,xy x y x 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,x y z2x y z2x y z x y zx y zx y z2x2y 2z4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a2+b2和(a-b)2的值。

平方差、完全平方公式的应用

平方差、完全平方公式的应用

平方差、完全平方公式专项练习题1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以 2、计算:(a+2)(a 2+4)(a 4+16)(a -2).3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

4.已知()5,3a b ab -==求2()a b +与223()a b +的值。

5、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值6、已知6,4a b ab +==,求22223a b a b ab ++的值。

7、 已知222450x y x y +--+=,求21(1)2x xy --的值。

8、 已知16x x-=,求221x x +的值。

9、0132=++x x ,求(1)221x x +(2)441xx +10、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。

11.计算(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .12. 已知,如图13-6,D 是△ABC 的边AB 上一点, DF 交AC 于点E, DE=FE, FC ∥AB,求证:AD=CF .13、 如图,在ABC ∆中,AB BC =,90ABC ∠= 。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF =。

14、如图,AB //CD ,AD //BC ,求证:AB CD =。

15、 已知:如图13-4,AE=AC , AD=AB ,∠EAC=∠DAB , 求证:△EAD ≌△CAB .ACBED图13-4E图13-6ABD FC1.解方程x (9x -5)-(3x -1)(3x +1)=5.2、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值4、如图3,AE=CF ,AD ∥BC ,∠B=∠D求证:BE=DF5、如图5,AC ⊥BC , AD ⊥BD ,AC=AD ,E 在AB上, 求证:∠ECB=∠EDBFE B CDA 图3ECDA 图56. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

(完整版)实用版平方差、完全平方公式专项练习题(精品)

(完整版)实用版平方差、完全平方公式专项练习题(精品)

其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(

(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072

2008 2006
20072

2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差,完全平方公式练习(有答案)

平方差,完全平方公式练习(有答案)
(2)(x+3)(x-5)=x2-2x-15.(3)(2a+1)(a-2)=2a2-4a+a-2=2a2-3a-2.
(4)(x+2)(x2-x-4)=x·x2+x(-x)+x·(-4)+2x2+2·(-x)+2×(-4)=x3-x2-4x+2x2-2x-8=x3+x2-6x-8.
7.解:(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)=4x2+2xy-2xy-y2+2xy-8x2-y2+4xy+2y2-6xy=-4x2.
=a2-9 =4a2-9b2
3. (1+2c)(1-2c) 4. (-x+2)(-x-2)
=1-4C2=x2-42
5. (2x+ )(2x- ) 6. (a+2b)(a-2b)
=4x2- 1/4 =a2-4b2
7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)
=4a2-25b2=4a2-9b2
1、(a+b)(a-b)(a2+b2)
=(a2-b2)(a2+b2)
=a4-b4
2、(a+2)(a-2)(a2+4)
=(a2-4)(a2+4)
=a4-16
3、(x- )(x2+ )(x+ )
=(x2-1/4)((x2+ )=x4-1/16
第四种情况:需要先变形再用平方差公式
1、(-2x-y)(2x-y) 2、(y-x)(-x-y)
10.在(ax2+bx-3)(x2- x+8)的结果中不含x3和x项,则a=,b=

人教版初中数学平方差与完全平方公式练习及参考答案

人教版初中数学平方差与完全平方公式练习及参考答案

平方差与完全平方公式练习1、用平方差公式进行计算:
(1) 103×97; (2)118×122 (3) 102×98 (4) 51×49
2、平方差公式在混合运算中的应用:
(3) (4)
利用平方差公式进行证明:
3、对于任意的正整数n,整式(3n+1)(3n-1)-(3-n)(3+n)的值一定是10的整数倍吗?
即(3n+1)(3n-1)-(3-n)(3+n)的值是10的倍数.
方法总结:在探究整除性或倍数问题时,一般先将代数式化为最简,然后根据结果的特征,判断其是否具有整除性或倍数关系.
4、如果两个连续奇数分别是2n-1,2n+1(其中n为正整数),证明两个连续奇数的平方差是8的倍数.
注意:逆用了平方差公式!5、
6、
7、
8、
9、对于任意一个正整数n,整式A=(4n+1)·(4n-1)-(n+1)·(n-1)能被15整除吗?请说明理由.
10、王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
完全平方公式
1、利用完全平方公式计算:
2、下面各式的计算是否正确?如果不正确,应当怎样改正?
3、利用完全平方公式计算
4、利用完全平方公式的变形求整式的值:
5、填空:
6、
7、
8、(1)(3a+b-2)(3a-b+2) (2)(x-y-m+n)(x-y+m-n) 9、
10、已知x+y=8, x-y=4,求xy.。

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

平方差公式专项练习题A卷:根底题一、选择题1.平方差公式〔a+b〕〔a-b〕=a2-b2中字母a,b表示〔〕A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.以下多项式的乘法中,可以用平方差公式计算的是〔〕A.〔a+b〕〔b+a〕 B.〔-a+b〕〔a-b〕C.〔13a+b〕〔b-13a〕 D.〔a2-b〕〔b2+a〕3.以下计算中,错误的有〔〕①〔3a+4〕〔3a-4〕=9a2-4;②〔2a2-b〕〔2a2+b〕=4a2-b2;③〔3-*〕〔*+3〕=*2-9;④〔-*+y〕·〔*+y〕=-〔*-y〕〔*+y〕=-*2-y2.A.1个 B.2个 C.3个 D.4个4.假设*2-y2=30,且*-y=-5,则*+y的值是〔〕A.5 B.6 C.-6 D.-5二、填空题5.〔-2*+y〕〔-2*-y〕=______.6.〔-3*2+2y2〕〔______〕=9*4-4y4.7.〔a+b-1〕〔a-b+1〕=〔_____〕2-〔_____〕2.8.两个正方形的边长之和为5,边长之差为2,则用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:〔a+2〕〔a2+4〕〔a4+16〕〔a-2〕.B卷:提高题一、七彩题1.〔多题-思路题〕计算:〔1〕〔2+1〕〔22+1〕〔24+1〕…〔22n+1〕+1〔n是正整数〕;〔2〕〔3+1〕〔32+1〕〔34+1〕…〔32008+1〕-401632.2.〔一题多变题〕利用平方差公式计算:2009×2007-20082.〔1〕一变:利用平方差公式计算:22007200720082006-⨯.〔2〕二变:利用平方差公式计算:22007 200820061⨯+.二、知识穿插题3.〔科穿插题〕解方程:*〔*+2〕+〔2*+1〕〔2*-1〕=5〔*2+3〕.三、实际应用题4.广场有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.〔2007,,3分〕以下运算正确的选项是〔〕A.a3+a3=3a6 B.〔-a〕3·〔-a〕5=-a8C.〔-2a2b〕·4a=-24a6b3 D.〔-13a-4b〕〔13a-4b〕=16b2-19a26.〔2008,,3分〕计算:〔a+1〕〔a-1〕=______.C卷:课标新型题1.〔规律探究题〕*≠1,计算〔1+*〕〔1-*〕=1-*2,〔1-*〕〔1+*+*2〕=1-*3,〔1-*〕〔•1+*+*2+*3〕=1-*4.〔1〕观察以上各式并猜测:〔1-*〕〔1+*+*2+…+*n〕=______.〔n为正整数〕〔2〕根据你的猜测计算:①〔1-2〕〔1+2+22+23+24+25〕=______.②2+22+23+…+2n=______〔n为正整数〕.③〔*-1〕〔*99+*98+*97+…+*2+*+1〕=_______.〔3〕通过以上规律请你进展下面的探索:①〔a-b〕〔a+b〕=_______.②〔a-b〕〔a2+ab+b2〕=______.③〔a-b〕〔a3+a2b+ab2+b3〕=______.2.〔结论开放题〕请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个一样的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影局部的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:1、m 2+n 2-6m+10n+34=0,求m+n 的值2、0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

实用版平方差完全平方公式专项练习题精品

实用版平方差完全平方公式专项练习题精品

平方差与完全平方式一、平方差公式:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方之差。

2、即:(a+b)(a-b) = 相同符号项的平方 - 相反符号项的平方3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

3、能否运用平方差公式的判定①有两数和与两数差的积即:(a+b)(a-b)或(a+b)(b-a)②有两数和的相反数与两数差的积即:(-a-b)(a-b)或(a+b)(b-a)③有两数的平方差即:a2-b2 或-b2+a2二、完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或(a-b)2或(-a-b)2或(-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a2+2ab+b2或a2-2ab+b2-a2-2ab-b2或-a2+2ab-b2随堂练习:1.下列各式中哪些可以运用平方差公式计算(1)()()caba-+(2)()()xyyx+-+(3)()()abxxab---33(4)()()nmnm+--2.判断:(1)()()22422baabba-=-+()(2)1211211212-=⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+xxx()(3)()()22933yxyxyx-=+--()(4)()()22422yxyxyx-=+---()(5)()()6322-=-+aaa()(6)()()933-=-+xyyx()3、计算:(1))4)(1()3)(3(+---+aaaa(2)22)1()1(--+xyxy(3))4)(12(3)32(2+--+aaa(4))3)(3(+---baba(5)22)3(xx-+(6)22)(yxy+-4.先化简,再求值:⑴(x+2)2-(x+1)(x-1),其中x=1.5(3) )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .(4) (2a -3b)(3b +2a)-(a -2b )2,其中:a=-2,b=35..有这样一道题,计算:2(x+y )(x -y)+[(x+y )2-xy]+ [(x -y )2+xy]的值,其中x=2006,y=2007;某同学把“y=2007”错抄成“y=2070”但他的计算结果是正确的,请回答这是怎么回事?试说明理由。

(完整版)平方差公式、完全平方公式综合练习题

(完整版)平方差公式、完全平方公式综合练习题

乘法公式1、平方差公式、填空题⑴(b + a)(b —a)= ,(x —2) (x + 2)= ;⑵(3a + b) (3a —b)= ,(2x2—3) ( —2x2—3)=⑶(2 1 2 1( a)( a)3 2 3 2,( 3b)( 2 23b) 4a 9b⑷(x + y) ( —x + y)= ,(—7m —11n) (11 n —7m)=⑸(2y x)( x 2y) ,(a 2)(a2 4)(a 2).2、计算题( m 35n) (5 n m3) (0.2x 2y)(2y 0.2x)3、⑴下列可以用平方差公式计算的是)A、(x —y) (x + y)B、(x —y) (y —x)C、(x —y)( —y + x)D、(x —y)( —x + y)⑵下列各式中,运算结果是9a216b2的是()A、( 3a 4b)(: 3a 4b)B、(4b 3a)( 4b 3a)C、(4b3a)(4 b 3a) D、(3a 2b)(3a 8 b)⑶若(7x25y )( : ) 49x425y2,括号•内应填代数式()A、7x2 5yB、7x25yC、7x25yD、7x2 5y1 2⑷(3a -)2(3a2 1 2-)2等于(2)c 2 1 4 1 4 9 2 1 4 9 21A、9aB、81a —C81a a D、81a4a24 16 2 16 2 164、计算题⑴ x (9x —5) —(3x+ 1) (3x —1) ⑵(a + b —c) (a — b + c)⑶(3a 2b)(3a 2b)(9a2 4b 2) ⑷(2x —1) (2x + 1) —2(x—2) (x + 2)24、解不等式(y 2) (3 y)(y 3) 1(1 xy)( xy 1) (2x 3y 1)(2x 3y 1)2、完全平方公式一、填空题 ⑴(x + y)4= ,(x — y)2=⑵(3a b)2 ,(2a b)2⑶(x —)2x 21 24⑷(3x + ) 2=+ 12x +;⑸(a b)2 (a b)2 ,(x 2y)2⑹(x 2— 2)2 — (x 2 + 2)2 = ;、计算题2 3 222⑴(一X y)⑵(2a b) (b 2a)34 28、已知 x(x 1) (x 2 y) 3,求-—xy 的值⑶(m 1)(m1)(m 2 1)2 2⑷(2m n) (2m n)2 2⑸(2x 3)(3x 2)7、已知 x + y = a , xy = b ,求(x — y) 2 , x 2 + y 2⑵运算结果为1 2x 2 4x 4的是()2、2 2、2 2、2 2A 、( 1 x )B 、(1 x )C 、( 1 x )D 、(1 x)2⑴(m 2n)的运算结果是( )A 、m 2 4mn 4n 2B 、m 2 4mn 4n 2 C 、m 2 4mn 4n 2 D 、m 2 2mn 4n 22⑹(x 2y 3z),x 2 — xy + y 2 的值⑶已知a2Nab 64b2是-个完全平方式,则N等于()一A、8B、土8C、土16± 32D⑷如果(x y)2 M (x y)2,那么M等于( )A、2xyB、—2xyC、4xyD、一4xy二、计算题2 2 2 2⑴(x y) (x y) ⑵(5x 3y) (5x 3y)⑶(a b c)(a b c) ⑷(t 2)2(t24)2(t 2)25、已知(a + b) 2=3, (a- b) 2=2,分别求a 2+ b 2, ab 的值提高拓展1、已知a+b=4,a2- b2=20,贝U a—b= _______ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档