标准差和标准偏差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准差和标准偏差
1)首先给出计算公式
标准差:σ=(1)
标准偏差:s =(2)方差就是标准偏差的平方
这下大家就困惑了,这两个公式分别表示什么意义?他们分别在什么情况下用?这两个公式是怎么来的?
2)公式由来
标准差又叫均方差、标准方差,这个大家都不陌生,它是各数据偏离平均数的距离的平均数,是距离均差平方和平均后的方根,用σ表示。。说白了就是表示数据分本离散度的一个值。计算公式也很好理解,从一开始接触我们用的看的都是这个公式。
那么第二个公式,怎么来的呢?其实标准偏差从样本估计中来的。比如我们有一批数据,共10000个点,他们服从正太分布,很容易计算出它的均值和标准差。在这里我们叫做样本均值和样本标准差。表示如下: 样本均值:1
1n i i X X n ==∑ 样本方差:2211()n n
i i s X X n ==-∑ 这两个公式就是大家常用的公式。那么现在我们认为,我们想用采集到的这10000个样本估计数据的真实分布,想要求出其均值μ和方差2σ。
对于均值μ,我们容易通过期望获得:
但是对于方差,我们知道
2
1
2
()
n
i
i
X X
σ
=
-
∑
是服从卡分分布2
1
n
χ
-
的(这一点请查阅卡分分布的
定义)。因此有下面的公式:
这个公式的第一个等号后面是利用期望的性质,试图构造卡分分布来求解。第二个等号后面是利用卡分分布的均值计算出来的。请自行查阅卡方分布的定义和性质。
这么一来,我们就能看出,X是μ的无偏估计,而2
n
s则不是2σ的无偏估计。但是我们
可以通过对样本方差进行重新构造,从而是2
n
s就是2σ的无偏估计。我们定义:这样我们重新来求解方差的期望:
这样一来,2s就是2σ的无偏估计,这也就是这个公式的由来。
3)这两个公式的应用。
在实际中,公式(2)用的更多。因为当样本容量比较小的时候,公式(1)会过小的估计实际标准差;如果样本容量较大,公式(1)和公式(2)很接近。这时候公式(1)叫做渐近无偏估计,当然还是比不上公式(2)的无偏估计喽。
看了上面这段话,你可能还不知道该用哪个。其实是这样的:如果我们想求一批数据的标准差,那么自然就用公式(1)。如果我们是利用现在的样本估计真实的分布,那么就用公式(2)。
4)在EXCEL中,方差是VAR(),标准偏差是STDEV(),函数里解释是基于样本,分母是除的N-1,其实就是公式(2)。还有个VARP()和STDEVP(),基于样本总体,分母是N,也就是说你关注的就是这批数据。
在Excel透视表中
标准偏差为=STDEVA()
总体标准偏差为=STDEVPA()
变异系数又称“标准差率”,是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。
标准差与平均数的比值称为离散系数或变异系数,记为C.V。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。
标准变异系数是一组数据的变异指标与其平均指标之比,它是一个相对变异指标。
变异系数有全距系数、平均差系数和标准差系数等。常用的是标准差系数,用CV(Coefficient of Variance)表示。
CV(Coefficient of Variance):标准差与均值的比率。
用公式表示为:CV=σ/μ
作用:反映单位均值上的离散程度,常用在两个总体均值不等的离散程度的比较上。若两个总体的均值相等,则比较标准差系数与比较标准差是等价的。
一组数据的标准差与其相应的均值之比,是测度数据离散程度的相对指标,其作用主要是用于比较不同组别数据的离散程度。其计算公式为v=S/(X的平均值)