17-核酸的物理化学性质和常用的研究方法
第5章核酸的化学 第四节 核酸的性质
食品生物化学
图5-15 RNA紫外吸收曲线
波长nm
食品生物化学
四、核酸的变性与复性
当核酸在某些理化因素(如有机溶剂、酸、碱、尿素、加 热及酰胺等)作用下,互补碱基对间的氢键断裂,双螺旋结构 松散,变成单链的过程称为变性(denaturation)。变性使核酸的 二级结构、三级结构改变,但核苷酸排列顺序不变。变性后的 核酸理化性质改变,生物学活性丧失。
核酸是相对分子质量很大的高分子化合物,高分子溶液比 普通溶液黏度要大得多,高分子形状的不对称性愈大,其黏度 也就愈大,不规则线团分子比球形分子的黏度大,线形分子的 黏度更大。由于DNA分子极为细长,因此即使是极稀的溶液也 有极大的黏度,RNA的黏度要小得多。
二、核酸的酸碱性质
核酸和蛋白质一样,也是两性电解质,在溶液中发生两性 电离。因磷酸基的酸性比碱基的碱性强,故其等电点偏于酸性。 利用核酸的两性解离能进行电泳,在中性或偏碱性溶液中,核 酸常带有负电荷,在外加电场力作用下,向阳极泳动。利用核 酸这一性质,可将相对分子质量不同的核酸分离。
DNA的变性是可逆的。变性DNA在适当条件下,变性的两 条互补链重新结合,恢复原来的双螺旋结构和性质,这个过程 称为复性(renaturation)。热变性的DNA经缓慢冷却(称退火处 理)即可复性。最适宜的复性温度比Tm值约低25℃,这个温度 又叫退火温度。
食品生物化学
图5-16 两种不同来源的DNA在260nm的吸收值与温度变化的关系
食品生物化学
DNA的解链过程发生于一个很窄的温度区内,DNA的变性 过程是爆发式的,有一个相变过程,把A260达到最高值的一半时 对应的温度称为该DNA的解链温度或融解温度,用Tm表示。 Tm值大小与DNA碱基组成有关,由于G-C之间的氢键联系要比 A-T之间的氢键联系强得多,故G+C含量高的DNA其Tm值越高。 通过测定Tm值可知其G+C碱基的含量。
核酸化学PPT课件
DNA与RNA结构特点
DNA结构特点
DNA是一种长链生物聚合物,组成单 位为四种脱氧核苷酸,由碱基、脱氧 核糖和磷酸构成。
RNA结构特点
RNA由核糖核苷酸经磷酸二酯键缩合而 成长链状分子。一个核糖核苷酸分子由 一分子磷酸、一分子核糖和一分子含氮 碱基构成。
碱基互补配对原则
碱基互补配对原则是指在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配 对必须遵循一定的规律,这就是A(腺嘌呤)一定与T(胸腺嘧啶)配对,G(鸟嘌呤)一定与C(胞嘧啶)配对,反之亦然。
多肽。
基因编辑技术
如CRISPR-Cas9等,可对基因组 进行定点编辑,实现基因敲除、
敲入、突变等操作。
05
核酸药物设计与应用
抗病毒药物设 利用病毒基因序列中的特异性区域,设计与之互 补的核酸药物,通过阻断病毒基因复制或表达, 达到抗病毒效果。
靶向病毒关键蛋白的药物设计 针对病毒生命周期中的关键蛋白,设计能够与之 结合的核酸药物,从而阻止病毒的组装、释放等 过程。
RNA转录过程及调控
RNA转录的基本过程 转录起始、链延长、链终止与释放
RNA转录的酶学 RNA聚合酶、转录因子等
RNA转录的特点
模板链的选择性、转录的不对称性、 转录后加工等
RNA转录的调控
转录起始的调控、转录延伸的调控、 转录终止的调控
核酸酶作用及降解产物
核酸酶的种类与特性
01
核酸内切酶、核酸外切酶等
核酸的降解过程
02
核酸酶的切割作用、降解产物的生成与性质
核酸降解产物的应用
03
用于核酸序列分析、核酸检测等
03
核酸性质与功能
核酸的理化性质
DNA变性的特点-爆发式
变性作用发生于一个很窄温度范围内。
34
Tm值
DNA 的 双 螺 旋 结 构 失 去 一 半 时 对 应 的 温 度 称 为 DNA的解链温度(Tm)。
浓 度 50ug/mL 时 , 双 链 DNA A260=1.00; 完全变性(单链)时, A260= 1.37 。当 A260 增加到最大 增大值一半时,即 1.185 时,对 应的温度即为Tm 。
8
P503
③按磷酸二酯键断裂方式分类: 3′-OH与磷酸基之间断裂 如 蛇毒磷酸二酯酶 5′-OH与磷酸基之间断裂 如 牛脾磷酸二酯酶
P482
蛇毒磷酸二酯酶从核酸的5’端逐个水解下5’核苷酸 牛脾磷酸二酯酶从核酸的3’端逐个水解下3’核苷酸
9
蛇毒磷酸二酯酶从核酸的5’端逐个水解下5’核苷酸,称为核酸5’ 外切酶,水解3’-OH形成的酯键。 牛脾磷酸二酯酶从核酸的3’端逐个水解下3’核苷酸,称为核酸3’ 外切酶,水解5’-OH形成的酯键。 10
13
14
四、N-糖苷酶类:各种非特异的糖苷酶或对碱基特异
的N-糖苷酶,可水解糖苷键。
15
第二节 核酸的酸碱性质
核酸的碱基、核苷、核苷酸均能发生解离,因此核酸
也就具备了可解离的酸碱性质。
16
1.碱基的解离
由于嘧啶和嘌呤化合物杂环中N以及各取代基(-OH) 具结合和释放质子的能力,所以这些物质既有碱性解离又 有酸性解离。 各种碱基的解离特点及其常数见课本P505
1、Southern Blotting (DNA-blotting) 2、Northern Blotting (RNA-blotting) 3、Western Blotting (protein-blotting)
生物化学—核酸的性质
一、核酸的水解
(一)酸水解
对酸敏感性: 糖苷键 磷酸酯键 嘌呤碱糖苷键 嘧啶碱糖苷键
(二)碱水解
DNA一般对碱稳定。
RNA 的磷酸酯键易被碱水解,产生核苷酸混 合物。
(三)酶水解
(1)底物专一性 ribonuclease, RNase deoxyribonuclease,DNase
应用:
是否存在同源基因;
基因拷贝数多少;
基因片段大小…
Northern blot 是一种将变性RNA转移到滤膜上,利用分子杂 交原理研究基因表达规律的分析技术.
Western blot 将蛋白质转移到滤膜上,根据抗原与抗体可以结 合的原理进行的蛋白质分析鉴定方法.
(二)核酸变性的因素 1. 过酸、过碱 2. 变性剂 (尿素,甲醛) 3. 热变性
特点:爆发式
Tm(melting temperature)
称为核酸解链温度(或融解温度)。即加热变性 使DNA双螺旋结构丧失一半含量
C-G%=(Tm-69.3) X 2.44
2. DNA的均一性 3. 介质中的离子强 度
(三)核酸复性(renaturation)
变性DNA在适当条件下,可使两条彼此分开 的链重新结合成为双螺旋结构,使其物理、化 学性质及生物活性得到恢复,这一过程称为复 性。
DNA复性后紫外吸收降低称为减色效应 (hypochromic effect)。
=40 g/ml RNA 测纯度:OD260/OD280
DNA(1.8), RNA(2.0)
四、核酸的变性、复性 (一)核酸变性定义
天然核酸在某些物理或化学因素作用下, 双螺旋区的氢键断裂, 变成单链。其紫外吸收 增高,黏度下降,生物活性全部或部分丧失。 这种现象称为核酸的变性。
西北师范大学2024年硕士研究生招生考试自命题科目参考大纲 338生物化学初试科目考试大纲
硕士研究生招生考试《生物化学》考试大纲(科目代码:338)学院名称(盖章):生命科学学院学院负责人(签字):编制时间:2023年6月12日西北师范大学硕士研究生入学考试初试科目《生物化学》考试大纲(科目代码:338)一、考核要求《生物化学》是为生物与医药专业学位硕士研究生设置的具有选拔性质的初试考试科目。
其目的是科学、公平、有效地测试考生掌握《生物化学》课程的基础知识、基本理论、基本方法的水平和分析问题、解决问题的能力,为择优录取、确保专业学位硕士研究生的入学质量。
在考试形式和试卷结构等方面有如下要求:(一)试卷满分及考试时间试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式为闭卷、笔试。
(三)试卷内容结构题型:名词解释、选择题、判断题、填空题、问答题、计算题和论述题。
二、评价目标《生物化学》在考查考生对生物化学基础知识、基本理论理解的基础上,注重考查理论联系实际的能力,说明、提出、分析和解决这些学科中出现的现象和问题。
正确地理解和掌握有关的基本概念、理论、假说、规律和论断;运用掌握的基础理论知识和原理,可以就某一问题设计出实验方案;准确、恰当地使用专业术语,文字通顺、层次清楚、有论有据、合乎逻辑地表述。
三、参考书1. 魏民等主编,《生物化学简明教程》,高等教育出版社(第六版),2020。
2. 朱圣庚徐长法主编,《生物化学》,高等教育出版社(第四版),2017年。
四、考核内容第1章氨基酸、肽和蛋白质考核要点:氨基酸的结构、酸碱性质及氨基酸的化学反应,氨基酸的光学活性;氨基酸混合物分析分离的原理及技术。
肽的结构、蛋白质的一级结构及其测定方法。
主要考核内容:1.氨基酸—蛋白质的单体亚基蛋白质的水解;α-氨基酸的一般结构2.氨基酸的酸碱性质氨基酸的解离;氨基酸的等电点3.氨基酸的化学反应α-羧基参加的反应;α-氨基参加的反应;α-氨基和羧基共同参加的反应4.氨基酸的旋光性和光谱性质氨基酸的旋光性和立体化学;氨基酸的光谱性质6. 氨基酸混合物的分析和分离分配层析法的一般原理;分配柱层析;纸层析;薄层层析;离子交换层析7. 肽肽和肽键的结构;肽的物理和化学性质8. 蛋白质的组成、分类、分子大小和结构层次蛋白质的化学组成和分类;蛋白质分子的形状和大小;蛋白质分子结构的组织层次9. 蛋白质的一级结构蛋白质的氨基酸序列决定蛋白质的功能;蛋白质化学测序的策略10. 蛋白质测序的一些常用方法末端残基分析;二硫键的断裂;氨基酸组成的分析;多肽链的部分裂解;肽段氨基酸序列的测定;肽段在原多肽链中的次序的确定;二硫键位置的确定11. 氨基酸序列与生物进化序列的同源性、同源蛋白质和蛋白质家族;同源蛋白质氨基酸序列的物种差异;同源蛋白质具有共同的进化起源第2章蛋白质的三维结构考核要点:肽键的性质、蛋白质的二级结构、超二级结构、结构域、三级结构、四级结构和亚基缔合;蛋白质的变性主要考核内容:1.蛋白质三维结构的概述蛋白质构象主要由弱相互作用稳定;肽键具有刚性和平面的性质;多肽主链的折叠受到空间位阻的限制2.蛋白质的二级结构α螺旋;氨基酸序列影响α螺旋的稳定性;β构象;β转角和Ω环;无规卷曲3.纤维状蛋白质α-角蛋白;丝心蛋白和β-角蛋白:胶原蛋白;弹性蛋白4.蛋白质超二级结构和结构域超二级结构;结构域5.球状蛋白质与三级结构三级结构的形成;球状蛋白质三级结构的特征;球状蛋白质三级结构/结构域的类型6.四级结构和亚基缔合有关四级结构的一些概念;四级缔合的驱动力;亚基相互作用的方式7.蛋白质的变性、折叠和结构预测蛋白质的变性;氨基酸序列规定蛋白质的三维结构;蛋白质肽链折叠的动力学和蛋白质结构的预测第3章蛋白质的生物学功能考核要点:通过学习血红蛋白、肌红蛋白结构与功能的关系,理解蛋白质结构与功能的关系主要考核内容:1. 蛋白质功能的多样性2. 氧结合蛋白质—肌红蛋白:贮存氧肌红蛋白的三级结构;辅基血红素;O2与肌红蛋白的结合;O2的结合改变肌红蛋白的构象3. 氧结合蛋白质—血红蛋白:转运氧血红蛋白的结构;氧结合引起的血红蛋白构象变化;血红蛋白的协同性氧结合(Hb氧结合曲线);H+、CO2和BPG对血红蛋白结合氧的影响4. 血红蛋白分子病分子病是遗传的;镰刀状细胞贫血病第4章蛋白质的性质、分离纯化和鉴定考核要点:蛋白质酸碱性质、胶体性质和蛋白质沉淀,蛋白质分离纯化的方法与原理主要考核内容:1.蛋白质在水溶液中的行为蛋白质的酸碱性质;蛋白质的胶体性质和蛋白质沉淀2. 蛋白质分离纯化的一般程序3. 蛋白质分离纯化的方法等电点沉淀和盐析、有机溶剂分级分离、透析和超滤、密度梯度超速离心、凝胶过滤、凝胶电泳、等电聚焦和双向电泳、离子交换层析、疏水相互作用层析、亲和层析和高效液相层析4. 蛋白质相对分子质量的测定凝胶过滤法测定相对分子质量、SDS-PAGE测定相对分子质量和沉降速度法测定相对分子质量5. 蛋白质的含量测定与纯度鉴定第5章酶的催化作用考核要点:酶的化学本质及其分类和命名;酶的专一性;酶的活力测定;核酶的概念主要考核内容:1.酶是生物催化剂酶与一般催化剂的共同点;酶作为生物催化剂的特点2.酶的化学本质及其组成酶的化学本质;酶的化学组成;单体酶、寡聚酶、多酶复合物3.酶的命名和分类习惯命名法;国际系统命名法;国际系统分类法及酶的编号;六大类酶的特征和举例4.酶的专一性酶的专一性;有关酶作用的专一性的假说5.酶的活力测定和分离纯化酶活力的测定;酶的分离纯化6. 非蛋白质生物催化剂—核酶核酶(ribozyme)的概念;核酶的种类;核酶的研究意义及应用前景第6章酶动力学考核要点:米氏方程和米氏常数的意义;酶的抑制作用;温度、PH及激活剂对酶促反应的影响主要考核内容:1.化学动力学基础化学反应速率及其测定;反应分子数和反应级数;各级反应特征2.底物浓度对酶促反应速率的影响中间复合物学说;酶促反应的动力学方程式;多底物的酶促反应动力学3.酶的抑制作用抑制程度的表示方法;抑制作用的类型;可逆抑制作用和不可逆抑制作用的鉴别;可逆抑制作用动力学;一些重要的抑制剂4.温度对酶促反应的影响5.PH对酶促反应的影响6.激活剂对酶促反应的影响第7章酶作用机制和酶活性调节考核要点:酶活性部位的概念和特点;酶促反应机制及酶活性的别构调节;酶活性的共价调节;同工酶的概念主要考核内容:1.酶的活性部位酶活性部位的特点;研究酶活性部位的方法2.酶催化反应的独特性质3.酶促反应机制酸碱催化;共价催化;金属离子催化;底物和酶的邻近效应与定向效应;底物的形变和诱导契合;多元催化和协同效应;活性部位微环境的影响4.酶活性的别构调节酶的别构效应和别构酶的性质5.酶活性的共价调节酶的可逆共价修饰类型;酶的不可逆共价调节—酶原的激活6.同工酶第8章核酸的结构和功能考核要点:核酸和核苷酸的组成和结构;DNA的结构和功能;RNA的结构与功能主要考核内容:1.核酸的发现2.核酸的种类和分布3.核酸的化学组成4.DNA的结构和功能5.RNA的结构与功能第9章核酸的物理化学性质和研究方法考核要点:核酸的水解;核酸的紫外吸收;核酸的变性、复性及杂交;核酸的分离纯化主要考核内容:1.核酸的水解2.核酸的酸碱性质3.核酸的紫外吸收4.核酸的变性、复性和杂交5.核酸的分离和纯化第10章维生素和辅酶考核要点:维生素的概念、分类及生物学功能;B族维生素与其相应辅酶的关系主要考核内容:1.维生素概论2.脂溶性维生素维生素A;维生素D;维生素E;维生素K3.水溶性维生素维生素B1和硫胺素焦磷酸;维生素PP和烟酰胺辅酶;维生素B2和黄素辅酶;泛酸和辅酶A;维生素B6和磷酸吡哆醛、磷酸吡哆胺;维生素B12(氰钴胺素)及其辅酶;生物素;叶酸和四氢叶酸;硫辛酸;维生素C第11章新陈代谢总论考核要点:新陈代谢的基本概念和原理;新陈代谢的研究方法主要考核内容:1. 新陈代谢的基本概念和原理2. 新陈代谢的研究方法第12章生物能学考核要点:自由能的概念和标准自由能,生物体内ATP与磷酰基转移主要考核内容:1. 自由能的概念2. 标准自由能变化3. ATP与磷酰基转移第13章六碳糖的分解和糖酵解作用考核要点:糖酵解作用的反应机制及能量转变;丙酮酸的去路及糖酵解作用的调节主要考核内容:1. 糖酵解过程概述2. 糖酵解第一阶段的反应机制葡萄糖的磷酸化;葡萄糖-6-磷酸异构化形成果糖-6-磷酸;果糖-6-磷酸形成果糖-1,6-二磷酸;果糖-1,6-二磷酸转变成甘油醛-3-磷酸和二羟丙酮磷酸;二羟丙酮磷酸转变为甘油醛-3-磷酸3. 糖酵解第二阶段的反应机制甘油醛-3-磷酸氧化成1,3-二磷酸甘油酸;1,3-二磷酸甘油酸转移高能磷酸键基团形成ATP;3-磷酸甘油酸转变为2-二磷酸甘油酸;2-二磷酸甘油酸脱水生成磷酸烯醇式丙酮酸;磷酸烯醇式丙酮酸转变成丙酮酸并产生一个ATP分子4. 由葡萄糖转变为两分子丙酮酸能量转变的估算5. 丙酮酸的去路6. 糖酵解作用的调节磷酸果糖激酶是关键酶;2,6-二磷酸果糖对酵解的调节作用;己糖激酶和丙酮酸激酶对糖酵解的调节作用第14章柠檬酸循环考核要点:丙酮酸的脱氢脱羧过程及柠檬酸循环过程;能量转换及调控主要考核内容:1. 丙酮酸转化成乙酰辅酶A的过程2. 柠檬酸循环草酰乙酸与乙酰-CoA缩合形成柠檬酸;柠檬酸异构化形成异柠檬酸;异柠檬酸氧化形成α-酮戊二酸;α-酮戊二酸氧化脱羧形成琥珀酰-CoA;琥珀酰-CoA 转化成琥珀酸并产生一个高能磷酸键;琥珀酸脱氢形成延胡索酸;延胡索酸水合形成L-苹果酸;L-苹果酸脱氢形成草酰乙酸3. 柠檬酸循环的化学总结算4. 柠檬酸循环的调控5. 柠檬酸循环在代谢中的双重角色6. 乙醛酸途径第15章氧化磷酸化作用考核要点:电子传递和氧化磷酸化作用主要考核内容:1.氧化还原电势氧化-还原电势;生物体中某些重要的氧化-还原电势;电势和自由能的关系;标准电动势和平衡常数的关系2.电子传递和氧化呼吸链呼吸链概念的建立;电子传递链;电子传递过程;电子传递的抑制剂3. 氧化磷酸化作用氧化磷酸化作用机制;质子梯度的形成;ATP合成机制;氧化磷酸化的解偶联和抑制;细胞溶胶内NADH的再氧化;氧化磷酸化的调控;一个葡萄糖分子彻底氧化产生ATP分子数的总结算第16章戊糖磷酸途径考核要点:戊糖磷酸途径及其生物需意义主要考核内容:1.戊糖磷酸途径的主要反应2.戊糖磷酸途径反应速率的调控3.戊糖磷酸途径的生物学意义第17章糖异生和糖的其他代谢途径考核要点:糖异生作用的途径及其调控主要考核内容:1.糖异生作用糖异生作用的途径;糖异生途径总览;由丙酮酸形成葡萄糖的能量消耗及意义;糖异生作用的调节;乳酸的再利用和可立氏循环2.乙醛酸途径第18章糖原的分解和生物合成考核要点:糖原的降解和合成过程主要考核内容:1.糖原的生物学意义2.糖原的降解糖原磷酸化酶;糖原脱支酶;磷酸葡萄糖变位酶的作用;6-磷酸葡糖磷酸酶3.糖原的生物合成催化糖原合成的三种酶4.糖原代谢的调控糖原磷酸化酶的调节机制;糖原合酶的调节机制;G蛋白及其对激素信号的传递作用第19章脂质的代谢考核要点:脂肪酸的氧化;不饱和脂肪酸的氧化;酮体的生成;脂质的生物合成主要考核内容:1.脂肪酸的氧化脂肪酸的活化;脂肪酸转入线粒体;β-氧化;脂肪酸氧化是高度放能过程2.不饱和脂肪酸的氧化不饱和脂肪酸的氧化;奇数碳原子脂肪酸的氧化生成丙酰-CoA;脂肪酸还可发生α-或ω-氧化3.酮体乙酰-CoA的代谢结局;肝中酮体的形成;肝外组织使用酮体作为燃料4.脂肪酸代谢的调节5.脂质的生物合成贮存脂肪;脂肪酸的生物合成;脂酰甘油的生物合成;磷脂类的生物合成;其他脂类的生物合成第20章蛋白质降解和氨基酸的分解代谢考核要点:蛋白质的降解,氨基酸的分解代谢、尿素的形成过程;氨基酸碳骨架的氧化途径;生糖氨基酸和生酮氨基酸;氨基酸与一碳单位主要考核内容:1.蛋白质降解蛋白质降解的特性;蛋白质的降解的反应机制;机体对外源蛋白质的需要及其消化作用2.氨基酸的分解代谢氨基酸的脱氨基作用;氧化脱氨基作用:其他的脱氨基作用;联合脱氨基作用;氨基酸的脱羧基作用;氨的命运3.尿素的形成尿素循环的发现;尿素循环;尿素循环的调节4.氨基酸碳骨架的氧化途径形成乙酰-CoA的途径;α-酮戊二酸途径;形成琥珀酰-CoA的途径;形成延胡索酸途径;形成草酰乙酸途径5.生糖氨基酸和生酮氨基酸6.由氨基酸衍生的其他重要物质氨基酸与一碳单位;氨基酸与生物活性物质第21章氨基酸的生物合成和生物固氮考核要点:氨基酸的生物合成主要考核内容:1.氨的同化作用—氨通过谷氨酸和谷氨酰胺掺入生物分子2.氨基酸的生物合成由α-酮戊二酸形成的氨基酸—谷氨酸、谷氨酰胺、脯氨酸、精氨酸、赖氨酸;由草酰乙酸形成的氨基酸—天冬氨酸、天冬酰胺、甲硫氨酸、苏氨酸、赖氨酸;由丙酮酸族的氨基酸—丙氨酸、缬氨酸、亮氨酸;丝氨酸族的氨基酸—丝氨酸、甘氨酸、半胱氨酸;芳香族氨基酸及组氨酸的生物合成3.氨基酸生物合成的调节第22章核酸的降解和核苷酸代谢考核要点:核酸和核苷酸的分解代谢,核苷酸的生物合成主要考核内容:1.核酸和核苷酸的分解代谢核酸的降解;核苷酸的分解;嘌呤碱的分解;嘧啶碱的分解2.核苷酸的生物合成嘌呤核糖核苷酸的合成;嘧啶核糖核苷酸的合成;核苷一磷酸转变成核苷三磷酸;脱氧核糖核苷酸的合成。
核酸分子生物学基础
AMP
戊 糖
HO CH2 5´ O OH HO CH2 O OH
4´ 3´
OH
1´
2´
OH OH
核糖(ribose) (构成RNA)
脱氧核糖(deoxyribose) (构成DNA)
Hale Waihona Puke • 戊糖DNA,RNA中主要的碱基、核苷
戊糖
RNA
D-核糖
碱基
A G C U A G C T
核苷
四、变性与复性
(一) 变性(denaturation) 1、核酸的变性与增色效应
核酸的变性是指核酸双螺旋区的氢键断裂,变成单链结 构的过程。 变性:不涉及共价键3’,5’-磷酸二酯键的断裂,所以它 的一级结构(碱基顺序)保持不变 降解:多核苷酸骨架上共价键断裂,引起相对分子质量 降低
核酸分子细长,溶液的粘度很大,且DNA溶液的粘 度比RNA的大得多。发生变性或降解时,它们的粘 度降低。
二、两性解离
核酸是两性电解质(含有磷酸和氨基),可发 生两性解离。 核酸的解离状态与溶液的pH有关,当核酸溶液 在某一pH时,核酸分子内的酸性解离与碱性解 离相等,所带的正负电荷相等,净电荷为零, 此时核酸溶液的pH称为核酸的等电点(pI)。 由于磷酸酸性较强,而碱基(氨基)是弱碱, 所以核酸的等电点较低。DNA的等电点为4~ 4.5,RNA的等电点为2~2.5。
2、分布
真核细胞
细胞核(95%): 线型双链,一般与组蛋白结合 成染色体 线粒体、叶绿体(5%):环 状双链 细胞质(75%) 线粒体、叶绿体(15%) 细胞核(10%)
原核细胞
环状双链 主要集中于核区
第13章核酸的结构与性质
二、核酸的种类及分布
核酸(nucleic acid): 以核苷酸(nucleotide)为基本组成单位携 带和传递遗传信息的生物大分子。
脱氧核糖核酸(deoxyribonucleic acid, DNA):
真核生物DNA 90%以上分布于细胞核,其余分布于核外如线 粒体,叶绿体,质粒等。原核细胞没有明显的细胞核结构,DNA 存在于称为类核的结构区。每个原核细胞只有一个染色体,每个 染色体含一个双链环状DNA。
(4)螺旋横截面的直径约为2nm,每条链相邻两个碱基平面之间的距离为0.34 nm,每10 个核苷酸形成一个螺旋,其螺矩(即螺旋旋转一圈的高度)为3.4 nm。螺旋表面形成 大沟(major groove)及小沟(minor groove),彼此相间排列。小沟较浅;大沟较深,是蛋 白质识别DNA碱基序列的基础。
4-硫尿嘧啶
(ψ)
5-羟甲基胞嘧啶
3-甲基胞嘧啶
5-甲基胞嘧啶
2)戊糖(pentose)
HOH 2C O OH HH
H
H
OH OH
HOH 2C O OH HH
H
H
OH H
HOH 2C O OH HH
H
H
OH OCH 3
β -D-核糖 β -D-2-脱氧核糖 β -D-2-O-甲基核糖
3)磷酸
2、核苷酸的形成
1)戊糖与碱基依靠糖苷键连接成为核苷(nucleoside)
NH 2
N
N
9
N
N
HOH 2C
O
1'
H
H
H
H
OH
OH
腺嘌呤核苷 (adenosine)
NH 2
N
HOH 2C H
生物化学考研大纲食品学院
《生物化学》考研大纲(食品学院)总体要求:要求主要掌握基础性和系统性的生物化学知识。
重点掌握(1)氨基酸和蛋白质(酶)、核苷酸和核酸、糖类、脂类等生物分子的种类、结构、物理和化学性质以及生物功能等内容;(2)生物分子的新陈代谢途径、调控、生物学意义及其相互关系;(3)分子生物学的基本内容,如复制和修复,生物合成和加工,蛋白质的生物合成等,了解细胞代谢与基因表达调控、基因工程及蛋白质工程。
第1章生物分子导论了解:生命物质的化学组成,生物分子的三维结构,生物结构中的非共价力第2章蛋白质的构件——氨基酸了解:基本氨基酸的结构、分类、蛋白质的水解掌握:α-氨基酸的一般结构、常见的蛋白质氨基酸、氨基酸的等电点、氨基酸的光谱性质、氨基酸的解离和氨基酸的重要化学性质第3章蛋白质的通性、纯化和表征了解:蛋白质的酸碱性质、沉淀原理、分离纯化的基本原则掌握:相对分子质量的测定方法和蛋白质的分离纯化方法第4章蛋白质的共价结构了解:蛋白质分类、化学组成、形状、功能掌握:蛋白质一级结构的测定、肽的物理和化学性质、肽和肽键的结构、蛋白质的氨基酸序列和生物学功能第5章蛋白质的三维结构了解:蛋白质的三维结构概念、特点掌握:维持蛋白质的三维结构的作用力类型、超二级结构和结构域第6章蛋白质的功能与进化了解:XX类蛋白结构与功能的关系第7章糖类和糖生物学了解:糖类的种类、结构、性质与功能掌握:糖类的生物学作用、命名与分类、糖肽连键的类型第8章脂质与生物膜了解:脂类种类、基本结构、性质与功能;生物膜的组成掌握:脂肪酸的种类、天然脂肪酸的结构特点、甘油磷脂的结构、胆固醇、脂蛋白;生物膜的流动镶嵌模型;生物膜物质运输的基本类型、运输方式的特点第9章酶引论了解:酶催化作用的特点、酶的命名和分类、酶分子工程掌握:酶的化学本质、酶的专一性、酶的活力测定, 核酶第10章酶动力学了解:化学动力学基础掌握:影响酶促反应速度的因素及其特征第11章酶作用机制和酶活性调节了解:影响酶促化效率的有关因素、同工酶的概念掌握:酶的活性部位、酶催化反应机制第12章维生素与辅酶了解:维生素的分类、维生素参与XX的XX种辅因子、作为辅酶的金属离子掌握:常见XX种辅因子的作用机制第13章核酸通论了解:核酸的种类、分布和功能掌握:核酸的生物学功能第14章核酸的结构了解:核苷酸的结构掌握:核酸的共价结构、高级结构基本特点第15章核酸的物理化学性质和研究方法了解:核酸的水解,核酸的凝胶电泳与蛋白质电泳的区别、核酸的核苷酸序列测定和化学合成,核酸微阵技术掌握:核酸的酸碱性质、核酸的紫外吸收、核酸的变性、复性和杂交;核酸的分离、提纯和定量测定的基本方法第16章激素不要求第17章新陈代谢总论了解:新陈代谢的基本轮廓。
核酸化学-PPT课件
第二节 核酸的化学组成
核酸是由几十个甚至几千万个核苷酸聚合而成的 具有一定空间结构的生物大分子。
基本元素:C、H、O、N、P ; 其中P 的含量比较稳定,占9%-10%,通过测
定P 的含量来推算核酸的含量(定磷法)。
核酸→核苷酸
磷酸 核苷
碱基 戊糖
一、戊糖
组成核酸的戊糖有两种。DNA所含的 糖为β-D-2-脱氧核糖;RNA所含的糖则 为β-D-核糖。
碱基平面之间的距离
(轴距)为0.34 nm,
每10个核苷酸形成一
小 沟
个螺旋,其螺距(即
螺旋旋转一圈)的高
度)为3.4 nm。
大 沟
DNA双螺旋结构模型要点(5)
两条链借碱基之间 的氢键和碱基堆积 力(即碱基之间的 范德华力)牢固的 连接起来,维持 DNA双螺旋的三 维结构。
两条链是碱基互补 关系。
第 四 章
核 酸 化 学
本章内容
第一节 概述 第二节 核酸的化学组成 第三节 核酸的分子结构 第四节 核酸的性质 第五节 核酸的研究方法
第一节 概 述
核酸(nucleic acid—NA)是一类重要 的生物大分子,担负着生命信息的储 存与传递。
核酸是现代生物化学、分子生物学的 重要研究领域,是基因工程操作的核 心分子。
(D o r h U )
H CH 3 N
N
N
NN
dR
N 6 -M e th y l-d A
NH 2
N
CH 3
ON
dR
5 -M e th yl-d C
(2)
Ade HO CH 2 O
HH
H OH
H OCH 3
2 '- O - 甲 基 腺 苷 ((AAmm) )
核酸检测物理知识点总结
核酸检测物理知识点总结一、核酸的结构与性质1.1 核酸的化学结构核酸是一种由核苷酸经过磷酸二脂酸酯键连接形成的生物大分子,包括DNA和RNA两种类型。
DNA由脱氧核糖核苷酸组成,RNA由核糖核苷酸组成。
核苷酸由核苷和磷酸二脂酸组成,核苷包括一个含氮碱基和一个糖分子,磷酸二脂酸作为链的连接部分。
1.2 核酸的物理性质核酸具有许多特殊的物理性质,如双螺旋结构、碱基配对、DNA超螺旋等。
其中双螺旋结构是DNA的典型结构,由两条螺旋形成,而碱基配对是通过氢键将两条链连接在一起,碱基的配对规律是腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,鸟嘌呤(G)与胞嘧啶(C)之间形成三个氢键。
此外,DNA还具有超螺旋结构,这种结构形式使得DNA在细胞分裂时更容易分离。
1.3 核酸的光学性质核酸具有一定的光学性质,如吸收光谱、荧光光谱等。
DNA和RNA在紫外光下有显著的吸收,其中DNA在260nm处有最大吸收峰,而RNA在260nm处有一个稍微红移的吸收峰。
此外,核酸还具有荧光发射的性质,一些荧光染料可以与核酸结合产生荧光信号,用于核酸的检测和定量分析。
二、核酸检测的原理与技术2.1 核酸检测的原理核酸检测的原理是通过特定的技术手段来识别和检测样品中的核酸序列,常用的技术包括PCR(聚合酶链式反应)、分子杂交、核酸电泳、原位杂交等。
PCR是最常用的核酸扩增技术,通过模拟细胞内DNA复制的过程来扩增目标DNA序列,从而实现对目标基因的检测和分析。
2.2 核酸检测的技术手段核酸检测的技术手段包括一系列的实验方法和设备,如核酸提取、PCR扩增、凝胶电泳、原位杂交、微阵列技术等。
其中核酸提取是核酸检测的首要环节,其目的是从样品中提取出目标DNA或RNA序列,为后续的PCR扩增和检测做准备;PCR扩增是一种快速、高效、特异性强的核酸扩增技术,可将目标核酸的复制数量扩大上百万倍,从而实现对微量核酸的检测和分析。
2.3 核酸检测的应用核酸检测技术在临床医学、疾病预防和控制、食品安全监测等领域有着广泛的应用,如临床诊断中的传染病检测、肿瘤基因检测、遗传病筛查等;疾病预防和控制中的病毒核酸监测、病原微生物检测、环境污染监测等;食品安全监测中的食源性疾病的检测、转基因食品的检测等。
核酸性质
核酸的凝胶电泳
核酸的序列测定 DNA聚合酶链反应 DNA的化学合成
第十五章 核酸的研究方法
一 核酸的分离、提纯和定量测定
核酸制备
总的要求:防止核酸的降解和变性,要尽量保
持其在生物体内天然状态
注意的事项:条件温和,防止过酸、过碱、避
免剧烈搅拌,防止核酸酶作用
P513
第十五章 核酸的研究方法
(一)DNA的分离
Chapter14
核酸的物理化学性质
四
核酸的变性、复性及杂交
(三)、核酸的杂交
2. 常见杂交的类型
(1)Southern blotting (2)Northern blotting (3)Western blotting
(1). Southern印迹杂交
将在电泳凝胶中分离的DNA片段转移并结合在适当的 滤膜上,然后通过与标记的单链DNA或RNA探针的杂 交作用检测这些被转移的DNA片段
经验式: (G-C)%=(Tm-69.3)×2.44
(3)介质中的离子强度 一般在较高的离子强 度时,DNA的Tm值较高,而且熔解过程发生在 一个较小的温度范围之内。
P509
Chapter14
核酸的物理化学性质
四
核酸的变性、复性及杂交
(二)、复性 (renaturation)
变性DNA在适当条件下,又可使两条彼此分开的链重新缔合成为双螺 旋结构,这过程称复性 1. DNA复性的特点:
一、 核酸的水解
二、核酸的酸碱性质
三、核酸的紫外吸收
四、核酸的变性、复性及分子杂交 五、核酸的沉降特性
502
Chapter14
核酸的物理化学性质
考研复习王镜岩生物化学之核酸化学
2核酸化学1 考试大纲涉及王镜岩版生物化学第11、12、27章 + 分子生物学(一)核酸的结构与功能1生物大分子有四类:核酸、蛋白质、多糖和脂质。
最重要的生物大分子是DNA、RNA和蛋白质。
2核酸的研究史:(1)1868年,瑞士青年科学家F.Miescher由脓细胞分离得到细胞核,并从中提取出一种含磷酸很高的酸性物质,称为核素。
他又转向研究鲑鱼精子头部的物质,除了分离到酸性高含磷酸化合物外,还提取出一种碱性化合物称为鱼精蛋白。
Miescher被认为是细胞核化学的创始人和DNA的发现者。
(2)R.Altmann他发展了从酵母和动物组织中制备不含蛋白质的核酸的方法,核酸这个名称是由他在1889年最先提出来的。
(3)胸腺的细胞核特别大,酵母的细胞质很丰富,这是两种容易提取核酸的材料,因此这两种核酸也就研究的最多。
(4)核酸中的碱基大部分是由A.Kossel及其同事所鉴定的,1910年,因其在核酸化学研究中的成就而被授予诺贝尔医学奖,但他却认为决定染色体功能的是蛋白质,在获奖后转而研究染色体蛋白质。
(5)1953年Watson和Crick提出了DNA双螺旋结构模型。
(6)1956年A.Kornbery发现了DNA聚合酶可以在体外复制DNA。
(7)1958年,Crick总结了当时分子生物学的成果,提出了中心法则,即及遗传信息从DNA传到RNA,再传到蛋白质,一旦传递给蛋白质就不再传递。
(8)W.Arber最早发现细菌细胞中存在DNA限制性内切酶。
DNA重组技术的出现。
(9)1981年T.Cech发现四膜虫rRNA前体,能够通过自我剪切切除内含子,表明RNA也具有催化功能称为核酶。
(10)1983年R.Simons和T.Mizuno发现反义RNA,表明RNA具有调节作用。
(11)1986年W.Gilbert提出RNA世界的假说,这对DNA中心的观点是一次有力的冲击。
1987年,阐述了核糖体移码,说明遗传信息的解码也是可以改变的。
核酸的物理化学性质和第15章核酸的研究方法辅导版
为了水解嘧啶糖苷键,需要较高的温度。用甲 酸(98%~100%)密封加热至175℃2h,无论RNA 或DNA都可以完全水解,产生嘌呤碱和嘧啶碱,缺 点是尿嘧啶的回收率较低。改用三氟乙酸在155℃加 热60min(对DNA)或80min(对RNA),嘧啶碱的 回收率显著提高。
DNA分子的热变性曲线
异质的
DNA变性温
度范围宽,
均质的DNA 变性温度范
bacterial DNA
Viral DNA
围窄。
影响DNA分子Tm的因素
(1)G-C含量:G-C之间有3个氢键,所以G -C含量越高Tm越高。通过测定Tm值,可以推
算出DNA中G-C的含量,其经验公式为:
xGC (Tm 69.3) 2.44
RNA只有局部的双螺旋,所以其Tm较低,变
性温度范围较宽。不管是DNA还是RNA,加入甲
酰胺可降低其Tm值。双链RNA的变性曲线几乎与 双链DNA相同。
1.一种浮萍的18SrRNA
2.酵母的杀伤RNA(双 链)加甲酰胺
3.同2,但无甲酰胺
DNA的复性
变性DNA在适当条件下,可以使两条分开的
单 链重 新 缔合 成 双链 DNA, 这 个 过程 称 为复 性 (renaturation)。将热变性的单链DNA骤然冷却, DNA不 能 复性 , 只有 缓 慢降 温 才能 使 热变 性 的 DNA复性,这个过程又称为退火(annealing)。
核酸的碱水解
RNA的磷酸酯键易被碱水解,产生核苷酸。
《生物化学》课程介绍
《生物化学》课程介绍Biochemistry一课程编号:060304/060305二、课程类型:必修课程学时/学分:理论教学学时/学分:160/10;实践教学学时/学分:72/4.5适用专业:生物技术专业和生物医学工程专业先修课程:一般化学,有机化学,细胞生物学等三、内容简介:生物化学是生命科学各专业的一门重要的专业基础课。
生物化学是用化学的理论和方法研究生物体的化学组成以及在生命活动中所发生的化学变化及其调控规律,从而阐明生命现象本质的一门学科。
通过生物化学的学习,使学生系统地把握现代生物化学的差不多理论、差不多知识,把握生物化学的差不多实验技术,培养学生从分子水平认识生命现象的能力与技术,训练学生分析问题和解决问题的能力及实际动手能力,了解近期生物化学的新进展,启发学生的创新精神,为学生进一步学习生物学的有关后续课程预备必要的生物化学知识,并为以后从事与生命科学有关的教学、科研与生产奠定基础。
四、选用教材:«生物化学»(第三版)〔王镜岩等主编〕高教出版社Biochemistry. Seccond Edition., Reginaid H.Garrett,Charless M.Grisham;., gaodengjiao yuchu banshe.«生物化学»〔英〕教学大纲一课程编号060304/060305二、课程类型:必修课程学时〔其中,理论教学学时/学分:160/10;;实践教学学时/学分:72/4.5〕:适用专业:生物技术先修课程:一般化学,有机化学,细胞生物学等三、课程性质与任务生物化学是生物学各专业学生必修的一门专业基础课。
本课程的差不多任务是讲授生物化学的差不多理论与差不多技术。
使同学们了解生物化学进展的历史,把握生命活动中重要组成成分—糖、脂、蛋白质、酶、核酸的结构和性质,了解维生素、抗生素、激素和生物膜组成、种类、性质和功能,关于生物体内分子水平上所发生各种代谢反应有较深入的认识,熟悉其中重要的生物化学反应过程,同时对生物体内的各种反应的规律有一个差不多的认识,从而为学习生物学其他的课程如分子生物学、生理学、遗传学、免疫学、生物技术、生物制药等课程打下良好的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
五、核酸的变性、复性及杂交 核酸的变性、
3. 影响核酸变性的因素 热变性,酸碱变性, 热变性,酸碱变性,化学试剂变性 4. DNA的熔解温度 的熔解温度Tm(melting temperature) 的熔解温度 DNA变性的特点:爆发式 变性的特点: 变性的特点 DNA的熔点 的熔点Tm 的熔点 通过加热使DNA的 通过加热使 的 双螺旋结构解旋50%时 双螺旋结构解旋 % 的温度
稀盐溶液
DNA的变性过程是双螺旋结构被 的变性过程是双螺旋结构被 破坏, 破坏,物化性质发生改变的过程
18
变性实质:氢键断裂, 变性实质:氢键断裂,双链解体成单链 核酸的降解:多核苷酸骨架上共价键断裂, 核酸的降解:多核苷酸骨架上共价键断裂, 因而引起核酸分子量的降低 氢键的破坏导致变性, 氢键的破坏导致变性,共价键的破坏 导致降解 2. 变性DNA物化性质的改变 物化性质的改变 变性 变性后, 变性后,DNA溶液的流体力学性质及 溶液的流体力学性质及 一系列物化性质都会随之改变: 一系列物化性质都会随之改变:粘度大 大降低,沉降速度提高,浮力密度增大, 大降低,沉降速度提高,浮力密度增大, 紫外吸收增加,比旋下降, 紫外吸收增加,比旋下降,酸碱滴定曲 线改变 部分甚至全部失去生物活性
A =1 50µg/ml 双螺旋 双螺旋DNA 40µg/ml 单链 单链DNA(或RNA) 或 20µg/ml 寡核苷酸
13
三、核酸的紫外吸收
3、用摩尔磷消光系数ε(p)表示溶液中核酸的含量 用摩尔磷消光系数 表示溶液中核酸的含量
碱基和磷原子含量相等,可以用 的含 碱基和磷原子含量相等,可以用P的含 量来表示核酸的含量 ε(p) = A/CL = 30.98A/WL
8
二、核酸的酸碱性质
限制性内切酶 restiction nucleise
发现: 发现: 1968年,于大肠杆菌 年 于大肠杆菌(E. Coli K) 来源: 主要在细菌和霉菌中 来源: 特点: 专一性非常强, 特点: 专一性非常强,具有严格的碱基 序列专一性,能识别DNA的特定 序列专一性,能识别 的特定 位点
12
三、核酸的紫外吸收
1、核酸具有紫外吸收 吸收范围: 吸收范围:240-290 nm λmax = 260nm (定量测定核苷酸) 定量测定核苷酸) 2、根据紫外吸收判断样品纯度 不纯的样品
DNA:A260/A280 = 1.8;RNA:A260/A280 = 2.0 : :
纯的核酸分子或寡核苷酸
15
四、核酸的沉降特性
溶液中的核酸受到引力作用会下 沉,不同构象的分子沉降速度有很大 差异 超速离心:分离纯化核酸 超速离心: 测定核酸的沉降系数 相对分子量
16
四、核酸的沉降特性
密度梯度超离心 分离RNA常用蔗糖梯度,分离DNA 常用蔗糖梯度,分离 分离 常用蔗糖梯度 常用CsCl梯度 常用 梯度
7
二、核酸的酸碱性质
限制性内切酶
修饰和限制现象
微生物有修饰和限制现象, 微生物有修饰和限制现象,这是细菌 的自卫方式之一。 的自卫方式之一。如E.coli K株繁殖出来 株繁殖出来 的噬菌体入( )只能感染E.coli K株, 的噬菌体入(K)只能感染 株 而不感染E.Coli B株,该现象称“限制” 而不感染 株 该现象称“限制” 现象 然而被限制的噬菌体群体中也可能有 极少的幸存个体, 极少的幸存个体,这些个体可以在受限 制的菌株中繁衍子代。此现象称“修饰” 制的菌株中繁衍子代。此现象称“修饰”
9
二、核酸的酸碱性质
限制性内切酶的命名
第一个字母为该酶所属的细菌属名 的第一个字母,用大写表示。第二、 的第一个字母,用大写表示。第二、三 个字母是这种细菌的种名的前二个字母, 个字母是这种细菌的种名的前二个字母, 用小写表示,如果这个细菌有不同株系, 用小写表示,如果这个细菌有不同株系, 还需加第四个代表株系的字母或数字, 还需加第四个代表株系的字母或数字, 若同一菌有不同种类的限制酶,要用大 若同一菌有不同种类的限制酶, 写罗马数字表示
21
五、核酸的变性、复性及杂交 核酸的变性、
5、RNA的变性 、 的变性 特点: 特点: Tm较低,变性 较低, 较低 曲线较宽 tRNA的Tm较高 的 较高 双链RNA的变性 的变性 双链 与DNA相同 相同
22
(二)、复性(renaturation) )、复性( 复性 ) 复性:在适当条件下,变性DNA的两条 复性:在适当条件下,变性 的两条 链重新缔合成双螺旋结构的过程 复性: 复性:物化性质和生物活性 DNA复性的影响因素 复性的影响因素 1、降温速度 、 退火:变性DNA缓慢冷却而复性的过程 退火:变性 缓慢冷却而复性的过程 2、DNA片段的大小 、 片段的大小 3、DNA的浓度 、 的浓度 4、核苷酸顺序的复杂程度 、
DNP
0.14 mol/L NaCl
DNP纤维 纤维
缠绕在玻璃棒 多次溶解、 多次溶解、沉淀 除去混杂蛋白 苯酚抽提 溶于水相 DNA 乙醇
较纯DNA 较纯
六、核酸的分离与纯化
2、RNA的分离 RNA的分离 RNA的分离比 的分离比DNA复杂,因为 复杂, 的分离比 复杂 因为RNA 分子不稳定, 分子不稳定,很容易降解 3、凝胶电泳 简单,快速,分离效果好, 简单,快速,分离效果好,大小分 子都适用 凝胶电泳对核酸的分离作用主要依 赖于它们的分子量及分子构型, 赖于它们的分子量及分子构型,而凝胶 的类型及其浓度对被分离核酸的分子大 小关系重大
DNA的Tm:82 – 95℃ 的 : ℃
S形曲线-DNA的变性曲线 形曲线- 形曲线 的变性曲线
20
五、核酸的变性、复性及杂交 核酸的变性、
影响Tm值的因素 值的因素 影响 ⅰ)DNA的均一性 的均一性 ⅱ)G-C 含量 ⅲ)介质的离子强度
G-C %=(Tm - 69.3)× 2.44 ( )
低离子强度: 低离子强度: Tm下降,熔解温度范围宽 下降, 下降 高离子强度: 高离子强度: Tm较高,熔解温度范围窄 较高, 较高
6
二、核酸的酸碱性质
牛胰核糖核酸酶RNase Ⅰ 牛胰核糖核酸酶 内切酶,作用于 内切酶,作用于RNA 作用位点:嘧啶核苷-3’-磷酸与其它核苷酸之间的键 作用位点:嘧啶核苷 磷酸与其它核苷酸之间的键
核糖核酸酶T1 核糖核酸酶 内切酶, 内切酶,高专一性 作用位点: 鸟苷酸与其 作用位点:3’-鸟苷酸与其 它核苷酸5’-OH形成的键 它核苷酸 形成的键
10
二、核酸的酸碱性质
EcoR I, MW: 58000 , : E co R I 属名 种名 菌株 编号 该酶识别一个6 的序列: 该酶识别一个 bp 的序列:
5’ GAATTC 3’ 3’ CTTAAG 5’
HindⅢ (haemophilus influenzae)是从 是从 流感噬血杆菌d 流感噬血杆菌 株分离到的第三种内切酶
实验室纯化质粒DNA: 染料(溴乙锭)-CsCl密 染料(溴乙锭) 度梯度超离心,得到的 度梯度超离心, DNA纯度较高,可用于 纯度较高, DNA重组,测序及限制 重组, 酶图谱等
DNA的密度与 的密度与G-C 的密度与 含量成正比
17
五、核酸的变性、复性及杂交 核酸的变性、
(一)、变性(denaturation) )、变性( 变性 ) 1. 变性和降解
5
酶水解 磷酸二酯酶: 磷酸二酯酶:非特异性水解磷酸二酯键的酶 核酸酶: 核酸酶:特异性水解核酸的磷酸二酯酶 分类: 分类: 根据底物专一性: 根据底物专一性: 核糖核酸酶, 核糖核酸酶,脱氧核糖核酸酶 根据对底物作用的专一性: 根据对底物作用的专一性: 核酸内切酶, 外切酶) 核酸内切酶,外切酶(3’-或5’-外切酶) 或 外切酶 根据底物断裂位点: 根据底物断裂位点 非特异性的磷酸单酯 酶对一切核苷酸都能作用
染色体DNA 染色体
(蛋白水解酶或变性剂) 蛋白水解酶或变性剂) 破碎细胞
1、DNA的提取 DNA的提取
粗分离DNA用密度 用密度 粗分离 梯度方法超离心 溶液制成密度 梯度, 梯度,超离心时 ,样品中不同成 分将根据各自不 同的密度停留在 NA 释放
1mol/L NaCl (水或浓盐溶液) 水或浓盐溶液)
第十七章
核酸的物理化学性质 和常用的研究方法
1
一、DNA分子的一般性质
DNA分子的长度 1 DNA分子的长度
大肠杆菌染色体DNA 大肠杆菌染色体DNA bp : 4×106 × MW:2.6×109 : × 长度: × 长度:1.4×106 nm(L/D ≈ 7×105) ( ×
人类DNA分子 人类DNA分子 DNA
11
二、核酸的酸碱性质
2、核酸的酸碱性质 核酸具有较强的酸性 核酸可视为多元酸
碱基 稳定性
氢键
碱基 解离状态
溶液pH 溶液
氢原子可以在碱基的N或 之间随意移动 之间随意移动? 氢原子可以在碱基的 或O之间随意移动? 碱基上的氢原子位置相对固定 生物学意义:它是碱基互补原则、 生物学意义:它是碱基互补原则、双螺旋 结构、 结构、DNA复制乃至遗传学的基础 复制乃至遗传学的基础
A:光吸收值 : C:磷的摩尔浓度 : L:比色杯内径 : W:每升溶液中磷的重量(g) :每升溶液中磷的重量( )
14
三、核酸的紫外吸收
DNA的ε(P):6600 的 : RNA的ε(P):7700-7800 的 :
核酸的ε(P)比核苷酸单体低 比核苷酸单体低 核酸的 单链多核苷酸的ε(P)比双螺 比双螺 单链多核苷酸的 旋多核苷酸的ε(P)要高 旋多核苷酸的 要高 增色效应:核酸变性时, 增色效应:核酸变性时, ε(P)增加 增加 减色效应:当核酸复性时, 减色效应:当核酸复性时, ε(P)降低 降低
介质:液相,固相(硝酸纤维素膜) 介质:液相,固相(硝酸纤维素膜)