圆中求角问题
圆中的边角计算---勾股定理
圆的工具性
Page 10
小结:勾股定理是直角三角形中
非常重要的一个性质,经常利用它 来构造方程.
思考:圆还能给我们提供什么?
圆-----直角、 等角、等线段
相似
Page 12
能解决与切 线有关的问 题
圆与圆 的位置 关系
解读2012年中考说明
A 解直角 三角形 知道解直角三角 形的含义 B 会解直角三角 形;能根据题 的需要添加辅助 线构造直角三角 形;会解由两个 特殊直角三角形 构成的组合图形 的问题 C 能综合运用直 角三角形的性 质解决有关问 题
考点
内容
北京近五年中考统计 2008 2009 2010 2011 2012
能根据问题的需要添加辅助线构造直角三角特殊直角三角形构成的组合图形的问题能综合运用直角三角形的性质解决有关问考点内容北京近五年中考统计题型20082009201020112012置关系直线与圆的位置关系切线长定理切线的证明19考点内容北京近五年中考统计题型20082009201020112012角形解直角三角形19角计算1
圆的性 质
圆周角
解读2012年中考说明
A 点与圆 的位置 关系 直线与 圆的位 置关系 了解点与圆的位置 关系 了解直线与圆的位 置关系;了解切线 的概念,理解切线 与过切点的半径之 间的关系;会过圆 上一点画圆的切 线;了解切线长的 概念 了解圆与圆的位置 关系
Page 3
B
C
能判定直线与圆 的位置关系;会 根据切线长的知 识解决简单的问 题;能利用直线 与圆的位置关系 解决简单问题
2 (2)若 tan D ,OA=3,过点A做PC的平行线AN交 2
⊙O于点N,求弦AN的长.
3.已知,如图,在Rt△ABC中, ∠C=90°, ∠BAC的角 分线AD交BC边于D. (1)以AB边上一点O为圆心,过A,D两点做⊙O(不写做 法,保留作图痕迹),再判断直线BC与⊙O的位置关系,
圆三等分最简单的方法
圆三等分最简单的方法
圆三等分是一项相对困难的几何问题,它要求将一个圆分成三个角度相等的部分。
在几何学中,圆三等分被称为三等分圆周角问题,它的解法有很多种,其中最简单的方法如下:
1.将圆心O作为三个等分角的公共点,画出圆心角AOB(120度)。
2.以O为圆心,OA为半径,画出一个圆弧,将圆心角AOB分成两个相等的角BOC(60度)、AOC(60度)。
3.以O为圆心,OB为半径,画出第二个圆弧,将角BOC(60度)再等分成两个角COD(30度)和EOB(30度)。
4.以O为圆心,OC为半径,画出第三个圆弧,它将原来的角AOC(60度)等分成DEO(20度)和EOC(40度)两个角。
5.经过以上步骤,圆周角AOB已经被等分为三个相等的角所组成的三个角度相等的部分。
通过以上的步骤,我们成功地将圆周角AOB平分成了三个角度相等的部分。
这种方法的关键在于利用三个圆弧分别作为圆心角和第一等分角和第二等分角以及第三等分角的分割工具。
这样,我们就能够有效地分割圆周角,并得到三个角度相等的部分。
总之,通过本文所介绍的方法和步骤,相信大家也能够学会圆三等分
的解法,同时也能够更好地理解相关几何概念,提升自己的数学水平。
圆周角和圆心角演示课件
A
A
=
1 2
∠AOC.
A
C
C
C
●O
●O
●O
B
B B
老师提示:圆周角定理是承上启下的知识点,要予以重视.
•16
练习: D
1.求圆中角X的度数
C 120°
O
.O
C
70° x
.O
X
A
B
B
A
BA
C
2.如图,圆心角∠AOB=100°,则∠ACB=_1_3_0°。
3、 如图,在直径为AB的半圆中,O为圆心,C、D为半 圆上的两点,∠COD=500,则∠CAD=_________
A A
O
O
B
C
B
C
一条弧所对的圆周角等于它所对的圆心角的一半
•10
想一想
类比圆心角探知圆周角
• 在同圆或等圆中,相等的弧所对的圆心角相等.
• 在同圆或等圆中,相等的弧所对的圆周角有什么关系?
A
A
A
C
C
C
●O
●O
●O
B
B B
为了解决这个问题,我们先探究一条弧所对的圆 周角和圆心角之间有的关系.
•11
图1 不是
图2
不是
图4
2、指出图中的圆周角。
不是
是
图3
不是
图5
•7
A
O B
⌒ ⌒
有没有圆周角? 有没有圆心角? 它们有什么共同的特点?
C 它们都对着同一条弧所对的
•8
下列图形中,哪些图形中的圆心角∠BOC和 圆周角∠A是同对一条弧。
A
A
O B
A O
圆心角、圆周角的应用
A E B= 9 0 。 一 B = 3 6 。 . 选 A.
图3
温 馨小提示 : 掌握平行 四边形 的性质 、 直 径 所 对 的 圆周 角是 直
角 是 解题 的 关键 .
4 . 利 用 圆 内 接 四 边 形 对 角 互 补 求 角
例 4 ( 2 0 1 3年 莱 芜 卷 ) 如 图 4, 在 o 0中, 已知 O A B= 2 2 . 5 。 ,
则 C的 度 数 为 (
A. 1 3 5。
) .
B. 1 2 2. 5。 C. 1l 5. 5。 D. 1 1 2. 5。
解析 : 在o 0上 取 一 点 D( 点 C、 点 D 在 弦 AB 的 异 侧 ) , 连 接
A . 。 . OBA = OAB=2 2. 5。 . AD =1 8 0。 一 OAB一 D =1 3 5。 .
责任 编 辑 : 王 二 喜
一
0/ 王宗俊
算问题时 , 往往 有十分重要 的作用 .
1 . 利 用 圆心 角 求 圆 周 角
一
圆 心 角 与 圆 周 角 是 与 圆 有 关 的两 个 重 要 的 角 , 二 者不 同 , 但 它
们 又好像一 对孪生兄弟 , 关 系非 常密切 . 在 解 决 与 圆有 关 的角 的 计
的度数 为(
A. 3 6。
) .
B. 4 6。 C. 2 7。 D. 6 3。
解析: ’ . ’ 四边形 A B C D是 平 行 四边 形 ,
。
.
.
B= ADC =5 4。 .
.
.
.
朋 是 o O 的直 径 ,
E=9 0。.
部编数学九年级下册专项19圆中利用转化思想求角度(解析版)含答案
专项19 圆中利用转化思想求角度类型一 利用同弧或等弧转化圆周角与圆心角类型二 构造圆内接四边形转化角类型三 利用直径构造直角三角形转化角类型四 利用特殊数量关系构造特殊角转化角【考点1 利用同弧或等弧转化圆周角与圆心角】【典例1】(2021九上·无棣期末)如图,△ABC内接于⊙O,CD是⊙O的直径,∠BCD=56°,则∠A的度数是( )A.36ºB.34ºC.56ºD.78º【答案】B【解答】解:如图,连接BD,∵CD是⊙O的直径,∴∠DBC=90°,∵∠BCD=56°,∴∠BDC=90°−56°=34°,∵BC= BC,∴∠A=34°,故答案为:B【变式1-1】(2021九上·崂山期末)如图,点A ,B ,C 在⊙O 上,∠ACB=54°,则∠ABO 的度数是( )A .27°B .36°C .54°D .108°【答案】B 【解答】解:∵∠ACB =54°,AB =AB∴∠AOB =2∠ACB =108°,∵OB =OA ,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°,故答案为:B .【变式1-2】(2021九上·天桥期末)如图:点A ,B ,C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若∠AOB =72°,则∠ACB 的度数是( )A .18°B .30°C .36°D .72°【答案】C 【解答】∵圆心角∠AOB 与圆周角∠ACB 均对着AB∴∠ACB =12∠AOB =12×72°=36°故答案为:C【变式1-3】(2021九上·西城期末)如图,点A ,B ,C 在⊙O 上,△OAB 是等边三角形,则∠ACB 的大小为( )A .60°B .40°C .30°D .20°【答案】C【解答】解:∵ΔOAB 为等边三角形,∴∠AOB=60°,∴∠ACB =12∠AOB =12×60°=30°.故答案为:C .【变式1-4】(2021九上·休宁月考)如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( )A .24°B .30°C .50°D .60°【答案】A 【解答】解:∵AC ∥OB ,∴∠BOC =∠ACO =48°,∵OA =OC ,∴∠OAC =∠ACO =48°,∵∠CAB =12∠BOC =24°,∴∠BAO =∠OAC ﹣∠CAB =24°.故答案为:A .【变式1-5】(2021九上·衢江月考)如图,在⊙O 中,AB =BC ,点D 在⊙O 上,∠CDB =25°,则∠AOB =( )A .45°B .50°C .55°D .60°【答案】B【解答】解:∵在⊙O中,AB=BC,点D在⊙O上,∠CDB=25°,∴∠AOB=2∠CDB=50°.故答案为:B.【考点2 构造圆内接四边形转化角】【典例2】(2021九上·哈尔滨月考)如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD的度数为( )A.64°B.128°C.20°D.116°【答案】B【解答】∵四边形ABCD内接于⊙O∴∠BAD+∠DCB=180°∵∠DCE+∠DCB=180°∴∠BAD=∠DCE=64°∵∠BOD、∠BAD对着圆中同一段弧∴∠BOD=2∠BAD=2×64°=128°故答案为:B【变式2-1】(2021九上·南开期中)如图,四边形ABCD为⊙O的内接四边形,若∠A=60°,则∠C等于( )A.30°B.60°C.120°D.300°【答案】C【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°.∴∠C=180°-60°=120°.故答案为:C.【变式2-2】(2021九上·禹城期中)如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )A.55°B.65°C.60°D.75°【答案】B【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故答案为:B.【变式2-3】(2021九上·无棣期中)如图,PA,PB分别与⊙O相切于A,B两点,若∠C =65°,则∠P的度数为( )A.65°B.130°C.50°D.100°【解答】∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故答案为:C.【考点3 利用直径构造直角三角形转化角】【典例3】(2021九上·梅里斯期末)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( )A.32°B.58°C.64°D.116°【答案】A【解答】解:∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=58°,∴∠A=90°﹣58°=32°,∴∠BCD=∠A=32°.故答案为:A.【变式3-1】(2021九上·荆州月考)如图,AB是⊙O的直径,∠D=48°,则∠CAB=( )A.52°B.58°C.42°D.48°【答案】C【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠D=48°,∴∠ABC=48°,∴∠CAB=90°−48°=42°,故答案为:C.【变式3-2】(2021九上·越城期中)如图,已知AB是⊙O的直径,CD是弦,若∠BCD=24°,则∠ABD=( )A.54°B.56°C.64°D.66°【答案】D【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∠A=∠BCD=24°,∴∠ABD=90°﹣∠A=90°﹣24°=66°.故答案为:D.【变式3-3】(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是的中点,则∠ABE= .【答案】13°【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.【考点4利用特殊数量关系构造特殊角转化角】【典例4】(2018•石家庄模拟)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5,则∠B的度数是( )A.30°B.45°C.50°D.60°【答案】D【解答】解:∵AD是⊙O的直径,∴∠ACD=90°.Rt△ACD中,AD=2r=10,AC=5.根据勾股定理,得:CD==5,∴CD=AD,∴∠DAC=30°,∴∠B=∠D=90°﹣30°=60°;故选:D.【变式4】(2021秋•无为市期中)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P 是优弧AMB上一点,则∠APB的度数为( )A.45°B.30°C.75°D.60°【答案】D【解答】解:连接OA,OB,过O作OD⊥AB于D,延长OD交⊙O于C,则∠ODA=∠ODB=90°,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD=OC=OA=OB,∴∠OAB=∠OBA=30°,∴∠AOB=180°﹣∠OAB﹣∠OBA=120°,∴∠APB=AOB=60°,故选:D.1.(2021九上·禹城期中)如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )A.55°B.65°C.60°D.75°【答案】B【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故答案为:B.2.(2021九上·温州月考)如图,点A,B,C在⊙O上,若∠ACB=40°,则∠AOB的度数为( )A.40°B.45°C.50°D.80°【答案】D【解答】解:∵∠ACB=40°,∴∠AOB=2∠ACB=80°.故答案为:D3.(2021九上·东阳月考)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )A.75°B.60°C.45°D.30°【答案】B【解答】解:连接OC,∵OB=OC=OA,∠CBO=45°,∠CAO=15°,∴∠OCB=∠OBC=45°,∠OCA=∠OAC=15°,∴∠ACB=∠OCB﹣∠OCA=30°,∴∠AOB=2∠ACB=60°.故答案为:B.4.(2021九上·天门月考)如图,⊙O中,弦AB,CD相交于点P,∠A=40°,∠APD=75°,则∠B=( ).A.15°B.40°C.75°D.35°【答案】D【解答】解:∵∠A=40°,∠APD=75°,∴∠C=∠APD−∠A=35,∴∠B=∠C=35°.故答案为:D.5.(2021九上·鹿城期末)如图所示,A,B,C是⊙O上的三点,若∠O=58°,则∠C的度数为( )A.23°B.26°C.29°D.32°【答案】C【解答】解:∵∠AOB和∠C都对AB,∴∠C=12∠AOB=12×58°=29°.故答案为:C6.(2021九上·重庆月考)如图,已知在⊙O中,CD是⊙O的直径,点A、B在⊙O上,且AC=AB,若∠BCD=26°,则∠ABC的度数为( )A.26°B.27°C.28°D.32°【答案】D【解答】解:∵CD是直径,∴∠CAD=90°,∴∠ACD+∠ADC=90°,∵AC=AB,∴∠ACB=∠B,∵∠D=∠B,∴∠ACB=∠D,∴∠ACB+26°+∠D=90°,∴∠ACB=32°,∴∠ABC=∠ACB=32°,故答案为:D.7.(2021九上·龙沙期中)如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为( )A.60°B.50°C.40°D.30°【答案】A∠AOC=∠ADC【解答】∵12∴∠AOC=2∠ADC=2×30°=60°∵OC⊥AB∴AC=BC∴∠AOC=∠BOC∴∠BOC=∠AOC=60°故答案为:A.8.(2021九上·泰山期末)如图,ABCD是⊙O的内接四边形,且∠ABC=125°,那么∠AOC 等于( )A.125°B.120°C.110°D.130°【答案】C【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠ABC=180°∵∠ABC=125°∴∠D=180°-∠A=180°-125°=55°,由圆周角定理得,∠AOC=2∠D=110°,故答案为:C.9.(2021九上·宜春期末)如图,AE是四边形ABCD外接圆⊙O的直径,AD=CD,∠B=50°,则∠DAE的度数为( )A.50°B.55°C.60°D.65°【答案】D【解答】解:连接OC、OD,∵∠B=50°,∴∠AOC=2∠B=100°,∵AD=CD,∴AD=CD,∠AOC=50°,∴∠AOD=∠COD= 12∵OA=OD,∴∠OAD=∠ODA,∴∠DAE=(180°-50°)÷2=65°,故答案为:D.10.(2021九上·石景山期末)如图,四边形ABCD内接于⊙O,若四边形ABCO是菱形,则∠D的度数为( )A.45°B.60°C.90°D.120°【答案】B【解答】解:设∠ADC=α,∠ABC=β;∵四边形ABCO是菱形,∴∠ABC=∠AOC=β;∴∠ADC=12β;∵四边形ABCD为圆的内接四边形,∴α+β=180°,∴α+β=180°α=12β,解得:β=120°,α=60°,则∠ADC=60°,故答案为:B.11.(2021秋•泰安期末)如图,圆内接四边形ABCD的两组对边的延长线分别相交于点E,F,若∠E=30°,∠F=40°,则∠A=( )A.25°B.30°C.40°D.55°【答案】D【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠FBC,∵∠ADC=180°﹣∠A﹣∠F,∠FBC=∠A+∠E,∴180°﹣∠A﹣∠F=∠A+∠E,则2∠A=180°﹣(∠F+∠E)=110°,解得,∠A=55°,故选:D.12.(2021•汉台区一模)如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A等于( )A.33°B.57°C.67°D.66°【答案】B【解答】解:连接CD,如图,∵BD是⊙O的直径,∴∠BCD=90°,而∠DBC=33°,∴∠D=90°﹣33°=57°,∴∠A=∠D=57°.故选:B.13.(2022•凤山县模拟)如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )A.50°B.55°C.60°D.65°【答案】D【解答】解:连接AD,∵OA=OD,∠AOD=50°,∴∠ADO==65°.∵AO∥DC,∴∠ODC=∠AOC=50°,∴∠ADC=∠ADO+∠ODC=115°,∴∠B=180°﹣∠ADC=65°.故选:D.14.(2022•南宁一模)如图,A、B、C是⊙O上的三个点,若∠AOC=100°,则∠ABC=( )A.100°B.110°C.120°D.130°【答案】D【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选:D.15.(2022•曲周县模拟)如图,AB是⊙O的直径,点C在⊙O上,CD平分∠ACB交⊙O于点D,若∠ABC=30°,则∠CAD的度数为( )A.100°B.105°C.110°D.120°【答案】B【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠ABC=90°﹣30°=60°,∵CD平分∠ACB,∴∠BCD=45°,∵∠BAD=∠BCD=45°,∴∠CAD=∠BAC+∠BAD=60°+45°=105°.故选:B.。
圆周角定理与圆的切线
第2讲 圆周角定理与圆的切线【2013年高考会这样考】考查圆的切线定理和性质定理的应用. 【复习指导】本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法.基础梳理1.圆周角定理(1)圆周角:顶点在圆周上且两边都与圆相交的角. (2)圆周角定理:圆周角的度数等于它所对弧度数的一半. (3)圆周角定理的推论①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. ②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径. 2.圆的切线(1)直线与圆的位置关系直线与圆交点的个数 直线到圆心的距离d 与圆的半径r 的关系 相交 两个 d <r 相切 一个 d =r 相离无d >r(2)切线的性质及判定①切线的性质定理:圆的切线垂直于经过切点的半径. ②切线的判定定理过半径外端且与这条半径垂直的直线是圆的切线. (3)切线长定理从圆外一点引圆的两条切线长相等. 3.弦切角(1)弦切角:顶点在圆上,一边与圆相切,另一边与圆相交的角.(2)弦切角定理及推论①定理:弦切角的度数等于所夹弧的度数的一半.②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.双基自测1.如图所示,△ABC 中,∠C =90°,AB =10,AC =6,以AC 为直径的圆与斜边交于点P ,则BP 长为________.解析 连接CP .由推论2知∠CP A =90°,即CP ⊥AB ,由射影定理知,AC 2=AP ·AB .∴AP =3.6,∴BP =AB -AP =6.4. 答案 6.42.如图所示,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D是优弧BC 上的点,已知∠BAC =80°, 那么∠BDC =________. 解析 连接OB 、OC ,则OB ⊥AB ,OC ⊥AC ,∴∠BOC =180°-∠BAC =100°,∴∠BDC =12∠BOC =50°. 答案 50°3.(2011·广州测试(一))如图所示,CD 是圆O 的切线,切点为C ,点A 、B 在圆O 上,BC =1,∠BCD =30°,则圆O 的面积为________.解析 连接OC ,OB ,依题意得,∠COB =2∠CAB =2∠BCD =60°,又OB =OC , 因此△BOC 是等边三角形,OB =OC =BC =1,即圆O 的半径为1, 所以圆O 的面积为π×12=π. 答案 π4.(2011·深圳二次调研)如图,直角三角形ABC 中,∠B =90°,AB =4,以BC 为直径的圆交AC 边于点D ,AD =2,则∠C 的大小为________.解析 连接BD ,则有∠ADB =90°.在Rt △ABD 中,AB =4,AD =2,所以∠A =60°;在Rt △ABC 中,∠A =60°,于是有∠C =30°. 答案 30°5.(2011·汕头调研)如图,MN 是圆O 的直径,MN 的延长线与圆O 上过点P 的切线P A 相交于点A ,若∠M =30°,AP =23,则圆O 的直径为________.解析 连接OP ,因为∠M =30°,所以∠AOP =60°,因为P A 切圆O 于P ,所以OP ⊥AP ,在Rt △ADO 中,OP =AP tan ∠AOP =23tan 60°=2,故圆O 的直径为4.答案 4考向一 圆周角的计算与证明【例1】►(2011·中山模拟)如图,AB 为⊙O 的直径,弦AC 、BD 交于点P ,若AB=3,CD =1,则sin ∠APB =________.[审题视点] 连结AD ,BC ,结合正弦定理求解. 解析 连接AD ,BC .因为AB 是圆O 的直径,所以∠ADB =∠ACB =90°.又∠ACD =∠ABD ,所以在△ACD 中,由正弦定理得:CD sin ∠DAC =AD sin ∠ACD =AD sin ∠ABD =AB sin ∠ABD sin ∠ABD =AB =3,又CD =1,所以sin ∠DAC =sin ∠DAP =13,所以cos ∠DAP =23 2.又sin∠APB=sin (90°+∠DAP)=cos∠DAP=23 2.答案23 2解决本题的关键是寻找∠APB与∠DAP的关系以及AD与AB的关系.【训练1】如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于________.解析连接AO,OB.因为∠ACB=30°,所以∠AOB=60°,△AOB为等边三角形,故圆O的半径r=OA=AB=4,圆O的面积S=πr2=16π.答案16π考向二弦切角定理及推论的应用【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.[审题视点] 先证明△EAB∽△ABC,再由AE∥BC及AB=CD等条件转化为线段之间的比例关系,从而求解.解析∵BE切⊙O于B,∴∠ABE=∠ACB.又AD∥BC,∴∠EAB=∠ABC,∴△EAB∽△ABC,∴BEAC=ABBC.又AE∥BC,∴EFAF=BEAC,∴ABBC=EFAF.又AD∥BC,∴AB=CD,∴AB=CD,∴CDBC=EFAF,∴58=EF6,∴EF=308=154.答案15 4(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.【训练2】(2010·新课标全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:(1)∠ACE=∠BCD;(2)BC2=BE×CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ECB,故BCBE=CDBC,即BC2=BE×CD.高考中几何证明选讲问题(二)从近两年的新课标高考试题可以看出,圆的切线的有关知识是重点考查对象,并且多以填空题的形式出现.【示例】►(2011·天津卷)如图,已知圆中两条弦AB与CD相交于点F,E是AB 延长线上一点,且DF=CF=2,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为________.。
圆的培优专题(含解答)
第4题 第5题 第6题第1题 第2题 第3题圆的培优专题1——与圆有关的角度计算一 运用辅助圆求角度1、如图,△ABC 内有一点D ,DA =DB =DC ,假设∠DAB =20︒,∠DAC =30︒, 那么∠BDC = . 〔∠BDC = 12∠BAC =100︒〕2、如图,AE =BE =DE =BC =DC ,假设∠C =100︒,那么∠BAD = . 〔50︒〕3、如图,四边形ABCD 中,AB =AC =AD ,∠CBD =20︒,∠BDC =30︒,那么 ∠BAD = . 〔∠BAD =∠BAC +∠CAD =40︒+60︒=100︒〕解题策略:通过添加辅助圆,把问题转化成同弧所对的圆周角与圆心角问题,思维更明朗! 4、如图,□ABCD 中,点E 为AB 、BC 的垂直平分线的交点,假设∠D =60︒, 那么∠AEC = . 〔∠AEC =2∠B =2∠D =120︒〕5、如图,O 是四边形ABCD 内一点,OA =OB =OC ,∠ABC =∠ADC =70︒, 那么∠DAO +∠DCO = . 〔所求=360︒-∠ADC -∠AOC =150︒〕6、如图,四边形ABCD 中,∠ACB =∠ADB =90︒,∠ADC =25︒,那么∠ABC = . 〔∠ABC =∠ADC =25︒〕解题策略:第6题有两个直角三角形共斜边,由直角所对的弦为直径,易得到ACBD 共圆.第10题 第11题 第12题第7题 第8题 第9题 二 运用圆周角和圆心角相互转化求角度7、如图,AB 为⊙O 的直径,C 为AB 的中点,D 为半圆AB 上一点,那么∠ADC = . 8、如图,AB 为⊙O 的直径,CD 过OA 的中点E 并垂直于OA ,那么∠ABC = . 9、如图,AB 为⊙O 的直径,3BC AC =,那么∠ABC = .答案:7、45︒; 8、30︒; 9、22.5︒; 10、40︒; 11、150︒; 12、110︒ 解题策略:以弧去寻找同弧所对的圆周角与圆心角是解决这类问题的捷径!10、如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC =50︒,那么∠ADC = . 11、如图,⊙O 的半径为1,弦AB 2,弦AC 3∠BOC = . 12、如图,PAB 、PCD 是⊙O 的两条割线,PAB 过圆心O ,假设AC CD =,∠P =30︒, 那么∠BDC = . 〔设∠ADC =x ,即可展开解决问题〕解题策略:在连接半径时,时常会伴随出现特殊三角形——等腰三角形或直角三角形或等腰 直角三角形或等边三角形,是解题的另一个关键点!圆的四接四边形的外角等于内对角,是一个非常好用的一个重要性质!第1题 第2题 第3题圆的培优专题2——与垂径定理有关的计算1、如图,AB 是⊙O 的弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上,假设∠BED =30︒,⊙O 的半径为4,那么弦AB 的长是 . 略解:∵OD ⊥AB ,∴AB =2AC ,且∠ACO =90︒, ∵∠BED =30︒,∴∠AOC =2∠BED =60︒∴∠OAC =30︒,OC = 12 OA =2,那么AC =23AB =432、如图,弦AB 垂直于⊙O 的直径CD ,OA =5,AB =6,那么BC = . 略解:∵直径CD ⊥弦AB ,∴AE =BE =12 AB=3∴OE 22534-=,那么CE =5+4=9 ∴BC =2293310+=3、如图,⊙O 的半径为25弦AB ⊥CD ,垂足为P ,AB =8,CD =6,那么OP = . 略解:如图,过点O 作OE ⊥AB ,OF ⊥CD ,连接OB ,OD. 那么BE =12 AB =4,DF =12 CD =3,且OB =OD =25 OE 22(25)42-=,OF =22(25)311-= 又AB ⊥CD ,那么四边形OEPF 是矩形,那么OP 222(11)15+=4、如图,在⊙O 内,如果OA =8,AB =12,∠A =∠B =60︒,那么⊙O 的半径为 . 略解:如图,过点O 作OD ⊥AB ,连接OB ,那么AD =12 AB =4,因此,BD =8,OD =43∴OB 22(43)847+=.第4题 第5题 第6题5、如图,正△ABC 内接于⊙O ,D 是⊙O 上一点,∠DCA =15︒,CD =10,那么BC = 略解:如图,连接OC ,OD ,那么∠ODC =∠OCD∵△ABC 为等边三角形,那么∠OCA =∠OCE =30︒,∴∠ODC =∠OCD =45︒ ∴△OCD 是等腰三角形,那么OC =2 过点O 作OE ⊥BC ,那么BC =2CE =566、如图,⊙O 的直径AB =4,C 为AB 的中点,E 为OB 上一点,∠AEC =60︒,CE 的延 长线交⊙O 于点D ,那么CD = 略解:如图,连接OC ,那么OC =2∵C 为AB 的中点,那么OC ⊥AB ,又∠AEC =60︒,∴∠OCE =30︒ 如图,过点O 作OF ⊥CD ,那么OF =12 OC =1,CF =3,∴CD =2CF =237、如图,A 地测得台风中心在城正西方向300千米的B 处, 并以每小时10760︒的BF 方向移 动,距台风中心200千米范围内是受台风影响的区域. 问:A 地是否受到这次台风的影响?假设受到影响,请求 出受影响的时间?解:如图,过点A 作AC ⊥BF 交于点C ,∵∠ABF =30︒,那么AC =12 AB =150<200,因此A 地会受到这次台风影响;如图,以A 为圆心200千米为半径作⊙A 交BF 于D 、E 两点,连接AD , 那么DE =2CD =222001501007-= 所以受影响的时间为100710710=〔时〕圆的培优专题3——圆与全等三角形1、如图,⊙O 的直径AB =10,弦AC =6,∠ACB 的平分线交⊙O 于D ,求CD 的长. 解:如图,连接AB ,BD ,在CB 的延长线上截取BE =AC ,连接DE ∵∠ACD =∠BCD ,∴AD =BD 又∠CAD =∠EBD ,AC =BE ∴△CAD ≌△EBD 〔SAS 〕 ∴CD =DE ,∠ADC =∠BDE∵AB 为⊙O 的直径,那么∠ACB =∠ADB =90︒∴BC 221068-=;∠ADC +∠CDB =∠CDB +∠BDE =90︒,即∠CDE =90︒ ∴△CDE 是等腰直角三角形且CE =14,∴CD =22、如图,AB 是⊙O 的直径,C 是半圆的中点,M 、D 分别是CB 及AB 延长线上一点,且 MA =MD ,假设CM 2,求BD 的长.解:如图,连接AC ,那么AC =BC ,∠C =90︒,即△ABC 是等腰直角三角形 过点M 作MN ∥AD ,那么∠NMA =∠MAD那么△CMN 也是等腰直角三角形,那么MN 2CM =2 ∴∠ANC =∠MBD =135︒,又MA =MD ,∴∠D =∠NMA =∠MAD ∴△AMN ≌△BMD 〔AAS 〕 ∴BD =MN =23、如图,AB 为⊙O 的直径,点N 是半圆的中点,点C 为AN 上一点,NC 3 求BC -AC 的值.解:如图,连接AN ,BN ,那么△ABN 是等腰直角三角形 在BC 上截取BD =AC ,连接DN ∵AN =BN ,∠CAN =∠DBN ,AC =BD ∴△ACN ≌△BDN 〔SAS 〕∴CN =DN ,∠CNA =∠DNB ,∴∠CND =∠CNA +∠AND =∠ADN +∠DNB =90︒,即△CND 是等腰直角三角形 ∴CD 26,∴BC -AC =BC -BD =CD 64、如图,点A 、B 、C 为⊙O 上三点,AC BC =,点M 为BC 上一点,CE ⊥AM 于E , AE =5,ME =3,求BM 的长.解:如图,在AM 上截取AN =BM ,连接CN ,CM. ∵AC BC =,∴AC =BC ,又∠A =∠B ∴△ACN ≌△BCM 〔SAS 〕 ∴CN =CM ,又CE ⊥AM ∴NE =ME =3, ∴BM =AN =AE -NE =25、如图,在⊙O 中,P 为BAC 的中点,PD ⊥CD ,CD 交⊙O 于A ,假设AC =3,AD =1, 求AB 的长.解:如图,连接BP 、CP ,那么BP =CP ,∠B =∠C 过点P 作PE ⊥AB 于点E ,又PD ⊥CD ∴∠BEP =∠CDP ∴△BEP ≌△CDP 〔AAS 〕 ∴BE =CD =3+1=4,PE =PD连接AP ,那么Rt △AEP ≌Rt △ADP 〔HL 〕,那么AE =AD =1 ∴AB =AE+BE =56、如图,AB 是O 的直径,MN 是弦,AE ⊥MN 于E ,BF ⊥MN 于F ,AB =10,MN =8. 求BF -AE 的值.解:∵AE ⊥MN ,BF ⊥MN ,那么AE ∥BF ,∴∠A =∠ B如图,延长EO 交BF 于点G , 那么∠AOE =∠BOG ,AO =BO∴△AOE ≌△BOG 〔AAS 〕,那么OE =OG 过点O 作OH ⊥MN ,FG =2OH ,HN =4连接ON ,那么ON =5,OH =22543-=,那么BG -AE =FG =6.圆的培优专题4——圆与勾股定理1、如图,⊙O 是△BCN 的外接圆,弦AC ⊥BC ,点N 是AB 的中点,∠BNC =60︒, 求BNBC的值. 解:如图,连接AB ,那么AB 为直径,∴∠BNA =90︒ 连接AN ,那么BN =AN ,那么△ABN 是等腰直角三角形∴BN =22AB ;又∠BAC =∠BNC =60︒, ∴BC =32AB , ∴BN BC =63〔方法2,过点B 作BD ⊥CN ,即可求解〕2、如图,⊙O 的弦AC ⊥BD ,且AC =BD ,假设AD =22,求⊙O 半径. 解:如图,作直径AE ,连接DE ,那么∠ADE =90︒ 又AC ⊥BD ,那么∠ADB +∠DAC =∠ADB +∠EDB =90︒ ∴∠DAC =∠EDB ,那么CD BE =,∴DE BC =, ∵ AC =BD ,∴AC CD =,那么AD BC DE == ∴AD =DE ,即△ADE 是等腰直角三角形 ∴AE =2AD =4,即⊙O 的半径为23、如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 为CB 延长线上一点,且∠CAD =45︒, CE ⊥AB 于点E ,DF ⊥AB 于点F.〔1〕求证:CE =EF ;〔2〕假设DF =2,EF =4,求AC. 〔1〕证:∵ AB 为⊙O 的直径,∠CAD =45︒,那么△ACD 是等腰直角三角形,即AC =DC 又CE ⊥AB ,那么∠CAE =∠ECB如图,过点C 作CG 垂直DF 的延长线于点G又CE ⊥AB ,DF ⊥AB ,那么四边形CEFG 是矩形,∠AEC =∠DGC =90︒ ∴EF =CG ,CE ∥DG ,那么∠ECB =∠CDG =∠CAE ∴△ACE ≌△DCG 〔AAS 〕,那么CE =CG =EF 〔2〕略解:AC =CD =2246213+=.4、如图,AB 为⊙O 的直径,CD ⊥AB 于点D ,CD 交AE 于点F ,AC CE =. 〔1〕求证:AF =CF ;〔2〕假设⊙O 的半径为5,AE =8,求EF 的长 〔1〕证:如图,延长CD 交⊙O 于点G ,连接AC ∵直径AB ⊥CG ,那么AG AC CE == ∴∠CAE =∠ACG ,那么AF =CF〔2〕解:如图,连接OC 交AE 于点H ,那么OC ⊥AE ,EH =AH =12 AE=4∴ OH =22543-=,那么CH =5-3=2 设HF =x ,那么CF =AF =4-x 那么2222(4)x x +=-,∴32x =,即HF =32∴EF =1125、如图,在⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连接AD. 〔1〕求证:AD =AN ;〔2〕假设AB =42,ON =1,求⊙O 的半径. 〔1〕证:∵CD ⊥AB ,AM ⊥BC∴∠C +∠CNM =∠C +∠B =90︒ ∴∠B =∠CNM ,又∠B =∠D ,∠AND =∠CNM ∴∠D =∠AND ,即AD =AN (2)解:∵直径CD ⊥弦AB ,那么AE =22 又AN =AD ,那么NE =ED如图,连接OA ,设OE =x ,那么NE =ED =1x + ∴OA =OD =21x +∴222(22)(21)x x +=+,那么1x = ∴⊙O 的半径OA =3圆的培优专题5——圆中两垂直弦的问题1、在⊙O中,弦AB⊥CD于E,求证:∠AOD+∠BOC=180︒.证:如图,连接AC,∵AB⊥CD,那么∠CAB+∠ACD=90︒又∠AOD=2∠ACD,∠BOC=2∠BAC∴∠AOD+∠BOC=180︒.2、在⊙O中,弦AB⊥CD于点E,假设⊙O的半径为R,求证:AC2+BD2=4R2. 证:∵AB⊥CD,那么∠CAB+∠ACD=90︒如图,作直径AM,连接CM那么∠ACM=∠ACD+∠DCM=90︒∴∠CAB=∠DCM,=∴BC DM=,∴CM BD∴CM=BD∵AC2+CM2=AM2∴AC2+BD2=4R2.3、在⊙O中,弦AB⊥CD于点E,假设点M为AC的中点,求证ME⊥BD.证:如图,连接ME,并延长交BD于点F∵AB⊥CD,且点M为AC的中点∴ME为Rt△AEC斜边上的中线∴AM=ME∴∠A=∠AEM=∠BEF又∠B=∠C,∠A+∠C=90︒∴∠BEF+∠B=90︒,即∠BFE=90︒∴ME⊥BD.4、在⊙O中,弦AB⊥CD于点E,假设ON⊥BD于N,求证:ON =12 AC.证:如图,作直径BF,连接DF,那么DF⊥BD,又ON⊥BD,∴ON∥FD,又OB=OF∴ON=12DF连接AF,那么AF⊥AB,又CD⊥AB ∴AF∥CD∴AC FD=,那么AC=FD∴ON=12AC5、在⊙O中,弦AB⊥CD于点E,假设AC=BD,ON⊥BD于N,OM⊥AC于M. 〔1〕求证:ME//ON;〔2〕求证:四边形OMEN为菱形.证:〔1〕如图,延长ME交OD于点F∵OM⊥AC,那么点M为AC的中点∵AB⊥CD,那么ME为Rt△ACE的斜边上中线∴AM=EM,∴∠A=∠AEM=∠BEF又∠B=∠C,∠A+∠C=90︒∴∠B+∠BEF=90︒,那么∠BFE=90︒∴MF⊥BD,又ON⊥BD∴MF∥ON〔2〕由〔1〕知MF∥ON,同理可证OM∥NE,∴四边形OMEN是平行四边形∵AC=BD,∴OM=ON∴四边形OMEN为菱形.圆的培优专题6——圆与内角〔外角〕平分线一 圆与内角平分线问题往往与线段和有关,实质是对角互补的根本图形1、如图,⊙O 为△ABC 的外接圆,弦CD 平分∠ACB ,∠ACB =90︒. 求证:CA +CB 2CD.证:如图,在CA 的延长线上截取AE =BC ,连DE ,AD ,BD ∵CD 平分∠ACB ,∴AD =BD 又∠DAE =∠DBC ,AE =BC ∴△DAE ≌△DBC 〔SAS 〕 ∴CD =DE ,又∠ACD =45︒∴△CDE 是等腰直角三角形,那么CA +CB =CE 22、如图,⊙O 为△ABC 的外接圆,弦CD 平分∠ACB ,∠ACB =120︒,求CA+CBCD 的值.解:如图,在CA 的延长线上截取AE =BC ,连DE ,AD ,BD ∵CD 平分∠ACB ,∴AD =BD 又∠DAE =∠DBC ,AE =BC ∴△DAE ≌△DBC 〔SAS 〕 ∴CD =DE ,又∠ACD =60︒ ∴△CDE 是等边三角形∴CD =CE =CA +BC ,即CA+CBCD=13、如图,过O 、M (1,1)的动圆⊙1O 交y 轴、x 轴于点A 、B ,求OA +OB 的值. 解:如图,过点M 作ME y ⊥轴,MF ⊥x 轴,连AM 、BM 由M 〔1,1〕知:四边形OFME 是正方形 ∴OE =OF =4,EM =FM ,又∠MBF =∠MAE , ∴△AEM ≌△BFM 〔AAS 〕,那么AE =BF ∴OA +OB =AE +OE +OF -BF =8.二 圆中的外角问题往往与线段的差有关4、如图,⊙O 为△ABC 的外接圆,弦CP 平分△ABC 的外角∠ACQ ,∠ACB =90︒. 求证:〔1〕PA PB =;〔2〕AC -BC =2PC. 证:〔1〕如图,连接AP ,那么∠PCQ =∠PAB 又∠PCQ =∠PCA ,那么∠PAB =∠PCA ∴PA PB =〔2〕连接BP ,由〔1〕得,PA =PB在AC 上截取AD =BC ,连PD ,又∠PAD =∠PBC ∴△PAD ≌△PBC 〔SAS 〕,那么PD =PC又∠PCD =45︒,那么∴PCD 是等腰直角三角形,∴AC -BC =CD =2PC. 5、如图,⊙O 为△ABC 的外接圆,弦CP 平分△ABC 的外角∠ACQ ,∠ACB =120︒. 求BC -AC PC的值.解:如图,在BC 上截取BD =AC ,连AP 、BP 、DP ∵∠PCB =∠PCQ =∠PBA ∴AP =BP ,又∠CAP =∠DBP∴△CAP ≌△DBP 〔SAS 〕,那么CP =DP 又∠ACB =120︒,∴∠PCD =30︒, ∴BC -AC PC = CD PC=36、如图,A (4,0),B (0,4),⊙1O 经过A 、B 、O 三点,点 这P 为OA 上动点〔异于O 、A 〕. 求PB -PAPO的值.解:如图,在BP 上截取BC =AP∵A (4,0),B (0,4),那么OA =OB =4 又∠OAP =∠OBC ∴△OAP ≌△OBC 〔SAS 〕∴OC =OP ,且∠COP =∠AOB =90︒,那么PB -PA PO = PCPO =2.第6题一 切线与一个圆 答案:1、70︒;2、20︒;3、80︒;4、120︒;5、130︒;6、45︒1、如图,AD 切⊙O 于A ,BC 为直径,假设∠ACB =20︒,那么∠CAD = .2、如图,AP 切⊙O 于P ,PB 过圆心,B 在⊙O 上,假设∠ABP =35︒,那么∠APB = .3、如图,PA 、PB 为⊙O 的切线,C 为ACB 上一点,假设∠BCA =50︒,那么∠APB = .4、如图,PA 、PB 为⊙O 的切线,C 为AB 上一点, 假设∠BCA =150︒,那么∠APB = .5、如图,点O 是△ABC 的内切圆的的圆心,假设 ∠BAC =80︒,那么∠BOC = .6、如图,PA 切⊙O 于A ,假设PA =AB ,PD 平分∠APB 交AB 于D ,那么∠ADP = . 〔设元,列方程〕二 切线与两个圆7、如图,两同心圆的圆心为O ,大圆的弦AB 、AC 分别切小圆于D 、E ,小圆的DE 的度数为110︒, 那么大圆的BC 的度数为 .8、如图,⊙O 1和⊙O 2交于A 、B 两点,且点O 1在⊙O 2上,假设∠D =110︒,那么∠C = 9、如图,⊙O 1和⊙O 2外切于D ,AB 过点D ,假设∠AO 2D =100︒,C 为优弧BD 上任一点, 那么∠DCB = . 答案:7、140︒;8、40︒;9、50︒〔过点D 作两圆的切线〕第1题 第2题 第3题 第4题第5题第7题 第8题 第9题1、如图,在⊙O 的内接△ACB 中,∠ABC =30︒,AC 的延长线与过点D 的切线BD 交于 点D ,假设⊙O 的半径为1,BD //OC ,那么CD = . 〔CD =33〕2、如图△ABC 内接于⊙O ,AB =BC ,过点A 的切线与OC 的延长线交于D ,∠BAC =75︒, CD =3,那么AD = . 〔AD =3〕3、如图,⊙O 为△BCD 的外接圆,过点C 的切线交BD 的延长线于A ,∠ACB =75︒,∠ABC =45︒,那么 CD DB 的值为 . 〔CDDB =2〕4、如图,AB 为⊙O 的直径,弦DC 交AB 于E ,过C 作⊙O 的切线交DB 的延长线于M , 假设AB =4,∠ADC =45︒,∠M =75︒,那么CD = . 〔CD =23〕5、如图,等边△ABC 内接于⊙O ,BD 切⊙O 于B ,AD ⊥BD 于D ,AD 交⊙O 于E ,⊙O 的半径为1,那么AE = . 〔AE =1〕6、如图,△ABC 中,∠C =90︒,BC =5,⊙O 与ABC 的三边相切于D 、E 、F ,假设⊙O 的半径为2,那么△ABC 的周长为 . 〔C =30〕7、如图,△ABC 中,∠C =90︒,AC =12,BC =16,点O 在AB 上,⊙O 与BC 相切于D , 连接AD ,那么BD = . 〔示:过D 作DE ⊥AB ,设CD =DE =x ,BD =10〕第1题 第2题 第3题 第4题第5题 第6题第7题解题策略:连半径,有垂直;寻找特殊三角形;设元,构建勾股定理列方程.圆的培优专题9——圆的切线与垂径定理1、如图,AB 为⊙O 的直径,C 为AE 的中点,CD ⊥BE 于D. 〔1〕判断DC 与⊙O 的位置关系,并说明理由; 〔2〕假设DC =3,⊙O 的半径为5,求DE 的长. 解:〔1〕DC 是⊙O 的切线,理由如下:如图,连接OC ,BC ,那么∠ABC =∠CBD =∠OCB ∴OC ∥BD ,又CD ⊥BE ∴OC ⊥CD ,又OC 为⊙O 的半径 ∴DC 是⊙O 的切线〔2〕如图,过O 作OF ⊥BD ,那么四边形OFDC 是矩形,且BE =EF ∴OF =CD =3,DF =OC =5,∴EF =BF =22534-=,∴DE =DF -EF =12、如图,AB 为⊙O 的直径,D 是BC 的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线 BF 交AD 的延长线于点F. 〔1〕求证:DE 为⊙O 的切线;〔2〕假设DE =3,⊙O 的半径为5,求DF 的长. 〔1〕证:显然,∠CAD =∠OAD =∠ODA ∴OD ∥AE ,又DE ⊥AC , ∴OD ⊥DE ,又OD 为⊙O 半径 ∴DE 为⊙O 的切线〔2〕解:如图,过点O 作OG ⊥AC ,那么OGDE 是矩形,即OG =DE =3,DE =OD =5 ∴AG =22534-=,那么AE =5+4=9,∴2293310+= 连接BD ,那么BD ⊥AD ,∴BD =2210(310)10-=设DF =x ,那么22(10)x +=BF =22(310)10x +-,∴DF =103x =. 3、如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE ⊥CD 于E ,DA 平分∠BDE. 〔1〕求证:AE 是⊙O 的切线; 〔2〕假设AE =2,DE =1,求CD 的长.〔1〕证:如图,连接OA ,那么∠ADE =∠ADO =∠OAD ∴OA ∥CD ,又AE ⊥CD ∴OA ⊥AE ,又OA 为⊙O 的半径 ∴AE 是⊙O 的切线〔2〕解:如图,过点O 作OF ⊥CD ,那么CD =2DF ,且四边形OFEA 是矩形 ∴EF =OA =OD ,OF =AE =2 设DF =x ,那么OD =EF =1x + ∴2222(1)x x +=+,∴ 1.5x = ∴CD =2CF =23x =4、如图,AE 是⊙O 的直径,DF 切⊙O 于B ,AD ⊥DF 于D ,EF ⊥DF 于F. 〔1〕求证:EF +AD =AE ;〔2〕假设EF =1,DF =4,求四边形ADFE 的周长. 〔1〕证:如图,连接CE ,那么四边形CDFE 是矩形 连接OB 交CE 于点G , ∵DF 是⊙O 的切线 ∴OB ⊥DF ,OB ⊥CE∴BG =CD =EF ,OG ∥AC ,又AO =OE ∴AC =2OG∴EF +AD =AC +CD +EF =2OG +2BG =2OB =AE. 〔2〕解:显然CE =DF =4,CD =EF =1设AC =x ,那么AD =1x +,AE =2x +∴2224(2)x x +=+,那么3x =,那么AC =3,AD =4,AE =5 ∴四边形CDFE 的周长为14.圆的培优专题10——圆的切线与勾股定理1、如图,点A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,OC =BC , AC =12OB. 〔1〕求证:AB 是⊙O 的切线;〔2〕假设∠ACD =45︒,OC =2,求弦CD 的长. 〔1〕证:∵OC =OB ,∴AC 为OAB 的OB 边上的中线,又AC =12OB ∴△OAB 是直角三角形,且∠OAB =90︒,又OA 为⊙O 的半径 ∴AB 是⊙O 的切线〔2〕解:显然,OA =OC =AC ,即△OAC 是等边三角形 ∴∠AOC =60︒,∴∠D =30︒ 如图,过点A 作AE ⊥CD 于点E ,∵∠ACD =45︒,∴△AEC 是等腰直角三角形,∴AE =CE =22AC =22OC 2DE 3AE =6 ∴CD 622、如图,PA 、PB 切⊙O 于A 、B ,点M 在PB 上,且OM //AP ,MN ⊥AP 于N. 〔1〕求证:OM =AN ;〔2〕假设⊙O 的半径3r =,PA =9,求OM 的长. 〔1〕证:如图,连接OA ,∵PA 为⊙O 的切线, ∴OA ⊥AP ,又MN ⊥AP ∴OA ∥MN ,又OM //AP ,∴四边形OANM 是矩形,即OM =AN 〔2〕解:如图,连接OB ,∵PB 、PA 为⊙O 的切线 ∴∠OBM =∠MNP =90︒,PB =PA =9∵OM //AP ,∴∠OMB =∠P ,又OB =OA =MN ,∴△OBM ≌△MNP 〔AAS 〕 ∴OM =PM ,那么32+OM 2=〔9-OM 〕2,∴OM =53、如图,AB 为⊙O 的直径,半径OC ⊥AB ,D 为AB 延长线上一点,过D 作⊙O 的切线, E 为切点,连接CE 交AB 于F.〔1〕求证:DE =DF ;〔2〕连接AE ,假设OF =1,BF =3,求DE 的长. 〔1〕证:如图,连接OE ∵PE 为⊙O 的切线, ∴OE ⊥DE ,又OC ⊥AB∴∠C +∠CFO =∠OEF +∠DEF =90︒ 又∠C =∠OCF ,∠CFO =∠DFE ∴∠DEF =∠DFE ,∴DE =DF 〔2〕解:显然,OE =OB =OF +BF =4设BD =x ,那么DE =DF =3x +,OD =4x + ∴222(3)4(4)x x ++=+,∴x =4.5 ∴DE =7.54、如图,正方形ABCO 的顶点分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切于F , A (0,8),求圆心M 的坐标.解:如图,连接FM 交延长交AB 于点E ∵⊙M 与x 轴相切,即OC 是⊙M 的切线∴EF ⊥OC ,又四边形ABCO 是正方形 ∴EF ⊥AB ,又A 〔0,8〕即AB =EM =OA =8 ∴ AE =4设MF =AM =x ,那么EM =8-x∴2224(8)x x +-=,∴5x =,即MF =5 ∴点M 的坐标为〔-4,5〕圆的培优专题11——圆的切线与全等三角形1、如图,BD 为⊙O 的直径,A 为BC 的中点,AD 交BC 于E ,过D 作⊙O 的切线,交BC 的延长线于F. 〔1〕求证:DF =EF ;〔2〕假设AE =2,DE =4,求DB 的长. 〔1〕证:如图,连接AB∵BD 为⊙O 的直径,DF 为⊙O 的切线 ∴∠BAD =∠BDF =90︒∴∠ABC +∠AEB =∠ADB +∠FDE =90︒ 又∠ABC =∠ADB ,∠AEB =∠DEF ∴∠DFE =∠DEF ,∴DE =EF〔2〕解:如图,过点F 作FG ⊥ED ,那么EG =GD =2=AE , 又∠BAE =∠FGE =90︒,∠AEB =∠GEF , ∴△ABE ≌△GFE 〔ASA 〕,∴BE =EF ,即DE 为R △BDF 的斜边上中线 ∴DF =EF =DE =4,BF =8,那么BD =432、如图,AB 为⊙O 的直径,C 、D 为⊙O 的一点,OC ⊥AD ,CF ⊥DB 于F. 〔1〕求证:CF 为⊙O 的切线;〔2〕假设BF =1,DB =3,求⊙O 的半径. 〔1〕证:∵AB 为⊙O 的直径 ∴DF ⊥AD ,又OC ⊥AD ∴OC ∥DF ,又CF ⊥DB ∴OC ⊥CF ,又OC 为⊙O 的半径 ∴CF 为⊙O 的切线〔2〕解:如图,过点C 作CE ⊥BD 于点E , 那么BE =DE =1.5,EF =2.5 又OC ⊥CF ,CF ⊥EF∴四边形OCFE 是矩形 ∴⊙O 有半径OC =EF =2.53、如图,以⊙O 的弦AB 为边向圆外作正方形ABCD. 〔1〕求证:OC =OD ; 〔2〕过D 作DM 切⊙O 于M ,假设AB =2,DM =22O 的半径. 〔1〕证:如图,连接OA 、OB ,那么OA =OB ∴∠OAB =∠OBA ∵四边形ABCD 是正方形∴AD =BC ,∠DAB =∠CBA =90︒ ∴∠OAD =∠OBC ∴△OAD ≌△OBC 〔SAS 〕 ∴OC =OD〔2〕解:如图,连接OM 、BD ,那么OM ⊥DM ,且BD 2=2=DM 又OM =OB ,OD =OD ,△ODM ≌△ODB 〔SSS 〕 ∴OB ⊥BD ,又∠ABD =45︒∴∠OAB =45︒,即△OAB 是等腰直角三角形 ∴OA =22AB 24、如图,在△ABC 中,AC =BC ,∠ACB =90︒,以BC 为直径的⊙O 交AB 于D. 〔1〕求证:AD =BD ;〔2〕弦CE 交BD 于M ,假设3ABCBCM S S=,求BD CE. 〔1〕略证:连接CD ,那么CD ⊥AB又AC =BC ,∠ACB =90︒,∴AD =BD 〔2〕解:如图,连接BE ,过A 作AN ⊥CE 于N , ∵3ABCBCMSS=,∴2ACMBCMSS=∴AN =2BE∵∠CAN =∠BCE ,AC =BC ,∠ANC =∠CEB ∴△ANC ≌△CEB 〔AAS 〕 ∴BE =CN ,CE =AN设CN =BE =x ,那么CE =AN =BE =2x , ∴BC 5x ,∴AB 210x ,即BD =102x∴BD CE =104. 圆的培优专题12——圆的切线与等腰三角形1、如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC 交于D ,与边AC 交于E , 过D 作DF ⊥AC 于F.〔1〕求证:DF 为⊙O 的切线;〔2〕假设DE =5,AB =5,求AE 的长. 〔1〕证:如图,连接AD ,OD , ∵AB 为⊙O 的直径,∴AD ⊥BC ,又AB =AC ,OA =OB ∴∠EAD =∠DAB =∠ADO ∴OD ∥AC ,又DF ⊥AC ∴OD ⊥DF ,又OD 为⊙O 的直径 ∴DF 为⊙O 的切线〔2〕解:∵∠EAD =∠DAB ,∴BD =DE =5,又AB =5,∴AD =225(5)25-= ∵DF ×AC =AD ×CD ,∴DF =2,CF =EF =52(5)21-=,∴AE =5-2=3 2、如图,在△ABC 中,AB =AC ,以边AB 为直径作⊙O ,交BC 于D ,过D 作DE ⊥AE. 〔1〕求证:DE 是⊙O 的切线;〔2〕连接OC ,假设∠CAB =120︒,求 DEOC的值. 〔1〕证:如图,连接AD ,OD ,那么AD ⊥BC 又AB =AC ,∴CD =BD ,又AO =OB ∴OD ∥AC ,又DE ⊥AE∴OD ⊥DF ,∴DE 是⊙O 的切线;〔2〕解:如图,过点O 作OF ⊥BD 于F ,那么BD =2BF ∵AB =AC ,∠CAB =120︒,∴∠B =30︒ 设OF =x ,那么BF =3x ,OB =2x ,∴AC =AB =4x ,CD =BD =23x ,那么CF =33x由勾股定理,得OC =7x ,由面积法,得DE 3x ,∴DEOC=2114. 3、如图,AB =AC ,点O 在AB 上,⊙O 过点B ,分别交BC 于D 、AB 于E ,DF ⊥AC. 〔1〕证:DF 为⊙O 的切线;〔2〕假设AC 切⊙O 于G ,⊙O 的半径为3,CF =1,求AC. 〔1〕证:如图,连接OD ,∵ AB =AC ,OB =OD ∴∠B =∠C =∠ODB ∴OD ∥AC ,又DF ⊥AC ∴OD ⊥DF ,又OD 为⊙O 的半径 ∴DF 为⊙O 的切线〔2〕解:如图,连接OG ,∵AC 为⊙O 的切线∴OG ⊥AC ,又OD ⊥DF ,DF ⊥AC ,OG =OD ∴四边形ODFG 是正方形,即OB =OG =GF =3 设AG =x ,那么AB =AC =4x +,那么AO =1x + ∴2323(1)x x +=+,∴4x =,那么AC =84、如图,CD 是⊙O 的弦,A 为CD 的中点,E 为CD 延长线上一点,EG 切⊙O 于G. 〔1〕求证:KG =GE ;〔2〕假设AC //EG ,DK CK = 35 ,AK =210,求⊙O 的半径.〔1〕证:如图,连接OG ,OA 交CD 于点F ∵A 为CD 的中点,EG 是⊙O 的切线 ∴OA ⊥CD ,OG ⊥GE∴∠OAG +∠AKF =∠OGA +∠EGK 又∠OAG =∠OGA ,∠AKF =∠EKG ∴∠EGK =∠EKG ∴KG =GE〔2〕解:∵AC ∥EG ,∴∠CAK =∠EGK ,又∠EGK =∠EKG =∠CKA ∴∠CAK =∠CKA ,∴CA =CK设CK =CA =5x ,那么DK =3x ,∴CD =8x ,CF =4x ,EG =x ∴AF =22(5)(4)3x x x -=在Rt △AFK 中,222(3)(210)x x +=,∴2x =∴CE =8,AE =6,设⊙O 的半径为R ,那么R 2=82+〔R -6〕2,∴R =253圆的培优专题13——圆与三角形的内心1、如图,AB 是⊙O 的直径,AC CE =,点M 为BC 上一点,且CM =AC.〔1〕求证:M 为△ABE 的内心;〔2〕假设⊙O 的半径为5,AE =8,求△BEM 的面积. 〔1〕证:如图,连接CE ,那么AC =CE =CM ∴∠CME =∠CEM ,∠CEA =∠CBE ∴∠CBE +∠BEM =∠CEA +∠AEM ∴∠AEM =∠BEM ,又∠ABC =∠CBE ∴点M 为△ABE 的内心.〔2〕解:如图,过点M 作MN ⊥BE 于点N ,那么MN 为△ABE 的内切圆的半径. ∵AB =10,AE =8,那么BE 221086-=∴MN =681022+-=, ★★ MN =2a b c +-=aba b c++=2 ∴BME 的面积为12×6×2=6.2、如图,⊙O 为△ABC 的外接圆,BC 为直径,AD 平分∠BAC 点M 是△ABC 的内心. 〔1〕求证:BC 2DM ;〔2〕假设DM =52AB =8,求OM 的长. 〔1〕证:如图,连接BD ,CD , ∵BC 为直径,AD 平分∠BAC ∴BD =CD ,∠BDC =90︒, ∴BC 2 连接CM ,那么∠ACM =∠BCM ,∠DAC =∠BCD∴∠DMC =∠ACM +∠DAC =∠BCM +∠BCD =∠DCM , ∴DM =CD ,即BC 2(2)解:显然,BC 2=10,AB =8,那么AC =6,且∠MAE =45︒如图,过M 作ME ⊥BC 于点N ,作MF ⊥AC 于点F ,那么ME =MF =AF =2∴ CF =CE =4,那么OE =1 ∴OM =22215+=.3、如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 是BC 的中点,DE ⊥AB 于E ,I 是△ABD 的内心,DI 的延长线交⊙O 于N.〔1〕求证:DE 是⊙O 的切线;〔2〕假设DE =4,CE =2,求⊙O 的半径和IN 的长. 〔1〕证:∵D 是BC 的中点,OA =OD ∴∠CAD =∠DAO =∠ADO ∴OD ∥AE ,又DE ⊥AB ∴OD ⊥DE ,又OD 为⊙O 的半径 ∴DE 是⊙O 的切线.〔2〕解:如图,过点O 作OF ⊥AC ,那么AF =CF ∵DE ⊥AB ,OD ⊥DE∴四边形ODEF 是矩形,那么OF =DE =4设⊙O 的半径为R ,那么OA =OD =EF =R ,AF =CF =R -2 ∴〔R -2〕2+42 =R 2,∴R =5,∴AB =10,如图,连接BI ,AN ,BN ,那么IN =BN =AN =52 ★4、如图,在△ABC 中,AB =AC ,I 是△ABC 的内心,⊙O 交AB 于E ,BE 为⊙O 的直径. 〔1〕求证:AI 与⊙O 相切;〔2〕假设BC =6,AB =5,求⊙O 的半径. 〔1〕证:如图,延长AI 交BC 于点D ,那么AD ⊥BC , 连接OI ,那么∠OIB =∠OBI =∠OBD ∴OI ∥BC ,又AD ⊥BC ∴AD ⊥OI ,又OI 为⊙O 的半径 ∴AI 与⊙O 相切〔2〕显然BD =3,AB =5,那么AD =4如图,过点I 作IF ⊥AB 于点F ,那么BF =BD =3,AF =2,IF =ID ,设IF =ID =x ,那么AI =4x -,∴2222(4)x x +=-,那么IF =32x =设O 的半径为R ,那么OF =3-R ,∴〔3-R 〕2+〔32 〕2 =R 2,∴R =158圆的培优专题14——圆中动态问题1、如图,点P 是等边△ABC 外接圆BC 上的一个动点,求证PA =PB +PC. 证:如图,在AP 上截取PD =PC ,连接CD∵△ABC 是等边三角形,∠ABC =∠ACB =60︒ ∴∠DPC =∠ABC =60︒∴△PCD 是等边三角形,即CD =PC ∵∠ACD +∠BCD =∠BCP +∠BCD =60︒ ∴∠ACD =∠BCP ,又AC =BC ∴△ACD ≌△BCP 〔SAS 〕 ∴AD =BP∴PA =AD +DP =PB +PC.2、弦AD ⊥BD ,且AB =2,点C 在圆上,CD =1,直线AD 、BC 交于点E. 〔1〕如图1,假设点E 在⊙O 外,求∠AEB 的度数; 〔2〕如图2,假设C 、D 两点在⊙O 上运动,CD 的 长度不变,点E 在⊙O 内,求∠AEB 的度数. 解:〔1〕如图-1,连接OC ,OD ∵AD ⊥BD∴AB 为⊙O 的直径,且AB =2∴CD =OC =OD =1,即△OCD 是等边三角形 ∴∠COD =60︒∴∠CBD =12 ∠COD=30︒∴∠AEB =60︒ 〔2〕如图-2,连接OC ,OD图-1同理可得:∠ACD =60︒, ∴∠CBD =12 ∠COD=30︒又∠ADB =90︒,∴∠AED =120︒3、直线l 经过⊙O 的圆心O ,且交⊙O 于A 、B ,点C 在⊙O 上,且∠AOC =30︒,点 P 是直线l 上一个动点〔与O 不重合〕,直线CP 与⊙O 交于Q ,且QP =QO. 〔1〕如图1,当点P 在线段AO 上时,求∠OCP 的度数; 〔2〕如图2,当点P 在线段OA 的延长线上时,求∠OCP 的度数; 〔3〕如图3,当点P 在线段OB 的延长上时,求∠OCP 的度数. 解:〔1〕如图-1,设∠OCP =x ∵OC =OQ ,那么∠OQP =x 又∠AOC =30︒,QP =QO ∴∠QOP =∠QPO =30x +︒ ∴2(30)180x x +︒+=︒ ∴∠OCP =40x =︒〔2〕如图-2,设∠COQ =x , 又∠AOC =30︒,QP =QO ∴∠QOP =∠QPO =30x +︒ 又OC =OQ∴∠OQP =∠OCQ =60x +︒ ∴(60)2(30)180x x +︒++︒=︒ ∴∠COQ =20x =︒ ∴∠OCP =100︒ 〔3〕如图-3,设∠QPO =x∴QP =PO ,那么∠QOP =∠QPO =x ∴OC =OQ∴∠OCQ =∠OQC =2x图-1图-2图-3∴230x x +=︒ ∴∠QPO =x =10︒ ∴∠OCP =20︒圆的培优专题15——聚焦圆中无图多解题圆是中考数学考查的一个热点,题型较全,选择、填空、作图、计算与证明经常出现,常与三角形、四边形、相似形、二次函数等知识一起考查。
圆中的定弦定角和最大张角模型(学生版)--中考数学满分突破
圆中的定弦定角和最大张角模型模型分析【模型1】定弦定角模型如图28-1,在ΔABC中,BC的长为定值a,∠A=α为定角度,(1)确定点A的运动轨迹,有3种情况:①如图28-2,当α<90°时,点A的运动轨迹为优弧BAC(不与B、C点重合);②如图28-3,当α=90°时,点A的运动轨迹为⊙O(不与点B、C重合);③如图28-4,当α>90°时,点A的运动轨迹为劣弧BAC(不与B、C点重合)。
(2)构成等腰三角形(AB=AC)时:点A到BC的距离最大,且此时ΔABC的面积最大。
【模型变式1】如图28-5,已知点A、B是∠EPF的边PF上的两个定点,点Q是边PE上一动点,则当点Q在何处时,∠AQB最大。
⇒当ΔAQB的外接圆与边PE相切于点Q时,∠AQB最大。
【证明】如图28-6,作ΔAQB的外接圆⊙O,设点Q 为PE上不同与Q点的任意一点,连接Q A、Q B,Q A与⊙O交于点D,连接BD,∵∠ADB>∠AQ'B,∠AQB=∠ADB∵∠AQB>∠AQ'B∴当ΔAQB的外接圆与边PE相切于点Q时,∠AQB最大。
典例分析【例1】如图,在△ABC中,AC=6,BC=83,∠ACB=60°,过点A作BC的平行线l,P为直线l上一动点,⊙O为△APC的外接圆,直线BP交⊙O于E点,则AE的最小值为.【例2】数学概念若点P在ΔABC的内部,且∠APB、∠BPC和∠CPA中有两个角相等,则称P是ΔABC的“等角点”,特别地,若这三个角都相等,则称P是ΔABC的“强等角点”.理解概念(1)若点P是ΔABC的等角点,且∠APB=100°,则∠BPC的度数是°.(2)已知点D在ΔABC的外部,且与点A在BC的异侧,并满足∠BDC+∠BAC<180°,作ΔBCD的外接圆O,连接AD,交圆O于点P.当ΔBCD的边满足下面的条件时,求证:P是ΔABC的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB=DC②如图②,BC=BD深入思考(3)如图③,在ΔABC中,∠A、∠B、∠C均小于120°,用直尺和圆规作它的强等角点Q.(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有.(填序号)模型演练一、单选题1.如图,C,D是⊙O上直径AB两侧的两点,若∠ABC=20°,则∠BDC的度数是()A.50°B.60°C.80°D.70°2.如图,四边形ABCD内接于⊙O,连接AC,BD,且AC=BC,∠ADC=130°,则∠ADB的度数为()A.50°B.60°C.70°D.80°3.如图,C,D是⊙O上直径AB两侧的两点.设∠ABC=25°,则∠BDC=()A.85°B.75°C.70°D.65°4.如图,AB为⊙O的直径,CD是⊙O的弦,∠CAB=60°,则∠ADC的度数为()A.20°B.30°C.40°D.60°二、填空题5.如图,点D 在半圆O 上,半径OB =5,AD =4,点C 在弧BD 上移动,连接AC ,作DH ⊥AC ,垂足为H ,连接BH ,点C 在移动的过程中,BH 的最小值是.6.如图,已知C 、D 在以AB 为直径的⊙O 上,若∠CAB =30°,则∠D 的度数是.7.如图,直线l 与⊙O 相交于点B 、D ,点A 、C 是直线l 两侧的圆弧上的动点,若⊙O 的半径为1,∠A =30°,那么四边形ABCD 的面积的最大值是.8.如图,在⊙O 中,弦AB 、CD 相交于点E ,∠BAC =50°,∠AED =75°,则AD 的度数是°.9.如图,∠MAN =45°,B 、C 为AN 上两点,AB =1,BC =3,D 为AM 上的一个动点,过B 、C 、D 三点作⊙O ,当sin ∠BDC 的值最大时,⊙O 的半径为三、解答题10.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为0,-3,AB为半圆的直径,半圆圆心M的坐标为1,0,半圆半径为2.(1)求“蛋圆”抛物线部分的解析式及“蛋圆”的弦CD的长;(2)已知点E是“蛋圆”上的一点(不与点A,点B重合),点E关于x轴的对称点是点F,若点F也在“蛋圆”上,求点E坐标;(3)点P是“蛋圆”外一点,满足∠BPC=60°,当BP最大时,直接写出点P的坐标.11.如图,抛物线y=ax2+bx-3交x轴于点A(-1,0),B(3,0),D是抛物线的顶点,P是抛物线上的动点,点P的横坐标为m(0≤m≤3),AE⎳PD交直线l:y=12x+2于点E,AP交DE于点F,交y轴于点Q.(1)求抛物线的表达式;(2)设△PDF的面积为S1,△AEF的面积为S2,当S1=S2时,求点P的坐标;(3)连接BQ,点M在抛物线的对称轴上(位于第一象限内),且∠BMQ=45°,在点P从点B运动到点C的过程中,点M也随之运动,直接写出点M的纵坐标t的取值范围.12.一个角的顶点在圆外,两边都与该圆相交,则称这个角是它所夹的较大的弧所对的圆外角.(1)证明:一条弧所对的圆周角大于它所对的圆外角;(2)应用(1)的结论,解决下面的问题:某市博物馆近日展出当地出土的珍贵文物,该市小学生合唱队计划组织120名队员前去参观,队员身高的频数分布直方图如图1所示.该文物PQ高度为96cm,放置文物的展台QO高度为168cm,如图2所示.为了让参观的队员站在最理想的观看位置,需要使其观看该文物的视角最大(视角:文物最高点P、文物最低点Q、参观者的眼睛A所形成的∠PAQ),则分隔参观者与展台的围栏应放在距离展台多远的地方?请说明理由.(说明:①参观者眼睛A与地面的距离近似于身高;②通常围栏的摆放位置需考虑参观者的平均身高)13.如图,⊙O是△ABC的外接圆,EF与⊙O相切于点D,EF∥BC分别交AB,AC的延长线于点E和F,连接AD交BC于点N,∠ABC的平分线BM交AD于点M.(1)求证:AD平分∠BAC;(2)若AB:BE=5:2,AD=14,求线段DM的长.。
24.1.4圆周角圆周角定理及推论(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角定理及推论在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-举例:解释圆周角,说明只有当两个圆周角都在同一个圆内时,它们对应的弧才相等。
-难点2:圆周角推论的应用。学生可能难以理解圆周角与其所对圆心角之间的具体关系,不知道如何在实际问题中应用这一推论。
-举例:通过构造具体的图形,如圆心角为120度的圆弧,让学生找出对应的圆周角,并验证确实等于60度,从而加深理解。
另外,小组讨论环节,我觉得学生的参与度很高,但在分享讨论成果时,有些学生表达得不够清晰。为了提高学生的表达能力和逻辑思维,我打算在后续的教学中,多设置一些类似的活动,并给予他们更多的指导和鼓励。
在课程总结时,我注意到部分学生对圆周角定理在实际问题中的应用仍然感到困惑。为了解决这个问题,我想在下一节课引入一些更具挑战性的问题,让学生在实际问题中运用所学知识,从而加深他们对圆周角定理及推论的理解。
-难点3:在复杂的几何图形中识别和运用圆周角定理及推论。学生在面对复杂的图形时,可能无法正确识别圆周角,或者不知道如何应用已知的定理和推论。
-举例:给出包含多个圆周角和圆心角的复合图形,指导学生如何一步步识别出关键的圆周角,并利用定理和推论来解决问题。
圆心角的计算公式高中
圆心角的计算公式高中全文共四篇示例,供读者参考第一篇示例:圆心角是指以圆心为顶点,圆周上两点为端点所成的角。
在圆的几何学中,圆心角是一个非常重要且常见的概念,我们可以通过计算圆心角来解决许多与圆相关的问题。
在高中数学中,我们经常会遇到计算圆心角的问题。
下面,我们就来介绍一下圆心角的计算公式以及如何应用它们来解决实际问题。
我们来看一下圆的基本性质。
对于任意一个圆,其圆心到圆周上任意一点的距离都是相等的,这个距离就称为半径。
在圆周上我们可以确定两个点,并以圆心为顶点构成一个圆心角。
圆心角的计算公式主要依赖于圆的半径和圆周长之间的关系。
根据圆的定义,我们知道圆周长等于2πr,其中r为圆的半径。
而圆心角所对的弧长与整个圆周长的比值就称为圆心角所对的角度。
具体来说,圆心角所对的弧长S与整个圆周长L的比值可以表示为:θ = S/L其中θ表示圆心角的度数。
在数学中,我们通常使用弧度来表示圆心角的大小。
而圆心角的弧度与角度之间的转换关系可以通过下面的公式来表示:θ(弧度)= θ(角度)* π / 180这个公式可以帮助我们在角度和弧度之间进行转换,使得我们能够更方便地计算圆心角。
除了直接通过圆心角所对的弧长与整个圆周长的比值来计算圆心角之外,我们还可以通过圆心角所对的弧长与半径的比值来计算圆心角。
具体来说,圆心角所对的弧长与半径的比值可以表示为:这个公式可以帮助我们在给定圆的半径和所对的弧长的情况下计算圆心角的大小。
通过上面的介绍,我们可以看到计算圆心角并不难,只要掌握好相应的公式并理解其原理,就可以轻松解决与圆心角相关的问题。
在高中数学课程中,我们经常会遇到如下类型的问题:已知一个圆的半径和一个圆心角,然后求解该圆心角所对的弧长。
这类问题可以通过上文提到的公式来解决。
我们可以根据给定的圆心角和半径的值计算出弧长,然后再利用弧长与圆周长的关系计算出圆心角的大小。
除了直接计算圆心角所对的弧长之外,我们还可以通过与其他角度之间的关系来计算圆心角。
由一道中考题小探“求圆中角度问题”的方法
从 而
- O /A B =1 0 , 2。
故
- O /D B= 6 。 4 。 2 。 0 。 3 0 一10 一1 0 =1 0 .
因为 所 以 从 而
即
- O /B D=/O B+ B, - C 2 2 。 +3 。 x= 0 + O, =5 。 0,
L BOD =2 x=1 0。 0 .
利用 半径 相等 得到角 相 等是解 决 问题 的关 键. 运用 圆周 角定理 : 条弧 所对 的圆周角 是 它所 一
对 的圆心 角 的一半。 解法 2 如图2联结 A . O , O 由 A=O 知 D,
D = D =2 . 0。
方法并体验方法多样性 中的共性 , 这不就是数学教
师追 求 的永 恒 主 题 吗 ?笔 者 用 一 堂课 的时 间让 学 生各 抒 己见 , 该 题 出发 , 讨 了求 圆 中角 度 问题 从 探 的方 法及其 共 性.
题 目 如 图 1 已知 A , B是 o0 的 弦 ,_ =3 。 C 是 弦 /B 0,
又 因为 O A=O 所 以 B,
2 2 1 单纯“ . . 成直径 ” 型
此类 方 法 还有其 他解 法 , 留给读者 思考 .
2 几何 方法
数形 结合 也 可 以 “ 以形 助 数 ” 通 过 图形 的 几 , 何 直观性 来 阐 明数 之间 的某种 关 系 , 们常 称 之为 我
第 5期
杨
慧: 由一 道 中考 题 小探 “ 圆 中角 度 问 题 ” 求 的方 法
题, 中第 2 其 6题 的第 ( ) 2 小题虽是 中考 常见 的求
圆 中角度 问题 , 笔 者 发 现该 题 涵 盖 知 识 面广 , 但 解
重难点 圆中的计算及其综合专项 中考数学
重难点 圆中的计算及其综合考点一:圆中的角度计算圆中角度的相关考点主要是圆周角定理和圆心角定理,这两个定理都有对应推论,考察难度不大,题型基本以选择、填空题为主,所以重点是要把这两个定理及其推论熟练掌握即可!题型01 圆中常见的角度计算易错点:圆中角度定理都有一个大前提——在同圆或等圆中,特别是一些概念性选择题,没有这个前提的话,对应结论是不正确的。
解题大招01:圆中角度计算口诀——圆中求角度,同弧或等弧+直径所对圆周角是90度圆心角定理、圆周角定理以及其推论为圆中角的计算提供了等量关系,圆中的等角也是解决角度问题中常见的转化关系,所以特别要注意同弧或等弧所对的圆周角相等,以及直径所对圆周角=90°的固定关系解题大招01:圆中求角度常用的其他规律:圆内接四边形的一个外角=其内对角折叠弧过圆心→必有30°角以等腰三角形的腰长为直径的圆→必过底边中点圆中出现互相垂直的弦,常作两弦心距→必有矩形(当弦相等,则得正方形)【中考真题练】1.(2023•河南)如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为( )A.95°B.100°C.105°D.110°2.(2023•吉林)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是( )A.70°B.105°C.125°D.155°3.(2023•枣庄)如图,在⊙O中,弦AB,CD相交于点P.若∠A=48°,∠APD=80°,则∠B的度数为( )A.32°B.42°C.48°D.52°4.(2023•眉山)如图,AB切⊙O于点B,连结OA交⊙O于点C,BD∥OA交⊙O于点D,连结CD,若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°5.(2023•湖北)如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD= .【中考模拟练】1.(2024•连云区一模)如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD=( )A.45°B.36°C.35°D.30°2.(2024•岱岳区一模)如图,AB是⊙O的直径,点D是的中点,∠BAC=40°,则∠ACD的度数是( )A.40°B.25°C.40°.D.30°3.(2024•甘井子区校级一模)如图,在⊙O中,OA、OB、OC为半径,连接AB、BC、AC.若∠ACB=53°,∠CAB =17°,则∠OAC 的度数为( )A .10°B .15°C .20°D .25°4.(2024•连云区一模)如图,一块直角三角板的30°角的顶点P 落在⊙O 上,两边分别交⊙O 于A ,B 两点,连结AO ,BO ,则∠AOB 的度数 °.5.(2024•新城区模拟)如图,在△ABC 中,∠B =70°,⊙O 是△ABC 的内切圆,M ,N ,K 是切点,连接OA ,OC .交⊙O 于E ,D 两点.点F 是上的一点,连接DF ,EF ,则∠EFD 的度数是 .题型02 “知1得4”模型的常见题型解题大招:圆中模型“知1得4”由图可得以下5点:①AB=CD;②⋂⋂=CD AB ;③OM=ON;④F E ∠=∠;⑤COD AOB ∠=∠;以上5个结论,知道其中任意1个,剩余的4个都可以作为结论使用。
圆的确定,圆心角、圆周角、弧、弦、弦心距之间的关系
儒洋教育学科教师辅导讲义6、多边形与圆如果一个圆经过一个多边形的各顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做这个圆的内接多边形,提示:1、与圆的确定有关的两个图形一定要学生重点理解。
2、补充两个知识点:线段垂直平分线的性质和角平分线的性质3、和学生一起重点分析课本例题1和2,理解题目考察的细节和解题方法。
二、例题分析:1、以线段AB为弦的圆的圆心的轨迹是___________。
cm。
2、已知扇形的圆心角为120°,半径为2cm,则扇形的弧长是cm,扇形的面积是23、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例1:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、下列四边形:①平行四边形,②菱形;③矩形;④正方形。
其中四个顶点一定能在同一个圆上的有()A、①②③④B、②③④C、②③D、③④5、(07上海中考)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块 B.第②块C.第③块 D.第④块6、三角形的外接圆的圆心是(),A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点7、直角三角形的两条直角边分别为5cm和12cm,则其外接圆半径长为。
(三)巩固练习1、圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为.2、三角形的外接圆的圆心——三角形的外心——三角形的交点;三角形的内切圆的圆心——三角形的内心——三角形的交点;3、三角形的外心一定在该三角形上的三角形()(A)锐角三角形(B)钝角三角形(C)直角三角形(D)等腰三角形,第7题 (第2题) 7、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=_______8、如图,OE ⊥AB 、OF ⊥CD ,如果OE=OF ,那么_______(只需写一个正确的结论)B A CEDOF(第8题) (第11题)9、已知,如图所示,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B和C 、D 。
数学知识点:圆周角定理_知识点总结
数学知识点:圆周角定理_知识点总结在数学的奇妙世界中,圆周角定理是一个非常重要的知识点。
它就像是一把神奇的钥匙,能够帮助我们打开解决许多与圆相关问题的大门。
接下来,让我们一起深入探究圆周角定理的奥秘。
圆周角的定义是顶点在圆上,并且两边都和圆相交的角。
想象一下,一个角的顶点在圆的边缘上,它的两条边与圆相交,这就是圆周角。
圆周角定理指出:一条弧所对的圆周角等于它所对圆心角的一半。
这是一个非常关键且实用的定理。
为了更好地理解这个定理,我们来看几个例子。
假设在一个圆中,有一条弧 AB ,它所对的圆心角是∠AOB ,所对的圆周角是∠ACB 。
根据圆周角定理,∠ACB 的度数就等于∠AOB 度数的一半。
那这个定理有什么用呢?它的应用可广泛了!比如在求解圆中的角度问题时,如果我们知道了圆心角的度数,就能轻松算出圆周角的度数;反之,如果知道了圆周角的度数,也能算出圆心角的度数。
再比如说,当我们要证明两个角相等时,如果这两个角是同弧所对的圆周角,那么根据圆周角定理,它们必然相等。
这在几何证明题中经常能派上用场。
而且,圆周角定理还有几个重要的推论。
推论一:同弧或等弧所对的圆周角相等。
这意味着,只要是同一条弧或者长度相等的弧所对应的圆周角,它们的大小都是一样的。
比如说,在同一个圆中,弧 AB 所对的圆周角∠ACB 和∠ADB 就是相等的。
推论二:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
这个推论在解决实际问题中也非常有用。
想象一下,一个圆的直径与圆上的一点相连,所形成的角就是直角。
反过来,如果一个圆周角是直角,那么它所对的弦就是直径。
在实际解题中,我们要善于运用圆周角定理及其推论。
比如,在一个复杂的几何图形中,如果有圆的存在,我们首先要观察有没有圆周角,然后思考能否运用圆周角定理来找到角度之间的关系,从而解决问题。
为了更好地掌握圆周角定理,我们还需要通过大量的练习题来巩固。
在做练习题的过程中,要注意仔细分析题目中的条件,找出与圆周角相关的信息,然后灵活运用定理和推论来求解。
求角度数必考100题
求角度数必考100题
(原创实用版)
目录
1.角度数的概念和重要性
2.角度数的求法
3.角度数的应用
4.求角度数必考的 100 题
正文
一、角度数的概念和重要性
角度数是几何学中的一个基本概念,表示两条射线之间的旋转程度。
在数学、物理、工程等领域中,角度数都有着重要的应用。
掌握角度数的概念和计算方法,对于解决实际问题具有重要意义。
二、角度数的求法
1.利用角度制:角度制是表示角度的一种方法,通常用度、分、秒表示。
一个圆被分为 360 等份,每一份被称为一度,60 度为一分,60 分为一秒。
2.利用弧度制:弧度制是另一种表示角度的方法,用弧长与半径之比表示角度。
一个圆的弧度制角度为 2π。
三、角度数的应用
1.解决几何问题:在几何学中,角度数常用于计算三角形、四边形的面积和周长等。
2.解决物理问题:在物理学中,角度数常用于计算力矩、功等。
3.解决工程问题:在工程领域,角度数常用于建筑、机械制造等领域。
四、求角度数必考的 100 题
1.求一个角的度数。
2.求一个角的弧度数。
3.已知一个角的度数,求其弧度数。
4.已知一个角的弧度数,求其度数。
5.求两个角的和的度数。
6.求两个角的和的弧度数。
......
95.求一个多边形的内角和。
96.求一个多边形的外角和。
97.求一个多边形的一个内角的度数。
98.求一个多边形的一个外角的度数。
99.求一个圆的周长。
100.求一个圆的面积。
模型29 圆内最大张角之米勒角问题(解析版)
模型介绍故事背景:米勒问题和米勒定理1471年,德国数学家米勒向诺德尔教授提出了如下十分有趣的问题:在地球表面的什么部位,一根垂直的悬杆呈现最长?即在什么部位,视角最大?最大视角问题是数学史上100个著名的极值问题中第一个极值问题而引人注目,因为德国数学家米勒曾提出这类问题,因此最大视角问题又称之为“米勒问题”.米勒问题:已知点A,B是∠MON的边ON上的两个定点,点C是边OM上的动点,则当C在何处时,∠ACB最大?对米勒问题在初中最值的考察过程中,也成为最大张角或最大视角问题米勒定理:已知点AB是∠MON的边ON上的两个定点,点C是边OM上的一动点,则当且仅当三角形ABC的外圆与边OM相切于点C时,∠ACB最大.证明:如图1,设C’是边OM上不同于点C的任意一点,连结A,B,因为∠AC’B是圆外角,∠ACB是圆周角,易证∠AC’B小于∠ACB,故∠ACB最大。
=+=AC D ADB AC D DAC ADB AC DACB ADBACB AC D∠∠∠∠∠∠∠∠∠’’’’’在△中所以>又因为所以>米勒定理在解题中的应用常常以解析几何、平面几何和实际应用为背景进行考查。
若能从题设中挖出隐含其中的米勒问题模型,并能直接运用米勒定理解题,这将会突破思维瓶颈、大大减少运算量、降低思维难度、缩短解题长度,从而使问题顺利解决。
否则这类问题将成为考生的一道难题甚至一筹莫展,即使解出也费时化力。
例题精讲【例1】.平面直角坐标系内,已知点A (1,0),B (5,0),C (0,t ).当t >0时,若∠ACB 最大,则t 的值为()A .B .C .D .解:如图①,作过A 、B 两点的⊙M 与y 轴相切于点C ,∵∠AC 'B <∠APB ,∠APB =∠ACB ,∴∠AC'B<∠ACB,∴⊙M与y轴相切于点C时,∠ACB最大.如图②,作MH⊥AB,连接OM、MA、MB,∵⊙M与y轴相切于点C,∴∠OCM=90°,∵A(1,0),B(5,0),∴AB=4,∵MH⊥AB,∴AH=AB=2,∴OH=1+2=3,∴MC=MA=MB=3,∴,∴,∴,故选:C.变式训练【变式1-1】.如图,在正方形ABCD中,边长为4,M是CD的中点,点P是BC上一个动点,当∠DPM的度数最大时,则BP=4﹣2.解:作△PMD的外接圆,则圆心O在DM的中垂线上移动,∵∠DOM=2∠DPM,∴当∠DOM最大时,∠DPM最大,当⊙O与BC相切时,∠DOM最大,∵M是CD的中点,CD=4,∴CM=DM=2,连接OP,则OP⊥BC,∵∠C=90°,ON⊥CD,∴四边形OPCN是矩形,∴OP=NC=2+1=3=OM,在Rt△MON中,由勾股定理得,ON===2,即PC=2,∴BP=BC﹣PC=4﹣2,故答案为:4﹣2.【变式1-2】.如图,∠AOB=60°,M,N是OB上的点,OM=4,MN=.(1)设⊙O过点M、N,C、D分别是MN同侧的圆上点和圆外点.求证:∠MCN>∠MDN;(2)若P是OA上的动点,求∠MPN的最大值.(1)证明:当C在MD上或在MC上时,如图,显然∠MCN>∠MDN(三角形的外角大于不相邻的内角),当C不在MD上或在MC上时,如图,设MD与圆交于E点,连接NE,则∠MEN=∠MCN(同弧上的圆周角相等),而∠MEN>∠MDN,∴∠MCN>∠MDN;(2)解:设过M、N作圆F与OA相切于点Q,由(1)知:∠MQN即为所求角,作MN的垂直平分线分别交OA、OB于G、H,则圆心F在GH上,设FQ=FM=r,∵∠AOB=60°,∠OHG=90°,∴∠OGH=30°,∴FG=2r,HF==,则GH=,解得r=,则∠MQN=∠MFN=30°,∴∠MPN的最大值为30°.【例2】.在直角坐标系中,给定两点M(1,4),N(﹣1,2),在x轴的正半轴上,求一点P,使∠MPN最大,则P点的坐标为(1,0).解:过点M、N、P三点的圆的圆心在线段MN的中垂线:y=﹣x+3上,∠MPN为弦MN所对应的圆周角,∴当圆的半径最小时有∠MPN最大,∵P在x轴上运动,∴当圆与x轴相切时,圆的半径最小,即此时∠MPN最大.设此时P点坐标为:(p,0),则圆心Q的坐标为(p,﹣p+3),∵MQ=PQ,∴(1﹣p)2+(p+1)2=(3﹣p)2,解得:p=1或p=﹣6(舍),∴P点坐标为(1,0),故答案为:(1,0).变式训练【变式2-1】.如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是20米.解:如图,取MN的中点F,过点F作FE⊥OB于E,以直径MN作⊙F,∵MN=2OM=40m,点F是MN的中点,∴MF=FN=20m,OF=40m,∵∠AOB=30°,EF⊥OB,∴EF=20m,OE=EF=20m,∴EF=MF,又∵EF⊥OB,∴OB是⊙F的切线,切点为E,∴当点P与点E重合时,观景视角∠MPN最大,此时OP=20m,故答案为:20.【变式2-2】.如图,在矩形ABCD中,AB=6,AD=8,点E,F分别是边CD,BC上的动点,且∠AFE=90°(1)证明:△ABF∽△FCE;(2)当DE取何值时,∠AED最大.(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵∠AFE=90°,∴∠AFB+∠EFC=90°,∵∠EFC+∠FEC=90°,∴∠AFB=∠FEC,∴△ABF∽△FCE.(2)取AE的中点O,连接OD、OF.∵∠AFE=∠ADE=90°(对角互补),∴A、D、E、F四点共圆,∴∠AED=∠AFD,∴当⊙O与BC相切时,∠AFD的值最大,易知BF=CF=4,∵△ABF∽△FCE,∴=,∴=,∴EC=,∴DE=DC﹣CE=6﹣=.∴当DE=时,∠AED的值最大.1.在平面直角坐标系中,点A(0,2)、B(a,a+2)、C(b,0)(a>0,b>0),若AB=4且∠ACB最大时,b的值为()A.2+2B.﹣2+2C.2+4D.﹣2+4解:∵B(a,a+2)∴点B在y=x+2这条直线上,又AB=4,A(0,2),∴B(4,6),如图,当△ABC的外接圆与x轴相切时,∠ACB有最大值.取点G为AB中点,∴G(2,4),过点G且垂直于AB的直线为:y=﹣x+6,设圆心F(m,﹣m+6),∵FC=FB,∴(﹣m+6)2=(m﹣4)2+(﹣m+6﹣6)2解得m=2﹣2.故选:B.2.如图,A,B表示足球门边框(不考虑球门的高度)的两个端点,点C表示射门点,连接AC,BC,则∠ACB就是射门角.在不考虑其它因素的情况下,一般射门角越大,射门进球的可能性就越大.球员甲带球线路ED与球门AB垂直,D为垂足,点C在ED上,当∠ACB最大时就是带球线路ED上的最佳射门角.若AB=4,BD=1,则当球员甲在此次带球中获得最佳射门角时DC的长度为()A.2B.3C.D.解:当△DBC∽△DCA时,∠ACB最大,∴,∴CD2=BD•AD=1×(1+4)=5,∴CD=,故球员甲在此次带球中获得最佳射门角时DC的长度为故选:C.3.已知点A、B的坐标分别是(0,1)、(0,3),点C为x轴正半轴上一动点,当∠ACB最大时,点C的坐标是(,0).解:过点A、B作⊙P,点⊙P与x轴相切于点C时,∠ACB最大,连接PA、PB、PC,作PH⊥y轴于H,如图,∵点A、B的坐标分别是(0,1)、(0,3),∴OA=1,AB=3﹣1=2,∵PH⊥AB,∴AH=BH=1,∴OH=2,∵点⊙P与x轴相切于点C,∴PC⊥x轴,∴四边形PCOH为矩形,∴PC=OH=2,∴PA=2,在Rt△PAH中,PH===,∴C点坐标为(,0).故答案为(,0).4.如图,在矩形ABCD中,AB=4,AD=8,M是CD的中点,点P是BC上一个动点,若∠DPM的度数最大,则BP=8﹣2.解:作△PMD的外接圆,则圆心O在DM的中垂线上移动,∵∠DOM=2∠DPM,∴当∠DOM最大时,∠DPM最大,当⊙O与BC相切时,∠DOM最大,∵M是CD的中点,CD=4,∴CM=DM=2,连接OP,则OP⊥BC,∵∠C=90°,ON⊥CD,∴四边形OPCN是矩形,∴OP=NC=2+1=3=OM,在Rt△MON中,由勾股定理得,ON===2,即PC=2,∴BP=BC﹣PC=8﹣2,故答案为:8﹣2.5.某儿童游乐场的平面图如图所示,场所工作人员想在OD边上的点P处安装监控装置,用来监控OC边上的AB段,为了让监控效果更佳,必须要求∠APB最大,已知:∠DOC =60°,OA=400米,AB=200米,问在OD边上是否存在一点P,使得∠APB最大?若存在,请求出此时OP的长和,∠APB的度数;若不存在,请说明理由.解:如图,当经过A,B的⊙T与OD相切于P时,∠APB的值最大,作TH⊥OC于H,交OD于Q,连接TA,TB,OT.设TP=TA=TB=r,∵TA=TB,TH⊥AB,∴AH=HB=100(m),∵∠OHQ=90°,∠O=60°,OH=OA+AH=(400+100)(m),∴QH=OH=(400+300)(m),∠OQH=30°,∴TQ=2PT=2r,∵TH==,∴2r+=400+300,整理得:3r2﹣(1600+1200r+600000+240000=0,∴(r﹣200)(3r﹣1000﹣1200)=0,∴r=200或(1000+1200)(舍弃),∴AT=200m,∴AT=2AH,∴∠ATH=30°,∠ATB=2∠ATH=60°,∴∠APB=∠ATB=30°,∴OP=OQ﹣PQ=800+200﹣600=(200+200)(m).6.某商场引进消毒机器人每天进行全场消毒工作,该机器人采取精准直线喷射技术,实现了准确、快速和节约的目标.在设置参数的时候,工作人员通过对商场门口身形高大的“大黄蜂”进行多次消毒试验发现:如图,若对A点进行消毒,适当调整机器人CD到AB的距离,使得sin(α﹣β)的值尽可能的大,能提高消毒的效率.已知“大黄蜂”AB身高2.5米,机器人CD高0.4米.则当sin(α﹣β)最大时,机器人CD和“大黄蜂”AB之间距离BC等于米.如图,过点C作CF⊥AE于点F,设BC=x米,根据题意得:CD⊥BE,AB⊥BE,AB=2.5米,CD=0.4米,∴CD∥AB,∴△CDE∽△BAE,∴,即,解得:CE=x米,∵a=β+∠CAF,∴∠CAF=a﹣β,∴当sin(a﹣β)最大时,sin∠CAF最大,∴(sin∠CAF)2最大,即最大,在Rt△ABC中,AC2=AB2+BC2=x2+=,在Rt△CDE中,DE2=CD2+CE2=x2+,∵CD•CE=DE•CF,∴CD2•CE2=DE2•CF2,∴CF2===,∴==,∵x≠0,∴=,∵最大,∴400x2++4264最小,即400x2+最小,∵(﹣)2≥0,即400x2+﹣2≥0,∴400x2+≥2,∴当=,即x=或(舍去)时,400x2+最小,即当sin(α﹣β)最大时,机器人CD和“大黄蜂”AB之间距离BC为米.故答案为:米.7.已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC画图操作:(1)在y轴正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)理解应用:(2)在(1)的条件下,①若tan∠APB=,求点P的坐标;②当点P的坐标为(0,2)时,∠APB最大拓展延伸:(3)若在直线y=x+4上存在点P,使得∠APB最大,求点P的坐标.解:(1)∠APB如图所示;(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB==,∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,∴BC==4,∴C(6,4),∴K(4,2),∴P(0,2),故答案为(0,2).(3)如图3中,当经过AB的圆与直线相切时,且点P在x轴的上方时,∠APB最大.∵直线y=x+4交x轴于M(﹣3,0),交y轴于N(0,4),∵MP是切线,∴∠MPA=∠MBP,∵∠PMA=∠BMP,∴△PMA∽△BMP,∴=,∴MP2=MA•MB,∴MP=3,作PK⊥OA于K.∵ON∥PK,∴==,∴==,∴PK=,MK=,∴OK=﹣3,∴P(﹣3,).8.问题提出(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB>∠ACB(填“>”“<”“=”);问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的眼睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为:>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米,AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.9.如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.①设A、B、P三点所在圆的圆心为C,则点C的坐标是(4,3),⊙C的半径是3;②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;(2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为(0,﹣).解:(1)①∵点A与点B的坐标分别是(1,0),(7,0),∴OA=1,OB=7.∴AB=6.过点C作CD⊥AB于点D则AD=BD=AB=3.∴OD=AO+AD=4.∵∠APB=45°,∴∠ACB=2∠APB=90°,.∵CD⊥AB,CA=CB,∴CD=AB=3.∴C(4,3).∴AC=,∴⊙C的半径是3.故答案为:(4,3);3;②y轴正半轴上有线段AB的“完美点”,理由:设⊙C交y轴于点D,E,连接CD,CE,过点C作CG⊥CD于点G,CF⊥AB于点F,如图,则∠AEB=∠ADB=∠APB=45°.∴D,E为y轴正半轴上线段AB的“完美点”.则EG=DG=DE,CD=CE=3.∵CG⊥DE,CF⊥AB,∠O=90°,∴四边形OFCG为矩形.∴CG=OF=4,OG=CF=3.在Rt△CGE中,∵EG2=CE2﹣CG2,∴EG==.∴GE=DG=.∴OE=OG﹣GE=3﹣,OD=OG+DG=3+.∴E(0,3﹣),D(0,3+).∴y轴正半轴上有线段AB的“完美点”,“完美点”的坐标为(0,3+)或(0,3﹣);(2)设⊙C与y轴负半轴切于点P,在y轴负半轴上任取一点Q(与点P不重合),连接BQ,AQ,BQ与⊙C交于点D,连接AD,如图,则∠APB=∠ADB,∵∠ADB>∠AQB,∴∠APB>∠AQB.∴当P运动到⊙C与y轴相切时,∠APB的度数最大.连接PC并延长交⊙C于点E,连接AE,如图,∵OP是⊙C的切线,∴CP⊥OP,∴∠OPA+∠ABE=90°.∵PE为⊙C的直径,∴∠PAE=90°,∴∠APE+∠E=90°,∴∠OPA=∠E,∴∠E=∠OBP,∴∠OPA=∠OPB,∵∠AOP=∠POB=90°,∴△OAP∽△OPB,∴,∴OP2=OA•OB.∴OP=.∴P(0,﹣).故答案为(0,﹣).10.问题提出(1)如图①,△ABC内接于⊙O,过点A作⊙O的切线l,在l上任取一点D,连接BD、CD,则∠BAC与∠BDC的大小关系为∠BAC≥∠BDC;问题探究(2)如图②,在矩形ABCD中,AB=6,BC=8,点E为AD边上一点,当∠BEC最大时,求cos∠BEC的值;问题解决(3)如图③,某商场在一部向下运行的手扶电梯BC的终点C的正上方竖直悬挂一幅高度DE=4m的广告画.已知广告画的最低点D到地面AC的距离为6.5m,该电梯的高AB为4m,它所占水平地面的长AC为8m.小明从点B出发,站在该电梯上观看广告画DE,其观看视角为∠DPE.已知小明的眼睛P到脚底的距离PQ为1.5m,电梯在竖直AB方向上的下降速度为20cm/s,求当小明站在电梯上多长时间时,∠DPE取得最大值.解:(1)设CD与圆O交于点E,连接BE,如图,则∠BAC=∠BEC,∵∠BEC是△BDE的外角,∴∠BEC>∠BDC,∴∠BAC>∠BDC,当点D与点A重合时,∠BAC=∠BDC,∴∠BAC≥∠BDC;故答案为:∠BAC≥∠BDC;(2)作BC的垂直平分线PQ交BC于点Q,交AD于点P,连接BP、CP,作△PBC的外接圆圆O,圆O与直线PQ交于另一点N,如图,则PB=PC,圆心O在PN上,∵四边形ABCD是矩形,∴AD∥BC,∴OP⊥AD,∴圆O与AD相切于点P,∴PQ=AB=6,BQ=BC=4,∴PQ>BQ,∴∠BPC<90°,∴圆心O在弦BC的上方,设EC与圆O交于点M,连接MB,则∠BPC=∠BMC≥∠BEC,∴当点E与点P重合时,∠BEC最大,连接OB、EN,则∠BON=2∠BEN=∠BPC,∵OB=OP=6﹣OQ,∴BQ2+OQ2=OB2,∴42+OQ2=(6﹣OQ)2,∴OQ=,∴OB=,∴cos∠BEC=cos∠BOQ==,即当∠BEC最大时,cos∠BEC的值为;(3)过点P作BC的平行线,交CE于点M,作△PDE的外接圆圆O,连接PO并延长与圆O交于另一点N,连接,如图,根据(2)的结论得,圆O与PM相切时,∠DPE最大,此时OP⊥PM,即∠MPN=90°∴∠MPD+∠DPN=90°,∵PN是圆O的直径,∴∠PDN=90°,∴∠DNP+∠DPN=90°,∴∠DNP=∠MPD,∵∠DNP=∠DEP,∴∠MPD=∠DNP,∵∠PMD=∠EMP,∴△PMD∽△EMP,∴DM:PM=PM:EM,∴PM=DM•EM,∵MC=PQ=1.5m,∴DM=CD﹣MC=5m,EM=ED+DM=9m,∴PM===3(m),∴QC=PM=3m,在Rt△ABC中,根据勾股定理得BC=4(m),∴BQ=BC﹣CQ=m,∵BC:AB=4:4=,∴小明站在电梯上,从点B到点Q时,沿竖直AB方向下降的距离为1m,∴下降时间为100:20=5(s),即小明站在电梯上5s时,∠DPE取得最大值.11.问题背景(1)如图(1)△ABC内接于⊙O,过A作⊙O的切线l,在l上任取一个不同于点A的点P,连接PB、PC,比较∠BPC与∠BAC的大小,并说明理由.问题解决(2)如图(2),A(0,2),B(0,4),在x轴正半轴上是否存在一点P,使得cos∠APB 最小?若存在,求出P点坐标,若不存在,请说明理由.拓展应用(3)如图(3),在四边形ABCD中,AB∥CD,AD⊥CD于D,E是AB上一点,AE=AD,P是DE右侧四边形ABCD内一点,若AB=8,CD=11,tan∠C=2,S△DEP=9,求sin∠APB的最大值.解:符合条件的点P应该是以AB为弦所在圆恰好与过N点且与AN垂直的直线相切时的切点.(1)问题背景:如图1,设直线BP交⊙O于点A′,连接CA′,则∠CA′B>∠P,而∠CA′B=∠CAB,∴∠BPC<∠BAC;(2)问题解决:如图2,过点B、A作⊙C与x轴相切于点P,连接AC、PC、BC,∵x轴的坐标轴上的点除了点P外都在圆外,∴∠APB最大,即cos∠APB最小,由点B、A的坐标,根据中点公式得,点C的纵坐标为(2+4)=3,设点P(x,0),则点C(x,3),∵点P、B都是圆上的点,∴CB=CP,∴x2+(4﹣3)2=32,解得:x=±2(舍去负值),故点P的坐标为:(2,0);(3)拓展应用:过点B作BH⊥CD于点H,过点A作AM⊥DE于点M,延长AM到点N使MN=AM,过点N作DE的平行线l,过点F作FG⊥l于点G,FG交DE于点Q,以AB为直径作⊙F交直线l于点P′,在梯形ABCD中,AB=8,CD=11,则CH=11﹣8=3,∵tan C===2,解得:BH=6=AD=AE,=×AD×AE=18,在等腰直角三角形ADE中,S△ADE∵MN=AM,=S△ADE=9,∴S△DEN∵直线l∥DE,=S△DEN=9=S△DEP,∴S△P′ED∴从面积看,点P′符合点P的条件,即点P可以和点P′重合,∵FG⊥l,而直线l∥DE,∴GF⊥DE,而∠AED=45°,故△EFQ为等腰直角三角形,∵BE=AB﹣AE=8﹣6=2,∴EF=BF﹣BE=4﹣2=2,则FQ=EF=,∴FG=EQ+QG=MN+QG=AM+=3+=<BF,∴⊙F与直线l有两个交点,则点P′符合题设中点P的条件,∵AB是直径,∴∠APB=90°,故sin∠APB的最大值为1.12.已知:∠MBN=90°,点A在射线BM上,点C在射线BN上,D在线段BA上,⊙O 是△ACD的外接圆;(1)若⊙O与BN的另一个交点为E,如图1,当,BD=1,AD=2时,求CE的长;(2)如图2,当∠BCA=∠BDC时,判断BN与⊙O的位置关系,并说明理由;(3)如图3,在BN上作出C点,使得∠ACD最大,并求当AD=2,时,⊙O的半径.解:(1)连接AE,∵∠AEC+∠ADC=180°,∠BDC+∠ADC=180°,∴∠BDC=∠AEC,∵∠CBD=∠ABE,∴△ABE∽△CBD,∴,∵BC=,AD=2,BD=1,∴AB=AD+BD=2+1=3,∴,∴BE=2,∴CE=BE﹣BC=;(2)BN是⊙O的切线,理由如下:连接CO并延长交⊙O于点F,连接DF,则∠CDF=90°,∴∠CFD+∠FCD=90°,∵∠BCA=∠BDC,∠B=∠B,∴∠BAC=∠BCD,∵∠CAD=∠CFD,∴∠CFD=∠BCD,∴∠FCB=∠FCD+∠BCD=∠FCD+∠CFD=90°,∴BC⊥OC,∵OC是半径,∴BC是⊙O的切线,即BN是⊙O的切线;(3)过点A,C,D三点作⊙O,当BC是⊙O的切线时,∠ACD最大,连接CO并延长交⊙O于点G,连接AG,DG,则∠CDG=90°,∠CAG=90°,∴∠CGD+∠DCG=90°,∵BC是⊙O的切线,∴BC⊥OC,∴∠BCO=90°,∴∠BCD+∠DCG=90°,∴∠BCD=∠CGD,∵∠CGD=∠CAD,∴∠BCD=∠BAC,∵∠B=∠B,∴△BCD∽△BAC,∴,∴BC2=BD•BA,∵AD=2,∴BA=BD+AD=BD+2,∴BC2=BD(BD+2)=BD2+2BD,∵BC2+BA2=AC2,AC=2BD,∴BC2=AC2﹣BA2=(2BD)2﹣(BD+2)2=11BD2﹣4BD﹣4,∴11BD2﹣4BD﹣4=BD2+2BD,∴5BD2﹣3BD﹣2=0,∴BD=﹣(舍去)或BD=1,∴BD=1,∴BA=BD+AD=1+2=3,AC=2BD=2,∵∠B=90°,∴AB⊥BC,∵CG⊥BC,∴CG∥AB,∴∠BAC=∠ACG,∵∠CBA=∠CAG=90°,∴△BAC∽△ACG,∴,∴,∴CG=4,∴OC=2,即⊙O的半径为2.13.【发现问题】(1)如图①,点A,B在∠MON的边OM上,过A,B两点的圆交ON于C,D两点,点E在线段CD上(不与点C,D重合),点F在射线DN上(不与点D重合).试探究∠AEB和∠AFB之间的大小关系,并说明理由;【探究问题】(2)如图②,∠MON=90°,点A,B在射线ON上,点P是射线OM上一动点,AB =3OB=3,当∠APB最大时,请求出此时OP的长;【解决问题】(3)如图③,一足球球门宽AB约为4米,一球员从距A点5米的O点(点O,A,B 均在一条直线上),沿与OM成一定角度的ON方向带球.试问,该球员能否在射线ON 上找到一点P,使得点P为最佳射门点(即∠APB最大)?若能找到,求出此时该球员跑过的路程长;若找不到,请说明理由.解:(1)∠AEB>∠AFB,理由:如图,延长AE交圆于点H,连接BH,AD,BD,∵∠AHB=∠ADB,∠AEB>∠AHB,∴∠AEB>∠ADB,同理可得∠ADB>∠AFB,∴∠AEB>∠AFB;(2)如图,作线段AB的垂直平分线,垂足为K,在线段AB的垂直平分线上取一点T,以点T为圆心,TB长为半径作⊙T,当⊙T与射线OM相切于点P'时,∠AP'B最大,即∠APB最大,连接TP',BT,∵OM是⊙T的切线,∵TP'⊥OM,∴TK⊥AB,∴∠TKO=∠KOP'=∠OP'T=90°,∴四边形OKTP'是矩形,∴OP'=KT,∵AB=3OB=3,∴OB=1,AK=BK=,∴OK=TP'=TB=,∴OP'=KT==2,∴当∠APB最大时,OP的长为2;(3)能找到,如图,作经过点A,B且与射线ON相切的⊙C,切点为P,此时∠APB 最大,连接PC并延长交OC于点D,连接AD,由解图可知∠D=∠PBA,∠PAD=90°,∴∠D+∠APD=90°,∵PC是⊙C的半径,ON与⊙C相切,∴∠OPD=90°,∴∠OPA+∠APD=90°,∴∠D=∠OPA=∠OBP,∵∠O=∠O,∴△POA∽△BOP,∴PO2=OA•OB,∵AB=4,OA=5,∴OB=9,∴PO=,答:此时该球员跑过的路程长为3米.14.问题探究(1)如图1,C,D是∠AOB的边OA上两点,直线OB与⊙I相切于点P,点P1是直线OB上异于点P的任意一点,请在图1中画出∠CP1D,试判断∠CPD与∠CP1D的大小关系,并证明;(2)如图2,已知矩形ABCD中,点M在边BC上,点E在边AB上,AB=8,AE=6,当∠AME最大时,请求出此时BM的长;问题解决(3)如图3,四边形ABCD是某车间的平面示意图,AB=4米,AD=8米,∠A =∠D=60°,∠BCD=90°,工作人员想在线段AD上选一点M安装监控装置,用来监视边BC,现只要使得∠BMC最大,就可以让监控装置的效果达到最佳.问在线段AD 上是否存在点M,使∠BMC最大?若存在,请求出DM的长;若不存在,请说明理由.解:(1)在直线OB上取任意一点P1(不和P重合),连接DP1交⊙O于E、连接CP1和CE,如图:∠CPD与∠CP1D的关系是:∠CPD>∠CP1D,证明如下:∵=,∴∠CPD=∠CED,而∠CED>∠CP1D,∴∠CPD>∠CP1D;(2)如图:由(1)知,作线段AD的垂直平分线,垂足为G,在线段AE的垂直平分线上取点O,以O为圆心,OA为半径作⊙O,当⊙O与线段BC相切于M'时,若M与M'重合,此时∠AME最大,∵BC是⊙O的切线,∴OM'⊥BC,∵OG⊥AE,∴∠BGO=∠B=∠OM'B=90°,∴四边形OGBM'是矩形,∴BM'=OG,OM'=BG,∵AB=8,AE=6,∴BE=2,∵EG=3,∴OM'=OE=BG=EG+BE=5,∴OG==4,∴BM'=OG=4,故当∠AME最大时,BM的长为;(3)存在,理由如下:如图:当过B、C的⊙O与AD相切于M时,连接BM、CM,此时∠BMC最大,连接OB、OC,分别延长AB、DC交于F,则△ADF是等边三角形,∴∠BFC=60°,AF=DF=AD=8,∵BF=AF﹣AB=4,∴在Rt△BCF中,CF=2,BC=6,过O作OG⊥BC于G,交AF于K,交AD于J,则BG=BC=3,∵KJ⊥BC,∴∠BGJ=90°=∠BCD,∴KJ∥DF,∴BK=FK=BF=2,KG=CF=,∴AK=AB+BK=6,∵KJ∥DF,∴=,即=,∴KJ=6,设OB=r,∵KJ∥DF,∴∠MJO=∠D=60°,∴OJ==,∴OG=KJ﹣KG﹣OJ=6﹣﹣=5﹣,在Rt△OGB中,OG2=OB2﹣BG2=r2﹣9,∴r2﹣9=(5﹣)2,整理得r2﹣60r+252=0,解得r=30﹣18或30+18(舍去),∴OM=30﹣18,∴JM=OM=10﹣6,由等边三角形的对称性可得DJ=KF=2,∴DM=JM+DJ=10﹣6+2=12﹣6,故在线段AD上存在M,使∠BMC最大,符合条件的DM的长为12﹣6.15.如图,抛物线y=ax2+x+c与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,直线y=kx+b经过点A,C,且OA=2OC=4.(1)求抛物线的解析式;(2)点E为AC上方抛物线上一动点,过点E作EF∥y轴交AC于点F,求线段EF的最大值;(3)在(2)的结论下,若点G是x轴上一点,当∠CGF的度数最大时,求点G的坐标.解:(1)∵OA=2OC=4,∴A(4,0),C(0,2),将A(4,0),C(0,2)代入y=ax2+x+c,∴,解得,∴y=﹣x2+x+2;(2)将点A(4,0),C(0,2)代入y=kx+b,∴,解得,∴y=﹣x+2,设E(t,﹣t2+t+2),则F(t,﹣t+2),∴EF=﹣t2+t+2+t﹣2=﹣t2+2t=﹣(t﹣2)2+2,当t=2时,EF的最大值为2;(3)∵t=2,∴E(2,3),F(2,1),设G(x,0),作△CFG的外接圆M,设圆M的半径为r,当圆M与x轴相切时,∠CGF最大,此时M(x,r),∵MC=MF=r,∴x2+(r﹣2)2=r2,(2﹣x)2+(1﹣r)2=r2,解得x=4﹣,∴G(4﹣,0).16.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3,∵D在y=上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,得到,解得,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣x+∴N(,0),F(0,);(3)设P(0,t),作△PBD的外接圆N,当⊙N与y轴相切时此时圆心N到BD的距离最小,圆心角∠DNB 最大,则∠BPD的度数最大;则N(r,t),∴PN=ND,∴r=,∴t2﹣6t﹣4r+13=0,易求BD的中点为(,),直线BD的解析式为y=﹣3x+9,∴BD的中垂线解析式y=x+,N在中垂线上,∴t=r+,∴t2﹣18t+21=0,∴t=9﹣2,∴t的值为9﹣2.。
“圆”来如此——圆周角定理
“圆”来如此——圆周角定理【圆心角、圆周角、弧、弦之间的关系】圆心角、圆周角、弧、弦之间的关系:在同圆或等圆中,如果两个圆心角、两个圆周角、两条弧或两条弦中有一组量相等,那么它们所对应的其余各组量也分别相等(知其1即知其3)这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.【注意】同弧所对圆周角相等,在三角形全等、相似方面,有着极为广泛的应用!【垂径定理】垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.【知2求3】“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.【四点共圆】•3点确定一个圆•4点可以共圆•5点也可以共圆•几何题,一定要寻找特殊图形、特殊变换、特殊关系!【点与圆】圆外1点与圆的距离关系,做与圆心的连线即可。
寻找特殊关系学会转化【切线判定】【定义法】和圆只有一个公共点的直线是圆的切线;【距离法】和圆心距离等于半径的直线是圆的切线;【定理法】经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;【总结】通常情况下,要证明切线,就需要连接切点与半径。
在证明垂直关系即可。
【圆与圆】·连心线是对称轴.·两圆相切时,切点一定在对称轴上.·如果两圆⊙O_1、⊙O_2相交于A、B两点,那么O_1O_2垂直平分AB.·如果两个半径不相等的圆O_1、圆O_2相离,那么内公切线交点、外公切线交点都在直线O_1O_2上,并且直线O_1O_2平分两圆外公切线所夹的角和两圆内公切线所夹的角.·如果两条外公切线分别切圆O_1于A、B两点、切圆O_2于C、D两点,那么两条外公切线长相等,且AB、CD都被O_1O_2垂直平分.。
求圆周角常见错误分析
① 当圆 周角的顶点在优弧上时 , D J z _ a c B =
x 6 0。 =3 0。 ;
D
图3
纠 J i u C 错 u o 解 J i e 析 X i 锄 学 。 数 学
・ . .
D= 1 Z A OB=61 。
,
解 : 如图6 , 没 量 角器 的 圆 心 是 0, 连 接 O A、 O B, .  ̄ f J / _ A O B = 8 0 。 - 5 0 。 = 3 0 。 , 由圆周角定理
【 错解 】 3 0 。 .
【 错解原 因 】 在 同圆中 , 一条弦对 着无数个
圆周角 , 在这 无数 个圆周角中又可 分为两 种情 况, 一种 是圆周 角的顶点在 优弧 上 , 另一 种是
U
图2
【 错解 1 5 s 。 . 【 错解原 因】 同学们 以为/ _ A C B 与Z A O B 互 补. 出现这样 的错误 , 主要 是将 四边形 A O B C 看 成 是圆内接 四边形造成 的. 【 正解 】 1 1 9 。 . 【 解 法一 n 殳点 D是 『 尤 弧A B上的 一点 , 连
接D A、 D B, 根 据 同弧 听对 的圆 周 角是 圆心 角 的一半 可求得 D的度数 , 再根据 圆内接 四边 形的对角互 补 , 即可求得Z AC B的度数.
解: 如图3 , 设点 D是 弧 A B上的一 点 , 连 接D A、 D B .
f
在 劣弧 上. 同学们 在 无具体 图形情 况下 , 会 习 惯性 地画 出弦 A 曰向上所对 的圆周角这… 种情
责任编辑 : 彭
深‘’ E - ma i l : 2 0 2 0 7 4 8 3 3 4 @q q t o m
圆求角度数试题1
1.如图,点A、B、C是⊙O上的三点,若∠BOC=80°,则∠A的度数是()A. 40°B.60°C.80°D. 100°2.如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()A. 100°B. 130°C. 150°D. 160°3.在△ABC中,O为内心,∠A=70°,则∠BOC=()A. 140°B. 135°C. 130°D. 125°10.如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为()A. 45°B. 90°C. 100°D. 135°11. 如图,点A,B,C在⊙O上,∠AOB=72°,则∠ACB等于()A. 28°B. 54°C. 18°D. 36°9.如果AB为⊙O的直径,弦CD⊥AB ,垂足为E ,那么下列结论中,错误的是().A. A.CE=DEB. BC=BDC. ∠BAC=∠BADD. AC>AD13. 如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=________度.1.如图,AB是⊙O的直径,∠ABC=30°,则∠BAC的度数为( )A.90°B.60°C.45°D.30°2.如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有( )A.2个B.3个C.4个D.5个3.圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,则∠D的度数为()A.60 B.80 C.100 D.1204.如图,在△ABC中,AB为⊙O 的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°6.如图,等边三角形ABC的三个顶点都在⊙O上,D是上任一点(不与A、C重合),则∠ADC的度数是________.7.已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE= .1.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是( )A.156°B.78°C.39°D.12°ACCBO4.如图,AB 、CD 是⊙O 的两条弦,连接AD 、BC ,若∠BAD=60°,则∠BCD 的度数为( )A.40°B.50°C.60°D.70°6.如图,AB 是 ⊙O 的直径,BC⌒ =BD ⌒ ,∠A=25°, 则∠BOD= .7.如图,已知点E 是圆O 上的点,B ,C 是AD ︵的三等分点,∠BOC=46°,则∠AED 的度数为________.8.如图,在⊙O 中,F ,G 是直径AB 上的两点,C ,D,E 是半圆上的三点,如果弧AC 的度数为60°,弧BE 的度数为20°,∠CFA =∠DFB ,∠DGA =∠EG B .求∠FDG 的大小3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是( )A .70°B .60°C .50°D .30°4.如图,AB ,AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD.如果∠DAC =78°,那么∠ADO 等于( )A .70°B .64°C .62°D .51°ODCB A(第12题) (第13题) 12.如图,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A=________.13.如图,DB切⊙O于点A,∠AOM=66°,则∠DAM=________.6.如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则∠DAC等于()A. 15°B. 30°C. 45°D. 60°16.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.若AB=2DE,∠E=18°,则∠C的度数为________18.如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD= ________20.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的复习(与圆有关的角度计算)教学设计
一、内容和内容解析
1.内容
综合应用本章的知识解决“圆中求角问题”。
2.内容解析
本节课是习题课,是在学生已经学习圆的所有基本性质的基础上,对本章内容的综合应用。
从求圆外一角的简单问题入手,结合本章所学的切线的性质,圆周角定理等知识,由易到难,逐一剖析,并在教学过程中逐步进行归纳解题方法与思路。
重点引导学生理解几何计算题和证明题中的转化思想和方程思想的运用。
基于以上分析,确定本节课的教学重点是:从“圆中求角问题”的具体问题中,理解并掌握“圆中求角”问题中的分析方法和解题思路。
二、目标和目标解析
1.目标
(1)复习圆的基本性质,掌握“圆中求角问题”的分析方法。
(2)感悟与圆有关计算的转化思想,体会各部分知识间的联系。
2.目标解析
达成目标(1)的标志是:熟记圆中的基本性质和定理,并能恰当的运用这些性质定理解决简单问题。
达成目标(2)的标志是:能够在具体的问题中,运用转化思想分析和解决圆中求角问题。
三、教学问题诊断分析
学生在初中阶段开始接触几何证明与计算,但对于分析问题的方法始终是难点与重点,对部分接受能力弱的学生来说一直难以掌握。
对于几何计算与证明,要求学生提前熟悉所涉及到的基本性质和定理,并且学会分析问题和转化问题。
四、教学过程设计
1.自主学习,引入圆中求角问题
问题1:在⊙O 中,AB 为直径,C 为⊙O 上一点,过点C 作⊙O 的切线,与AB 的延长线相交于点P ,若∠CAB =27°,求∠P 的大小.
师生活动:教师出示问题,学生先独立思考,回答。
为了帮助学生有逻辑地思考,教师可追问以下问题:
教师追问1:分析已知条件,见到切线联想到切线有什么性质?
教师追问2:分析求证,要求∠P 可以转为求哪一个与其相关的角?
设计意图: 学生要学分析已知和求证,通过这道题,引导学生对所有进行转化,并且进行一题多解进行简单探究,最后归纳多法归一,所有的方法都是在进行转化,只不过转化的方法与途径不同。
本题是这节课的第一道题,开题直接切入本课重点,由易入手,学生更容易接受,从而逐步引导学生学会圆中求角问题的思考方法和转化思想。
2.师生合作探究,启发圆中求角的转化思想:
例.在⊙O 中,AB 为直径,C 为⊙O 上一点,D 为
上一点,且OD 经过AC 的中点E ,连接DC 并延长,与AB 的延长线相交于点P ,若∠CAB =10°,求∠P 的大小.
师生活动:
第一个阶段,根据第一题的解题思考和分析方法,学生先独立思考,独立书写过程,教师
A
A
巡视并单个辅导。
第二个阶段,学生上讲台讲解思路,多个学生讲解不同方法,教师进行点评并不出。
最后师生进行归纳和总结。
教师追问1:请同学们根据第一题总结的分析方法,进行深入的分析已知,和对求证进行转化。
教师追问2:分析已知条件,你能得到哪些性质和结论?
教师追问3:分析求证,要求∠P可以转化为先求哪个角?
设计意图:本题相对于第一题来说难度有一个较大的提升,学生通过此题,深入探究分析几何问题的方法。
重点培养学生分析已知,和转化求证的能力。
加强并巩固上面归纳的“圆中求角问题”的分析方法。
通过师生间的讨论,特别是对比学生间的不同解法,进行归纳提升,师生一起发现本课的主旨思想:转化思想,在几何证明题中的运用方法。
3.巩固提升,拓展提高:
已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.
(1)若∠CPA恰好等于30°,求∠CDP的度数;
(2)若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.
师生活动:学生独立思考并完成,教师对后进生进行单独辅导。
教师追问1:运用今天总结的方法进行分析和转化,同学们能否求出第一问?
教师追问2:对比第一问和第二问的联系和区别,同学们能否借鉴第一问的做法完成第二问?
设计意图:首先本题是对“圆中求角问题”的方法进行巩固。
然后本题两问是从特殊到一般,由易到难的进行运用转化思想,从而使学生深入理解本课主旨,得以提升。
4.小结:
(1)本课研究的主要内容是什么?
(2)请对“与圆相有关的角度计算问题”谈谈你的想法。
设计意图:通过小结理清“圆中求角问题”的分析方法和转化思想的运用方法。
5.布置作业:
中考专项----专题十二,“夯基础”部分必做,“提素能”部分选做,
五、目标检测设计
已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D,当直线I与⊙O相交于点E、F
时,若∠DAE=18°,求∠BAF的大小.
设计意图:考查学生对与圆相关的性质定理的掌握程度,并对本课所学“圆中求角问题”的分析方法的理解情况。