3.2初等矩阵与求逆矩阵的初等变换法
线性代数(第二版)第六节矩阵的初等变换
(2) 用非零常数 k 乘以 E 的第 i 行(列),得到的 矩阵记作 P( i(k) ),
1
1
P (i(k ))
k
i行
1
1
i列
பைடு நூலகம்
(3) 将 E 的第 j 行的 k 倍加到第 i 行(或第 i 列的
(1) 对 A 进行一次行初等变换,相当于用一个m
阶的初等矩阵左乘 A ;
(2) 对 A 进行一次列初等变换,相当于用一个n
阶的初等矩阵右乘 A .
证 明 (1) 我 们 仅 对 第 三 种 行 初 等 变 换 进 行 证 明 .
将 矩 阵 A = ( a ij )m n 和 m 阶 单 位 矩 阵 E 按 行 分 块 为
的 第 j 行 的 k 倍 加 到 第 i 行 上 (不 妨 设 i < j ), 则 相 应
证 明 (1) 我 们 仅 对 第 三 种 行 初 等 变 换 进 行 证 明
将 矩 阵 A = ( a ij )m n 和 m 阶 单 位 矩 阵 E 按 行 分 块 为
A1
1
A
A2
,
E
1 0 0
则
P (1, 3 ( 3 ) ) T
0
1
0 P (3, 1(3) )
0 0 1
3 0 1
(2) 初等矩阵均为可逆矩阵,并且其逆矩阵仍为 同类型的初等矩阵. 其中
P(i, j)1P(i, j)
P(i(k))1 Pik1
P (i,j(k)) 1P (i,j( k))
验证
0 1 0
0
0
0 0 1
求逆矩阵的四种方法
求逆矩阵的四种方法逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵,也是线性代数中的重要概念之一。
但是,在实际应用中,需要对矩阵求逆的情况并不多,因为矩阵求逆的时间复杂度很高。
下面介绍四种求逆矩阵的方法:1. 初等变换法:采用列主元消去法(高斯-约旦消元法)进行初等变换,即将一个矩阵通过行变换,转化为一个行阶梯矩阵,其中行阶梯矩阵的左下方的元素均为零。
而这样一个变换后得到的矩阵实际上就是原矩阵的逆矩阵。
2. 伴随矩阵法:如果一个矩阵 A 可逆,则求它的逆矩阵等价于求它的伴随矩阵 AT 的结果除以 A 的行列式。
伴随矩阵的计算式为:adj(A)= COF(A)T,其中 COF(A) 为 A 的代数余子式组成的矩阵,它的每个元素满足 COF(A)ij = (-1)^(i+j) det(Aij),其中 det(Aij) 表示将第 i 行和第 j 列去掉后得到的子矩阵的行列式。
3. LU 分解法:LU 分解法是将矩阵分解为一个下三角矩阵 L 和一个上三角矩阵 U 的乘积,即 A = LU,其中 L 的对角线元素均为 1。
当矩阵 A 可逆时,可用 LU 分解求解其逆矩阵。
假设 L 和 U 都是方阵,则A 的逆矩阵为:A^(-1) = (LU)^(-1) = U^(-1)L^(-1)。
4. 奇异值分解(SVD)方法:当矩阵 A 是非方阵时可以采用奇异值分解法,将矩阵 A 分解为A = UΣV^T,其中 U 为一个m×m 的正交矩阵,V 为一个n×n 的正交矩阵,Σ 为一个m×n 的矩形对角矩阵,若r 是 A 的秩,则Σ左上角的 r 个元素不为 0,其余元素为 0,即Σ有 r 个非零奇异值。
当A 可逆时,Σ 中的非零元素都存在逆元,逆矩阵为:A^(-1) = VΣ^(-1)U^T。
综上所述,求逆矩阵的四种方法各有特点,应根据实际情况选择合适的方法进行求解。
初等变换法适合较小规模的矩阵,伴随矩阵法适用于计算代数余子式较容易的矩阵,LU 分解法适合较大规模的矩阵,而SVD 方法则适用于非方阵或奇异矩阵的情况。
《线性代数》3.2矩阵的初等变换与初等矩阵
r1 r3 1 0 r2 r3 0 1 再r3 2 0 0 2 A 4 1 3
0 0 1
1 2 1
2 1 1 4 2 1 1 1 1 3 2 1 1 1 2
x1 BE3 1, 2 y1 x2 y2
x2 y2
0 1 0 x3 1 0 0 y3 0 0 1
x1 x3 y1 y3
1 3 0 a1 a2 E3 1, 2 3 A 0 1 0 b1 b2 0 0 1 c c 1 2 a1 3b1 a2 3b2 b1 b2 c c 1 2
ri krj ci kc j
初等行变换和初等列变换统称为初等变换.
2.等价 定义3.2.2
若矩阵A 经过有限次的初等行变换变成 B,
r 则称矩阵A与矩阵B 行等价,记为 A B
若矩阵 A 经过有限次的初等列变换变成B,
则称矩阵A与矩阵B 列等价,记为 A
c
B
若矩阵 A经过有限次的初等变换变成B, 则称矩阵A与矩阵B 等价,记为 A B
ET i, j E i, j ;ET i k E i k ; E i j k E j i k .
T
定理3.2.1 对于一个m×n 矩阵 A进行一次初等行变换, 相当于在A的左边乘以相应的 m阶初等矩阵;对A施行 一次初等列变换,相当于在A的右边乘以相应的 n阶
初等矩阵. 验证 设初等矩阵为三阶的.
0 1 0 E3 1, 2 1 0 0 0 0 1 x1 B y1
线性代数:初等变换法求逆矩阵(finalff3)
初等变换法求逆矩阵及 解矩阵方程
初等变换法求逆矩阵
线性代数
两个已知结论 1、n阶矩阵A可逆当且仅当A能够表示成若干初等 矩阵的乘积,即存在初等矩阵P1, P2, … , Pm使得
A= P1P2…Pm .
2、在矩阵A的左边乘以一个初等矩阵相当于对A进 行一次相应的初等行变换;
在A的右边乘以一个初等矩阵相当于对A进行一 次相应的初等列变换.
例 求矩阵X,使AX=B,其中
1 2 3
2 5
A
2
2
1
,
B
3
1
.
3 4 3
4 3
解 若A可逆,则X= A−1B.
1 2 3 2 5
(A
B)
2
2
1
3
1
3 4 3 4 3
3 2
X
2
3
.
1 3
1 0 0 3 2
0 0
1 0
0 1
2 1
3 3
小结
线性代数
1、初等变换求逆矩阵
(A E) 初等行变换 (E A−1 )
或
A
E
初等列变换
E
A1
2、初等变换求解矩阵方程
(1) A可逆,AX=B
X= A−1B
(A B) 初等行变换 (E A−1 B )
(2) A可逆, XA=C
X= CA−1
A 初等列变换 E
C
CA1
初等行变换法求逆矩阵
线性代数
若A可逆,则A−1可逆,因而A−1可以表示成若干初 等矩阵Q1, Q2, … , Qm 的乘积,即A−1= Q1Q2…Qm .
A可逆, A1 A E
§3.2 初等矩阵与逆矩阵的求法
6 5 4
B 6 5 4
r1 r2
1 2 3
7 8 9
7 8 9
6 5 2
c3 (1)c1
1
2
2
A.
7 8 2
23
定理2 方阵A可逆的充分必要条件是A可 经过一系列初等行变换化为单位矩阵E. 证明: 充分性
( A , E) 初等行变换 (E , A1).
例设
1 2 3
A
2
2
1
,
3 4 3
求A-1.
30
解 AE
1 2
2 2
3 1
1 0
0 1
0 0
3 4 3 0 0 1
1 2 3 1 0 0
r2 2r1 r3 3r1
r1 r2 r3 r2
0 0
2 0
5 1
1 1
9 3
35
1 0 0 3 2
r1 2r3 r2 5r3
0 0
2 0
0 1
4 1
6 3
1 0 0 3 2
r2 (2) r3 (1)
xn
bs
b1
b2
bs
则线性方程组可表示为 AX
3
如何解线性方程组?
可以用高斯消元法求解. 始终把方程组看作一个整体变形, 用到如下三种变换:
(1) 交换两个方程的次序; (2) 以不等于0的数乘以某个方程; (3) 一个方程加上另一个方程的k倍.
初等变换法求逆矩阵
1 0 0 1 3 2 r2 ( 2)
0 0
2 0
0 1
3 1
6 1
5 1
r3
( 1)
r2
(
2) 1 A01
0 1
10 03
r3
(
1)
0
0
2 11
13
3 3
2
1
3532 .
2 11
52
说明:(1)将(A E)化为行最简形矩阵; (2)此方法中只能作初等行变换.
一、初等变换法求逆矩阵
例1
设
1 A 2
2 2
13,求 A1.
3 4 3
解
A
E
1 2
2 2
3 1
1 0
0 1
0 0
3 4 3 0 0 1
r2 2r1 1 2 3 1 0 0 r1 r2 0 2 5 2 1 0
r3
(
1)
0 0
0 1 0
0 0 1
3 2 1
23 , 3
3 2 X 2 矩阵[重点 掌握]
初等行变换
(A E)
( E A1).
2.初等变换法的解矩阵方程
初等行变换
(A B)
(E
A 1 B )
初等变换法求逆矩阵
引入:公式法求逆矩阵的缺点 一、初等变换法求逆矩 二、方法推广
引入:公式法求逆矩阵的缺点
逆矩阵的计算公式 A1 1 A A
适用范围:二阶、三阶的方阵.
缺点:当矩阵的阶数比较高时,求伴随矩阵 计算量太大,不易实施.
逆矩阵及初等变换
先假设n阶矩阵A, 满足 A ≠ 0, 即 矩阵A是可逆的
则有下列公式: 则有下列公式:
( A | E ) n×2 n ( E | A ) n×2 n →
行初等变换
1
施行初等行变换, 即对 n × 2n 矩阵 ( A E ) 施行初等行变换, 当把 A 变成 E 时,原来的 E 就变成 A1 .
例3
6 4 2 * 得 A = 3 6 5 , 所以 2 2 2
1 3 2 1 * 3 5 1 . A = A = 3 A 2 2 1 1 1
上页
下页
返回
例2 设
1 2 3 1 3 2 1 A = 2 2 1, B = 5 3, C = 2 0, 3 4 3 3 1
1 1 1
(4).若A可逆 则A 也可逆 且( A ) = ( A ) . , ,
T
T 1
1 T
上页
下页
返回
例1 解
1 2 3 . 求方阵 A = 2 2 1的逆阵 3 4 3 ≠0, 可逆。 经计算可得: |A| = 2 ≠0,知A可逆。 经计算可得: | 可逆
A11= 2,A21= 6,A31=-4, 2, 6, A12=-3,A22=-6,A32=5, =5, A13= 2,A23= 2,A33=-2, 2, 2,
1 * A = A, A
1
A A . 其中 *为方阵 的伴随阵
上页
下页
返回
由定理1和定理2可得:矩阵 由定理1和定理2可得:矩阵A 是可逆方阵的充 分必要条件是 |A| ≠ 0 。 | 称为奇异方阵 否则称为非 奇异方阵, 当 |A| = 0 时,A 称为奇异方阵,否则称为非 | 奇异阵。 奇异阵。 推论 ),则 若 AB = E(或 BA = E),则B = A -1 。 ( ),
线性代数3.2初等矩阵与求逆矩阵的初等变换法
可经这同一系列初等行变换化为 A1。用分块矩阵形
式,两式可以合并为
Pt Pt1 L P1 ( A, E) (E, A1 )
或
( A, E) 初等行变换(E, A1)
即对矩阵 ( A, E) 作初等行变换,当把 A 化为 E 时,
E 就化成了 A1 ( A 1
初等矩阵。
1
O
Eij
0
0L M 1L
1 M 0
O
0 第i行 第j行
1
1
M
O
Ei
(k
)
0
M
0
1
M
O
0
Eij
(k
)
M
0 L M
0
k O
1 MO kL M 0L
0
0 第i行
1
1 MO 0
0 第i行 第j行
1
这样,初等矩阵共有三类: Eij , Ei (k ), Eij (k )。
1r3r2
0
1
1
3r2 r3
0
1
1
2r3 r1
1r3r2
0
1
0
0 3 2
0 0 1
0 0 1
0 0 1
E2 (1)E32 (1)E31 (2)E23 (3)E21 (2)E32 (1)E12 (2) AE13 E
A
E 1 12
(2)
E32
1
(1)
E 1 21
(2)
E 1 23
(3)
E 1 31
(2)
E 1 32
(1)
E2
1
【全版】线性代数初等变换与逆矩阵的初等变换求法副本推荐PPT
例: 下面是几个4阶初等矩阵:
换法矩阵
1000
1000
E=
0100
r2r4
———
000
1 =E(2, 4)
0010
0010
0001
0100
1000
1000
E= 0
1
0
0
c2c4
———
0
0
0
1 =E(2, 4)
0010
0010
第i行的k倍加到第j行记为rj+kri . 例如
1 5 -1 -1 1 -2 1 3 3 8 -1 1 1 -9 3 7
r3-3r1
———
1 5 -1 -1 1 -2 1 3 0 -7 2 4 1 -9 3 7
《线性代数》
返回
下页
结束
6.1 初等变换
定义1 对矩阵施以下列三种变换之一,称为初等变换. (1)交换矩阵的某两行(列); ----换法变换 (2)以数k0乘矩阵的某一行(列); ----倍法变换 (3)把矩阵的某一行(列)的k消法变换
0010
0040
0001
0001
1000
1000
E=
0100
4 c3
———
010
0 =E(3(4))
0010
0040
0001
0001
《线性代数》
返回
下页
结束
6.2 初等矩阵
对单位矩阵E施以一次初等变换得到的矩阵称为
初等矩阵(或初等方阵).
初等矩阵有下列三种: E(i, j) 、E(i(k))、E(j,i(k)) .
求矩阵的逆矩阵的方法
求矩阵的逆矩阵的方法矩阵的逆矩阵是线性代数中的重要概念,它在解线性方程组、计算行列式和求解线性变换等问题中具有重要的应用价值。
在实际问题中,我们经常需要求解矩阵的逆矩阵,因此掌握求解逆矩阵的方法对于深入理解线性代数具有重要意义。
本文将介绍几种常用的求解矩阵逆的方法,希望能够帮助读者更好地理解和掌握这一重要概念。
方法一,代数余子式法。
对于一个n阶矩阵A,如果它的行列式|A|不等于0,则矩阵A是可逆的,即存在逆矩阵A^(-1)。
我们可以通过代数余子式的方法来求解矩阵的逆矩阵。
首先,我们需要计算矩阵A的伴随矩阵adj(A),然后利用公式A^(-1) = adj(A)/|A|来求解逆矩阵。
这种方法在理论上是可行的,但在实际计算中可能会比较复杂,尤其是对于高阶矩阵来说,计算量会非常大。
方法二,初等变换法。
初等变换法是一种比较直观和简单的方法,它通过一系列的初等行变换将原矩阵变换为单位矩阵,然后将单位矩阵通过相同的初等行变换变换为逆矩阵。
这种方法在实际计算中比较方便,并且适用于各种情况,但是需要进行大量的计算,对于高阶矩阵来说,计算量也会比较大。
方法三,矩阵分块法。
矩阵分块法是一种比较灵活和高效的方法,它将原矩阵分解为若干个子矩阵,然后通过一定的变换将原矩阵变换为单位矩阵,再将单位矩阵变换为逆矩阵。
这种方法在理论上和实际计算中都比较方便,尤其适用于特殊结构的矩阵,如对称矩阵、三对角矩阵等。
但是对于一般的矩阵来说,可能会比较繁琐。
方法四,Gauss-Jordan消元法。
Gauss-Jordan消元法是一种经典的求解逆矩阵的方法,它通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为逆矩阵。
这种方法在实际计算中比较高效和方便,尤其适用于计算机程序实现。
但是对于特殊结构的矩阵,可能会存在一些特殊情况需要处理。
综上所述,求解矩阵的逆矩阵有多种方法,每种方法都有其适用的场景和特点。
在实际问题中,我们可以根据具体的情况选择合适的方法来求解逆矩阵,以达到高效、准确地计算的目的。
矩阵的初等变换和初等矩阵
23xxx111
x2 3x2 6x2
2x3 x3 9x3
x4 x4 7 x4
4 2 9
增广矩阵的比较
B
2 1 4 3
1 1
6 6
1 2
2 9
1 1 2 7
42 94
B2
1 2 2 3
1 1 3 6
2 1
1 9
1 1 1 7
24 92
显然 把B的第3行乘以(1/2)即得B2
即 方程③两端乘以(1/2) B的第3行乘以(1/2)
E1ij(k)Eij(-k)
Henan Agricultural University
四、初等矩阵与初等变换的关系
设A是一个mn矩阵 对A施行一次初等行变换 相当于在 A的左边乘以相应的m阶初等矩阵 对A施行一次初等列变换 相当于在A的右边乘以相应的n 阶初等矩阵
3 0 1
例如
设
A 10
1 1
4 4 9
①②
①②
x1 x2 2x3 x4 4
423xxx111
x2 6x2 6x2
x3 2x3 9x3
x4 2x4 7 x4
2 4 9
增广矩阵的比较
B
21 43
1 1
6 6
1 2
2 9
1 1 2 7
42 94
1 1 2 1 4
B1
2 4 3
1 6
6
1 2 9
1 2
7
2 94
[i,j]
以数k乘第i行加到第j行上 记作 [i(k)j]
Henan Agricultural University
三、初等矩阵
例如,对于3阶单位矩阵E
线性代数§3.2初等矩阵
定理2: 方阵A为可逆的充分必要条件是存在有限 个初等矩阵P1, P2,· · · , Pl , 使A=P1P2 · · · Pl . 证: 充分性. 由于A = P1P2· · · Pl , 且初等矩阵P1, P2, · · · , Pl 为可逆的, 有限个可逆矩阵的乘积仍是可逆的, 故方阵A可逆. 必要性.设矩阵A为可逆的, 且A的标准形为F, 则存 在有限个初等矩阵P1, P2, · · · , Pl 使 P1P2· · · Ps F Ps+1· · · Pl =A. 由于A可逆, 且P1, P2, · · · , Pl 也可逆, 故A的标准形F 也必 可逆, 设 Er O F O O nn 假若 r < n, 则| F | = 0, 这与F 可逆矛盾. 故有F =E. 证毕 A = P1P2· · · Pl , 从而,
由以上的证明可得: 可逆矩阵的标准形就是E, 实 际上, 可逆矩阵的行最简形也是E. 推论1: 方阵A可逆的充分必要条件是AE. 推论2: mn矩阵A B的充分必要条件是存在m阶 可逆方阵P及n阶可逆方阵Q, 使 PAQ = B. 利用初等变换求逆阵的方法: 当| A | 0时, 则由 A=P1P2· · · Pl , 得 1 P 1 A E , 及 P 1 P 1 P 1 E A1 . Pl1 Pl l l 1 1 1 1 对n2n矩阵(A E)分块为(A|E), 则 1 1 Pl1 Pl P 1 1 A | E 1 1 1 1 1 1 E | A Pl1 Pl P A | P P P E 1 1 l l 1 1 即, 对n2n矩阵(A|E)施行初等行变换, 当把A变成E的 同时, 原来的E就变成了A-1.
例2: 求矩阵X, 使AX=B, 其中 1 2 3 2 5 A 2 2 1 , B 3 1 . 3 4 3 4 3 解: 若A可逆, 则 X=A-1B. 5 1 2 3 2 5 r –2r 1 2 3 2 ( A | B) 2 2 1 3 1 2 1 0 2 5 1 9 3 4 3 4 3 r3–3r1 0 2 6 2 12 1 0 2 1 4 r –2r 1 0 0 3 2 r1+r2 0 2 5 1 9 1 3 0 2 0 4 6 r3–r2 r2–5r3 0 0 1 1 3 0 0 1 1 3 3 2 3 2 r2(–2) 1 0 0 0 1 0 2 3 . 2 3 . 所以 X r3(–1) 1 3 0 0 1 1 3
矩阵的初等变换
论 A m 结 :设 是 ×n矩 , 阵
A 过 干 初 行 变 变 B A 若 经 若 次 等 列 换 成 ,即 → B, 在 阶 等 逆 阵1 2L l n 初 ⇔存 m 初 (可 )矩 P ,P , ,P和 阶 等 逆 阵 1 (可 )矩 Q ,Q2, ,Qt使 L 得 B = PP LPAQQ2LQt 1 2 l 1
所以,对AX = B ⇒ X = A−1B,
行 可构造[ AB] [ EX] , X = A−1B →
−1 −1 −1 k 2 1 : k 行 P−1LP−1P−1 −1 2 1
特别Ax = β ⇒ x = A−1β ,
可构造[ Aβ ] [ Ex] , x = A β →
行 −1
1 1 1 3 (2) 例 已知A = , B = 2 5且AX = B.求解X. 3 −2
应 初 行 换 相 的 等 变 .
a1 a2 a3 1 0 k a1 a2 a3 + ka1 b b b 0 1 0 b b b kb 再 1 2 3 看 = 1 2 3 + 1 c1 c2 c3 0 0 1 c1 c2 c3 + kc1
0 0 0 1 0 0 −2 1 0 0 0 1 0 1 −2 1 0 0 0 1 0 1 −2 1 0 0 0 1
1 0 −2 1 ∴[(C − B)T ]−1 = 1 −2 0 1 1 0 0 1 ∴A = D[(C − B)T ]−1 = 0 0 0 0
1 性 : P(i(k)) = k ≠ 0, P(i(k)) = P(i( )) 质 k
−1
1 1 O O 1 1 k ri + krj (3)E = O O (c + kc ) = P(i, j(k)) j i uuuuuuuuu r 1 1 O O 1 1
矩阵的初等变换与逆矩阵
取 定 k 行 k 列 [ k m in ( m , n )], 则 位 于 这 k 行 和 k列 交 点 上 的 元 素 , 按 原 顺 序 可 构 成 一 个 k阶 行 列 式 , 称 这 个 k阶 行 列 式 为 矩 阵 A 的 一 个 k 阶 子 式.
k k 注 : n 矩 阵 A 的 k 阶 子 式 共 有 C m C n个 . m
( k c i :数k乘第i列, 0 ) k
(3)将矩阵的某一列乘以数k后加到另一列, ( c i k c j :第j列的k倍加到第i列上)
矩阵的初等行变换和初等列变换统称为初等变换.
当矩阵A经过的初等变换变成矩阵B时,记 作 A B. 注:这是矩阵的演变,A与B一般不相等.
0 例1 利用初等行变换将矩阵 A 1 2 化为单位矩阵. 1 3 0 0 0 0 1
3 2 0
2 1 1
2 3 ,求该矩阵的秩. 5
解
1 0 2
0.
1 0
3 2
2 0,
1 2 3 2 0 2
计算A的3阶子式,
3 2 2 1 2 2 1 1 2 3 0, 5
3 2 0
2
, 1 00
0 3 2, 1
3 00 , 5
3 例4 3 设 A 2 1 秩. 2 2 0 6 0 3 1 4 5 6 5 1 0 1 ,求矩阵 A的 3 4
1 A 1 0
2 1 3
3 1 , 5
2 B 1 1
1 1 5
1 3 . 11
注: ① 上述方法中只能用初等行变换,不能
用初等列变换. ② 初等行变换过程中若发现虚线左边某 一行的元素全为零时,说明矩阵不可逆.
线性代数3.2初等矩阵和求逆矩阵的初等变换法-文档资料
初等变换化为单位矩阵 E 。
所以,AE11E21 Et1。 若记 Ei1 Pi ,则 AP1P2 Pt 是初等矩阵的乘积。
(充分性)若存在初等矩阵P1, P2, , Pt,使 AP1 P2 Pt
因为P1, P2, , Pt 可逆,从而 P1 P2 Pt 可逆,所以 A
a in
a m n
第 i行 第 j行
其结果相当于对矩阵 A 施第一种初等行变换:
A 的第 i 行与第 j 行对调( ri r j )。类似地,
n 阶初等矩阵
E
i j 右乘 A
aij
,其结果相当于对
mn
矩阵 A 施第一种初等列变换:把 A 的第 i 列与第
j 列对调( ci c j )。
,则存在初等矩阵 P 使
BPA
若 A 可逆,则 PAB可逆;又若 B 可逆,则
P1B A 可逆。
由定理1,可得:
定理2 A 为 n 阶矩阵,则 A 可逆的充分必要条件是
A 只通过初等行(列)变换化为单位矩阵。
n 定理3 设 A 为 阶矩阵,则 A 可逆的充分必要条件是
存在有限个初等矩阵 P1, P2, , Pt 使 AP1P2 Pt 。
后得到的初等矩阵;
(2)用任意常数 k 0 去乘某行(或列)。E i ( k ) 表示单位
矩阵 第i行(列)乘非零常数k后得到的初等矩阵;
(3)以数 k 乘某行(或列)加到另一行(或列)上。
E ij ( k ) 表示单位矩阵第i行乘常数k加到第j行后得到的初等
i j 矩阵或表示单位矩阵第 列乘常数k加到第 列后得到的
矩阵的初等变换与逆矩阵的求法
矩阵。
做法:将A与I按照行的方向组合成一个大矩阵,对
大矩阵进行行变换,在A部分成为I的时候, 原来的I部分就成为A的逆。
例题
设
,求
解:
小结
本节要求掌握内容 1. 矩阵初等变换的记号,初等矩阵的记号; 2. 初等矩阵的性质; 3. 用初等行变换求逆矩阵.
作业
P34 1.7(2)(5) 1.10
初等变换
1.2 矩阵的初等变换与 逆矩阵的求法
本节内容
1. 线性方程组的同解变换; 2. 矩阵的初等变换; 3. 初等矩阵; 4. 用初等行变换求逆矩阵.
线性方程组的同解变换
同解变换,就是变换后的线性方程组与原线性方程组 同解。
初等变换就是线性方程组的同解变换。 定理:设方程组经过某一初等变换后变为另一个方程
组,则新方程组与原方程组同解。(证明看课本第9页)
矩阵的初等变换
定义:以下三种变换称为矩阵的初等变换: 1. 对换矩阵的两行(或两列);
记为 ri rj(ci cj)
2. 以任意数(0)乘以矩阵的某一行(或列)每个元;
记为
3. 某一行(或ri列()ci)的每个元乘以同一常数加到另一行
(或列)的对应元上去. 记为
或
注意:在对矩阵进行初等变换时,只能进行行变换,不 能进行列变换!因为矩阵列变换对应的并不是线性方程 组的同解变换。
初等矩阵
定义:由单位矩阵I经过一次初等变换的矩阵称为初 等矩阵。 由于初等变换有三种类型,所以对应的初等矩阵就有 三种类型。 (1)对调I的两行(或两列); (2)非零数乘以I中的某行(或某列); (3)某行(或列)的若干倍加到另一行(或列)。 初等矩阵都是可逆的,并且
矩阵的初等行变换的定义,完全对应着方程组的同解 变换。因此,对矩阵进行初等行变换使其成为阶 梯形矩阵的过程,实际上就是对方程组进行同解 变换使其变为阶梯形状的过程。
3_2初等矩阵和逆矩阵的求法
4 2 B1 2 9
2 r2 31 1 1 r 1 r3 21 0 2 2r 1 B1 3 2 0 5 1 r4 1 3r 3 0 3 9 6
r2 4 r3 r3 0 2r1 B2 r4 6 3r1 3
(1) 反身性 A A;
(2)对称性 若 A B , 则 B A; (3)传递性 若 A B, B C, 则 A C.
具有上述三条性质的关系称为等价. 例如,两个线性方程组同解,
就称这两个线性方程组等价
Page 4
引例 求解线性方程组
2 x1 x2 x3 x4 2, x x 2 x x 4, 1 2 3 4 4 x1 6 x2 2 x3 2 x4 4, 3 x1 6 x2 9 x3 7 x4 9,
1 0 0 c5 4c1 3c2 3c3 0
c3 c4 c4 c1 c2
矩阵 F 称为矩阵 B 的标准形.
Page 12
特点:F的左上角是一个单位矩 阵,其余元素全
为零.
m n 矩阵 A 总可经过初等变换化为 标准形
Er O F O O mn 此标准形由m , n, r 三个数唯一确定,其中r 就是
把 A的第 j 行乘 k 加到第 i 行上 ( ri krj ).
Page 21
类似地,以 En ( ij ( k )) 右乘矩阵 A,其结果相当于 把 A 的第i列乘 k 加到第 j列上 (c j kci ).
AEn ( ij ( k )) a11 a1i a1 j ka1i a1n a21 a2 i a2 j ka2 i a2 n a ami amj kami amn m1
求逆矩阵的方法
求逆矩阵的方法逆矩阵是线性代数中非常重要的概念,它在数学和工程领域有着广泛的应用。
在实际问题中,我们经常需要求解矩阵的逆,因此了解求逆矩阵的方法是非常重要的。
本文将介绍几种常见的求逆矩阵的方法,希望能对大家有所帮助。
方法一,伴随矩阵法。
伴随矩阵法是求解逆矩阵的一种常用方法。
对于一个n阶矩阵A,如果它的行列式不为0,那么它的逆矩阵存在。
我们可以通过计算伴随矩阵来求解逆矩阵。
具体步骤如下:1. 计算矩阵A的行列式,如果行列式为0,则矩阵A不存在逆矩阵;2. 计算矩阵A的伴随矩阵,即将矩阵A的每个元素的代数余子式组成的矩阵进行转置;3. 将伴随矩阵除以矩阵A的行列式,得到矩阵A的逆矩阵。
方法二,初等变换法。
初等变换法是另一种求解逆矩阵的常用方法。
对于一个n阶矩阵A,如果它的行列式不为0,那么它的逆矩阵存在。
我们可以通过初等变换将矩阵A转化为单位矩阵,然后将单位矩阵通过相同的初等变换得到A的逆矩阵。
具体步骤如下:1. 将矩阵A和单位矩阵拼接成一个2n阶的矩阵;2. 通过初等行变换将矩阵A转化为单位矩阵,此时单位矩阵部分就是A的逆矩阵。
方法三,高斯-约当消元法。
高斯-约当消元法也是一种常用的求解逆矩阵的方法。
通过将矩阵A和单位矩阵拼接在一起,然后通过初等行变换将矩阵A转化为单位矩阵,此时单位矩阵部分就是A的逆矩阵。
具体步骤如下:1. 将矩阵A和单位矩阵拼接成一个2n阶的矩阵;2. 通过高斯-约当消元法将矩阵A转化为单位矩阵,此时单位矩阵部分就是A的逆矩阵。
方法四,矩阵分块法。
矩阵分块法是一种比较直观的求解逆矩阵的方法。
对于一个2n 阶矩阵A,我们可以将其分块成四个n阶子矩阵,然后通过矩阵分块的运算规则来求解逆矩阵。
具体步骤如下:1. 将矩阵A分块成四个n阶子矩阵,记为A = [A11, A12;A21, A22];2. 如果A22存在逆矩阵,那么A的逆矩阵可以通过以下公式求解,A的逆矩阵 = [A11 A12 A22^(-1) A21]^(-1), -A11A12^(-1); -A22^(-1) A21, A22^(-1)]。
第二章 矩阵代数 S3_2矩阵的初等变换
1
i列
j列
1
i列
j列
i行
0
1
0
1
E
j行
1
0
1
0
1
1
因此: 类似可得:
(Eij )1 Eij
初等矩阵是可
( Eii
(k ))1
Eii
( 1 ),(k k
0)
逆矩阵,而且 它们的逆矩阵
(Eij (k))1 Eij (k)
也是初等矩阵.
16
几个定理性结论
1. 矩阵A与B等价
有初等矩阵
0
0
mn
17
4. n 阶矩阵A为可逆的 等矩阵的乘积
A Q1Q2 Qt .
它能表成一些初
5. 可逆矩阵总可以经过一系列初等行变换化成单 位矩阵.
【可逆矩阵总可以经过一系列初等列变换化成 单位矩阵.】
18
三、用初等变换求逆矩阵
设An可逆,则存在一系列初等矩阵 P1 ,
使
E Pm P1 A
所以 于是 Pm
1 2
1 0
0
0
1
1
0
1
2
2
0
0
1
1
0
1
2
2
29
5 1
即
2 A 1
1
1 2
0
易求得 |A|=1/2, 故
1 2 0 1 2
5 1 1 5 2 1
A
1
|
A A|
2
2 1
1 2
1 0
2 0 1
2
2 1
2 0
0
1
30
§2.4.1转置矩阵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
r2
12 r3
1 0
1 1
1 0
0 0 1
1
0
0
r2 r1
1r3 +r1
0
1
0
0 0 1
所以
1 2 A 1 1 2 0
1 0 0
1
0
1
2
2
0
1
1
2 2
1 2
1 2
0
1 2
0
1 2
0
1 2
1 2
1 0
2
0
1 2
1 1
2
2
同样地,也可以利用矩阵的初等列变换方法求矩阵的
即: 初等矩阵都是可逆矩阵,且初等矩阵的逆矩阵 仍是同类的初等矩阵。
二、初等变换法求矩阵的逆矩阵
1.矩阵可逆的两个充分必要条件
在上一章已经得到:n阶矩阵A可逆的充分必要条件是:A的
行列式 A 0 。现再给出两个充分必要条件。 引理 初等变换不改变矩阵的可逆性。
证明 不妨设 n 阶矩阵 A 经过一次初等行变换化成矩阵 B
推论1 m n 阶矩阵 A 与 B等价的充分必要条件是存
n 在m 阶可逆矩阵 P 及 阶可逆矩阵 Q ,使
PAQ B
2.求矩阵逆矩阵的初等变换法
因为 A 可逆,据定理2,有初等矩阵 P1, P2 , , Pt
使 Pt Pt1 P1A E ,即 Pt Pt1 P1E EA1 。于是
Pt Pt1 Pt Pt1
证明:(必要性)因为 A 可逆,则 A 可只通过行(列)
初等变换化为单位矩阵 E。
所以,A E11E21 Et 1。 若记 Ei1 Pi ,则 A P1P2 Pt 是初等矩阵的乘积。
(充分性)若存在初等矩阵P1, P2, , Pt,使 A P1 P2 Pt
A 因为P1, P2 , , Pt 可逆,从而 P1 P2 Pt 可逆,所以
1r3r2
0
1
1
3r2 r3
0
1
1
2r3 r1
1r3r2
0
1
0
1r2
0
1
0
0 3 2
0 0 1
0 0 1
0 0 1
E2 (1)E32 (1)E31 (2)E23 (3)E21 (2)E32 (1)E12 (2) AE13 E
A
E 1 12
(2)
E32
1
(1)
E 1 21
(2)
P1A E P1E A1
上两式表明:A 经一系列初等行变换化为 E ,则 E
可经这同一系列初等行变换化为 A1。用分块矩阵形
式,两式可以合并为
Pt Pt1 P1 ( A, E) (E, A1 )
或
( A, E) 初等行变换(E, A1)
即对矩阵 ( A, E) 作初等行变换,当把 A 化为 E 时,
后得到的初等矩阵;
(2)用任意常数 k 0 去乘某行(或列)。Ei (k ) 表示单位
矩阵 第i行(列)乘非零常数k后得到的初等矩阵;
(3)以数 k 乘某行(或列)加到另一行(或列)上。
Eij (k )表示单位矩阵第i行乘常数k加到第j行后得到的初等
i 矩阵或表示单位矩阵第 j 列乘常数k加到第 列后得到的
1 5
n 【注】 设 A 和 B 都是 阶方阵,则求它们逆矩阵的
方法有如下几种:
(1)定义法。若 AB BA E ,则 A 是可逆矩阵,且
A1 B 。
(2)利用推论1。若 AB E 或 BA E ,则 A 和
B 都可逆,并且 A1 B, B1 A
(3)公式法。若 A 0 ,则矩阵A可逆,且
E 就化成了 A1 ( A 1
1 A
A) 。
a11 a21
a12 a22
a1n a2n
an1 an2 ann
1 0
0 1
0 0
0
0
1
【注】上面介绍的方法中,只能用行变换,不能用列变换。
例2 设
1 1 1 A 1 1 1
1 1 1
求A 1 。
解
1 1 1
Pt Pt1 P1 ( A, B) (E, A1B)
或 ( A, B) 初等行变换(E, A1B)
即对矩阵 (A, B) 作初等行变换,当把 A 化为 E 时,B
就化成了 A1B 。
r
特别地,当 B E 时,若 ( A, E) ~(E, X ) ,则
A 可逆,且 X A1。这便是前面给出的结论。
初等矩阵。
1
0
0
1
第i行
Eij
1
0
第j行
0
1
1
0
Ei
(k
)
0
k
0 第i行
0
1
1
0
0
1
第i行
Eij
(k
)
0
k
1
第j行
0
0
0
1
这样,初等矩阵共有三类: Eij , Ei (k ), Eij (k )。
3.初ij 左乘 A
A 1 1 A A
(4)初等变换法。
A , E 初等行变换 E, A 1 ,或
。
An En
初等列变换
En A1
(5)用分块矩阵求逆矩阵。
三、逆矩阵在解矩阵方程中的应用
设有 n 阶可逆矩阵A及 n s 矩阵 B ,满足矩阵
方程 AX B 的 X 如何快捷得到?
直接有 X A1B
n 【注】 这里乘以相应 阶初等矩阵的意思是:
对 A 作一次什么样的初等变换,就相当于 A
乘以对 E 作同样初等变换得到的初等矩阵。
4.初等矩阵的可逆性
因为 Eij Eij E ,Ei (k )Ei (k 1) E ,Eij (k )Eij (k ) E 所以 Eij1 Eij ,Ei (k )1 Ei (k 1) ,Eij (k)1 Eij (k) 。
E 1 23
(3)
E 1 31
(2)
E 1 32
(1)
E2
1
(
1)
EE131
E12 (2)E32 (1)E21 (2)E23 (3)E31 (2)E32 (1)E2 (1)E13
【注】矩阵 A 可逆的一个重要意义是 A 可以分解为初等
矩阵的乘积。这时 AB(或 AB )相当于对 B 施行若干
次初等行(列)变换。
3.2 初等矩阵与求逆 矩阵的初等变换法
一 初等矩阵的概念
二 初等变换法求矩阵的逆矩阵
三 逆矩阵在解矩阵方程中的应用
一、初等矩阵的概念
1.初等矩阵 定义1 由单位矩阵 经过一次初等变换后得到的矩阵称为
初等矩阵。
2.初等矩阵的类型
三种初等变换对应有三种初等矩阵。 (1)交换两行(或列)。Eij 表示单位矩阵交换i、j行(列)
aij
,得
mn
a11
Eij
A
a
j1
ai1
am1
a1n
a jn
ain
amn
第i行 第j行
其结果相当于对矩阵 A施第一种初等行变换:
A 的第 i行与第 j 行对调( ri rj )。类似地,
n 阶初等矩阵 Eij右乘 A
aij
,其结果相当于对
mn
矩阵 A 施第一种初等列变换:把 A 的第 i 列与第
逆矩阵。这时,对
2n n
阶矩阵
An
En
进行初等列变换,
当上半子块化为 En 时,A可逆,且下半子块就是 A1。即
An En
列初等变换
En A1
若上半子块能够化为 En 时,说明 A 可逆,否则,A 不
可逆。
【注】 在这种方法中,只能用列变换,不能用行变换。
例3
求矩阵
A
2 4
(
A,
E)
1
1
1
1 1 1
1 0 0
1 1 1
0
1
0
r r2
r1 +r3
0
2
2
0 0 1
0 2 0
1 0 0
1
1
0
1 0 1
1 1 1
r2 r3
0
2
0
0 2 2
1 0 0
1 1 1
1 1
0 1
1 r2 r3 0
0
0
2 0
0 2
1 0 0
1
0
1
0 1 1
3 1
的逆矩阵。
解
2
A2 E2
4 1
3
1
1
1
2c1
2
0
1 2
3
1
1
-3c1
c2
2
0
1 2
0
5
3 2
0 1
0 1
0 1
1
-15c2
2
1
2
0
0
1
1
-2c2c1
0
3
10
1 5
1 10
2 5
0
1
3 10
1 5
E A1
故
A1
1 10
2 5
3 10
可逆。
例1 设
0 2 1
A
3
0
2
2 3 0
把 A 表示成初等矩阵的乘积。
解 见§3.1例3
0 2 1
1 2 0
1 2 0
A
3
0
2
c1c3