第1章蒸气压缩式制冷的热力学原理概要

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 制冷技术

第一节 蒸气压缩式制冷的热力学原理

1、蒸气压缩式制冷的工作原理

任何液体在沸腾过程中将要吸收热量,液体的沸腾温度(即饱和温度)和吸热量随液体所处的压力而变化,压力越低,沸腾温度也越低。而且不同液体的饱和压力、沸腾温度和吸热量也各不相同。

只要根据所用制冷液体(称制冷剂)的热力性质,创造一定的压力条件,就可以在一定范围内获得所要求的低温。

要实现制冷循环必须要有一定的设备,而且要以消耗能量作为补偿。蒸气压缩式制冷循环就是用压缩机等设备,以消耗机械功作为补偿,对制冷剂的状态进行循环变化,从而使用冷场合获得连续和稳定的冷量及低温。

研究蒸气压缩式制冷循环的主要目的,是为了分析影响制冷循环的各种因素,寻求节省制冷能耗的途径。

2、 理想制冷循环——逆卡诺循环

逆卡诺循环是使工质(制冷剂)在吸收低温热源的热量后通过制冷装置,并以外功作补偿,然后流向高温热源。逆向循环是一种消耗功的循环,制冷循环就是按逆向循环进行的,在温—熵或压—焓图上,循环的各个过程都是依次按逆时针方向变化的。

逆卡诺循环由两个等温过程和两个绝热(等熵)过程组成,是一种理想循环。 逆卡诺循环是可逆的理想制冷循环,它不考虑工质在流动和状态变化过程中的内部和外部不可逆损失。虽然逆卡诺循环无法实现,但是通过该循环的分析所得出的结论对实际制冷循环具有重要的指导意义。

3、逆卡诺循环必须具备的条件

利用液体气化制冷的逆卡诺循环必须具备的条件是:高、低温热源温度恒定;工质在冷凝器和蒸发器中与外界热源之间无传热温差;工质在流经各个设备时无内部不可逆损失;膨胀机输出的功为压缩机所利用。作为实现逆卡诺循环的必要设备是压缩机、冷凝器、膨胀机和蒸发器。

4.制冷系数ε

制冷循环常用制冷系数ε表示它的循环经济性能,制冷系数等于单位耗功量所制得的冷量。

对于逆卡诺循环而言:

)())(()(0

0000'-''=-'-'-'='=T T T S S T T S S T w q k b a k b a c c ε 从公式可知,逆卡诺循环的制冷系数c ε仅与高、低温热源温度有关,而与制冷剂的热物理性能无关。当'0T 升高,'

k T 降低时,c ε增大,这意味着单位耗功量所能制取的冷量增

加,提高了制冷循环的节能型和经济性。

'0T 与'k T 对制冷系数c ε的影响是不等价的,'0T 的影响大于'k T 。同时,也意味着要实现温度较低的制冷具有更高的难度。

由于逆卡诺循环不考虑各种损失,而且压缩机利用了膨胀机对外输出的功,因此,在恒定的高、低温热源区间,逆卡诺循环的制冷系数c ε最大,在该温度区间进行的其它各种制冷循环的制冷系数均小于c ε,所以,逆卡诺循环制冷系数可用来评价其它制冷循环的热力完善度。

5、具有传热温差的逆向可逆循环

具有传热温差的制冷系数,总小于相同热源温度时的逆卡诺循环制冷系数,而且随传热温差k T ∆和0T ∆的增大而降低。

1.1.4热泵的应用

逆向循环以耗功作补偿,通过制冷剂的循环把从低温热源中吸收的热量(即制冷量)和耗功量一起在高温热源放出。因此,逆向循环可以用来制冷,也可以用来制冷,或者冷热共同使用。用来制冷的逆向循环装置,称为制冷装置,而用来供热时则称为热泵装置。在逆卡诺循环中已作了介绍,1kg 制冷剂在每次循环中向高温热源放出的热量为

w q q k +='

0' (kJ/kg)

则进行逆卡诺循环的热泵供热系数为 '0

''

'0'1T T T w q w w q k k c c c c k c -=+=+==εμ (1.4) 公式()表示,热泵系数恒大于1,这说明热泵装置在高温热源的放热量始终大于耗功量。

因此,热泵供热肯定比直接用电供热耗省能,它是一种省能的供热方法,目前,它的研究和发展正日益受到重视。但是,必须指出,热泵的供热系数和制冷系数有关,而制冷系数的大小随高、低温热源温度,传热温差等变化。当高、低温热源温差或传热温差增大时,制冷系数下降,热泵供热系数也相应降低。因此,热泵供热虽然比直接电热省能,但是否比其他供热方法(如燃料的直接燃烧、蒸气供热等)省能和经济,还应根据提供热泵运行的具体条件进行分析和比较,才能得出最后结论。目前,在我国,热泵供热主要在中、小型空调器上使用,在冬季为室内采暖提供热量,而大型热泵以及提高供热温度的热泵装置尚在研究阶段。

6、蒸气压缩式制冷理论循环

理论制冷循环不同于逆卡诺循环之处是:(1)制冷剂在冷凝器和蒸发器中按等压过程循环,而且具有传热温差;(2)制冷剂用膨胀阀绝热节流,而不是用膨胀机绝热膨胀;(3)压缩机

吸入饱和蒸气而不是湿蒸气。

用膨胀阀代替膨胀机后的节流损失:不但增加了制冷循环的耗功量,还损失了制冷量。这两部分损失必然使制冷系数和热力完善度有所下降。

用干压缩代替湿压缩后的过热损失:

在蒸气压缩式制冷循环中,要实现等温冷凝或等温蒸发过程,只有在湿蒸气区才有可能进行,因此,压缩机必然吸入湿蒸气。但是,在制冷压缩机的实际运行中,若气缸吸入湿蒸气,会因其中的液体而引起液击(即冲缸)现象,损坏压缩机的阀片和其它零部件。另外,过量的液体制冷剂进入气缸后,会与热的气缸壁产生强烈的热交换而迅速气化,占有气缸容积,使压缩机的吸气量减少,制冷量下降。为了避免产生上述现象,压缩机在实际运行中一定要吸入饱和蒸气或者过热蒸气。

对于大多数制冷剂,采用用干压缩后,引起制冷系数和热力完善度的降低。

过热损失和节流损失一样,不但与制冷循环工况有关,而且与制冷剂的物理性质也有关。

1.2.2 理论循环在lgP—h图上的表示

在分析压缩式制冷循环时使用了制冷剂的温—熵图(即T—S图),因为温—熵图中热力过程线下面的面积表示该过程中传递的热量,十分直观,便于分析比较。在制冷循环的热力计算中,通常用制冷剂的lgP—h图。该图以制冷剂的比焓值h作横坐标,压力P做纵坐标,查阅更为方便(见图1.9)。为了缩小图面,纵坐标P采用lgP分格(注意,从图上查得的数值仍为绝对压力值,而不是压力的对数值)。图中的c点为制冷剂的临界状态,c点左侧的粗实线为各个压力下的饱和液体线,该线上任何点的干度x=0。c点右侧的粗实线为各个压力下的饱和蒸气线(或称干饱和蒸气线),该线上任何点的干度x=1。这两条饱和线将图面分成三个区域,饱和液体线的左侧为过冷液体区(液体温度低于同压力下的饱和温度),饱和蒸气线的右侧为过热蒸气区(蒸气温度高于同压力下的饱和温度),两条饱和线之间为湿蒸气区,制冷剂在湿蒸气区域内处于气液两相混合状态,它的温度等于所处压力下的饱和温度,各点的x值反映了湿蒸气在该状态下蒸气含量的百分比。

图1.9制冷剂的lgP—h图

lgP—h图中绘出了六种等状态线簇,即等压、等焓、等温、等比容、等熵和等干度线。其中,等压线和等比焓线是最简单的,分别为水平线和垂直线。纯物质的等温线在两相区为水平线,在过冷液体区为略向左上方延伸的上凹曲线,非常接近于垂直线。这是因为压力对过冷液体比焓值的影响很小的缘故。有些图在该区域没有标出等温线,这时就用垂直线代替,不会导致很大的误差。在过热蒸气区,等温线是向右下方延伸的下凹曲线。温度较高的等温

相关文档
最新文档