结构力学课后解答:第9章__超静定结构的实用计算方法与概念分析
超静定结构的计算
![超静定结构的计算](https://img.taocdn.com/s3/m/69815b4da7c30c22590102020740be1e650eccba.png)
第二节力法
这样,原结构的内力计算问题就转变为基本结构在多余未知 力多的X余基1未本及知未荷力知载量Xq共1就,同是其作多余用余的下未计的知算内力就力。迎计刃算而问解题了了。。因只此要,设力法法求计出算
(二)力法方程 基本结构在月端不再受约束限制,因此在荷载y作用下月点
竖1小因5向-不此10位同基(d移而本)]向异结。下 , 构显由 的[然图于 变在15形X二-11位是者0(c移取共)]状代,同态了在作应被X用1与拆下作原去B用点结约下竖构束月向完对点位全原竖移一结向将致构位随,的移X即作向1的B用上点大,[图 的余方竖未向向知产位力生移X的1位△共移1同必应作须与用为原下零结,,构在也在拆就X除是1方约说向束基的处本位沿结移多构相余在等未已。知知即力荷X:载1作与用多 △1=0 这就是基本结构应满足的变形谐调条件,又称位移条件。
用结所构示11、上。产则12生△、的11、1沿3 △表X11示2方、单向△位的13可力相以X应1表=位1示移, X为,2=如1,X图3=151-分12别(c作),(用d)于, (基c),本(d) 11 11X1、12 12 X 2、13 13 X 3,上面儿何条件(15-2)
中的第一式可以写为:
下一页 返回
第一节超静定结构基本知识
(1)去掉支座处的一根链杆或者切断一根链杆,相当于去掉一 个约束,如图15-3 (a),(b)所示的两个结构都多出来一个约束, 都是一次超静定结构。
(2)去掉一个铰支座或内部的一个单铰,相当于去掉两个约束。 图15-4 (a), (b)所示的两个刚架都多出来两个约束,都是二次 超静定结构。
上一页 下一页 返回
第二节力法
用力法计算超静定结构在支座移动所引起的内力时,其基本 原理和解题步骤与荷载作用的情况相同,只是力法方程中自 由项的计算有所不同,它表示基本结构由于支座移动在多余 约第束五处节沿“多支余 座未 移知 动力 时方 静向 定所 结引 构起 的的 位位 移移 计算△”iC,所可述用方第法十求四得帝。 此外,还应注意力法方程等号右侧为基本结构在拆除约束处 沿多余未知力方向的位移条件,也就是原结构在多余未知力 方正向值的,已否知则实 取际 负位 值移 。值△i,当△i与多余未知力方向一致时取
超静定结构的计算
![超静定结构的计算](https://img.taocdn.com/s3/m/95e293237375a417866f8fe7.png)
§1.3超静定结构的计算超静定结构是具有多余约束的几何不变体系,仅根据静力平衡条件不能求出其全部支座反力和内力,还须考虑变形协调条件。
计算超静定结构的基本方法是力法和位移法。
这两种基本方法的解题思路,都是设法将未知的超静定结构计算问题转换成已知的结构计算问题。
转换的桥梁就是基本体系,转换的条件就是基本方程,转换后要解决的关键问题就是求解基本未知量。
1.3.1力法力法是以多余未知力为基本未知量、一般用静定结构作为基本结构,以变形协调条件建立基本方程来求解超静定结构内力的计算方法。
超静定结构多余约束(或多余未知力)的数目称为超静定次数,用n表示。
确定超静定次数的方法是:取消多余约束法,即去掉超静定结构中的多余约束,使原结构变成静定结构,所去掉的多余约束的数目即为原结构的超静定次数。
在结构上去掉多余约束的方法,通常有如下几种:●切断一根链杆,或者移去一个支座链杆,相当于去掉一个约束;●将一个固定支座改成固定铰支座,或将受弯杆件某处改成铰接,相当于去掉一个抗转动约束;●去掉一个联结两刚片的铰,或者撤去一个固定铰支座,相当于去掉两个约束;●将一梁式杆切断,或者撤去一个固定支座,相当于去掉三个约束。
现以图1-26a所示一次超静定结构为例,说明力法的基本原理。
其中,要特别重视力法的三个基本概念。
图1-261、力法的基本未知量:取超静定结构中的多余未知力(如图1-26a 中的X1)作为力法的基本未知量,以X i表示。
多余未知力在超静定结构内力分析中处于关键的地位,因此,有必要将其突出出来,作为主攻目标。
力法这个名称也因此而得。
2、力法的基本体系:将原结构中的多余约束(如图1-26a中的支座B)去掉,所得到的无任何外加因素的结构,称为力法的基本结构(图1-26b);基本结构在荷载和多余未知力共同作用下的体系,称为力法的基本体系(图1-26c)。
在基本体系中,仍然保留原结构的多余约束反力X1,只是把它由被动力改为主动力,因此基本体系的受力状态与原结构完全相同。
静定超静定判断及计算
![静定超静定判断及计算](https://img.taocdn.com/s3/m/3937735af08583d049649b6648d7c1c708a10b1a.png)
目的和意义
目的
理解静定与超静定的概念,掌握判断方法,能够进行相应的计算。
意义
在实际工程中,正确判断结构和系统的静定或超静定状态对于确保结构安全、节约材料和降低成本具有重要意义。
02
静定与超静定的基本概念
静定结构的定义
静定结构
在任何外界影响下,其平衡位置都是稳定的 ,且在受到微小扰动后能自动恢复到原来的 平衡状态。
内力计算的方法
静定结构的内力计算通常采用截面法或节点法进行。截面法是通过 截取结构的一部分进行分析,节点法则是对结构的节点进行受力分 析。
内力的表示方法
内力可以用实线和虚线表示,实线表示实际受力方向,虚线表示实际 受力反方向。
静定结构的位移计算
1
位移计算的意义
在结构分析中,位移是一个重要的参数 。通过计算位移,可以了解结构的变形 情况,从而评估结构的稳定性和安全性 。
本文的研究成果已被广泛应用于建筑、机械、航空航天等工程领 域,解决了众多实际工程问题,取得了显著的经济和社会效益。
对未来研究的展望
深入研究复杂结构体系
随着科技的发展,复杂结构体系在工程中越来越常见,未 来研究可进一步探讨复杂结构体系的静定与超静定问题, 提高工程结构的稳定性和安全性。
引入先进计算技术
计算公式
自由度数 = 刚片数 - 约束数。
判断标准
若自由度数等于0,则结构为静定;若自由度数不等于0,则结 构为超静定。
几何法判断
定义
几何法判断是指通过分析结构的几何形状来判断结构是否为静定或超静定的一种方法。
判断标准
若结构的几何形状满足静定结构的条件(即所有刚片都是相互平行的),则结构为静定;否则为超静 定。
01
建筑力学第九章超静定结构的内力
![建筑力学第九章超静定结构的内力](https://img.taocdn.com/s3/m/4c742b4e915f804d2a16c118.png)
X1
同理可用M1 图乘MF图计算Δ1F
Δ1F
1 EI
1 3
l
1 2
ql 2
3 4
l
ql 4 8EI
(a) MF 图
将δ11和Δ1F代入力法方程,可解得多余未知力
X1。
Χ1
1F 11
3 ql 8
(b)M1图 X1
所得末知力X1为正号,表示反力X1的方向与所
设的方向相同。
多余未知力X1求出后,将已求得的多余力X1与 荷载q共同作用在基本结构上, 就可以按求解静定结
而从图(b)所示刚架中去掉支杆B,则
FB
y
(a)
FAy
F
其仍是几何不变的,从几何组成上看支
FB
杆B是多余约束,所以,该体系有一个
y
多余约束,是一次超静定结构。
FA
(b)
xM
A
FAy
综上所述,存在多余约束,单靠静力平衡方 程不能确定所有支座反力和内力,这就是超静定 结构与静定结构的根本区别。
9.1.2 超静定次数的确定
X 3 X1
X2
(a)
(b)
由于原结构C处为固定支座,其线位移和角位 移都为零。所以,基本结构在荷载q及X1、X2 、X 3共同作用下,C点沿X1、X2 、X3方向的位移都等 于零,即基本结构应满足的位移条件为
Δ1=0 Δ2=0 Δ3=0
X
3 X1
X2
(a)
(b)
根据叠加原理,上面的位移条件可以表示为
δ11·X1 +Δ1F =0 上式称为力法方程,而δ11称为方程的系数, Δ1F称为方程的自由项。
因为δ11和Δ1F均为已知力作于静定结构时,引起 的B点沿X1方向上的位移,所以由静定结构的位移 计算方法可以求得。因此解力法方程可求出多余未 知力X1。
结构力学 力法计算超静定结构
![结构力学 力法计算超静定结构](https://img.taocdn.com/s3/m/9b0c52adfad6195f302ba6ae.png)
子项目一 力法计算超静定结构
情景一 超静定结构的基本特征
学习能力目标
1. 能够解释力法的基本概念。 2. 能够确定超静定的次数,得到静定的基本结构。 3. 了解超静定结构的特点。
项目表述
试分析如图 3 – 1 所示超静定结构,确定它的超静定次数。
情景一 超静定结构的基本特征 学习进程
情景一 超静定结构的基本特征 知识链接
② 去掉一个固定铰支座(图 3 – 6a)或拆去一个单铰相当于去掉两个约束(图 3 – 6b),可用两个多余未知力代替。
情景一 超静定结构的基本特征 知识链接
③ 去掉一个固定支座(图 3 – 7b)或切断一刚性杆(图 3 – 7c),相当于去掉 三链接
③ 超静定结构的内力和各杆的刚度比有关,而静定结构则不然。在计算超静定 结构时,除了用静力平衡条件外,还要用到结构的变形条件建立补充方程。而 结构的变形条件与各杆的刚度有关,在各杆的刚度比值发生变化时,结构各部 分的变形也相应变化,从而影响各杆的内力重新分布。利用在超静定结构中, 刚度大的部分将产生较大的内力,刚度较小的部分内力也较小的特点,可以通 过改变杆件刚度的方法来达到调整内力数值的目的。 ④ 在局部荷载作用下,超静定结构与静定结构相比,具有内力分布范围大,内 力分布较均匀,峰值小,且变形小、刚度大的特点。如图 3 – 9a 所示是三跨连 续梁在荷载 F 作用下的弯矩图和变形曲线,由于梁的连续性,两边跨也产生内 力和变形,最大弯矩在跨中为 0.175Fl。图 3 – 9b 所示是多跨静定梁在荷载 F 作用下的弯矩图和变形曲线,由于铰的作用,两边跨不产生内力和变形,最大 弯矩在跨中为 0.25Fl,约为前者的 1.4 倍。
情景一 超静定结构的基本特征 知识链接
结构力学 力法计算超静定结构
![结构力学 力法计算超静定结构](https://img.taocdn.com/s3/m/9b0c52adfad6195f302ba6ae.png)
Δ1 = 0 称为位移协调条件。
( 3 – 1)
情景二 力法的基本原理和典型方程
知识链接
Δ1 = 0 的物理意义:基本结构在荷载与 X1 的共同作用下,B 处所产 生的竖向位移应等于原结构 B 处的实际竖向位移(因原结构 B 处无
竖向位移,故 Δ = 1 0 )。根据叠加原理,基本结构在 q 与 X1 的 共同作用下,产生的 B 处竖向位移 Δ1,应等于 q 与 X1 分别单独作 用在基本结构 B处的竖向位移的叠加,即
情景二 力法的基本原理和典型方程 知识链接
情景二 力法的基本原理和典型方程
知识链接 2.力法原理
如图 3 – 17a 所示一次超静定梁,去掉支座 B,用多余未知力 X1 代 替,得如图 3 – 17b 所示的基本结构。由前述知,只要设法求出多 余未知力 X1,则其余支反力和内力的计算就与静定结构完全相同。 但仅靠平衡条件无法求出 X1,因为在基本结构中除 X1 外还有三个 支座反力未知,故平衡方程数目少于未知力数,其解值是不定的。 为求出未知力 X1,将图 3 – 17a 所示超静定梁与图 3 – 17b 所示静 定梁的受力条件和变形条件进行比较。
Δ11=δ11X11,于是上述位移条件(3–2)可写成
δ11X11 + Δ1P= 0
(3-3)
此方程为力法的基本方程。δ11 和 Δ1P 都是静定结构在已知力作用下 的位移,完全可以由项目二中所述方法求得,于是多余未知力 X 1 即可
由式(3–3)求得。这种以多余未知力为基本知量,通过基本结构,利
用计算静定结构的位移,达到求解超静定结构的方法称为力法。 为了计算 δ11 和 Δ1P ,分别作基本结构在荷载作用下的弯矩图 MP 和
由于原结构在b点的位移为零因此基本结构在荷载和多余未知力共同作用下b点沿x1x2x3方向的水平位移竖向位移和角位移也都应该为零即b处应满足位移条件102030项目实施情景二力法的基本原理和典型方程x11单独作用时沿x1x2x3方向位移分别为112131
超静定结构的计算
![超静定结构的计算](https://img.taocdn.com/s3/m/a8574a6248d7c1c708a1453d.png)
一. 用力法计算超静定结构(一)复习重点1. 理解超静定结构及多余约束的概念,学会确定超静定次数2. 理解力法原理3. 掌握用力法计算超静定梁和刚架(一次及二次超静定结构)4. 掌握用力法计算超静定桁架和组合结构(一次及二次超静定结构)5. 了解温度变化、支座移动时超静定结构的计算(一次超静定结构)(二)小结1. 超静定结构、多余约束、超静定次数(1)超静定结构从几何组成角度,结构分为静定结构和超静定结构。
静定结构:几何不变,无多余约束。
超静定结构:几何不变,有多余约束。
(2)多余约束多余约束的选取方案不唯一,但是多余约束的总数目是不变的。
(3)超静定次数多余约束的个数是超静定次数。
判断方法:去掉多余约束使原结构变成静定结构。
2. 力法原理力法是计算超静定结构最基本的方法(1)将原结构变为基本结构(2)位移条件:(3)建立力法方程3.用力法求解超静定梁和刚架例:二次超静定结构(1)原结构变为基本结构(2)位移条件(3)力法方程(3)绘弯矩图4. 用力法计算超静定桁架和组合结构注意各杆的受力特点:二力杆只有轴力,受弯杆的内力有弯矩、剪力和轴力。
例:超静定组合结构(1)原结构变为基本结构(2)位移条件(3)力法方程(4)绘弯矩图5. 了解温度变化、支座移动时超静定结构的内力计算(1)温度变化时,超静定结构的内力计算原结构变为基本结构位移条件力法方程(2)支座移动时,超静定结构的内力计算原结构变为基本结构位移条件二. 用位移法计算超静定结构(一)复习重点1. 了解位移法基本概念及位移法与力法的区别2. 掌握用位移法计算超静定结构(具有一个及两个结点位移)3. 掌握计算对称结构的简化方法(二)小结1. 了解位移法基本概念及位移法与力法的区别位移法是求解超静定结构的又一基本方法,适用于求解超静定次数较高的连续梁和刚架。
位移法的前提假设:对于受弯的杆件,可略去轴向变形和剪切变形的影响,2. 掌握用位移法求解超静定结构(具有一个及两个结点位移的结构)例:求连续梁的内力解:(1)确定基本未知量及基本体系基本未知量是结点B的角位移。
9-简单超静定结构的解法解析
![9-简单超静定结构的解法解析](https://img.taocdn.com/s3/m/ff69cb2a03768e9951e79b89680203d8ce2f6aec.png)
例4 两铸件用两钢杆1、2连接如图,其间距为 l=200mm。现需 将制造得过长e=0.11mm的铜杆3装人铸件之间,并保持三杆 的轴线平行且有等间距a。试计算各杆内的装配应力。已知: 钢杆直径d=10mm,铜杆横截面为20mm 30mm的矩形,钢的 弹性模量E=210GPa,铜的弹性模量E=100GPa。铸件很厚,其 变形可略去不计。
最后,补充方程变为
7 qa4 FNa3 FNl 12 EI EI EA
解得
FN
7qa4 A 12(Il Aa3 )
B
D
在静定问题中,只会使结构的几 何形状略有改变,不会在杆中产生 附加的内力。如1杆较设计尺寸过长, C 仅是A点的移动。
3
1 aa
2
A''
A'
e
A
在超静定问题中,由于有了多余 约束,就将产生附加的内力。
附加的内力称为装配内力,与之相 应的应力则称为装配应力,装配应力 是杆在荷载作用以前已经具有的应 力,也称为初应力。
土建工程中的预应力钢筋混凝土构件,就是利 用装配应力来提高构件承载能力的例子。
(2)温度应力
静定问题:由于杆能自由变形,由温度所引起的变 形不会在杆中产生内力。
超静定问题:由于有了多余约束,杆由温度变化所 引起的变形受到限制,从而将在杆中产生内力。这 种内力称为温度内力。
与之相应的应力则称为温度应力。
M x 0, M A M B M e 0
变形协调条件:根据原超静定杆的约束情况,基 本静定系在B端的扭转角应等于零, 即补充方程为
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为
超静定结构内力计算
![超静定结构内力计算](https://img.taocdn.com/s3/m/67257334647d27284b7351c9.png)
六超静定结构內力计算1.什么是超静定结构?它和静定结构有何区别?答:单靠静力平衡条件不能确定全部反力和內力的结构为超静定结构。
从几何组成的角度看,静定结构是没有多余约束的几何不变体系。
若去掉其中任何一个约束,静定结构即成为几何可变体系。
也就是说,静定结构的任何一个约束,对维持其几何不变性都是必要的,称为必要约束。
对于超静定结构,若去掉其中一个甚至多个约束后,结构仍可能是几何不变的。
2.什么是超静定结构的超静定次数?答:超静定结构多余约束的数目,或者多余约束力的数目,称为结构的超静定次数。
3.超静定结构的基本结构是否必须是静定结构?答:超静定结构的基本结构必须是静定结构。
4.如何确定超静定结构的超静定次数?答:确定结构超静定次数的方法是:去掉超静定结构的多余约束,使之变为静定结构,则去掉多余约束的个数,即为结构的超静定次数。
5.撤除多余约束的方法有哪几种?答:撤除多余约束常用方法如下:(1)去掉一根支座链杆或切断一根链杆,等于去掉一个约束。
(2)去掉一个固定铰支座或拆去一个单铰,等于去掉两个约束。
(3)去掉一个固定端支座或把刚性连接切开,等于去掉三个约束。
6.用力法计算超静定结构的基本思路是什么?答:用力法计算超静定结构的基本思路是:去掉超静定结构的多于约束,代之以多余未知力,形成静定的基本结构;取多余未知力作为基本未知量,通过基本结构的位移谐调条件建立力法方程,利用这一变形条件求解多余约束力;将已知外荷载和多余约束力所引起的基本结构的内力叠加,即为原超静定结构在荷载作用下产生的内力。
7.什么是力法的基本结构和基本未知量?答:力法的基本结构是:超静定结构去掉多余约束后得到的静定结构。
力法的基本未知量是对应于多余约束的约束反力。
8.简述n次超静定结构的力法方程,及求原结构的全部反力和內力的方法。
答:(1)n次超静定结构的力法方程对于n次超静定结构,撤去n个多余约束后可得到静定的基本结构,在去掉的n个多余约束处代以相应的多余未知力。
结构力学1-9章答案
![结构力学1-9章答案](https://img.taocdn.com/s3/m/ae2ad038eefdc8d376ee3219.png)
①中无弯矩。
②取半结构:
基本结构为:
M图整体结构M图
(b)
(c)
解:根据对称性,考虑1/4结构:
基本结构为:
1
1
M
(d)
解:取1/4结构:
q
基本结构为:
q
X2
X1
1
1
1 1
M
(e)
(f)
(BEH杆弯曲刚度为2EI,其余各杆为EI)
取1/2结构:
= +
①②②中弯矩为0。
考虑①:反对称荷载作用下,取半结构如下:
解:基本结构为:
(c)
解:基本结构为:
(d)
解:基本结构为:
6-6试用力法求解图示超静定桁架,并计算1、2杆的内力。设各杆的EA均相同。
(a) (b)
题6-6图
6-7试用力法计算图示组合结构,求出链杆轴力并绘出M图。
(a)
解:基本结构为:
(b)
6-8试利用对称性计算图示结构,并绘出M图。
(a)
解:
原结构= +
同济大学朱慈勉结构力学第3章习题答案
3-2试作图示多跨静定梁的弯矩图和剪力图。
(a)
(b)
(c)
(d)
3-3试作图示刚架的内力图。
(a)
(b)
(c)
(d)
(e)
(f)
3-4试找出下列各弯矩图形的错误之处,并加以改正。
(a)
(b)
(c)
(d)
(e)
(f)
3-5试按图示梁的BC跨跨中截面的弯矩与截面B和C的弯矩绝对值都相等的条件,确定E、F两铰的位置。
(5)结构刚度方程
解得:
8-8试利用对称性用先处理法分析图示刚架并作出M、FQ图。忽略杆件的轴向变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题9-2解:设EI=6,则5.1,1==BC AB i i 53.05.13145.1347.05.131414=⨯+⨯⨯==⨯+⨯⨯=BC BA μμ结点 A BC 杆端 AB BA BC 分配系数 固端 0.47 0.53 绞支 固端弯矩 -60 60 -30 0 分配传递 -7.05 -14.1 -15.9 0 最后弯矩-67.0545.9-45.9()()()逆时针方向215.216005.6721609.4522131m KN EI EI m M m M i AB AB BA BA B ⋅-=⎥⎦⎤⎢⎣⎡+---=⎥⎦⎤⎢⎣⎡---=θ(b)解:设EI=9,则3,31,1====BE BD BC AB i i i i12.0141333331316.0141333331436.01413333333=⨯+⨯+⨯+⨯⨯==⨯+⨯+⨯+⨯⨯==⨯+⨯+⨯+⨯⨯==BC BA BE BD μμμμ结点 A BC杆端 AB BA BC BD BE 分配系数 固端 0.16 0.12 0.36 0.36 绞支 固端弯矩0 45 -90 0 分配传递 3.6 7.2 5.4 16.216.20 最后弯矩 3.6 7.25.461.2 -73.8()()()顺时针方向22.1606.32102.732131m KN EI EI m M m M i AB AB BA BA B ⋅=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡---=θ9-3 (a) 解:B为角位移节点设EI=8,则1==BC AB i i ,5.0==BC BA μμ 固端弯矩()m KN l b l Pab M BA ⋅=⨯⨯⨯⨯=+=4882124432222 m KN l M BC ⋅-=⋅+-=582621892 结点力偶直接分配时不变号结点 A BC 杆端 AB BA BC 分配系数 铰接 0.5 0.5 固端弯矩 0 48 -58 12 分配传递0 50 50 5 5 12 最后弯矩103-312(b) 解:存在B 、C 角位移结点设EI=6,则1===CD BC AB i i i73741413145.0141414==⨯+⨯⨯==⨯+⨯⨯==BC CB BC BA μμμμ固端弯矩:mKN M M M m KN M m KN M CDCB BC BA AB ⋅-=⨯+⨯-===⋅-=⋅-=14021808640080802结点 A BC杆端 AB BA BC CB CD 分配系数 固结 0.5 0.5 4/7 3/7 固端弯矩-80 80 0 0 -140 分配传递-20 -40 -40 -2047.5 91.4 68.6 -11.4 -22.8 -22.8 -11.4 3.25 6.5 4.9 -0.82-1.63-1.63-0.820.6 0.45 最后弯矩-112.2215.57-15.4866.28-66.05(c) 解:B 、C 为角位移结点51411,5441454414,51411=+==+==+==+=CD CBBC BA μμμμ固端弯矩:mKN M mKN M mKN M mKN M mKN M mKN M DC CD CB BC BA AB ⋅-=⨯-=⋅-=⨯-=⋅=⨯=⋅-=⨯-=⋅=⨯=⋅=⨯=10065242003524501252450125241283424646424222222结点 A BCD 杆端 AB BA BC CB CD 滑动 分配系数 滑动 0.2 0.8 0.8 0.2 -100固端弯矩64 128 -50 50 -200 分配传递15.6 -15.6 -62.4 -31.272.48 144.96 36.24 -36.24 14.5 -14.5 -58 -29 11.6 23.2 5.8 -5.8 2.32-2.32-9.28-4.643.7 0.93 -0.93 最后弯矩96.4295.58-95.6157.02-157.03-142.9796.42(d) 解:11313141413114131414145.0141414=⨯+⨯+⨯⨯===⨯+⨯+⨯⨯===⨯+⨯⨯=DBDE DCCD CA μμμμμ 固端弯矩:mKN M mKN M ED DE ⋅=⋅-=⨯-=383812422 结点 A CD E 杆端 AC CA CD DC DB DE ED 分配系数 固结 0.5 0.5 4/11 3/11 4/11 固结 固端弯矩0 0 0 0 0 -2.67 2.67 分配传递-5 -10 -10 -546/33 92/33 69/33 92/33 46/33 -0.35 - 23/33- 23/33-0.35 0.127 0.096 0.127 0.064 最后弯矩-5.35-10.7-9.3-2.442.190.254.12(e) 解:当D 发生单位转角时:()()2414-=⨯⨯=m EI K Y C 则())假设12(441==⨯=-m EI EIM DC73,74,3716,379,371216,12,16,9,12=====∴=====∴EB ED DE DA DC DE EB DE DA DC S S S S S μμμμμ 结点D EB 杆端 DC DA DE ED EB BE 分配系数 12/37 9/37 16/37 4/7 3/7 固结 固端弯矩0 0 -9 9 0 0 分配传递-2.57 -5.14 -3.86 -1.93 3.75 2.81 5 -2.5 -0.72 -1.43 -1.07 -0.54 0.230.18 0.31 0.16 最后弯矩3.982.99-6.985-5-2.47(f) 解:截取对称结构为研究对象。
0.5441/212/3323AA AA AB ABS EI EIS EI μμ''''==⨯==== 同理可得:21,33BABB μμ''==另112AA BB AB BA C C C C ''''==-==B2.67 -0.44 0.29 -0.05 0.03 4.501.330.150.02-4.50-1.33-0.15-0.02-4.504.514.50M图9-4 (a)解:'4i6i283iB B''73328441162641164,316316)(4413343434343=====⨯⨯+==⨯⨯+====∴====⨯⨯+='''BAABBABABAlABlABCBBCBCBCBCCBllCBMMCiMSiliiMiliiMMMCiSiMMEIiiliiM其中结点 A B C杆端AB BA BC CB分配系数固结 7/11 4/11 铰结固端弯矩0 0分配传递3M/11 7M/11 4M/11 0最后弯矩3M/11 7M/11 4M/11 0M图(b解:首先在B点偏右作用一力矩,如图所示。
根据杆BC端,可得()①4BABCBCkiMθθθθ-+=根据杆BA端,可得()②4BABABCikθθθθ=-由②式得:③4BABCθkθkθiθ+=将②式代入①式得:④44BABCiθiθM+=328444244444BC=++=++=+=+=∴iiiikikiθθθiθiθiθBABCBCBABCBCθθμ31241=+=-=θθkikμμBCBA9-5 (a解:作出M图(在B处加刚臂)4.0,0,6.02,0,3===∴===BCBABDBCBABDiSSiSμμμ结点 A B C E杆端AB BD BA BC CB CE EC分配系数铰结 0.6 0 0.4 铰结固端弯矩0 -2ql2 -ql2/3-ql2/6 0 0分配传递0 21 ql2/15 0 14ql2/15 -14ql2/15 0最后弯矩0 21 ql2/15 -2ql23ql2/5 -33ql2/30 0 0(b 解:提取左半部分分析=+(a)(b)(a )图中结构不产生弯矩,(b )图中结构为反对称结构,因此可以取下半部分分析得:118111221241211112124141212/2419819124141414/25.1/3=--==⎪⎭⎫ ⎝⎛++==⎪⎭⎫ ⎝⎛++========-==⎪⎭⎫ ⎝⎛+=====''''''''C B BA F B C B BA C B E A F B AB BA AB E A AB AB AE EI EI S EI S S EIS S EI EI S EI Ei S μμμμμμμμ5kN A''C 'AB AE '-10.22.048.16M 图9-7 (a)解:AB 、CD 、EF 、GA 均为并联结构。
①首先转化结间荷载()()()←-=←-=-=←==KN Q KN ql Q KN ql Q FAG F BA F AB 5.22 5.3783 5.6285 固端弯矩:m KN ql M FAB⋅-=-=1258223333243993lil EI l EI l EI l EI k k k k k GH EF CD AB =+++=+++=并 于是边柱和中柱的剪力分配系数为83,8121==r r转化后的荷载为:37.5+22.5+10=70KN 边柱和中柱的剪力分别为: KNr F KN r F Q Q 821070870702121=⨯==⨯= 边柱柱脚弯矩为:m KN ⋅=+⨯5.21212510870中柱柱脚弯矩为:m KN ⋅=⨯5.262108210()M KN m ⋅图(b)解:同上题,边柱和中柱的剪力分配系数为83,8121==r r转化结间荷载()KN Q FFE 96.81041081032-=+⋅-=边柱和中柱的剪力分别为:mKN P M KN r F m KN M KN r F FFEQ FEF Q ⋅=⋅⋅==⨯=⋅-=⋅⋅-==⨯=8.1210028,36.396.82.31002810,12.196.8222121边柱柱脚弯矩为:m KN ⋅-=⨯6.5512.1中柱CD 柱脚弯矩为:m KN ⋅-=⨯8.16536.3 中柱EF 柱脚弯矩为:m KN ⋅-=--208.162.35.65.616.816.829.635.7205.65.6()M KN m ⋅图(c) 解:(a)当顶层横梁没有水平位移时,d 、e 、b 、c 并列 R=45KNKNF F F F r r r r Qe Qd Qc Qb d e c b 5.741========(b)KN m⋅单位:d e b c并并串a并设14123==EIk d 则 21841213=⨯=====EI k k k k k a e d c b()()()()()()()()KNF F F F F KN F F KN F r r r k k k k k k k de Q Qe Qd Qc Qb bc Qde Q Qa bcde a bcde bcde c b bc e d de 152130 153/45311 32211112121122==========-==⎪⎭⎫ ⎝⎛+==+=⇒⎪⎭⎪⎬⎫=+==+=()M KN m ⋅图(d 解:结构分析: bc 并联与de 并联,经串联后的结合柱与a 并联。