数学人教版九年级上册二次函数的实际应用专题复习教案

合集下载

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计
4.练习:布置一定数量的练习题,巩固学生对最大利润问题的解决方法。
5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点

人教版数学九年级上册 教案:22.3《实际问题与二次函数》

人教版数学九年级上册 教案:22.3《实际问题与二次函数》

人教版数学九年级上册教案:22.3《实际问题与二次函数》一、教学目标1.理解实际问题与二次函数之间的关系。

2.掌握解决实际问题的二次函数模型建立方法。

3.能够应用二次函数解决实际问题。

二、教学重难点1.掌握如何将实际问题抽象为二次函数模型。

2.解决实际问题时的思维过程和方法。

三、教学准备1.课本《人教版数学》九年级上册。

2.教学投影仪。

3.讲义、笔、纸等。

四、教学过程1. 导入新知识通过提问学生,引导他们回顾上节课学习的内容,并复习二次函数的定义、图像和性质。

2. 引入实际问题给出一个实际问题,例如:小明用压岁钱买了一台照相机,照相机的价格是x 元,如果每售出一台照相机,他能从中获利5x - x^2 元。

请问小明应该以多少价格售出照相机,才能使利润最大化?3. 建立二次函数模型解释给出问题,并引导学生思考如何建立二次函数模型。

提示学生需要确定自变量和因变量,并分析问题中的关系。

通过与学生互动,引导出二次函数模型:利润函数 P(x) = 5x - x^2。

4. 解决问题通过对利润函数进行求导,并求得导函数为0的临界点 x = 2.5。

由此可得,当照相机的价格为2.5元时,小明的利润最大化。

5. 拓展实际问题给出更多类似的实际问题,例如:某体育用品店销售护膝,价格为x元一副,销量为100 - 5x副。

请问店家应该以多少价格销售护膝,才能使利润最大化?引导学生分析问题并建立二次函数模型。

通过解法流程的讲解,帮助学生掌握解决实际问题的方法。

6. 总结回顾对本节课学习的内容进行总结回顾。

重点强调实际问题与二次函数之间的联系,以及解决实际问题的方法。

五、课堂练习根据给出的实际问题,学生单独完成建立二次函数模型,并求解出最优解。

1.某农场种植西瓜,每亩土地种植西瓜数量为x只,销量为100x - 2x^2只。

请问农场应该种植多少只西瓜,才能使销售额最大化?2.某旅游公司举办一次旅行,每人收费为x元,游客的数量为200 - 10x人。

九年级上册数学人教版第22单元复习教学设计 教案

九年级上册数学人教版第22单元复习教学设计 教案

第22章二次函数复习教案一、知识网络二、知识梳理+经典例题知识点一:二次函数的概念定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数.其中x是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项。

知识点三:二次函数y=ax2+k的图像和性质二次函数y=ax2+k(a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是(0,k),它与y=ax2的图像形状相同,只是位置不同.函数y=ax2+k(a≠0)的图像是由抛物线y=ax2向上(或下)平移|k|个单位长度得到的.二次函数y=ax2+k(a≠0)与y=ax2(a≠0)的图像之间的关系如下表所示:y=ax2(a≠0)向上平移|k|个单位长度向下平移|k|个单位长度二次函数y=ax2+k的图像和性质如下:a的符号a>0a<0图像开口方向向上向下对称轴y轴y轴最值当x=h时,y有最小值y最小值=0当x=h时,y有最大值y最大值=0知识点五:二次函数y=a(x-h)2+k(a,h,k是常数,a≠0)的图像和性质1、二次函y=a(x-h)2+k(a≠0)的图象是一条抛物线,它的对称轴是x=h,顶点坐标为(h,k),是由抛物线y=ax2(a≠0)向右(左)平移|h|个单位长度,再向上(下)平移|k|个单位长度得到的2、性质a的符号a>0a<0图像开口方向向上向下对称轴x=h x=h顶点坐标(h,k)(h,k)增减性当x<h时,y随x的增大而减小;当x>h时,y随x的增大而增大当x<h时,y随x的增大而增大;当x>h时,y随x的增大而减小最值当x=h时,y有最小值,y最小值=k 当x=h时,y有最大值,y最大值=k例5已知二次,函数y=a(x-1)2-c的图像如图所示,则一次函数y=ax+c 的大致图像可()a a>0开口向上a<0开口向下b ab=0对称轴为y轴ab>0(a,b同号)对称轴在y轴左侧ab<0(a,b异号)对称轴在y轴右侧c c=0图像过原点c>0与y轴正半轴相交c<0与y轴负半轴相交b2-4ac b2-4ac=0与x轴有唯一一个交点b2-4ac>0与x轴有两个交点b2-4ac<0与x轴没有交点例7、二次函数y=ax2+bx+c的图象如图所示,则abc,b2-4ac,2a+b,a+b+c这四个式子中,值为正数的有()A.4个B.3个C.2个D.1个知识点八:二次函数与一元二次方程的联系1、二次函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0).那么一元二次方程的根就是二次函数的图像与x轴交点的横坐标,因此,二次函数的图像与x轴的交点情况决定了一元二次方程根的情况.(1)当二次函数y=ax2+bx+c(a≠0)的图像与x轴有两个交点时,b2-4ac>0,方程ax2+bx+c=0(a知识点九:二次函数与一元二次不等式的关系1、抛物线y=ax2+bx+c(a≠0)在x轴上方的部分点的纵坐标为正,所对应的x的所有值就是不等式ax2+bx+c >0(a≠0)的解集;在x轴下方的部分点的纵坐标都为负,所对应的x的所有值就是不等式ax2+bx+c<0(a≠0)的解集,不等式中如果带有等号,其解集也相应带有等号2、二次函数y=ax2+bx+c(a≠0)与一元二次不等式ax2+bx+c >0(a≠0)及ax2+bx+c<0(a≠0)之间的关系如下:例9、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x的取值范围是()A.x<-1B.x>3C.-1<x<3D.x<-1或x>3知识点十:二次函数与实际问题1、二次函数的应用:二次函数的应用关键在于建立二次函数的数学模型,这就需要认真审题,理解题意,利用二次函数解决实际问题,应用最多的是根据二次函数的最值确定最大利润、最节省方案等问题2、建立平面直角坐标系,用二次函数的图象解决实际问题:建立平面直角坐标系,把代数问题与几何问题进行互相转化,充分结合三角函数、解直角三角形、相似、全等、圆等知识解决问题,求二次函数的表达式是解题关键。

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。

在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。

因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。

二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。

在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。

三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。

3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。

4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。

四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。

在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。

教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。

整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。

五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。

二次函数中考复习专题教案

二次函数中考复习专题教案

二次函数中考复习专题教案一、教学目标1. 理解二次函数的定义、性质及图像;2. 掌握二次函数的求解方法,包括顶点式、标准式和一般式;3. 能够运用二次函数解决实际问题,提高数学应用能力;4. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容1. 二次函数的定义与性质二次函数的定义:函数f(x) = ax^2 + bx + c(a≠0);二次函数的图像:开口方向、顶点、对称轴、单调区间。

2. 二次函数的图像与性质图像特点:开口方向、顶点、对称轴;性质:单调性、最值。

3. 二次函数的求解方法顶点式:f(x) = a(x h)^2 + k;标准式:f(x) = ax^2 + bx + c;一般式:ax^2 + bx + c = 0。

4. 实际问题求解应用二次函数解决几何问题;应用二次函数解决物理问题;应用二次函数解决生活中的问题。

5. 二次函数的综合应用二次函数与其他函数的结合;二次函数与方程组的结合;二次函数与不等式的结合。

三、教学过程1. 复习导入:回顾一次函数和指数函数的相关知识,为二次函数的学习打下基础;2. 知识讲解:分别讲解二次函数的定义、性质、图像与求解方法;3. 案例分析:分析实际问题,引导学生运用二次函数解决实际问题;4. 课堂练习:布置练习题,巩固所学知识;四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习完成情况:检查学生完成练习题的情况,巩固所学知识;3. 课后作业:布置课后作业,检查学生对知识的掌握程度;4. 小组讨论:评估学生在小组讨论中的表现,培养团队合作精神。

五、教学资源1. PPT课件:展示二次函数的相关概念、性质、图像等;2. 练习题:提供不同难度的练习题,巩固所学知识;3. 实际问题案例:提供与生活相关的实际问题,引导学生运用二次函数解决;4. 教学视频:讲解二次函数的求解方法和解题技巧。

六、教学策略1. 案例分析:通过分析具体案例,让学生了解二次函数在实际问题中的应用;2. 数形结合:利用图形展示二次函数的性质,加深学生对二次函数的理解;3. 小组讨论:鼓励学生进行小组讨论,培养团队合作精神和沟通能力;4. 分层教学:针对不同学生的学习水平,给予相应的指导和辅导;5. 激励评价:及时给予学生鼓励和评价,提高学生的学习积极性。

九年级数学《二次函数》总复习教案

九年级数学《二次函数》总复习教案

教材:初中数学九年级上册复习目标:1.理解二次函数的概念和特征。

2.掌握二次函数的基本性质和图像的特点。

3.熟练运用二次函数解决实际问题。

4.理解抛物线的性质及其与二次函数的关系。

一、概念复习1.二次函数:通过变量的平方项表达的函数。

2.顶点:二次函数图像的最高点或最低点,表示为(a,b)。

3.对称轴:二次函数图像的对称轴,表示为x=a。

4.开口方向:二次函数图像的开口方向,由二次项的系数决定。

二、性质复习1.零点:二次函数与x轴交点的横坐标。

2.判别式:用来判断二次函数的零点个数的式子。

当Δ=b^2-4ac>0时,二次函数有两个不相等的零点。

当Δ=b^2-4ac=0时,二次函数有两个相等的零点。

当Δ=b^2-4ac<0时,二次函数没有实数零点。

3.最大值与最小值:当二次函数开口向上时,最小值是顶点的纵坐标。

当二次函数开口向下时,最大值是顶点的纵坐标。

三、图像特点复习1.开口方向:当a>0时,二次函数开口向上。

当a<0时,二次函数开口向下。

2.对称轴:对称轴与顶点的横坐标相等。

3.零点:零点是二次函数与x轴交点的横坐标。

零点的个数由判别式Δ决定。

四、实际问题复习1.利用二次函数解决实际问题的步骤:(1)明确问题中有关条件。

(2)设出二次函数的表达式。

(3)求出二次函数的最值或零点。

(4)用解出的最值或零点回答问题。

2.举例:问题:商场的营业额可以用二次函数y=2x^2+3x+4来表示,其中x表示时间(以小时计),y表示营业额(以万元计)。

求该商场的最大营业额,并在什么时间实现。

解答:(1)根据题目,得到二次函数的表达式为y=2x^2+3x+4(2)通过求导数或将二次函数表示为顶点形式,得到该二次函数的顶点为(-3/4,23/8)。

(3)所以,该商场的最大营业额为23/8万元,实现时间为-3/4小时。

五、抛物线的性质复习1. 加入二次函数的f(x)=ax^2+bx+c。

若a>0,抛物线开口向上;若a<0,抛物线开口向下。

(完整版)二次函数复习课教案.docx

(完整版)二次函数复习课教案.docx

二次函数复习2016.06二次函数复习课题二次函数课型复习课掌握二次函数的图象及其性质,能灵活运用抛物线的知识解一些实际问题.通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.教学目标学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性.经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.课前准备(教具、活制作课件动准备等)教学过程教学步骤基础知识之自我构建基础知识之基础演练师生活动设计意图通过一个具体二次函数,请学生说出尽可能多的结论,x2主要让学生回忆二次函数有让学生思考函数 y4x 3 并写出相关关基础知识.同学们之间可以结论相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.教者让学生思考 1-4题,然后让学生回答,第 1 题主要考查二次函其他同学可以补充.数图像平移知识点,二次函数1、求将二次函数y x22x 图像向右平移1图像平实质上就是点的平移.第 2,3,4 题都是开放性个单位,再向上平移 2 个单位后得到图像的函数题,答案不唯一,只要正确即表达式.可,让学生很大发挥空间,其2、请写出一个二次函数解析式,使其图像的中涉及二次函数解析式的求对称轴为 x=1,并且开口向下.法.3、请写出一个二次函数解析式,使其图象与第 5,6 题涉及二次函数x 轴的交点坐标为( 2,0)、(- 1, 0).图象性质,根据图象,正确表4、请写出一个二次函数解析式,使其图象与示解析式中字母的取值范y 轴的交点坐标为( 0, 2),且图象的对称轴在 y围.教者也可以在原图形基础轴的右侧.改变形状,让学生经历和体验教者让学生口答第5、 6 题.图形的变化过程,引导学生感悟知识的生成、发展和变化.情感态度解决问题知识技能数学思考5、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y①a0;②b0;③c0;x④ b24ac0;6、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y① abc0;② 2a-b0;?x③ a+b+c0; 1 0 1④ a-b+c0.1、二次函数y ax2bx c 的图象如下图,则方程 ax2bx c0 的解为当 x 为时, ax2bx c当 x 为时, ax2bx cy数形结合思想是一种重要的数学思想,第 1 题看似复杂,其实对照图象,很容易找;出题目答案.第 2 题考查学生二次函0 ;数与一元二次方程关系,具体为:一元二次方程无实根说明0 .相应二次函数图象与 x 轴无交点,再根据隐含条件对称轴为直线 x1,可见顶点在第301x2一象限.第 3题考查学生从图表基础知识之提炼信息的能力.灵活运用x n0 无实数根,2、关于 x 的一元二次方程x2则抛物线 y x2x n 的顶点在()A .第一象限 B.第二象限C. 第三象限D.第四象限3、根据下列表格的对应值:x 3.23 3.24 3.25 3.26y ax2 bx c-0.06-0.020.030.09不解方程,试判断方程 ax2bx c0(a0,a,b,c 为常数)一个解 x 的范围是()A 、 3 x 3.23B、 3.23x 3.24C、 3.24x 3.25D、 3.25x 3.26难点突破之思维激活1、已知抛物线y ax2bx c 的对称轴为x=2,第 1,2 题考查抛物线轴对称性.且经过点(3,0),则 a+b+c 的值为.第 3 题考查二次函数图像2、已知抛物线y ax2bx c 经过点A(-2,7),及其性质的相关知识.本部分 3 道题目不能呆板B(6,7), C(3,- 8),则该抛物线上纵坐标为地应用二次函数的基础知识,-8 的另一点坐标是 ___________.而要综合相关知识,以达到能3、下图是抛物线y ax2bx c 的一部分,且经力提升之目的.过点(- 2 , 0),则下列结论中正确的个数有()①a <0;②b<0;③c>0;④抛物线与 x 轴的另一个交点坐标可能是(1,0);⑤抛物线与 x 轴的另一个交点坐标可能是( 4,0).A.2 个B.3 个C.4 个D.5 个y20x难点突破之聚焦中考教者出示一道函数类应用题,让学生思考,本题首先读懂题意,正确教者点拨.求出二次函数解析式.二次函例题:某商场销售一批名牌衬衫,平均每天可售数的最值是体现二次函数实出 20 件,进价是每件 80 元,售价是每件 120 元,际应用价值的一种常见题型,为了扩大销售,增加盈利,减少库存,商场决定它在优选方案、减小投入、增采取适当的降价措施,经调查发现,如果每件衬大收益中意义非凡.解题时通衫降低 1 元,商场平均每天可多售出 2 件,但每常借助顶点坐标来求,但有时件最低价不得低于108 元.由于实际问题实际意义的限⑴若每件衬衫降低x 元( x 取整数),商场平制,需结合自变量的取值范围均每天盈利 y 元,试写出 y 与 x 之间的函数关系进行调整.本题由图象可知,式,并写出自变量x 的取值范围.抛物线顶点(15,1250)不在⑵每件衬衫降低多少元时,商场每天(平均)本题图象上,它不是最高点,盈利最多?最高点应该是(12,1232)或者这样理解:顶点横坐标是反思与提高1、本节课你印象最深的是什么?2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?3、在下面的函数学习中,我们还需要注意15,不满足 0 x 12 ,因此不能理解为:当 x 15 时, y 取最大值为 1250 元.让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基哪些问题?础,由此达到数学教学的新境教者归纳本章知识网络图示界——提升思维品质,形成数学素养.实际问题二次函数y ax2bx c目标实际问题利用二次函数的图的答案象和性质求解。

二次函数的复习教案

二次函数的复习教案

二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。

2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。

3. 提高学生解决与二次函数相关的实际问题的能力。

教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。

- 回顾二次函数的图像特点,如开口方向、顶点位置等。

- 强调二次函数的轴对称性和零点的概念。

3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。

- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。

4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。

- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。

2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。

- 引导学生将问题转化为二次函数的方程,并解方程求出答案。

3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。

- 鼓励学生通过做更多的练习来巩固所学知识。

教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。

- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。

2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。

- 二次函数练习题,包括图像练习和实际问题练习。

评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。

人教版九年级数学上册22.3实际问题与二次函数(3)1优秀教学案例

人教版九年级数学上册22.3实际问题与二次函数(3)1优秀教学案例
4.教师对小组讨论过程进行指导和评价,确保学生能够从合作中获得充分的提升。
(四)总结归纳
1.教师引导学生对所学知识进行总结归纳,帮助他们建立完整的知识体系;
2.学生通过总结归纳,巩固所学知识,提高他们的自我认知能力;
3.教师对学生的总结归纳进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
4.引导学生发现二次函数在实际问题中的应用规律,培养他们的实践能力。
(三)学生小组讨论
1.教师提出具有挑战性和开放性的课题,让学生在小组内进行讨论和合作交流;
2.引导学生运用所学知识,分析问题、解决问题,提高他们的实践能力和团队协作精神;
3.鼓励学生分享自己的观点和思考,培养他们的表达能力和批判性思维;
人教版九年级数学上册22.3实际问题与二次函数(3)1优秀教学案例
一、案例背景
本案例背景以人教版九年级数学上册22.3实际问题与二次函数(3)1为例,旨在通过实际问题引导学生理解和掌握二次函数的性质和应用。在教学过程中,我以生活实际为载体,设计了一系列具有代表性的例题和练习,让学生在解决实际问题的过程中,深化对二次函数的理解,提高运用数学知识解决实际问题的能力。
在案例背景中,我充分考虑了学生的年龄特点和知识水平,以符合九年级学生的认知发展需求。在教学设计上,我注重启发式教学,引导学生通过观察、分析、归纳和推理,探索二次函数的性质和实际应用。同时,我还关注学生的个体差异,提供不同难度的题目,让每个学生都能在数学学习中找到适合自己的路径,从而提高他们的自信心和积极性。
4.教师对小组合作过程进行指导和评价,确保学生能够从合作中获得充分的提升。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习经验和方法,提高他们的自我认知能力;

《二次函数》的复习教学设计

《二次函数》的复习教学设计

《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。

主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。

在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。

五、教学策略与设计说明本节课主要渗透类比、化归数学思想。

对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

九年级数学上册《二次函数的应用》教案、教学设计

九年级数学上册《二次函数的应用》教案、教学设计
2.利用多媒体和实物展示,帮助学生形象地理解二次函数的图像与性质。
-通过动画展示二次函数图像的平移、伸缩等变换,使学生直观地感受图像的性质。
3.设计具有梯度的问题,引导学生逐步深入地掌握二次函数的知识。
-从简单的二次函数图像识别,到求解实际问题中的二次函数,逐步提高问题的难度。
4.采用小组合作、讨论交流的学习方式,促进学生之间的思维碰撞,共同解决难题。
5.学会运用二次函数的知识,解决生活中的实际问题,提高数学应用能力。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养数学思维与解决问题的能力:
1.通过小组合作、讨论交流,培养学生的合作意识和团队精神。
2.利用数形结合的方法,引导学生观察、分析二次函数的图像,培养学生直观想象和逻辑推理能力。
5.反思与总结:
-请同学们在作业本上写下本节课的学习心得,包括对二次函数的理解、学习过程中的困惑以及解题方法的总结。
-教师在批改作业时,应及时给予反馈,鼓励学生持续反思,不断提高。
4.通过小组合作,培养学生互相尊重、团结协作的品质,增强集体荣誉感。
5.引导学生认识到数学知识在实际生活中的重要性,培养学生的社会责任感和使命感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了线性方程、不等式等知识,对于函数的概念也有初步的理解。在此基础上,学生对二次函数的学习将面临以下挑战:
-完成课后作业中的基础题,旨在让学生通过实际操作,加深对二次函数图像特征的理解。
2.提高作业:
-选做课本第chapter页的提高题,涉及二次函数在实际问题中的应用,如最值问题、面积计算等,以提升学生解决问题的能力。
-设计一道综合性的应用题,要求学生运用本节课所学知识,结合生活实际,解决实际问题。

九年级数学二次函数专题复习教案

九年级数学二次函数专题复习教案

A. y3 y2 y1
B. y1 y2 y3
C. y2 y1 y3
D. y2 y3 ቤተ መጻሕፍቲ ባይዱy1
分析:本题考查了反比例函数图象的性质,由于反比例函数有两个分支分
别位于两个象限,所以解决此类问题的最好方法是用“数形结合思想”来做,如
图所示:
y
x1
y3 x2
y1 x3
x
y2
观察图象可知: y2 y1 y3 .
函数图像上任意点的横、纵坐标的积为 k。
二、考点复习
考点一:考查求反比例函数的关系式
例 1 若反比例函数 y k 的图象经过(-2,1),则 k 的值为 ( ) x
A、-2
B、2
C、- 1 2
D、 1 2
分析:这是一类常见的中考题型,已知反比例函数经过一点求反比例函数
的解析式,由于反比例函数确定 k 值时只需要一个点,所以将点的坐标代入解
则 k 的值可为( )
A. 1
B.0
C.1
D.2
分析:因为反比例函数的图象在每个象限内, y 随 x 的增大而减小,所以
k 1 0 ,所以 k 1,观察 4 个选项只有 D 正确.
例4
已知
P1(x1,y1),P2 (x2,y2 ),P3 (x3,y3 )
是反比例函数
y
2 x
的图
象上的三点,且 x1 x2 0 x3 ,则 y1,y2,y3 的大小关系是( )
点评:此题主要考查了反比例函数与一次函数交点问题,关键掌握好利用图象
求方程的解时,就是看两函数图象的交点横坐标..
5. (2011•丹东,6,3 分)反比例函数 y=错误!未找到引用源。 k 的图象如图 x

人教版九年级上册数学教案:22.3二次函数的实际应用:利润问题

人教版九年级上册数学教案:22.3二次函数的实际应用:利润问题
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数在利润问题中的基本概念。二次函数是描述变量间二次关系的数学表达式,它在商业决策中起着重要作用,尤其是在求解最优化问题时。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过建立二次函数模型来解决实际问题,以及它如何帮助我们找到最大利润的售价。
五、教学反思
今天我,整个教学过程让我有了以下几点思考。
首先,我发现同学们在建立二次函数模型时,对于一些关键信息的提取和处理还存在一定的困难。比如在确定二次项系数、一次项系数和常数项时,容易混淆。这让我意识到,在今后的教学中,需要更加注重培养学生提取信息、处理信息的能力。
在实践活动方面,我发现同学们在分组讨论和实验操作中,能够将所学知识应用到实际问题中,这让我感到很欣慰。但同时,我也注意到有些小组在操作过程中,对于一些细节问题处理得不够到位。为了提高同学们的实际操作能力,我计划在后续的教学中,增加一些针对性的练习和指导。
最后,今天的课堂总结环节,同学们能够较好地回顾所学内容,并提出自己的疑问。这表明大家在课堂上能够认真听讲,积极思考。但在回答问题时,有些同学的语言表达能力还有待提高。在今后的教学中,我会多关注这一点,并尝试通过一些课堂活动来提高同学们的表达能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数在利润问题中的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对二次函数解决实际问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
四、教学流程

新人教版九年级数学上册22二次函数复习教案新版

新人教版九年级数学上册22二次函数复习教案新版

第22章二次函数一、复习目标1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(ax +m)2+k 的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。

6.二次函数的综合应用 二、课时安排 2三、复习重难点把握二次函数的性质,利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系,并能和其它知识点进行综合应用。

四、教学过程 (一)知识梳理 二次函数知识点:1. 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

2. 二次函数的基本形式(1)二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质:3. ()2y a x h =-的性质: 4. ()2y a x h k =-+的性质: 3.二次函数图象的平移 1. 平移步骤:(1) 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; (2)保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位(3) 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.4.二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与轴的交点()10x ,,()20x ,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点. 5.二次函数2y ax bx c =++的性质(1) 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,随的增大而减小;当2b x a >-时,随的增大而增大;当2bx a=-时,有最小值244ac b a-. (2) 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,随的增大而增大;当2b x a >-时,随的增大而减小;当2bx a=-时,有最大值244ac b a -. 6.二次函数解析式的表示方法(1) 一般式:2y ax bx c =++(,,为常数,0a ≠); (2) 顶点式:2()y a x h k =-+(,,为常数,0a ≠);(3)两根式:12()()y a x x x x =--(0a ≠,,是抛物线与轴两交点的横坐标).7.二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与轴的交点个数:① 当240b ac ∆=->时,图象与轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与轴只有一个交点; ③ 当0∆<时,图象与轴没有交点. 7.二次函数的应用: (二)题型、方法归纳 类型一:二次函数的平移【主题训练1】(枣庄中考)将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3B.y=3(x-2)2+3 C.y=3(x+2)2-3D.y=3(x-2)2-3【自主解答】选A.由“上加下减”的平移规律可知,将抛物线y=3x 2向上平移3个单位所得抛物线的解析式为:y=3x 2+3;由“左加右减”的平移规律可知,将抛物线y=3x 2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.归纳:二次函数平移的两种方法1.确定顶点坐标平移:根据两抛物线前后顶点坐标的位置确定平移的方向与距离.2.利用规律平移:y=a(x+h)2+k 是由y=ax 2经过适当的平移得到的,其平移规律是“h 左加右减,k 上加下减”.即自变量加减左右移,函数值加减上下移.类型二:二次函数的图象及性质【主题训练2】(十堰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0;②b 2>4a;③0<a+b+c<2;④0<b<1;⑤当x>-1时,y>0.其中正确结论的个数是()A.5个B.4个C.3个D.2个【自主解答】选B.①∵对称轴在y轴右侧,∴- >0,∴ <0,∴a,b异号,∴ab<0,①正确;②把x=0,y=1代入y=ax2+bx+c得c=1,所以二次函数为y=ax2+bx+1; 又∵图象与x轴有两个交点,∴b2-4ac>0,∴b2>4a,②正确;③∵当x=1时,图象在x轴上方,∴a+b+c>0;把x=-1,y=0代入y=ax2+bx+1,得b=a+1,∵图象的开口向下,∴a<0,∴a+b+c= a+a+1+1=2a+2<2,∴0<a+b+c<2,③正确;④∵b=a+1,∴a=b-1,∵0<a+b+c<2,c=1,∴0<b-1+b+1<2,即0<2b<2,∴0<b<1,④正确;⑤当x>-1时,函数图象有部分在x轴上方,与x轴有交点,有部分在x轴下方,所以y>0,y=0,y<0都有可能.所以正确的共有4个,选B.归纳:类型三:二次函数与方程、不等式【主题训练3】(贺州中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a-b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是.(填入正确结论的序号)【自主解答】∵抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,∴一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,∴b2-4ac>0,即b2>4ac,①是正确的.∵抛物线的开口方向向上,∴a>0;b- =1>0,∴a与b异号,则b<0.∵抛物线与y轴的交点在y轴的负半轴,∴c<0;∵对称轴x=2ab-=1,∴b=-2a,∴2a+b=0,③是错误的.∴abc>0,②是正确的.∵抛物线的对称轴x=2a∵当x=-2时,y=4a-2b+c>0,又∵b=-2a,∴4a-2b+c=4a-2(-2a)+c=8a+c>0,④是错误的.∵抛物线的对称轴为直线x=1,∴在x=-1与x=3时函数值相等,由函数图象可知x=-1的函数值为负数,∴x=3时的函数值y=9a+3b+c<0,⑤是正确的.答案:①②⑤归纳:二次函数与方程、不等式的关系1.二次函数与方程:抛物线y=ax2+bx+c与x轴交点的横坐标满足ax2+bx+c=0.2.二次函数与不等式:抛物线y=ax2+bx+c在x轴上方部分的横坐标满足ax2+bx+c>0;抛物线y=ax2+bx+c在x轴下方部分的横坐标满足ax2+bx+c<0.类型四:二次函数的应用【主题训练4】(武汉中考)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如表).温度x(℃) …-4 -2 0 2 4 4.5 …植物每天高度增长…41 49 49 41 25 19.75 …量y(mm)由这些数据,科学家推测出植物每天高度增长量y 是温度x 的函数,且这种函数是一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由.(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x 应该在哪个范围内选择?直接写出结果.【自主解答】(1)选择二次函数.设抛物线的解析式为y=ax 2+bx+c, 根据题意,得4a 2b c 49,a 1,4a 2b c 41,b 2,c 49,c 49-+==-⎧⎧⎪⎪++==-⎨⎨⎪⎪==⎩⎩解得, ∴y 关于x 的函数解析式为y=-x 2-2x+49.不选另外两个函数的理由:点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数.(2)由(1)得y=-x 2-2x+49,∴y=-(x+1)2+50. ∵a=-1<0,∴当x=-1时y 的最大值为50.即当温度为-1℃时,这种植物每天高度增长量最大. (3)-6<x<4.归纳:解决二次函数应用题的两步骤1.建模:根据数量关系列二次函数关系建模或者根据图象的形状建模.2.应用:利用二次函数的性质解决问题.(三)典例精讲例题1: (2016·浙江省绍兴市·10分)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m ,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m 时,透光面积最大值约为1.05m 2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【分析】(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.【点评】本题考查待定系数法确定二次函数解析式、二次函数性质等知识,解题的关键是求出对称轴与直线BC交点H坐标,学会利用判别式确定两个函数图象的交点问题,属于中考常考题型.(四)归纳小结1.引导学生整理把握本章知识点并熟练掌握。

人教版九年级数学专题复习《二次函数》第1-2课时学习任务单(公开课导学案)及作业设计

人教版九年级数学专题复习《二次函数》第1-2课时学习任务单(公开课导学案)及作业设计

人教版九年级数学专题复习《二次函数》学习任务单及作业设计第一课时【学习目标】1.会根据问题情境确定二次函数的表达式,会确定图象的顶点、开口方向和对称轴等.2.加深对二次函数的轴对称性和增减性的认识.3.体会数形结合思想,提高分析问题的能力.【学习准备】准备好铅笔、直尺等画图工具。

边观看边做记录。

【学习方式和环节】观看视频课学习,适时控制播放,按老师指令完成相应的课上练习,学习环节主要有:复习引入→知识梳理→例题讲解→跟踪练习→课堂小结。

【作业设计】1.已知二次函数的图象经过A(0,3),B(2,3)两点.请你写出一组满足条件的a,b的对应值:a=_______,b=__________.2. 已知某抛物线上部分点的横坐标 x,纵坐标 y 的求对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为 x=1;③当 x<1 时,函数值 y随 x 的增大而增大;④方程有一个根大于4.其中正确的结论有(填序号).3.已知抛物线(1)若将抛物线向左右移 1 个单位,再向下平移 3 个单位,求平移后的抛物线的表达式;(2)若将抛物线绕原点 O 旋转180°,则旋转后的抛物线的表达式.4.抛物线与x轴的两个交点之间的距离为4,求t的值.【参考答案】1.答案不唯一,如 a=1,b=-2,由A(0,3),B(2,3)为对称点可求对称轴为 x=1,得 b=-2a.2.①③正确(0,1)和(3,1)为对称点,所以对称轴为 x=1.5,②错误,可求表达式,求出方程的根为,④错误.3.4.对称轴为 x=1,得交点为(-1,0)和(3,0),代入得t=-4.第二课时【学习目标】1.会用函数观点看一元二次方程和一元二次不等式,建立知识之间的联系;2.会利用函数图象解决问题,进一步体会数形结合思想;3.通过二次函数与其他知识的综合,提高分析和解决问题的能力.【学习准备】准备好铅笔、直尺等画图工具。

边观看边做记录。

2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数 实际问题与二次函数第1课时教案

2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数 实际问题与二次函数第1课时教案

22.3实际问题与二次函数(第1课时)一、教学目标【知识与技能】1.能根据实际问题构造二次函数模型.2.能用抛物线的顶点坐标来确定二次函数的最大(小)值问题.【过程与方法】通过对“矩形面积”等实际问题的探究,让学生经历数学建模的基本过程,体会建立数学模型的思想.【情感态度与价值观】体会二次函数是一类最优化问题的模型,感受数学的应用价值,增强数学的应用意识.二、课型新授课三、课时第1课时,共3课时。

四、教学重难点【教学重点】用二次函数的最大值(或最小值)来解决实际应用问题.【教学难点】将实际问题转化为数学问题,并用二次函数性质进行决策.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课出示课件3:排球运动员从地面竖直向上抛出排球,排球的高度h(单位:m)与排球的运动时间t(单位:s)之间的关系式是h=20t-5t2(0≤t≤4).排球的运动时间是多少时,排球最高?排球运动中的最大高度是多少?(二)探索新知探究二次函数与几何图形面积的最值出示课件5:从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?教师分析:可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是这个函数的图象的最高点.也就是说,当t取顶点的横坐标时,这个函数有最大值.教师问:如何求出二次函数y=ax2+bx+c的最小(大)值?(出示课件6)学生答:由于抛物线y=ax 2+bx+c 的顶点是最低(高)点,当2b x a=-时,二次函数y=ax 2+bx+c 有最小(大)值244ac b y a -=.师生共同解答:(出示课件7)解:303225ba -=-=⨯-(),2243045445ac b h a --===⨯-().小球运动的时间是3s 时,小球最高;小球运动中的最大高度是45m.师生共同总结:一般地,当a>0(a<0)时,抛物线y=ax 2+bx+c 的顶点是最低(高)点,也就是说,当2b x a =-时,二次函数有最小(大)值244ac b y a-=.出示课件8:例用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少时,场地的面积S 最大?问题1矩形面积公式是什么?问题2如何用l 表示另一边?问题3面积S 的函数关系式是什么?学生思考后,师生共同解答.解:矩形场地的周长是60m,一边长为lm,所以另一边长为(60l 2-)m.场地的面积S=l(30-l),即S=-l 2+30l(0<l<30).因此,当301522(1)b l a =-=-=⨯-时,S有最大值22 430225. 44(1)ac ba--==⨯-即当l是15m时,场地的面积S最大.教师点拨:利用二次函数解决几何图形中的最值问题的要点:(出示课件10)1.根据面积公式、周长公式、勾股定理等建立函数关系式;2.确定自变量的取值范围;3.根据开口方向、顶点坐标和自变量的取值范围画草图;4.根据草图求所得函数在自变量的允许范围内的最大值或最小值.变式1如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长32m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?(出示课件11)教师问:变式1与例题有什么不同?学生答:一边靠墙.教师问:我们可以设面积为S,如何设自变量?学生答:设垂直于墙的边长为x米.教师问:面积S的函数关系式是什么?学生答:S=x(60-2x)=-2x2+60x.教师问:如何求解自变量x的取值范围?墙长32m对此题有什么作用?(出示课件12)学生答:0<60-2x≤32,即14≤x<30.教师问:如何求最值?学生答:最值在其顶点处,即当x=15m 时,S=450m 2.变式2如图,用一段长为60m 的篱笆围成一个一边靠墙的矩形菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?(出示课件13)教师问:变式2与变式1有什么异同?学生答:墙长不一样.教师问:可否模仿变式1设未知数、列函数关系式?学生答:设垂直于墙的边长为x 米.S=x(60-2x)=-2x 2+60x.教师问:可否试设与墙平行的一边为x 米?则如何表示另一边与面积?学生答:设矩形面积为Sm 2,与墙平行的一边为x 米,则22601130(30)450.222x S x x x x ∙-==-+=--+教师问:当x=30时,S 取最大值,此结论是否正确?(出示课件14)学生答:不正确.教师问:如何求自变量的取值范围?学生答:0<x≤18.教师问:如何求最值?学生答:由于30>18,因此只能利用函数的增减性求其最值.当x=18时,S 有最大值是378.教师总结:(出示课件15)实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围.通过变式1与变式2的对比,希望同学们能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.出示课件16:已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?师生共同分析后,生独立解决.解:∵直角三角形两直角边之和为8,设一边长x,∴另一边长为8-x.则该直角三角形面积:S=(8-x)x÷2,即:214.2S x x =-+当x=2b a-=4,另一边为4时,S 有最大值244ac b a-=8,∴当两直角边都是4时,直角三角形面积最大,最大值为8.(三)课堂练习(出示课件17-25)1.如图,在足够大的空地上有一段长为a 米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长;(2)求矩形菜园ABCD面积的最大值.2.用一段长为15m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形菜园的最大面积是________.3.如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A开始沿AB向B以2cm/s的速度移动(不与点B重合),动点Q从点B开始BC以4cm/s 的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,那么经过秒,四边形APQC的面积最小.4.如图,点E、F、G、H分别位于正方形ABCD的四条边上,四边形EFGH也是正方形,当点E位于何处时,正方形EFGH的面积最小?5.某小区在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住.设绿化带的边长BC为xm,绿化带的面积为ym².(1)求y与x之间的函数关系式,并写出自变量的取值范围.(2)当x为何值时,满足条件的绿化带的面积最大?6.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费用每平方米1000元,设矩形的一边长为x(m),面积为S(m2).(1)写出S与x之间的关系式,并写出自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.参考答案:1.解:⑴设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45.当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10.答:AD的长为10m;⑵设AD=xm,∴S=12x(100﹣x)=﹣12(x﹣50)2+1250,当a≥50时,则x=50时,S 的最大值为1250;当0<a<50时,则当0<x≤a 时,S 随x 的增大而增大;当x=a 时,S 的最大值为50a﹣12a 2,综上所述,当a≥50时,S 的最大值为1250;当0<a<50时,S 的最大值为50a﹣12a 2.2.2225m 83.34.解:令AB 长为1,设DH=x,正方形EFGH 的面积为y,则DG=1-x.2211114(1)2(01).222y x x x x ⎛⎫ ⎪⎝⎭=-⨯-=-+<<当x=12时,y 有最小值12.即当E 位于AB 中点时,正方形EFGH 面积最小.5.解:40(1)(2x y x -=2240120,22x x x x -==-+即2120(025).2y x x x =-+<≤x x y 202122+-=)()40(212x x --=)202040(21222-+--=x x200)20(212+--=x ∵0<x<25,∴当x=20时,满足条件的绿化带面积y 最大=200.6.解:(1)设矩形一边长为x,则另一边长为(6-x),S=x(6-x)=-x 2+6x,其中0<x<6.(2)S=-x 2+6x=-(x-3)2+9;当x=3时,即矩形的一边长为3m 时,矩形面积最大,为9m 2.这时设计费最多,为9×1000=9000(元).(四)课堂小结1.通过本节课的学习你有什么收获?2.你觉得这节课有哪些问题需要特殊关注的?谈谈自己的看法.(五)课前预习预习下节课(22.3第2课时)的相关内容.七、课后作业1教材习题22.3第4、5、6、7题.2.配套练习册内容八、板书设计:九、教学反思:二次函数是描述现实世界变量之间关系的重要模型,也是某些单变量最优化的数学模型,如最大利润、最大面积等实际问题,因此本课时主要结合这两类问题进行了一些探讨.生活中的最优化问题通过数学模型可抽象为二次函数的最值问题,由于学生对于这一转化过程较难理解,因此教学时教师可通过分步设问的方式让学生逐层深入、稳步推出,让学生自主建立数学模型,在这个过程中教师可通过让学生画图探讨最值.总之,在本课时的教学过程中,要让学生经历数学建模的基本过程,体验探究知识的乐趣.。

人教版九年级上册数学《实际问题与二次函数》教学说课研讨课件复习(拱桥问题)

人教版九年级上册数学《实际问题与二次函数》教学说课研讨课件复习(拱桥问题)
(1)建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”
(2)结合实际意义,确定自变量的取值范围;
(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.
做一做下面的题目,看谁做得又快又准确。
A组
建立函数关系式:y=(20-x)(300+18x),
即:y=-18x2+60x+6000.
例 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?
6000
综合可知,应定价65元时,才能使利润最大。
(3)单件利润=售价-进价.
例 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?
涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:
单件利润(元)
销售量(件)
第二十二章 二次函数
前 言
学习目标
1.根据实际问题,找出变量之间存在的关系,列出函数关系式并确定自变量的取值范围。2.通过二次函数顶点公式求实际问题中的极值。
重点难点
重点:列出二次函数关系式,并确定自变量的取值范围。难点:通过二次函数顶点公式求实际问题中的极值。
如图是一座抛物线形拱桥,当拱桥顶离水面2m时,水面宽4m。水面下降1m, 水面宽度为多少?水面宽度增加多少?
每星期利润(元)
正常销售
涨价销售
20
300

2024年人教版九年级数学上册教案及教学反思全册第22章 实际问题与二次函数(第2课时)教案

2024年人教版九年级数学上册教案及教学反思全册第22章 实际问题与二次函数(第2课时)教案

22.3实际问题与二次函数(第2课时)一、教学目标【知识与技能】能根据实际问题构建二次函数模型,并利用函数性质来解决实际问题.【过程与方法】再次经历利用二次函数解决实际问题的过程,进一步体验数学建模思想,培养学生解决实际问题的能力.【情感态度与价值观】进一步体会数学知识的应用价值,感受数学来自于生活又服务于生活,激发学习数学的兴趣.二、课型新授课三、课时第2课时,共3课时。

四、教学重难点【教学重点】用函数知识解决实际问题,感受数学建模思想.【教学难点】根据抛物线型实际问题,建立恰当的平面直角坐标系,建立二次函数模型.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课出示课件2:在日常生活中存在着许许多多的与数学知识有关的实际问题.如繁华的商业城中很多人在买卖东西.如果你去买商品,你会选哪一家呢?如果你是商场经理,如何定价才能使商场获得最大利润呢?(二)探索新知探究利润问题中的数量关系出示课件4:某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是元,销售利润元.学生独立思考后口答:18000;6000教师问:利润问题中有哪些数量关系?学生答:(1)销售额=售价×销售量;(2)利润=销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.出示课件5:例1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?学生在教师的引导下分析:①每件涨价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.②教师问:自变量x的取值范围如何确定?(出示课件6)学生答:营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x≥0,且x≥0,因此自变量的取值范围是0≤x≤30.③教师问:涨价多少元时,利润最大,最大利润是多少?学生答:y=-10x2+100x+6000,当10052(10)x=-=⨯-时,y=-10×52+100×5+6000=6250.即定价65元时,最大利润是6250元.出示课件7:例2某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?学生在教师的引导下分析:①每件降价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售降价销售建立函数关系式:y=(20-x)(300+18x),即y=-18x2+60x+6000.②教师问:自变量x的取值范围如何确定?(出示课件8)学生答:营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x≥0,且x≥0,因此自变量的取值范围是0≤x≤20.③教师问:涨价多少元时,利润最大,是多少?学生答:即:y=-18x2+60x+6000,当6052(18)3x=-=⨯-时,25518()606000605033y=-⨯+⨯+=综合可知,应定价65元时,才能使利润最大.出示课件9:例3某网络玩具店引进一批进价为20元/件的玩具,如果以单价30元出售,那么一个月内售出180件,根据销售经验,提高销售单价会导致销售量的下降,即销售单价每上涨1元,月销售量将相应减少10件,当销售单价为多少元时,该店能在一个月内获得最大利润?学生在教师的引导下分析:①每件商品的销售单价上涨x元,一个月内获取的商品总利润为y元,填空:单件利润(元)销售量(件)每月利润(元)正常销售涨价销售建立函数关系式:y=(10+x)(180-10x),即:y=-10x2+80x+1800.②教师问:自变量x的取值范围如何确定?(出示课件10)学生答:营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故180-10x≥0,因此自变量的取值范围是x≤18.③教师问:涨价多少元时,利润最大,最大利润是多少?学生答:y=-10x2+80x+1800=-10(x-4)2+1960.当x=4时,即销售单价为34元时,y取最大值1960元.答:当销售单价为34元时,该店在一个月内能获得最大利润1960元.出示课件11:教师总结:求解最大利润问题的一般步骤:(1)建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”.(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式法求出最大利润;也可以画出函数的简图,利用简图和性质求出.出示课件12:巩固练习:某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?学生独立思考后自主解决.解:设售价提高x元时,半月内获得的利润为y元.则y=(x+30-20)(400-20x)=-20x2+200x+4000=-20(x-5)2+4500.∴当x=5时,y最大=4500.答:当售价提高5元时,半月内可获最大利润4500元.出示课件13,14,15,16:例4某商店试销一种新商品,新商品的进价为30元/件,经过一段时间的试销发现,每月的销售量会因售价的调整而不同.令每月销售量为y件,售价为x元/件,每月的总利润为Q元.(1)当售价在40~50元时,每月销售量都为60件,则此时每月的总利润最多是多少元?解:由题意得:当40≤x≤50时,Q=60(x-30)=60x-1800.∵y=60>0,Q随x的增大而增大,∴当x最大=50时,Q最大=1200.答:此时每月的总利润最多是1200元.(2)当售价在50~70元时,每月销售量与售价的关系如图所示,则此时当该商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?解:当50≤x≤70时,设y与x函数关系式为y=kx+b,∵线段过(50,60)和(70,20).∴y=-2x+160(50≤x≤70).∴Q=(x-30)y=(x-30)(-2x+160)=-2x2+220x-4800=-2(x-55)2+1250(50≤x≤70).∵a=-2<0,图象开口向下,∴当x=55时,Q最大=1250.∴当售价在50~70元时,售价x是55元时,获利最大,最大利润是1250元.⑶若4月份该商品销售后的总利润为1218元,则该商品售价与当月的销售量各是多少?解:∵当40≤x≤50时,Q最大=1200<1218.当50≤x≤70时,Q最大=1250>1218.∴售价x应在50~70元之间.因此令-2(x-55)2+1250=1218,解得:x1=51,x2=59.当x1=51时,y1=-2x+160=-2×51+160=58(件),当x2=59时,y2=-2x+160=-2×59+160=42(件).∴若4月份该商品销售后的总利润为1218元,则该商品售价为51元或59元,当月的销售量分别为58件或42件.出示课件17,18,19:变式:(1)若该商品售价在40~70元之间变化,根据例题的分析、解答,直接写出每月总利润Q与售价x的函数关系式;并说明,当该商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?师生共同分析后解答.解:Q与x的函数关系式为:由例4可知:若40≤x≤50,则当x=50时,Q最大=1200,若50≤x≤70,则当x=55时,Q最大=1250.∵1200<1250∴售价x是55元时,获利最大,最大利润是1250元.(2)若该商店销售该商品所获利润不低于1218元,试确定该商品的售价x 的取值范围;师生共同分析后解答.解:①当40≤x≤50时,∵Q最大=1200<1218,∴此情况不存在.②当50≤x≤70时,Q最大=1250>1218,令Q=1218,得-2(x-55)2+1250=1218.解得x1=51,x2=59.由Q=-2(x-55)2+1250的图象和性质可知:当51≤x≤59时,Q≥1218.因此若该商品所获利润不低于1218元,则售价x的取值范围为51≤x≤59.(3)在(2)的条件下,已知该商店采购这种新商品的进货款不低于1620元,则售价x为多少元时,利润最大,最大利润是多少元?师生共同分析后解答.解:由题意得解得:51≤x≤53.∵Q=-2(x-55)2+1250的顶点不在51≤x≤53范围内,又∵a=-2<0,∴当51≤x≤53时,Q随x的增大而增大.∴当x最大=53时,Q最大=1242.∴此时售价x应定为53元,利润最大,最大利润是1242元.出示课件20:巩固练习:某商店购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,据销售经验,售价每提高1元,销售量相应减少10个.(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是_______元,这种篮球每月的销售量是个(用x的代数式表示).(2)8000元是否为每月销售篮球的最大利润?如果是,说明理由,如果不是,请求出最大月利润,此时篮球的售价应定为多少元?学生独立思考后自主解答.⑴x+10,500-10x⑵800元不是每月最大利润,最大月利润为9000元,此时篮球的售价为70元.(三)课堂练习(出示课件21-27)1.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为______件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.2.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30)出售,可卖出(300-20x)件,使利润最大,则每件售价应定为元.3.进价为80元的某件定价100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y(件)与衬衣售价x(元)之间的函数关系式为.每月利润w(元)与衬衣售价x(元)之间的函数关系式为.(以上关系式只列式不化简).4.一工艺师生产的某种产品按质量分为9个档次.第1档次(最低档次)的产品一天能生产80件,每件可获利润12元.产品每提高一个档次,每件产品的利润增加2元,但一天产量减少4件.如果只从生产利润这一角度考虑,他生产哪个档次的产品,可获得最大利润?5.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax²+bx-75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?参考答案:1.解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250.∴每件销售价为55元时,获得最大利润;最大利润为2250元.2.253.y=2000-5(x-100);w=[2000-5(x-100)](x-80)4.解:设生产x档次的产品时,每天所获得的利润为w元,则w=[12+2(x-1)][80-4(x-1)]=(10+2x)(84-4x)=-8x2+128x+840=-8(x-8)2+1352.当x=8时,w有最大值,且w最大=1352.答:该工艺师生产第8档次产品,可使利润最大,最大利润为1352元.5.解:(1)由图可以看出:二次函数y=ax+bx-75过点(5,0),(7,16),将两点坐标代入解析式即可求得:(1)y=-x2+20x-75,即y=-(x-10)2+25.∵-1<0,对称轴x=10,∴当x=10时,y值最大,最大值为25.即销售单价定为10元时,销售利润最大,为25元.(2)显然,当y=16时,x=7和13.因为函数y=-x+20x-75图象的对称轴为x=10,因此,点(7,16)关于对称轴的对称点为(13,16),故销售单价在7≤x≤13时,利润不低于16元.(四)课堂小结1.通过本节课的学习,你有什么收获?2.对于由二次函数的性质求最大利润问题,你认为有哪些需要注意的?(五)课前预习预习下节课(22.3第3课时)的相关内容.七、课后作业1教材习题22.3第2、8题.2.配套练习册内容八、板书设计:九、教学反思:本课时教学与上一课时基本相同,所不同的是教学时应注意建立正确的直角坐标系,使类似于抛物线的实际问题转化为平面直角坐标系中的抛物线.教学时教师仍可采用分步设问的形式让学生回答并让学生相互交流.教师应鼓励学生用多种方法建立平面直角坐标系,并求出相应抛物线表达式,在这一过程中让学生体验探究发现的快乐,体会数学的最优化思考.。

人教版九年级上册数学 第22章 二次函数 全章复习 教案

人教版九年级上册数学 第22章 二次函数 全章复习 教案

第22章二次函数全章复习教案【学习目标】 1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标(轴)(0,0)(轴)(0,)(,0)(,)当时开口向上当时开口向下()2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.)20()y ax bx c a =++≠,,a b c (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a≠0).(由此得根与系数的关系:).要点诠释:求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题2yax bx c =++利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系; (2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式; (4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式例题1. 已知抛物线的顶点是(3,-2),且在x 轴上截得的线段长为6,求抛物线的解析式.【思路点拨】已知抛物线的顶点是(3,-2),可设抛物线解析式为顶点式,即,也就是,再由在x 轴上截得的线段长为6建立方程求出a .也可根据抛物线的对称轴是直线x =3,在x 轴上截得的线段长为6,则与x 轴的交点为(0,0)和(6,0),因此可设y =a(x-0)·(x-6).【答案与解析】解法一:∵ 抛物线的顶点是(3,-2),且与x 轴有交点,∴ 设解析式为y =a(x-3)2-2(a >0),即,设抛物线与x 轴两交点分别为(x 1,0),(x 2,0).则,解得.∴ 抛物线的解析式为,即. 解法二:∵ 抛物线的顶点为(3,-2), ∴ 设抛物线解析式为.∵ 对称轴为直线x =3,在x 轴上截得的线段长为6,∴ 抛物线与x 轴的交点为(0,0),(6,0). 把(0,0)代入关系式,得0=a(0-3)2-2,解得,∴ 抛物线的解析式为, 即.解法三:求出抛物线与x 轴的两个交点的坐标(0,0),(6,0)设抛物线解析式为y =a(x-0)(x-6),2(3)2y a x =--2692y ax ax a =-+-2692y ax ax a =-+-12||6x x -==29a =22(3)29y x =--22493y x x =-2(3)2y a x =--29a =22(3)29y x =--22493y x x =-把(3,-2)代入得,解得.∴ 抛物线的解析式为,即.举一反三【变式】已知抛物线(m 是常数). (1)求抛物线的顶点坐标; (2)若,且抛物线与轴交于整数点,求此抛物线的解析式.【答案】(1)依题意,得,∴,∴抛物线的顶点坐标为.(2)∵抛物线与轴交于整数点,∴的根是整数.∴.∵,∴是完全平方数.∵, ∴,∴取1,4,9,.当时,;当时,;当时,. ∴的值为2或或.∴抛物线的解析式为或或.类型二、根据二次函数图象及性质判断代数式的符号例题2. 如图,二次函数y=ax 2+bx +c=0(a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c=0(a ≠0)有一个根为﹣其中正确的结论个数有( )3(36)2a ⨯⨯-=-29a =2(6)9y x x =-22493y x x =-2442y mx mx m =-+-155m <<x 0≠m 2242=--=-=mm a b x m m m m a b ac y 442444422)()(---=-=241681622-=--=m m m m )2,2(-x 02442=-+-m mx mx 2x ==±0m >2x =2m155m <<22105m <<2m2x ==±21m =2=m 24m =21=m 29m =29m =m 21296822+-=x x y x x y 2212-=22810999y x x =--A .1个B .2个C .3个D .4个【思路点拨】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x=3时,y <0,可判断②;由OA=OC ,且OA <1,可判断③;把﹣代入方程整理可得ac 2﹣bc +c=0,结合③可判断④;从而可得出答案.【答案】C ;【解析】解:由图象开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x=2,所以﹣>0,所以b >0,∴abc >0,故①正确;由图象可知当x=3时,y >0,∴9a +3b +c >,故②错误;由图象可知OA <1,∵OA=OC ,∴OC <1,即﹣c <1,∴c >﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac ﹣b +1=0,两边同时乘c 可得ac 2﹣bc +c=0,即方程有一个根为x=﹣c ,由②可知﹣c=OA ,而当x=OA 是方程的根,∴x=﹣c 是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C .类型三、数形结合例题3. 已知平面直角坐标系xOy(如图所示),一次函数的图象与y 轴交于点A ,点M 在正比例函数的图象上,且MO =MA ,二次函数的图象经过点A 、M.334y x =+32y x =2y x bx c =++(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数的图象上,且四边形ABCD 是菱形,求点C 的坐标.【答案与解析】(1)一次函数,当x =0时,y =3,所以点A 的坐标为(0,3),又∵ MO =MA ,∴ M 在OA 的中垂线上,即M的纵坐标为,又M 在上,当时,x =1,∴ 点M 的坐标为.如图所示,.(2)将点A(0,3),代入中,得 ∴即这个二次函数的解析式为:.(3)如图所示,设B(0,m)(m <3),,.334y x =+334y x =+3232y x =32y =31,2⎛⎫⎪⎝⎭AM ==31,2M ⎛⎫ ⎪⎝⎭2y x bx c =++3,31.2c b c =⎧⎪⎨++=⎪⎩5,23.b c ⎧=-⎪⎨⎪=⎩2532y x x =-+25(,3)2C n n n -+3,34D n n ⎛⎫+ ⎪⎝⎭则|AB|=3-m ,,.因为四边形ABCD 是菱形,所以.所以 解得(舍去)将n =2代入,得,所以点C 的坐标为(2,2).类型四、函数与方程例题4.某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x ≧60)元,销售量为y 套.(1)求出y 与x 的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少? 【答案与解析】解:(1)销售单价为x 元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x ≥60);(2)根据题意可得,x (﹣4x+480)=14000,解得x 1=70,x 2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元; (3)设一个月内获得的利润为w 元,根据题意得:w=(x ﹣40)(﹣4x+480)=﹣4x2+640x ﹣19200 =﹣4(x ﹣80)2+6400.当x=80时,w 的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.举一反三:【变式1】抛物线与直线只有一个公共点,则b=________.213||4D C DC y y n n =-=-5||4AD n =||||||AB DC AD ==2133,453.4m n n m n ⎧-=-⎪⎪⎨⎪-=⎪⎩113,0;m n =⎧⎨=⎩221,22.m n ⎧=⎪⎨⎪=⎩2532y x x =-+2C y =【答案】由题意得 把②代入①得. ∵抛物线与直线只有一个公共点, ∴方程必有两个相等的实数根, ∴,∴.【变式2】二次函数的图象如图所示,根据图象解答下列问题: (1)写出方程的两个根; (2)写出不等式的解集; (3)写出y随x的增大而减小的自变量x的取值范围; (4)若方程有两个不相等的实数根,求k的取值范围.【答案】(1) (2). (3). (4)方法1:方程的解, 即为方程组中x的解也就是抛物线与直线的交点的横坐标,由图象可看出, 当时,直线与抛物线有两个交点,∴. 方法2:∵二次函数的图象过(1,0),(3,0),(2,2)三点, ∴ ∴ ∴ ,即, ∴. ∵ 方程有两个不相等的实数根,∴,∴.类型五、分类讨论例题5.若函数,则当函数值y =8时,自变量x 的值是( ).A .B .4C .或4D .4或【思路点拨】此题函数是以分段函数的形式给出的,当y =8时,求x 的值时,注意分类讨论.【答案】D ;【解析】由题意知,当时,,∴ .(舍去).当2x =8时,x =4.综合上知,选D .类型六、与二次函数有关的动点问题例题6.在平面直角坐标系xOy 中,二次函数y=mx 2-(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若∠ABO=45°,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (p ,q )为二次函数图象上的一个动点,当-3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.22(2)2(2)x x y x x ⎧+≤=⎨>⎩228x +=x =2>x =x =【思路点拨】(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B,A点坐标,进而求出直线AB的解析式,再利用平移规律得出答案;(3)根据当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,即可得出m的取值范围.【答案与解析】(3)由(2)得二次函数的解析式为:y=mx2-(m+1)x+1∵M(p,q)为二次函数图象上的一个动点,∴q=mp2-(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,-q).∴M′点在二次函数y=-m2+(m+1)x-1上.∵当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,≤m<0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的实际应用专题复习教案
盛康中心学校司念钦
学习目标:
1、能够正确根据题意确定二次函数关系式,运用二次函数性质解决实际问题.
2、通过利用递进式问题串,让学生经历不同题型的分析解决过程,进一步培养学生分析解决问题的能力.
3、通过把实际问题转化为数学问题的过程,形成初步的数学建模思想.
教学重点:让学生掌握把生活信息转化为数学问题的方法,正确建立二次函数关系式,并用二次函数的性质解决实际问题.
教学难点:培养学生从实际问题中抽象出数学问题,并运用数学知识加以解决,最后再回到实际问题的能力.
教学过程:
一、创设情境
请同学们欣赏图片,进而发现生活中的抛物线,欣赏图片想象导弹发射出去的运行轨迹,跟学生聊聊中韩关系激发学习热情引入新课。

二、诊断练习归纳方法
1,一种卡车的刹车距离y(m)与滑行时间x(s)之间函数关系式是y=﹣x2+10x 该型卡车采取刹车后滑行_____m才能停下来,此时卡车滑行时间为______秒.
引导分析:整理二次函数有关的性质.
把y=﹣x2+10x化为y=a(x-h)2+ k形式为__________,开口______,顶点______,对称轴______,当x =___时y有最___值____;当x ___时y随x _______,当x ___时y随x _______.
2,一种信号枪从地面垂直向上发出一枚信号弹,信号弹的高度h(米)与它运动时间t(秒)的函数关系式是h=-5t2+10t+55,那么信号弹运动中的最大高度为()米。

.反思归纳:求刹车距离及信号弹最大高度就是求___________,先把二次函数一般式化为______________式,再根据________________解决实际问题.
3,为了丰富野战官兵的业余生活,野战军某部在临时场地装备
篮球投篮篮筐,篮筐P距离地面x轴为3m,以篮筐P所在直线为y
轴,建立平面直角坐标系,篮球投出后呈抛物线y= -x2+bx+c先向上
至最高点然后落下,士兵投球位置为B(球出手高度忽略不计),
则最高点距地面_____m,此时距离y轴为_____m。

反思归纳:解析式中有待定系数时,先___________________,
再根据二次函数的性质解决实际问题.
三、合作探究
随着中韩关系的日益紧张,大批韩国产品在咱们中国滞销,我们自主品牌的商品消费逐渐增长,小记者们对某超市销售的一种商品进行市场调查,了解到该商品每件进价为30元,第x(1≤x≤90)天的销量为(200-2x)件,设该商品的每天利润为y 元。

超市预计按每件(x+40)元出售。

超市想知道该商品当销售到第几天时,当天的销售利润最大,最大利润是多少?
思考:1.在销售问题中怎样表示每件商品的利润和销售总利润?
2.怎样列出销售利润y与时间x的函数关系式.
3.怎样根据函数关系式确定最大利润?
4.归纳销售问题求最大利润的方法.
归纳:1、依据题意列函数关系式,把实际问题转化为数学问题;
2、把函数关系一般式化成__________,根据二次函数的性质解决问题
.
变式一超市在实际销售中,不断有顾客投诉售价天天变太不诚信,超市紧急调整了商品的售价方案,相关信息如下表:
若设该商品的每天利润为y元,按这种售价方案,当销售到第几天时,当天的销售利润最大,最大利润是多少?
(学生分组讨论并演板,讲解)
归纳:1、用分类讨论思想在不同限制条件内求函数关系式,然后分别求函数的最值.
2、比较几个不同限制条件内的最值,得出符合这一问题的最值.
变式二有一位细心的同学还向我们提供了一个信息,超市预计每天用于这种商品的进货资金不低于4200元,其它售价方案不变,那么这一信息会影响到当天的最大销售利润吗?若会请求出当销售到第几天时,当天的销售利润最大,最大利润是多少?若不会,请说明理由!
思考:1.怎样表示进货资金?
2.怎样确定x的取值范围?
3.如何利用范围解决问题?
归纳:如果图象的最高(低)点不在限制条件内,要根据限制条件和函数的性质确定实际问题的最值. 四、深化练习
1、某商场购进一批单价为4元的商品,若按每件5元的价格销售,每月能卖出3万件;若按每月6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系。

则y与x之间函数关系式为:____________________
当售价定为____ 时才能使每月利润最大,最大利润是_________
2,如图,假设篱笆(虚线部分)的长度为16米,
则所围成矩形ABCD的最大面积是()平方米
A.60
B.63
C.64
D.66
变式:若在P处有一棵树与墙CD,AD的距离分别是9米和3米,要将这棵树围在矩形ABCD内(含边界,不考虑树的粗细),则矩形ABCD的最大面积是()平方米.
五、课堂小结
一种能力两种方法三种思想
六、课后作业
完成复习系列训练。

相关文档
最新文档