化学镀镍磷
化学镀沉积镍磷合金:耐腐蚀机理
外文资料译文化学镀沉积镍磷合金:耐腐蚀机理Bernhard Elsener/Maura Crobu/Mariano Andrea Scorciapino/Antonella Rossi摘要在各种各样的化学基体上可以进行化学镀镍磷合金。
他们表现出的耐腐蚀性优于纯镍,但由纯镍形成的氧化镍(钝化膜)除外,已经提出来许多理论来解释这一优越的腐蚀性,但还尚未达成共识。
在这一领域的研究中使用了电化学中的XPS表面电化学分析方法,以更深入的了解化学镀镍磷合金的耐腐蚀性,磷的含量在18%到22%。
在酸性和近中性溶液中其极化曲线与电流密度有一定的关系。
在恒电位极化过程,根据曲线衰减指数大约为-0.5可以推论扩散过程限制了镍的解离。
在XPS / XAES后通过测量恒电位极化显示磷在反应过程中存在三种不同的状态。
根据钴参与化学反应的不同,磷主要存在于反应合金、磷酸盐和磷的中间化合产物中。
通过XPS分析表明,磷元素富集在了合金之间的界面和最外层表面与腐蚀溶液接触面,由此提出以下结论:镍元素在溶液中的扩散机制限制了磷元素在介质表面的富集解释了Ni-P合金的高耐蚀性。
一个尚未证实的补充说明是耐高腐蚀性Ni-P合金可能是以镍元素的电离态存在的。
关键词:电位极化扩散,磷,富集, XPS图,衍射参数§1 简介对纳米晶体材料的关注增加使人们对于镍磷合金研究加深,尤其是在具有挑战性的技术应用方面[1,2]。
这些过去主要用作防腐涂料的合金构成了最早的工业应用是在x射线的非晶和纳米晶体材料上,这项技术可以追溯到1946年[3-5]。
现在产生了对三元系镍磷合金的研究[6,7]和共沉积金刚石[8]或聚四氟乙烯颗粒[9],以获得为生产量身定制的功能化表面。
镍磷合金中P元素大约是20%(接近共晶组合)时表现出了比镍更好的耐腐蚀性,同时得到的纯镍在阳极溶液附近镍酸的溶解更加容易[10-22]。
这一现象在化学镀[13-16]或电沉积[17-21]镍磷合金的金属熔体[10-12]时常见到。
化学镀镍老液中镍磷的处理与回收
化学镀镍老液中镍、磷的处理与回收化学镀是指用化学还原剂使金属离子在具有催化活性的镀件表面上形成金属镀层的一种化学处理方法。
化学镀镍(又称无电镀镍)是一种有效提高工件耐蚀性和耐磨性的表面处理技术。
常用的以次亚磷酸盐为还原剂的化学镀镍新镀液的主要成分为镍盐、次亚磷酸盐,此外还含有PH调节剂、稳定剂、润滑剂和光亮剂等有机成分。
化学沉淀法是常用的处理含重金属废水的方法,采用苛性钠、石灰纯碱调节老化液的PH大于8,则可以生成NI(OH)2,通过静止后分离出沉渣、达到老化液中去除镍的目的,另外,硫化亚铁、硫化氨基甲酸二甲酯(DTC)、不溶性淀粉黄源酸酯(ISX)等也可以作为沉淀剂用于含镍废水的处理,通常是处理镍浓度小于500/mgL-1的含镍废水。
化学镀镍老化液中的磷可以采用化学氧化沉淀法处理,即利用高猛酸钾、过氧化氢等氧化剂将化学镀盐,然后再用沉淀剂使磷酸盐沉淀,从而减少废液中总磷的排放量。
化学沉淀法处理含镍、磷废水会产生大量沉渣,如处置不当会产生二次污染,目前对沉渣的处理除填埋外没有更好的方法。
2 试验部分2.1 主要试剂Ca(OH)2、H2SO4、CA(CLO)2等均为国产分析纯试剂。
2.2 主要仪器PHS-2酸度计,721-分光光度计,磁力温控搅拌器。
2.3 镍的去除与回收方法取老化液,边搅边定量加入15%的Ca(OH)2根据需要的应一定时间(如1h,2h)后停止搅拌,过滤,分析滤过液中的镍含量,计算镍的去率,溶液有待进一步处理;所得沉淀经120摄氏度下烘干、称重后用H2SO4溶出其中的镍,再次过滤,保留得到的含硫酸镍溶液,沉淀则成为最终废弃物。
2.4 磷的去除与回收方法取一定体积去除镍后的化学镀镍老化液,边搅拌边加入Ca(CLO)2粉末,反应一段时间后,停止搅拦,过滤后液内总P浓度;测定沉淀中Ni、p含量。
2.5 Ni总P的分析方法Ni、总P的分析方法参照《水与废水监测分析方法》。
3结果与讨论在室温及PH-12时,延长反应时间对化学镀镍老化液中镍的去除率有明显影响,试验中可以看出,反应1h后溶液中残余镍浓度为10.9mgL。
ASTM B-733-97 金属表面化学镀镍磷层规范标准
Designation:B733–97Standard Specification forAutocatalytic(Electroless)Nickel-Phosphorus Coatings on Metal1This standard is issued under thefixed designation B733;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1This specification covers requirements for autocatalytic (electroless)nickel-phosphorus coatings applied from aqueous solutions to metallic products for engineering(functional)uses.1.2The coatings are alloys of nickel and phosphorus pro-duced by autocatalytic chemical reduction with hypophosphite. Because the deposited nickel alloy is a catalyst for the reaction, the process is self-sustaining.The chemical and physical properties of the deposit vary primarily with its phosphorus content and subsequent heat treatment.The chemical makeup of the plating solution and the use of the solution can affect the porosity and corrosion resistance of the deposit.For more details,see ASTM STP265(1)2and Refs(2)(3)(4)and(5) also refer to Figs.X1.1,Figs.X1.2,and Figs.X1.3in the Appendix of Guide B656.1.3The coatings are generally deposited from acidic solu-tions operating at elevated temperatures.1.4The process produces coatings of uniform thickness on irregularly shaped parts,provided the plating solution circu-lates freely over their surfaces.1.5The coatings have multifunctional properties,such as hardness,heat hardenability,abrasion,wear and corrosion resistance,magnetics,electrical conductivity provide diffusion barrier,and solderability.They are also used for the salvage of worn or mismachined parts.1.6The low phosphorus(2to4%P)coatings are microc-rystalline and possess high as-plated hardness(620to750HK 100).These coatings are used in applications requiring abra-sion and wear resistance.1.7Lower phosphorus deposits in the range between1and 3%phosphorus are also microcrystalline.These coatings are used in electronic applications providing solderability,bond-ability,increased electrical conductivity,and resistance to strong alkali solutions.1.8The medium phosphorous coatings(5to9%P)are most widely used to meet the general purpose requirements of wear and corrosion resistance.1.9The high phosphorous(more than10%P)coatings have superior salt-spray and acid resistance in a wide range of applications.They are used on beryllium and titanium parts for low stress properties.Coatings with phosphorus contents greater than11.2%P are not considered to be ferromagnetic.1.10The values stated in SI units are to be regarded as standard.1.11The following precautionary statement pertains only to the test method portion,Section9,of this specification.This standard does not purport to address all of the safety concerns, if any,associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limita-tions prior to use.2.Referenced Documents2.1ASTM Standards:B368Test Method for Copper-Accelerated Acetic Acid-Salt Spray(Fog)Testing(CASS Testing)3B374Terminology Relating to Electroplating3B380Test Method of Corrosion by the Corrodkote Proce-dure3B487Test Method for Measurement of Metal and Oxide Coating Thicknesses by Microscopical Examination of a Cross Section3B499Test Method for Measurement of Coating Thick-nesses by the Magnetic Method:Nonmagnetic Coatings on Magnetic Basis Metals3B504Test Method for Measurement of Thickness of Me-tallic Coatings by the Coulometric Method3B537Practice for Rating of Electroplated Panels Subjected to Atmospheric Exposure3B567Method for Measurement of Coating Thickness by the Beta Backscatter Method3B568Method for Measurement of Coating Thickness by X-Ray Spectrometry31This specification is under the jurisdiction of ASTM Committee B-08on MetalPowders and Metal Powder Products and is the direct responsibility of Subcom-mittee B08.08.01on Engineering Coatings.Current edition approved July10,1997.Published October1997.Originallypublished as B733–st previous edition B733–90(1994).2The boldface numbers given in parentheses refer to a list of references at theend of the text.3Annual Book of ASTM Standards,V ol02.05.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.B571Test Methods for Adhesion of Metallic Coatings3B578Test Method for Microhardness of Electroplated Coatings3B602Test Method for Attribute Sampling of Metallic and Inorganic Coating3B656Guide for Autocatalytic Nickel-Phosphorus Deposi-tion on Metals for Engineering Use3B667Practice for Construction and Use of a Probe for Measuring Electrical Contact Resistance4B678Test Method for Solderability of Metallic-Coated Products3B697Guide for Selection of Sampling Plans for Inspection of Electrodeposited Metallic and Inorganic Coatings3B762Method for Variable Sampling of Metallic and Inor-ganic Coatings3B849Specification for Pre-Treatment of Iron or Steel for Reducing the Risk of Hydrogen Embrittlement3B850Specification for Post-Coating Treatments of Iron orSteel for Reducing the Risk of Hydrogen Embrittlement3 B851Specification for Automated Controlled Shot Peening of Metallic Articles Prior to Nickel,Autocatalytic Nickel, Chromium,or As A Final Finish3D1193Specification for Reagent Water5D2670Method for Measuring Wear Properties of Fluid Lubricants(Falex Method)6D2714Method for Calibration and Operation of an Alpha LFW-1Friction and Wear Testing Machine6D3951Practice for Commercial Packaging7D4060Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser8E60Practice for Photometric Methods for Chemical Analy-sis of Metals9E156Test Method for Determination of Phosphorus in High-Phosphorus Brazing Alloys(Photometric Method)10 E352Test Methods for Chemical Analysis of Tool Steels and Other Similar Medium-and High-Alloy Steel9F519Test Method for Mechanical Hydrogen Embrittle-ment11G5Practice for Standard Reference Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements12G31Practice for Laboratory Immersion Corrosion Testing of Metals12G59Practice for Conducting Potentiodynamic Polarization Resistance Measurements12G85Practice for Modified Salt Spray(Fog)Testing122.2Military Standards:MIL-R-81841Rotary Flap Peening of Metal Parts13MIL-S-13165Shot Peening of Metal Parts13MIL-STD-105Sampling Procedures and Tables for Inspec-tion by Attribute132.3ISO Standards:ISO4527Autocatalytic Nickel-Phosphorus Coatings—Specification and Test Methods143.Terminology3.1Definition:3.1.1significant surfaces—those substrate surfaces which the coating must protect from corrosion or wear,or both,and that are essential to the performance.3.2Other Definitions—Terminology B374defines most of the technical terms used in this specification.4.Coating Classification4.1The coating classification system provides for a scheme to select an electroless nickel coating to meet specific perfor-mance requirements based on alloy composition,thickness and hardness.4.1.1TYPE describes the general composition of the de-posit with respect to the phosphorus content and is divided into five categories which establish deposit properties(see Table1). N OTE1—Due to the precision of some phosphorus analysis methods a deviation of0.5%has been designed into this classification scheme. Rounding of the test results due to the precision of the limits provides for an effective limit of4.5and9.5%respectively.For example,coating with a test result for phosphorus of9.7%would have a classification of TYPE V,see Appendix X4,Alloy TYPEs.4.2Service Condition Based on Thickness:4.2.1Service condition numbers are based on the severity of the exposure in which the coating is intended to perform and minimum coating thickness to provide satisfactory perfor-mance(see Table2).4.2.2SC0Minimum Service,0.1µm—This is defined by a minimum coating thickness to provide specific material prop-erties and extend the life of a part or its function.Applications4Annual Book of ASTM Standards,V ol03.04.5Annual Book of ASTM Standards,V ol11.01.6Annual Book of ASTM Standards,V ol05.02.7Annual Book of ASTM Standards,V ol09.02.8Annual Book of ASTM Standards,V ol06.01.9Annual Book of ASTM Standards,V ol03.05.10Discontinued;see1992Annual Book of ASTM Standards,V ol03.05. 11Annual Book of ASTM Standards,V ol15.03.12Annual Book of ASTM Standards,V ol03.02.13Available from Standardization Documents Order Desk,Bldg.4Section D, 700Robbins Ave.,Philadelphia,PA19111-5094,Attn:NPODS.14Available from American National Standards Institute,11W.42nd St.,13th Floor,New York,NY10036.TABLE1Deposit Alloy TypesType Phosphorus%wtI No Requirement for PhosphorusII1to3III2to4IV5to9V10and aboveTABLE2Service ConditionsCoating Thickness RequirementsService ConditionMinimum CoatingThicknessSpecificationµm in.(mm)SC0Minimun Thickness0.10.000004()SC1Light Service50.0002()SC2Mild Service130.0005()SC3Moderate Service250.001()SC4Severe Service750.003()include requirements for diffusion barrier,undercoat,electrical conductivity and wear and corrosion protection in specialized environments.4.2.3SC1Light Service ,5µm—This is defined by a minimum coating thickness of 5µm for extending the life of the part.Typical environments include light-load lubricated wear,indoor corrosion protection to prevent rusting,and for soldering and mild abrasive wear.4.2.4SC2Mild Service ,13µm—This is defined by mild corrosion and wear environments.It is characterized by indus-trial atmosphere exposure on steel substrates in dry or oiled environments.4.2.5SC3Moderate Service ,25µm—This is defined by moderate environments such as non marine outdoor exposure,alkali salts at elevated temperature,and moderate wear.4.2.6SC4Severe Service ,75µm—This is defined by a very aggressive environment.Typical environments would include acid solutions,elevated temperature and pressure,hydrogen sulfide and carbon dioxide oil service,high-temperature chlo-ride systems,very severe wear,and marine immersion.N OTE 2—The performance of the autocatalytic nickel coating depends to a large extent on the surface finish of the article to be plated and how it was pretreated.Rough,non uniform surfaces require thicker coatings than smooth surfaces to achieve maximum corrosion resistance and minimum porosity.4.3Post Heat Treatment Class —The nickel-phosphorus coatings shall be classified by heat treatment after plating to increase coating adhesion and or hardness (see Table 3).4.3.1Class 1—As-deposited,no heat treatment.4.3.2Class 2—Heat treatment at 260to 400°C to produce a minimum hardness of 850HK100.4.3.3Class 3—Heat treatment at 180to 200°C for 2to 4h to improve coating adhesion on steel and to provide for hydrogen embrittlement relief (see section 6.6).4.3.4Class 4—Heat treatment at 120to 130°C for at least 1h to increase adhesion of heat-treatable (age-hardened)alumi-num alloys and carburized steel (see Note 3).4.3.5Class 5—Heat treatment at 140to 150°C for at least 1h to improve coating adhesion for aluminum,non age-hardened aluminum alloys,copper,copper alloys and beryl-lium.4.3.6Class 6—Heat treatment at 300to 320°C for at least 1h to improve coating adhesion for titanium alloys.N OTE 3—Heat-treatable aluminum alloys such as Type 7075can undergo microstructural changes and lose strength when heated to over 130°C.5.Ordering Information5.1The following information shall be supplied by the purchaser in either the purchase order or on the engineering drawing of the part to be plated:5.1.1Title,ASTM designation number,and year of issue of this specification.5.1.2Classification of the deposit by type,service condi-tion,class,(see 4.1,4.2and 4.3).5.1.3Specify maximum dimension and tolerance require-ments,if any.5.1.4Peening,if required (see6.5).5.1.5Stress relief heat treatment before plating,(see6.3).5.1.6Hydrogen Embrittlement Relief after plating,(see 6.6).5.1.7Significant surfaces and surfaces not to be plated must be indicated on drawings or sample.5.1.8Supplemental or Special Government Requirements such as,specific phosphorus content,abrasion wear or corro-sion resistance of the coating,solderability,contact resistance and packaging selected from Supplemental Requirements.5.1.9Requirement for a vacuum,inert or reducing atmo-sphere for heat treatment above 260°C to prevent surface oxidation of the coating (see S3).5.1.10Test methods for coating adhesion,composition,thickness,porosity,wear and corrosion resistance,if required,selected from those found in Section 9and Supplemental Requirements.5.1.11Requirements for sampling (see Section 8).N OTE 4—The purchaser should furnish separate test specimens or coupons of the basis metal for test purposes to be plated concurrently with the articles to be plated (see 8.4).6.Materials and Manufacture6.1Substrate —Defects in the surface of the basis metal such as scratches,porosity,pits,inclusions,roll and die marks,laps,cracks,burrs,cold shuts,and roughness may adversely affect the appearance and performance of the deposit,despite the observance of the best plating practice.Any such defects on significant surfaces shall be brought to the attention of the purchaser before plating.The producer shall not be responsible for coatings defects resulting from surface conditions of the metal,if these conditions have been brought to the attention of the purchaser.6.2Pretreatment —Parts to be autocatalytic nickel plated may be pretreated in accordance with Guide B 656.A suitable method shall activate the surface and remove oxide and foreign materials,which may cause poor adhesion and coating poros-ity.N OTE 5—Heat treatment of the base material may effect its metallur-gical properties.An example is leaded steel which may exhibit liquid or solid embrittlement after heat treatment.Careful selection of the pre and post heat treatments are recommended.TABLE 3Classification of Post Heat TreatmentCLASS DescriptionTemperature(°C)Time (h)1No Heat Treatment,As Plated2Heat Treatment for Maximum Hardness TYPE I260202851632084001TYPE II 350to 3801TYPE III 360to 3901TYPE IV 365to 4001TYPE V375to 40013Hydrogen Embrittlement and Adhesion on Steel180to 2002to 44Adhesion,Carburized Steel and Age Hardened Aluminum 120to 1301to 65Adhesion on Beryllium and Aluminum140to 1501to 26Adhesion on Titanium300–3201–46.3Stress Relief:6.3.1Pretreatment of Iron and Steel for Reducing the Risk of Hydrogen Embrittlement—Parts that are made of steel with ultimate tensile strength of greater than1000Mpa(hardness of 31HRC or greater),that have been machined,ground,cold formed,or cold straightened subsequent to heat treatment,shall require stress relief heat treatment when specified by the purchaser,the tensile strength to be supplied by the purchaser, Specification B849may be consulted for a list of pre-treatments that are widely used.6.3.2Peening—Peening prior to plating may be required on high-strength steel parts to induce residual compressive stresses in the surface,which can reduce loss of fatigue strength and improve stress corrosion resistance after plating. (See Supplementary Requirements).6.3.3Steel parts which are designed for unlimited life under dynamic loads shall be shot peened or rotaryflap peened.N OTE6—Controlled shot peening is the preferred method because there are geometry’s where rotaryflap peening is not effective.See S11.2. 6.3.3.1Unless otherwise specified,the shot peening shall be accomplished on all surfaces for which the coating is required and all immediate adjacent surfaces when they contain notches,fillets,or other abrupt changes of section size where stresses will be concentrated.6.4Racking—Parts should be positioned so as to minimize trapping of hydrogen gas in cavities and holes,allowing free circulation of solution over all surfaces to obtain uniform coating thickness.The location of rack or wire marks in the coating shall be agreed upon between the producer and purchaser.6.5Plating Process:6.5.1To obtain consistent coating properties,the bath must be monitored periodically for pH,temperature,nickel and hypophosphite.Replenishments to the plating solution should be as frequent as required to maintain the concentration of the nickel and hypophosphite between90and100%of set point. The use of a statistical regimen to establish the control limits and frequency of analysis may be employed to ensure quality deposits are produced.6.5.2Mechanical movement of parts and agitation of the bath is recommended to increase coating smoothness and uniformity and prevent pitting or streaking due to hydrogen bubbles.6.6Post Coating Treatment for Iron and Steel for Reducing the Risk of Hydrogen Embrittlement—Parts that are made of steel with ultimate tensile strengths of1000Mpa(hardness of 31HRC or greater),as well as surface hardened parts,shall require post coating hydrogen embrittlement relief baking when specified by the purchaser,the tensile strength to be supplied by the purchaser.Specification B850may be con-sulted for a list of post treatments that are widely used.6.6.1Heat treatment shall be performed preferably within1h but not more than3h of plating on plated after plating of steel parts to reduce the risk of hydrogen embrittlement.In all cases,the duration of the heat treatment shall commence from the time at which the whole of each part attains the specified temperature.6.6.2High-strength steel parts with actual tensile strengths greater than1000MPa(corresponding hardness values300 HV10,303HB or31HRC)and surface hardened parts shall be processed after coating in accordance with Specification B850.6.7Heat Treatment After Plating to Improve Adhesion—To improve the adhesion of the coating to various substrates,the heat treatments in Table3should be performed as soon as practical after plating(see4.3).6.8Heat Treatment After Plating to Increase Hardness: 6.8.1To increase the hardness of the coating a heat treat-ment of over260°C is required.Table3describes the heat treatment for maximum hardness.6.8.2See Appendixes3and4and Guide B656;Figs.X1.2 and Figs.X1.3.6.8.3A heat treatment at260°C for greater than20h should be used to reduce the loss of surface hardness and strength of some ferrous basis metals.Avoid rapid heating and cooling of plated parts.Sufficient time must be allowed for large parts to reach oven temperature.N OTE7—The length of time to reach maximum hardness varies with the phosphorus content of the deposit.High phosphorus deposits may require longer time or a higher temperature,or both.Individual alloys should be tested for maximum hardness attainable,especially for condi-tions of lower temperatures and longer times.N OTE8—Inert or reducing atmosphere or vacuum sufficient to prevent oxidation is recommended for heat treatment above260°C.Do not use gas containing hydrogen with high-strength steel parts.7.Requirements7.1Process—The coating shall be produced from an aque-ous solution through chemical reduction reaction.7.2Acceptance Requirements—These requirements are placed on each lot or batch and can be evaluated by testing the plated part.7.2.1Appearance:7.2.1.1The coating surface shall have a uniform,metallic appearance without visible defects such as blisters,pits, pimples,and cracks(see9.2).7.2.1.2Imperfections that arise from surface conditions of the substrate which the producer is unable to remove using conventional pretreatment techniques and that persist in the coating shall not be cause for rejection(see 6.1).Also, discoloration due to heat treatment shall not be cause for rejection unless special heat treatment atmosphere is specified (see section5.1.9).7.2.2Thickness—The thickness of the coating shall exceed the minimum requirements in Table2as specified by the service condition agreed to prior to plating(see9.3).After coating and if specified,the part shall not exceed maximum dimension on significant surface(see section5.1.3).N OTE9—The thickness of the coating cannot be controlled in blind or small diameter deep holes or where solution circulation is restricted. 7.2.3Adhesion—The coating shall have sufficient adhesion to the basis metal to pass the specified adhesion test(see9.4 and Test Methods B571).7.2.4Porosity—The coatings shall be essentially pore free when tested according to one of the methods of9.6.The test method,the duration of the test,and number of allowable spots per unit area shall be specified(see section5.1.10and9.6).7.3Qualification Requirements—These requirements are placed on the deposit and process and are performed on specimens to qualify the deposit and plating process.The tests for these qualification requirements shall be performed monthly or more frequently.7.3.1Composition—Type II,III,IV,V deposits shall be analyzed for alloy composition by testing for phosphorus(see 9.1).The weight percent of phosphorus shall be in the range designated by type classification(see4.1).7.3.2Microhardness—The microhardness of Class2depos-its shall be determined by Test Method B578(Knoop).For Class2coatings,the microhardness shall equal or exceed a minimum of850(HK100(or equivalent Vickers)(see4.3and 9.5).The conversion of Vickers to Knoop using Tables E140 is not recommended.7.3.3Hydrogen Embrittlement—The process used to de-posit a coating onto high strength steels shall be evaluated for hydrogen embrittlement by Test Method F519.8.Sampling8.1The purchaser and producer are urged to employ statis-tical process control in the coating process.Properly performed this will ensure coated products of satisfactory quality and will reduce the amount of acceptance inspection.8.1.1Sampling plans can only screen out unsatisfactory products without assurance that none of them will be accepted.(7)8.2The sampling plan used for the inspection of a quantity of coated parts(lot)shall be Test Method B602unless otherwise specified by purchaser in the purchase order or contract(see section5.1.11and S.11.1).N OTE10—Usually,when a collection of coated parts(the inspection lot8.2)is examined for compliance with the requirements placed on the partsa relatively small number of parts,the sample,is selected at random and inspected.The inspection lot is then classified as complying or not complying with the requirements based on the results of the inspection sample.The size of the sample and the criteria of compliance are determined by the application of statistics.The procedure is known as sampling inspection.Three standards Test Method B602,Guide B697, and Test Method B762contain sampling plans that are designed for the sampling inspection of coatings.Test Method B602contains four sampling plans,three for use with tests that are nondestructive and one for use with tests that are destructive.The purchaser and producer may agree on the plan(s)to be used.If they do not, Test Method B602identifies the plan to be used.Guide B697provides a large number of plans and also gives guidance on the selection of a plan.When Guide B697is specified,the purchaser and producer need to agree on the plan to be used.Test Method B762can be used only for coating requirements that have a numerical limit,such as coating thickness.The last must yield a numerical value and certain statistical requirements must be met.Test Method B762contains several plans and also gives instructions for calculating plans to meet special needs.The purchaser and producer may agree on the plan(s)to be used.If they do not,Test Method B762 identifies the plan to be used.An inspection lot shall be defined as a collection of coated parts which are of the same kind,that have been produced to the same specification, that have been coated by a single producer at one time or approximately the same time under essentially identical conditions,and that are submit-ted for acceptance or rejection as a group.8.3All specimens used in the sampling plan for acceptance tests shall be made of the same basis material and in the same metallurgical condition as articles being plated to this specifi-cation.8.4All specimens shall be provided by the purchaser unless otherwise agreed to by the producer.N OTE11—The autocatalytic nickel process is dynamic and a daily sampling is recommended.For Coatings requiring alloy analysis and corrosion testing weekly sampling should be considered as an option. 9.Test Methods9.1Deposit Analysis for Phosphorus:9.1.1Phosphorus Determination—Determine mass% phosphorus content according to Practice E60,Test Methods E352,or Test Method E156on known weight of deposit dissolved in warm concentrated nitric acid.9.1.2Composition can be determined by atomic absorption, emission or X-rayfluorescence spectrometry.N OTE12—Inductively coupled plasma techniques can determine the alloy to within0.5%.The following analysis wavelength lines have been used with minimum interference to determine the alloy.Ni216.10nm Cd214.44nm Fe238.20nmP215.40nm Co238.34nm Pb283.30nmP213.62nm Cr284.32nm Sn198.94nmAl202.55nm Cu324.75nm Zn206.20nm9.2Appearance—Examine the coating visually for compli-ance with the requirements of7.2.1.9.3Thickness:N OTE13—Eddy-current type instruments give erratic measurements due to variations in conductivity of the coatings with changes in phosphorus content.9.3.1Microscopical Method—Measure the coating thick-ness of a cross section according to Test Method B487.N OTE14—To protect the edges,electroplate the specimens with a minimum of5µm of nickel or copper prior to cross sectioning.9.3.2Magnetic Induction Instrument Method—Test Method B499is applicable to magnetic substrates plated with auto-catalytic nickel deposits,that contain more than11mass% phosphorus(not ferromagnetic)and that have not been heat-treated.The instrument shall be calibrated with deposits plated in the same solution under the same conditions on magnetic steel.9.3.3Beta Backscatter Method—Test Method B567is only applicable to coatings on aluminum,beryllium,magnesium, and titanium.The instrument must be calibrated with standards having the same composition as the coating.N OTE15—The density of the coating varies with its mass%phospho-rus content(See Appendix X2).9.3.4Micrometer Method—Measure the part,test coupon, or pin in a specific spot before and after plating using a suitable micrometer.Make sure that the surfaces measured are smooth, clean,and dry.9.3.5Weigh,Plate,Weigh Method—Using a similar sub-strate material of known surface area,weigh to the nearest milligram before and after plating making sure that the part or coupon is dry and at room temperature for eachmeasurement.Calculate the thickness from the increase in weight,specific gravity,and area as follows:coating thickness,µm510W/~A3D!(1) where:W=weight gain in milligrams,A=total surface area in square centimetres,andD=grams per cubic centimetres(see Appendix X2).9.3.6Coulometric Method—Measure the coating thickness in accordance with Test Method B504.The solution to be used shall be in accordance with manufacturer’s recommendations. The surface of the coating shall be cleaned prior to testing(see Note14).9.3.6.1Calibrate standard thickness specimens with depos-its plated in the same solution under the same conditions. 9.3.7X-Ray Spectrometry—Measure the coating thickness in accordance with Test Method B568.The instrument must be calibrated with standards having the same composition as the coating.N OTE16—This method is only recommended for deposits in the as-plated condition.The phosphorus content of the coating must be known to calculate the thickness of the deposit.Matrix effect due to the distribution of phosphorus in layers of the coating also effect the measurement accuracy and require that calibration standards be made under the same conditions as the production process.9.4Adhesion:9.4.1Bend Test(Test Methods B571)—A sample specimen is bent180°over a mandrel diameter43the thickness(10mm minimum)of the specimen and examined at43power magnification forflaking or separation at the interface.Fine cracks in the coating on the tension side of the bend are not an indication of poor adhesion.Insertion of a sharp probe at the interface of the coating and basis metal to determine the adhesion is suggested.N OTE17—Appropriate test specimens are strips approximately25to50 mm wide,200to300mm long and3to6mm thick.9.4.2Impact Test—A spring-loaded center punch with a point having2to3mm radius is used to test adhesion of the coating on nonsignificant surfaces of the plated part.Make three closely spaced indentations and examine under103 magnification forflaking or blistering of the coating,which is cause for rejection.9.4.3Thermal Shock—The coated part is heated to200°C in an oven and then quenched in room temperature water.The coating is examined for blistering or other evidence of poor adhesion at43magnification.9.5Microhardness—The microhardness of the coating can be measured by Test Method B578using Knoop indenter and is reported in Knoop Hardness Number(HK).It will vary depending on loads,type of indenter,and operator.A100g load is recommended.The rhombic Knoop indenter gives higher hardness readings than the square-base pyramidal Vickers diamond indenter for100to300g loads,see Ref(6).For maximum accuracy,a minimum coating thickness of75µm is recommended.Conversions of Vickers or Knoop hardness number to Rockwell C is not recommended.N OTE18—On thick(75µm+)coatings on steel a surface microhardness determination is permissible.9.6Porosity—There is no universally accepted test for porosity.When required,one of the following tests can be used on the plated part or specimen.9.6.1Ferroxyl Test for Iron Base Substrates—Prepare the test solution by dissolving25g of potassium ferricyanide and 15g of sodium chloride in1L of distilled water.After cleaning,immerse the part for30s in the test solution at25°C. After rinsing and air drying,examine the part for blue spots, which form at pore sites.9.6.2Boiling Water Test for Iron-Base Substrates—Completely immerse the part to be treated in a vesselfilled with aerated water at room temperature.Apply heat to the beaker at such a rate that the water begins to boil in not less than15min,nor more than20min after the initial application of heat.Continue to boil the water for30min.Then remove the part,air dry,and examine for rust spots,which indicate pores. N OTE19—Aerated water is prepared by bubbling clean compressed air through distilled water by means of a glass diffusion disk at room temperature for12h.The pH of the aerated water should be6.7+0.5.9.6.3Aerated Water Test for Iron-Base Substrates—Immerse the part for4h in vigorously aerated Type IV or better water(see Specification D1193)at2562°C temperature and then examine the part for rust spots.9.6.4Alizarin Test for Aluminum Alloys—Wipe the plated part or specimen with10mass%sodium hydroxide solution. After3min contact,rinse,and apply a solution of alizarin sulfonate prepared by dissolving1.5g of methyl cellulose in90 mL of boiling water to which,after cooling,0.1g sodium alizarin sulfonate,dissolved in5mL of ethanol is added.After 4min contact,apply glacial acetic acid until the violet color disappears.Any red spots remaining indicate pores.9.6.5Porosity Test for Copper Substrates—Wipe the plated part or specimen with glacial acetic acid.After3min,apply a solution of potassium ferrocyanide prepared by dissolving1g of potassium ferrocyanide and1.5g methyl cellulose in90mL of boiling distilled water.The appearance of brown spots after 2min indicate pores.9.7Other Test Methods—Test methods which have been developed that are equal to or better than these may be substituted.The precision and bias requirements will vary for each type of test.If an alternate test is specified it shall be agreed upon between the producer and the purchaser.10.Rejection and Rehearing10.1Part(s)that fail to conform to the requirements of this standard may be rejected.Rejection shall be reported to the producer promptly in writing.In the case of dissatisfaction occurs with the results of a test,the producer may make a claim for a hearing.Coatings that show imperfections may be rejected.11.Certification11.1When specified in the purchase order or contract,the purchaser shall be furnished certification that the samples representing each lot have been processed,tested and inspected as directed in this specification and the requirements havebeen。
钢的化学镀镍磷
钢的化学镀镍磷DC金属3090****** 材料科学与工程学院摘要:本文简要介绍了钢铁化学镀镍磷的原理与工艺流程,简述了镀层的性能及技术指标,随之分析了影响镀层性能的主要因素,并据此给出了工艺中的除锈配方和镀液配方,最后对试验参数进行了测定与比较,得出了一定的结论,由此论证了化学镀镍磷的重要作用和这一工艺对钢铁性能改进的重要影响。
关键词:原子氢态理论镀层工艺热处理参数测定前言:化学镀镍磷工艺是近年来迅速发展起来的一种新型表面保护和表面强化技术手段,具有广泛的应用前景。
目前化学镀镍磷合金已广泛地应用在石油化工、石油炼制、电子能源、汽车、化工等行业。
石油炼制和石油化工是其最大的市场,并且随着人们对这一化学镀特性的认识,它的应用也越来越广泛,主要用在石油炼制、石油化工的冷换设备上,化学镀镍磷能够显著提高设备的耐磨、耐蚀性能,延长其寿命,性能优于目前使用的有机涂料,而且适用于碳钢、铸铁、有色金属等不同基材[1]。
一、实验原理化学镀镍磷合金是一种在不加电流的情况下,利用还原剂在活化零件表面上自催化还原沉积得到镍磷镀层的方法。
其主要反应为应用次亚磷酸钠还原镍离子为金属镍,即在水溶液中镍离子和次亚磷酸根离子碰撞时,由于镍触媒作用析出原子态氢,而原子态氢又被催化金属吸附并使之活化,把水溶液中的镍离子还原为金属镍形成镀层,另外次亚磷酸根离子由于在催化表面析出原子态氢的作用,被还原成活性磷,与镍结合形成Ni-P合金镀层。
以次磷酸钠为还原剂的化学镀镍磷工艺,其反应机理,现普遍被接受的是“原子氢态理论”和“氢化物理论”。
下面介绍“原子氢态理论”,其过程可分为以下四步:1、化学沉积镍磷合金镀液加热时不起反应,而是通过金属的催化作用,次亚磷酸根在水溶液中脱氢而形成亚磷酸根,同时放出初生态原子氢。
H2PO2-+H2O→HPO3-+2H+H-2、初生态原子氢被吸附在催化金属表面上而使其活化,使镀液中的镍阳离子还原,在催化金属表面上沉积金属镍。
化学镀镍的磷含量分类
化学镀镍的磷含量分类 The manuscript was revised on the evening of 2021
化学镀镍的分类有很多,如化学镀Ni-P、化学镀Ni-P-(CF)n, Ni-P-CaF2, Ni-P-PTFE,Ni-P-SiC, Ni-B-SiC, Ni-P-Al203、Ni-P-Cr203, Ni-P-TiN、Ni-P-B4C, Ni-P-Si3N4等等。
化学镀Ni-P所镀出的镀层为镍磷合金,按其制出的镀层磷含量(重量百分比)的不同可分为:低磷化学镀液、中磷化学镀液和高磷化学镀液三大类;磷含量位于1%-4%的称为低磷化学镀液,磷含量在5%-8%的为中磷化学镀液,磷含量位于9%"12%的为高磷化学镀液。
低磷化学镀液得到的镀层硬度高、耐磨,特别耐碱腐蚀,得到的镀层颜色偏暗,可焊接性很强,许多轻金属元件可用低磷化学镍改进可焊接性,因此广泛应用于电子领域,且低磷化学镍得到的镀层由于耐磨性特别好,也常应用于磨损件,如机械零件等;
高磷化学镀液得到的镀层属于非晶态结构,有很优良的耐蚀性,有些镀层的耐蚀性优于不锈钢,而且高磷化学镀层是非磁性的,因而广泛应用于计算机工业中;
中磷化学镀液得到的镀层性能介于二者之间,镀层颜色是三者中最亮的,有点偏白。
电镀加工就选银华鑫!。
化学镀镍磷合金过程中磷的析出及其对镀层性能的影响
化学镀镍磷合金过程中磷的析出及其对镀层性能的影响一、本文概述本文旨在深入探讨化学镀镍磷合金过程中磷的析出行为及其对镀层性能的影响。
化学镀镍磷合金作为一种重要的表面处理技术,广泛应用于电子、航空、汽车等领域,以提高材料的耐腐蚀性、耐磨性和电磁性能。
其中,磷的析出是影响镀层性能的关键因素之一。
因此,对磷析出行为的研究具有重要的理论和实践意义。
本文首先简要介绍了化学镀镍磷合金的基本原理和工艺过程,重点阐述了磷在镀层中的析出机制,包括磷的来源、析出条件以及析出动力学等方面。
随后,通过对比分析不同磷含量镀层的性能差异,探讨了磷析出对镀层耐腐蚀性、硬度、电导率等性能的影响规律。
在此基础上,本文还进一步分析了磷析出行为的影响因素,如镀液成分、温度、pH值等,以及这些因素如何调控磷的析出过程。
本文总结了磷析出行为对化学镀镍磷合金镀层性能的影响,并提出了优化镀层性能的策略和建议。
通过本文的研究,不仅有助于深入理解化学镀镍磷合金过程中的磷析出行为,还为实际生产中的工艺优化和性能提升提供了有益的理论指导和实践依据。
二、化学镀镍磷合金过程中磷的析出在化学镀镍磷合金的过程中,磷的析出是一个关键且复杂的化学反应过程。
这一过程中,磷元素从镀液中以一定的方式被还原并沉积到镍基体上,与镍元素共同形成镍磷合金镀层。
我们需要了解化学镀镍磷合金的基本原理。
在适当的条件下,镀液中的镍离子和磷离子通过还原剂的作用被还原成金属镍和磷,并在基体表面形成一层均匀的合金镀层。
这一过程涉及到多个化学反应步骤,包括还原剂的选择、反应条件的控制以及磷析出机制的研究。
在磷的析出过程中,反应动力学和热力学因素起着重要作用。
反应动力学影响磷的析出速率和分布,而热力学则决定了磷在镀层中的存在形式和稳定性。
镀液中的磷浓度、pH值、温度以及搅拌速度等因素也会对磷的析出产生显著影响。
磷的析出机制主要包括两种:一种是磷原子直接替代镍原子进入镍的晶格中,形成固溶体;另一种是磷原子聚集成磷颗粒,分布在镍基体上。
化学镀镍磷方法
化学镀镍磷介绍一、化学镀镍溶液的成分分析为了保证化学镀镍的质量,必须始终保持镀浴的化学成分、工艺技术参数在最佳范围(状态),这就要求操作者经常进行镀液化学成分的分析与调整。
1.Ni2+浓度镀液中镍离子浓度常规测定方法是用EDTA络合滴定,紫脲酸胺为指示剂。
试剂(1)浓氨水(密度:0.91g/ml)。
(2)紫脲酸胺指示剂(紫脲酸胺:氯化钠=1:100)。
(3)EDTA容液 0.05mol,按常规标定。
分析方法:用移液管取出10ml冷却后的化学镀镍液于250ml的锥形瓶中,并加入100ml蒸馏水、15ml浓氨水、约0.2g指示剂,用标定后的EDTA溶液滴定,当溶液颜色由浅棕色变至紫色即为终点。
镍含量的计算:C Ni2+= 5.87 M·V (g/L)式中 M——标准EDTA溶液的摩尔浓度;V——耗用标准EDTA溶液的毫升数。
2.还原剂浓度次亚磷酸钠NaH2PO2·H2O浓度的测定其原理是在酸性条件下,用过量的碘氧化次磷酸钠,然后用硫代硫酸钠溶液反滴定自剩余的碘,淀粉为指示剂。
试剂(1)盐酸 1:1。
(2)碘标准溶液0.1mol按常规标定。
(3)淀粉指示剂1%。
(4)硫代硫酸钠0.1mol按常规标定。
分析方法:用移液管量取冷却后的镀液5ml于带盖的250mL锥形瓶中;加入盐酸25mL碘标准溶液于此锥形瓶中,加盖,置于暗处0.5h(温度不得低于25℃);打开瓶盖,加入1mL淀粉指示剂,并用硫代硫酸钠标准溶液滴定至蓝色消失为终点。
计算:C NaH2PO2·H2O = 10.6(2M1V1-M2V2) (g/L)式中 M1——标准碘溶液的摩尔浓度;V1——标准碘溶液毫升数;M2——标准硫代硫酸钠溶液的摩尔浓度;V2——耗用标准硫代硫酸钠溶液毫升数。
3.NaHPO3·5H2O的浓度化学镀镍浴还原剂反应产物中影响最大的是次磷酸钠的反应产物亚磷酸钠。
其他种类的还原剂的反应产物的影响较小甚至几乎无影响,如DMAB。
化学镍中磷和高磷的区别
化学镍中磷和高磷的区别化学镍是一种常用的镀层材料,具有良好的电导性、耐腐蚀性和磨损性,被广泛应用于电子、航空航天、汽车等领域。
在化学镍中,磷是常用的添加元素之一,而高磷镍则是一种特殊类型的化学镍。
本文将从成分、性质、应用等方面,对化学镍中的磷和高磷进行比较和分析,以便更好地理解它们的区别。
1. 成分差异化学镍中的磷通常以磷酸盐的形式存在,如磷酸镍、磷酸氢镍等。
这些磷酸盐是磷元素与镍元素的化合物,它们能够在化学镀镍过程中提供磷元素源。
而高磷镍则是指镀层中磷含量较高的化学镍,一般磷的含量超过10%。
2. 性质对比磷在化学镍中具有一定的缓蚀作用,可以提高镀层的耐腐蚀性能。
此外,磷还能够增加镀层的硬度和抗磨性,提高镀层的耐磨性能。
因此,在需要提高化学镍的耐蚀性和耐磨性的情况下,通常会选择添加磷元素。
而高磷镍镀层的主要特点是磷含量较高,这使得镀层具有良好的耐腐蚀性能和耐磨性能。
高磷镍镀层具有优异的耐酸性和耐碱性,在酸性或碱性环境下依然能够保持较好的性能。
此外,高磷镍镀层还具有良好的自润滑性能,能够减少摩擦和磨损,提高零件的使用寿命。
3. 应用领域由于磷能够改善化学镍的性能,因此磷在化学镍中的应用非常广泛。
磷镀层通常用于提高金属材料的耐腐蚀性能和耐磨性能,例如在汽车零部件、电子元器件等领域中得到广泛应用。
高磷镍镀层由于其出色的耐腐蚀性和耐磨性,在特定领域有着独特的应用价值。
例如,在海洋环境下,高磷镍镀层能够有效抵御海水的腐蚀,保护金属材料不受海水侵蚀;在化工设备中,高磷镍镀层能够提供良好的耐酸碱性能,保护设备不受腐蚀。
总结:化学镍中的磷和高磷具有不同的成分、性质和应用。
磷在化学镍中能够改善镀层的耐腐蚀性和耐磨性,广泛应用于汽车、电子等领域。
而高磷镍则是一种磷含量较高的化学镍,具有出色的耐腐蚀性和耐磨性,适用于海洋环境和化工设备等特殊领域。
通过对两者的比较和分析,可以更好地选择适合的化学镍材料,满足不同领域的需求。
6063铝合金化学镀镍-磷合金镀层的性能
6063铝合金化学镀镍-磷合金镀层的性能李兴奎【摘要】以6063铝合金为基体进行化学镀Ni-P合金镀层,镀液组成和工艺条件为:NiSO4·6H2O 25~28 g/L,NaH2PO2·H2O 20~25 g/L,NH4HF2 20~23g/L,CH3COONa·3H2O 15~20 g/L,C6H8O78g/L,KIO3 0.1 g/L,温度(80±2)℃,pH 5.5~6.0,时间2h.表征了Ni-P镀层的形貌、结构、结合力、孔隙率以及耐蚀性等性能.结果表明,Ni-P镀层表面致密,呈非晶态,厚度为15μm,显微硬度为476 HV,结合力良好,耐蚀性明显优于基体.【期刊名称】《电镀与涂饰》【年(卷),期】2014(033)013【总页数】3页(P550-552)【关键词】铝合金;镍-磷合金;化学镀;结构;显微硬度;结合力;耐蚀性【作者】李兴奎【作者单位】四川建筑职业技术学院材料工程系,四川德阳618000【正文语种】中文【中图分类】TG153.26063铝合金具有抗拉强度高、条件屈服强度高、伸长率高等优点,但其耐酸、碱和盐腐蚀的性能较差,并且硬度低、耐磨性差,严重阻碍了其应用。
因此,在一些场合需要对其进行表面处理以提高耐蚀性。
采用电镀、化学转化、涂装、高能束表面改性等技术可防止或减缓铝合金的腐蚀,其中化学镀 Ni–P具有耐蚀性和耐磨性优异、结合力好、硬度高等优点,已成为很多金属及合金的常用表面防护方法[1-4]。
有关铝合金化学镀镍的报道也较多[5-9]。
贺忠臣等[10]研究了热处理温度对6063铝合金化学镀镍层耐蚀性的影响。
刘开云[11]研究了高压阳极氧化及中温直接化学镀镍对6063铝合金性能的影响。
冯立明等[12]针对6063铝合金开发了一种仅包含脱脂、浸锌及水洗等前处理工序的化学镀镍磷合金工艺,所得镀镍层光泽度高、结合力强、颜色稳定、结构致密,磷含量在10%~12%之间,镀态硬度在500 HV以上,远高于阳极硬质氧化层。
镍磷化学镀
镍磷化学镀镍磷化学镀是一种常用的表面处理技术,可以在金属表面形成一层均匀且具有良好性能的镍磷合金保护层。
本文将对镍磷化学镀的原理、工艺以及应用进行详细阐述。
镍磷化学镀是一种通过电化学方法在金属表面形成镍磷合金保护层的技术。
它主要通过在镀液中加入适量的镍盐和磷化合物,利用外加电流的作用,将金属离子还原成纯镍和磷,从而在金属表面形成一层镍磷合金保护层。
镍磷合金保护层不仅具有良好的耐腐蚀性能,还具有较高的硬度和良好的润滑性,可以提高金属件的耐磨损性能和润滑性能。
镍磷化学镀的工艺包括镀液配制、预处理、镀液调节、电镀、后处理等几个步骤。
首先,需要根据镀件的材质和要求配制合适的镀液。
镀液的成分应根据不同的应用场景进行调整,通常包括镍盐、磷化合物、缓冲剂、络合剂等。
其次,对镀件进行预处理,包括去油、去污、酸洗等步骤,以确保金属表面的清洁度和粗糙度。
然后,通过调节镀液的温度、pH值、电流密度等参数,使其达到最佳电镀条件。
在电镀过程中,金属离子会在阴极上还原成纯镍和磷,形成镍磷合金保护层。
最后,还需要进行后处理,包括洗涤、干燥、烘烤等步骤,以增强镀层的附着力和耐腐蚀性能。
镍磷化学镀具有广泛的应用领域。
首先,镍磷合金保护层具有较好的耐腐蚀性能,可以保护金属件不受氧化、腐蚀等环境因素的侵蚀,延长其使用寿命。
因此,镍磷化学镀广泛应用于汽车、航空航天、电子电器等行业的零部件和设备中。
其次,镍磷合金保护层还具有较高的硬度和良好的润滑性,可以提高金属件的耐磨损性能和润滑性能。
因此,镍磷化学镀也广泛应用于摩擦副、滑动轴承等设备中,以减少磨损和摩擦。
此外,镍磷化学镀还可以用作金属修复和修饰的手段,可以修复金属件的表面缺陷和损伤,提高其外观质量。
值得注意的是,镍磷化学镀虽然具有许多优点,但也存在一些问题。
首先,镍磷化学镀过程中会产生一定的废液和废气,这对环境造成一定的污染。
因此,在使用镍磷化学镀技术时,需要采取相应的措施来处理废液和废气,以减少对环境的影响。
化学镀镍磷工艺流程
化学镀镍磷工艺流程化学镀镍磷工艺流程1. 概述•化学镀镍磷是一种常用的表面镀层技术,可用于提供金属零件的保护和装饰效果。
•本文将详细介绍化学镀镍磷的工艺流程,包括准备工作、镀液配制、前处理、镀层形成、后处理等环节。
2. 准备工作•确保所需设备、化学品和工具的齐备。
•检查工作场所的安全措施是否到位,包括通风设备和防护服装。
•对所使用的化学品和设备进行保养和清洁,确保其可靠性和操作性。
3. 镀液配制•根据具体要求,将所需化学品按比例配制好镀液。
•配制过程中要注意安全措施,避免化学品的直接接触和溅洒。
•严格按照指导和标准配制,确保镀液的质量和稳定性。
4. 前处理•将待镀物清洗干净,去除表面的油脂和杂质。
•常用的前处理方法包括碱洗、酸洗、电解清洗等,根据具体情况选择适合的方法。
•前处理的目的是为了提供良好的镀液间隙,以便后续的镀液对表面进行镀层形成。
5. 镀层形成•将经过前处理的待镀物浸入镀液中,通过电流和化学反应来形成镀层。
•根据具体要求,控制好镀液的温度、PH值、电流密度等参数,以获得理想的镀层效果。
•镀层形成过程中要注意观察和调整,确保镀层的均匀性和质量。
6. 后处理•镀层形成后,进行必要的后处理,包括清洗、除油、抛光、干燥等环节。
•后处理的目的是去除镀液残留和净化镀层表面,使其更加美观和持久。
•经过后处理后,镀层可以进一步进行质量检验和包装封装。
结论•化学镀镍磷工艺是一种常用的表面镀层技术,适用于金属零件的保护和装饰。
•工艺流程包括准备工作、镀液配制、前处理、镀层形成和后处理等环节。
•遵守工艺规范和操作规程,可以获得理想的镀层效果和产品质量。
7. 常见问题及解决方案•问题一:镀液出现混浊或变色现象。
–解决方案:检查镀液的成分是否配比正确,如有误差需进行调整;同时清洗镀槽,确保镀液和镀槽的清洁度。
•问题二:镀层出现不均匀或剥落现象。
–解决方案:检查前处理步骤是否完整和彻底,如有不合格的待镀物需重新处理;调整镀液中的温度、PH值和电流密度等参数。
化学镀Ni-P表面镀层
化学镀镍,又称为无电解镀镍或自催化镀镍,是通过 溶液中适当的还原剂使金属离子在金属表面靠自催化的还 原作用而进行的金属沉积过程。
本实验组 成员: 乔宝英 涂宁
裘建铭
谭铜发
田径
化学镀镍的基本原理
以次磷酸钠为还原剂的化学镀镍磷工艺,其反应机理,普遍被接受的是 “原子氢理论”和“氢化物理论”。下面介绍“原子氢理论”,其过 程可分为: 1、化学沉积镍磷合金镀液加热时不起反应,而是通过金属的催化作用, 次亚磷酸根在水溶液中脱氢而形成亚磷酸根,同时放出初生态原子氢 。 H2PO2 - + H2O HPO3-+2H+H+ 2、初生态原子氢被吸附在催化金属表面上而使其活化,使镀液中的镍 阳离子还原,在催化金属表面上沉积金属镍。 Ni2++2H Ni+2H+ 3、在催化金属表面上的初生态原子氢使次亚磷酸根还原成磷。同时, 由于催化作用使次亚磷酸根分解,形成亚磷酸根和分子态氢。 H2PO2 -+H H2O+OH- +P 2H H2 4、镍原子和磷原子共沉积,并形成镍磷合金层。
注意事项
1.工序不可颠倒,且要连贯,工序间不宜停留太长时间 ; 2.在配置过程中一定要进行搅拌; 3.在进行pH值调整时除了应在剧烈搅拌下进行外,药品 的加入还应缓慢少量; 4.要在所需溶液全部配完后开始第一步化学除油处理, 且在活化之后要 迅速将工件放入镀液中,以免被氧化。
镀层的检测
具体步骤如下: 锯开→镶嵌→砂轮磨→砂纸磨→抛光→腐蚀(3%硝酸 酒精溶液)→酒精洗→烘干→金相显微镜观察→测镀层厚度 →拍照片 1.外观检查:用肉眼或低倍放大镜对表面进行检查,可观察表 面层所产生的不平整,气孔,飞溅,表面裂纹,甚至剥落等 表面缺陷 2.表面层厚度的测定: 将表面层切开,从断面对其厚度进行测量或者利用镀膜后的 增重来计算出表面层厚度的方法。 3.表面力学性能的测量:由于镀层厚度大于10微米,采用通常 的硬度仪及显微硬度仪进行力学性能测量即可。
镀镍磷硬度
镀镍磷硬度镀镍磷硬度是指经过镀镍磷处理后的材料表面硬度。
镀镍磷是一种电镀层,可以提高材料的耐磨性和抗腐蚀性,同时也能增加材料的硬度。
在本文中,我们将从镀镍磷的制备过程、其对材料硬度的影响以及应用领域等方面进行介绍。
我们来看一下镀镍磷的制备过程。
镀镍磷是通过电化学方法在材料表面形成的一层镍磷合金层。
制备过程中,首先需要将材料表面进行清洗和预处理,以去除表面的污垢和氧化物。
然后,将材料浸入含有镍盐和磷酸盐的电解液中,通过施加电流使镍离子和磷酸根离子在材料表面沉积形成镍磷合金层。
最后,经过清洗和干燥,就得到了镀镍磷处理后的材料。
镀镍磷对材料硬度的影响主要体现在两个方面。
首先,镍磷合金层本身具有较高的硬度。
镍磷合金层中的镍元素具有良好的硬度,可以有效提高材料的硬度。
其次,镀镍磷处理可以改变材料的晶体结构,使其具有更高的晶界密度和细小的晶粒尺寸,从而提高材料的硬度。
此外,镀镍磷处理还可以提高材料的抗疲劳性能和耐蚀性能,对于提高材料的使用寿命和耐久性也具有重要意义。
镀镍磷硬度的提高使得其在许多领域有着广泛的应用。
首先,镀镍磷处理可以应用于机械零件的表面处理,以提高其耐磨性和抗腐蚀性。
例如,汽车发动机缸体、活塞环等零部件经过镀镍磷处理后,可以有效减少因摩擦而引起的磨损和腐蚀,延长使用寿命。
其次,镀镍磷处理还可以应用于电子元器件的制造中,以提高其导电性能和耐腐蚀性能。
例如,半导体器件的金属引线经过镀镍磷处理后,可以提高其导电性能,减少因氧化而引起的电阻增加。
再次,镀镍磷处理还可以应用于食品加工和医疗器械等领域,以提高材料的耐腐蚀性和卫生性能。
总结一下,镀镍磷处理可以提高材料的硬度,同时还能改善材料的耐磨性和抗腐蚀性。
镀镍磷处理的制备过程包括清洗、电镀和清洗等步骤。
镀镍磷硬度的提高使得其在机械、电子、食品加工和医疗器械等领域有着广泛的应用。
希望通过本文的介绍,能够对镀镍磷硬度有一定的了解。
化学镀镍磷
• 2.氢化物理论
• H2PO2-+H2O→催化表面HPO32—十2H++H— • Ni2++2H—→Ni+H2↑ • H++H—→H2↑ • 2PO22—+6H—十4H2O→2P十3H2↑十+8OH— • Ni2++H2PO22-+H2O-→HPO32-+3H++Ni
• 3.电化学理论
• H2PO2-+H2O→H2PO3-+2H++2e— • Ni2++2e—→Ni
• 化学镀过程中,镀液中的亚磷酸根浓度会不断 升高,达到一定浓度后便会形成亚磷酸镍沉淀。 它将破坏镀液的化学平衡,而且会触发镀液自 发分解。
• 缓冲剂:常用的缓冲剂有醋酸钠、硼酸等,有 的络合剂同时也是缓冲剂。缓冲剂是为了防止 pH明显变化的。镀液使用过程中pH值将降低, 必须定期进行调整,用碱中和调节。
• 次亚磷酸纳浓度高,镀速增大,同时镀液的稳定性降低。消 耗的还原剂按比例补充,以维持镀速和镀层的稳定性。
• 次磷酸根的氧化物为亚磷酸根,是对镀液有害的杂质离子, 可生成亚磷酸镍沉淀,使镀层粗糙,可诱发镀液的分解。
• 络合剂(配合剂):常用的配合剂有乳酸、苹 果酸、琥珀酸等。为了避免化学镀槽液自然分 解和控制镍只能在催化表面上进行沉积反应及 反应速率,镀液中必须加入络合剂。络合剂与 镍离子形成稳定的络合物后,用来控制可供反 应的游离镍离子量(降低溶液中游离镍离子浓 度),可以稳定槽液和抑制亚磷酸镍或氢氧化 钠沉淀的作用。
• 2H++2e—→H2↑ • H2PO2-十e—→P+2OH— • Ni2++H2PO2-十H2O→H2PO3-+2H++Ni
化学镀镍磷
化学镀科技名词定义中文名称:化学镀英文名称:electroless plating其他名称:自催化镀定义:在经活化处理的基体表面上,镀液中金属离子液催化还原形成金属镀层的过程。
应用学科:机械工程(一级学科);表面工程(二级学科);电镀与化学镀(三级学科)百科名片目录化学镀/无电沉积(electroless plating)化学镀原理对非金属的化学镀需要敏化活化处理1化学镀Ni-P一、化学镀Ni-P主要技术指标1二、化学镀Ni-P主要技术特点1三、化学镀Ni-P主要应用部件化学镀镍溶液的组成及其作用技术特性适镀基材化学镀镍磷合金层的性能化学镀技术应用化学镀在非金属材料表面的应用1.尼龙表面镀银、镀铜、镀镍2.塑料工件表面装饰镀3丙纶纤维上化学镀铜4化学浸镀铜化学镀在中国化学镀/无电沉积(electroless plating)化学镀技术是在金属的催化作用下,通过可控制的氧化还原反应产生金属的沉积过程。
与电镀相比,化学镀技术具有镀层均匀、针孔小、不需直流电源设备、能在非导体上沉积和具有某些特殊性能等特点。
另外,由于化学镀技术废液排放少,对环境污染小以及成本较低,在许多领域已逐步取代电镀,成为一种环保型的表面处理工艺。
目前,化学镀技术已在电子、阀门制造、机械、石油化工、汽车、航空航天等工业中得到广泛的应用。
本研究所经过十余年的化学镀技术研究开发工作,已具备化学镀镍(中磷、低磷、高磷)工艺,可根据客户提供的部件的使用工况,制定出具体的化学镀工艺方案,并承接对外加工服务。
目前,结合汽车铝质活塞表面处理工艺,开发出一种全新的化学镀Ni-P-B工艺,成功通过本田公司150小时台架试验,化学镀镀层的表面硬度及耐磨性比一般的化学镀有大幅度提高,表面硬度Hv>800。
化学镀原理化学浸镀(简称化学镀)技术的原理是:化学镀是一种不需要通电,依据氧化还原反应原理,利用强还原剂在含有金属离子的溶液中,将金属离子还原成金属而沉积在各种材料表面形成致密镀层的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学镀科技名词定义中文名称:化学镀英文名称:electroless plating其他名称:自催化镀定义:在经活化处理的基体表面上,镀液中金属离子液催化还原形成金属镀层的过程。
应用学科:机械工程(一级学科);表面工程(二级学科);电镀与化学镀(三级学科)百科名片化学镀是一种新型的金属表面处理技术,该技术以其工艺简便、节能、环保日益受到人们的关注。
化学镀使用范围很广,镀金层均匀、装饰性好。
在防护性能方面,能提高产品的耐蚀性和使用寿命;在功能性方面,能提高加工件的耐磨导电性、润滑性能等特殊功能,因而成为全世界表面处理技术的一个发展。
目录化学镀/无电沉积(electroless plating)化学镀原理对非金属的化学镀需要敏化活化处理1化学镀Ni-P一、化学镀Ni-P主要技术指标1二、化学镀Ni-P主要技术特点1三、化学镀Ni-P主要应用部件化学镀镍溶液的组成及其作用技术特性适镀基材化学镀镍磷合金层的性能化学镀技术应用化学镀在非金属材料表面的应用1.尼龙表面镀银、镀铜、镀镍2.塑料工件表面装饰镀3丙纶纤维上化学镀铜4化学浸镀铜化学镀在中国化学镀/无电沉积(electroless plating)化学镀技术是在金属的催化作用下,通过可控制的氧化还原反应产生金属的沉积过程。
与电镀相比,化学镀技术具有镀层均匀、针孔小、不需直流电源设备、能在非导体上沉积和具有某些特殊性能等特点。
另外,由于化学镀技术废液排放少,对环境污染小以及成本较低,在许多领域已逐步取代电镀,成为一种环保型的表面处理工艺。
目前,化学镀技术已在电子、阀门制造、机械、石油化工、汽车、航空航天等工业中得到广泛的应用。
本研究所经过十余年的化学镀技术研究开发工作,已具备化学镀镍(中磷、低磷、高磷)工艺,可根据客户提供的部件的使用工况,制定出具体的化学镀工艺方案,并承接对外加工服务。
目前,结合汽车铝质活塞表面处理工艺,开发出一种全新的化学镀Ni-P-B工艺,成功通过本田公司150小时台架试验,化学镀镀层的表面硬度及耐磨性比一般的化学镀有大幅度提高,表面硬度Hv>800。
化学镀原理化学浸镀(简称化学镀)技术的原理是:化学镀是一种不需要通电,依据氧化还原反应原理,利用强还原剂在含有金属离子的溶液中,将金属离子还原成金属而沉积在各种材料表面形成致密镀层的方法。
化学镀常用溶液:化学镀银、镀镍、镀铜、镀钴、镀镍磷液、镀镍磷硼液等。
目前以次亚磷酸盐为还原剂的化学镀镍的自催化沉积反应,已经提出的理论有“原子氢态理论” 、“氢化物理论”和“电化学理论”等。
在这几种理论中,得到广泛承认的是“原子氢态理论”。
对非金属的化学镀需要敏化活化处理敏化就是使非金属表面形成一层具有还原作用的还原液体膜。
这种具有还原作用的处理液就是敏化剂。
好的敏化效果要求具有还原作用的离子在一定条件下能较长时间保持其还原能力,并且能控制其还原反应的速度,要点是敏化所要还原出来的不是连续的镀层,而只是活化点。
目前最适合的还原剂只有氯化亚锡。
目前,对于非金属化学镀镍用得最多的是Pd活化工艺。
当吸附有Sn的非金属表面接触到Pd活化液时,Pd会被Sn还原而沉积到非金属表面形成活化中心,从而顺利进行化学镀。
化学镀Ni-P一、化学镀Ni-P主要技术指标镀层厚度10-50μm,硬度Hv 550-1100(相当于HRC 55~72),结合强度大于15kg/mm²,耐腐蚀性能大大优于不锈钢。
二、化学镀Ni-P主要技术特点1.硬度高,耐磨性好:化学镀镀层经热处理后硬度达Hv 1100,工模具镀膜后一般寿命提高3倍以上。
2.耐腐蚀强:化学镀镀层在酸、碱、盐、氨和海水等介质中都具有很好的耐蚀性,其耐蚀性好于不锈钢。
3.表面光洁、光亮:工件经化学镀镀膜后,表面光洁度不受影响,无需再加工和抛光。
4.可镀形状复杂:工件形状不受限制,不变形,可化学镀较深的盲孔和形状复杂的内腔。
5.被镀材料广泛:可在模具钢、不锈钢、铜、铝、塑料、尼龙、玻璃、橡胶、木材等材料上化学镀。
三、化学镀Ni-P主要应用部件1.各类模具:注塑模、橡胶模、玻璃模、电木模、压铸模等。
2.石油化工耐腐蚀部件:反应器、阀门、管道、泵体、转子叶片等。
3.机械部件:汽车零部件,纺织机械以及各种需耐磨耐腐蚀的机械零部件。
如齿轮、齿轮轴、编织针导向杆、大型针盘、针筒。
化学镀镍溶液的组成及其作用主盐:化学镀镍溶液中的主盐就是镍盐,一般采用氯化镍或硫酸镍,有时也采用氨基磺酸镍、醋酸镍等无机盐。
早期酸性镀镍液中多采用氯化镍,但氯化镍会增加镀层的应力,现大多采用硫酸镍。
目前已有专利介绍采用次亚磷酸镍作为镍和次亚磷酸根的来源,一个优点是避免了硫酸根离子的存在,同时在补加镍盐时,能使碱金属离子的累积量达到最小值。
但存在的问题是次亚磷酸镍的溶解度有限,饱和时仅为35g/L。
次亚磷酸镍的制备也是一个问题,价格较高。
如果次亚磷酸镍的制备方法成熟以及溶解度问题能够解决的话,这种镍盐将会有很好的前景。
还原剂:化学镀镍的反应过程是一个自催化的氧化还原过程,镀液中可应用的还原剂有次亚磷酸钠、硼氢化钠、烷基胺硼烷及肼等。
在这些还原剂中以次亚磷酸钠用的最多,这是因为其价格便宜,且镀液容易控制,镀层抗腐蚀性能好等优点。
络合剂:化学镀镍溶液中的络合剂除了能控制可供反应的游离镍离子的浓度外,还能抑制亚磷酸镍的沉淀,提高镀液的稳定性,延长镀液的使用寿命。
有的络合剂还能起到缓冲剂和促进剂的作用,提高镀液的沉积速度。
化学镀镍的络合剂一般含有羟基、羧基、氨基等。
在镀液配方中,络合剂的量不仅取决于镍离子的浓度,而且也取决于自身的化学结构。
在镀液中每一个镍离子可与6个水分子微弱结合,当它们被羟基,羟基,氨基取代时,则形成一个稳定的镍配位体。
如果络合剂含有一个以上的官能团,则通过氧和氮配位键可以生成一个镍的闭环配合物。
在含有的镍离子镀液中,为了络合所有的镍离子,则需要含量大约的双配位体的络合剂。
当镀液中无络合剂时,镀液使用几个周期后,由于亚磷酸根聚集,浓度增大,产生亚磷酸镍沉淀,镀液加热时呈现糊状,加络合剂后能够大幅度提高亚磷酸镍的沉淀点,即提高了镀液对亚磷酸镍的容忍量,延长了镀液的使用寿命。
不同络合剂对镀层沉积速率、表面形状、磷含量、耐腐蚀性等均有影响,因此选择络合剂不仅要使镀液沉积速率快,而且要使镀液稳定性好,使用寿命长,镀层质量好。
缓冲剂:由于在化学镀镍反应过程中,副产物氢离子的产生,导致镀液pH值会下降。
试验表明,每消耗1mol的Ni2+ 同时生成3mol的H+,即就是在1L镀液中,若消耗的硫酸镍就会生成的H+。
所以为了稳定镀速和保证镀层质量,镀液必须具备缓冲能力。
缓冲剂能有效的稳定镀液的pH值,使镀液的pH值维持在正常范围内。
一般能够用作PH 值缓冲剂的为强碱弱酸盐,如醋酸钠、硼砂、焦磷酸钾等。
稳定剂:化学镀镍液是一个热力学不稳定体系,常常在镀件表面以外的地方发生还原反应,当镀液中产生一些有催化效应的活性微粒——催化核心时,镀液容易产生激烈的自催化反应,即自分解反应而产生大量镍-磷黑色粉末,导致镀液寿命终止,造成经济损失。
在镀液中加入一定量的吸附性强的无机或有机化合物,它们能优先吸附在微粒表面抑制催化反应从而稳定镀液,使镍离子的还原只发生在被镀表面上。
但必须注意的是,稳定剂是一种化学镀镍毒化剂,即负催化剂,稳定剂不能使用过量,过量后轻则降低镀速,重则不再起镀,因此使用必须慎重。
所有稳定剂都具有一定的催化毒性作用,并且会因过量使用而阻止沉积反应,同时也会影响镀层的韧性和颜色,导致镀层变脆而降低其防腐蚀性能。
试验证明,稀土也可以作为稳定剂,而且复合稀土的稳定性比单一稀土要好。
加速剂:在化学镀溶液中加入一些加速催化剂,能提高化学镀镍的沉积速率。
加速剂的使用机理可以认为是还原剂次磷酸根中氧原子被外来的酸根取代形成配位化合物,导致分子中H和P原子之间键合变弱,使氢在被催化表面上更容易移动和吸附。
也可以说促进剂能起活化次磷酸根离子的作用。
常用的加速剂有丙二酸、丁二酸、氨基乙酸、丙酸、氟化钠等。
其他添加剂:在化学镀镍溶液中,有时镀件表面上连续产生的氢气泡会使底层产生条纹或麻点。
加入一些表面活性剂有助于工件表面气体的逸出,降低镀层的孔隙率。
常用的表面活性剂有十二烷基硫酸盐、十二烷基磺酸盐和正辛基硫酸钠等。
稀土元素在电镀液中可以改善镀液的深镀能力、分散能力和电流效率。
研究表明,稀土元素在化学镀中同样对镀液的镀层性能有显著改善。
少量的稀土元素能加快化学沉积速率,提高镀液稳定性,镀层耐磨性和搞腐蚀性能。
化学镀镍磷合金镀层,硬度可高达HV1000,相当HRC69,具有很高的耐磨性和耐腐蚀性,镀层结合力好、厚度均匀。
镀速快,可达20μm/小时。
技术特性1、耐腐蚀性强:该工艺处理后的金属表面为非晶态镀层,抗腐蚀性特别优良,经硫酸、盐酸、烧碱、盐水同比试验,其腐蚀速率低于1cr18Ni9Ti不锈钢。
2、耐磨性好:由于催化处理后的表面为非晶态,即处于基本平面状态,有自润滑性。
因此,摩擦系数小,非粘着性好,耐磨性能高,在润滑情况下,可替代硬铬使用。
3、光泽度高:催化后的镀件表面光泽度为LZ或▽8-10可与不锈钢制品媲美,呈白亮不锈钢颜色。
工件镀膜后,表面光洁度不受影响,无需再加工和抛光。
4、表面硬度高:经本技术处理后,金属表面硬度可提高一倍以上,在钢铁及铜表面可达Hv 570。
镀层经热处理后硬度达Hv 1000,工模具镀膜后一般寿命提高3倍以上。
5、结合强度大:本技术处理后的合金层与金属基件结合强度增大,一般在350-400Mpa条件下不起皮、不脱落、无气泡,与铝的结合强度可达102-241Mpa。
6、仿型性好:在尖角或边缘突出部分,没有过份明显的增厚,即有很好的仿型性,镀后不需磨削加工,沉积层的厚度和成份均匀。
7、工艺技术高适应性强:在盲孔、深孔、管件、拐角、缝隙的内表面可得到均匀镀层,所以无论您的产品结构有多么复杂,本技术处理起来均能得心应手,绝无漏镀之处。
8、低电阻,可焊性好。
9、耐高温:该催化合金层熔点为850-890度。
适镀基材铸铁、钢铁、铜及铜合金、铝及铝合金,模具钢、不锈钢。
化学镀镍磷合金层的性能(国家钢铁产品质量监督检验中心检测)按GB10125-1997标准规定进行测试,时间为96小时,Nacl浓度50g/l,ph值:,温度:35,按GB6464-86规定评定防护等级,可达9级。
磷含量(质量百分数):6%-12% 电阻率:60-75μΩ.cm 密度:cm3 熔点:860-880℃ 硬度:镀态:Hv500-550(45-48RCH) 热处理后:Hv1000 结合力:400MPa,远高于电镀内应力:钢上内应力低于7Mpa化学镀技术应用化学镀在金属材料表面上的应用铝或钢材料这类非贵金属基底可以用化学镀镍技术防护,并可避免用难以加工的个锈钢来提高它们的表面性质。