等差数列前N项和

合集下载

等差等比数列的前n项和公式

等差等比数列的前n项和公式

等差等比数列的前n项和公式
当涉及到等差数列和等比数列的前 n 项和时,可以使用以下公式计算:
1. 等差数列的前 n 项和公式:
对于等差数列 a,公差为 d,前 n 项和 Sn 可以通过以下公式计算:
Sn = (n/2) * (2a + (n-1)d)
其中,
Sn 表示前 n 项和
n 表示项数
a 表示首项
d 表示公差
2. 等比数列的前 n 项和公式:
对于等比数列 a,公比为 r,且 r ≠ 1,前 n 项和 Sn 可以通过以下公式计算:
Sn = (a * (1 - r^n)) / (1 - r)
其中,
Sn 表示前 n 项和
n 表示项数
a 表示首项
r 表示公比
需要注意的是,这些公式适用于从第一项开始计算的情况。

如果你从第零项开始计算,则需要对公式进行相应的调整。

等差数列前n项和

等差数列前n项和

高斯(1777---1855), 德 国数学家、物理学家和天文学家。 他和牛顿、阿基米德,被誉为有 史以来的三大数学家。有“数学 王子”之称。
求 S=1+2+3+······+100=? 你知道高斯是
高斯算法:
怎么计算的吗?
首项与末项的和:
1+100=101,
第2项与倒数第2项的和: 2+99 =101,
(2)当d<0时,Sn有最大值 若a1<0,则S1最大; 若a1>0,则所有正数项的和最大。
另法:前n项和Sn的公式是关于n的二次函数,故 可利用二次函数来求最值(注意:n为正整数)。
例5 已知一个等差数列中满足3a4 7a7,且a1 0 Sn是数列{an}的前n项和,求n为何值时Sn取最大值.
则: b1,b2,b3, ,成等差数列,公差为:kd
(等差数列等分若干段后,各段和依序成等差数列)
数列a
n
是公差为d的等差数列,则S n
An2
Bn
Sn n
An B
Sn n
是等差数列,公差为A.
2.已知an是公差为d的等差数列,Sn为数列an的前n项和,则
Sn n
是等差数列,公差为
d 2
解:方法一
3a4
7a7
d
4 33 a1
0
an
a1
(n
1)

(
4 33
)a1
0
n
37 4
当n 9时,an 0; 当n 9时,an 0
故当n=9时,Sn取最大值.
方法二
3a4
7a7
d
4 33
a1
0
Sn
na1

等差数列前n项和的几何意义

等差数列前n项和的几何意义

详细描述
在等差数列中,由于每一项都是前一项加上 一个常数(公差),因此奇数项的和等于中 间一项乘以个数,偶数项的和等于中间两项 的和乘以个数。这种对称性质在解决等差数 列问题时非常有用,可以简化计算过程。
05
等差数列前n项和的证明 方法
倒序相加法
总结词
倒序相加法是通过将等差数列的前n项和倒序写,然后两 式相加,消去大部分项,得到一个更简单的等式,从而 证明前n项和的公式。
解释
通项公式表示等差数列中任意一项的 值,它由首项和公差决定,与项数 $n$有关。
等差数列前n项和的公式
定义
等差数列前n项和公式 (n-1)d)$。
解释
前n项和公式表示等差数列中前n项的 和,它由首项、公差和项数$n$决定。
02
等差数列前n项和的几何 意义
THANKS
感谢观看
式。
构造法
总结词
构造法是通过构造一个新的等差数列,使得这个新数 列的前n项和与原数列的前n项和相等,从而证明前n 项和的公式。
详细描述
首先构造一个新的等差数列,使得这个新数列的前n 项和与原数列的前n项和相等。然后利用等差数列的 性质,证明这两个数列的前n项和相等。通过化简, 可以得到等差数列前n项和的公式。
平行四边形的面积
总结词
等差数列前n项和可以表示为平行四边形的面积。
详细描述
等差数列的前n项和还可以看作是平行四边形的面积,其中平行四边形的底为等差数列 的首项和末项,高为项数n的一半,平行四边形的面积即为等差数列前n项和的值。
03
等差数列前n项和的应用
计算等差数列的和
公式法
利用等差数列前n项和的公式,可以直接计算出等差数列的和。

4.2.2等差数列的前n项和公式

4.2.2等差数列的前n项和公式
( − 1)
= 1 +
.
2
作用:已知 a1,d和 n,求 Sn.
典型例题
例1已知数列{an}是等差数列.
(1)若a1=7,a50=101,求 S50;
5
(2)若a1=2,a2= ,求S10;
2
1
1
(3)若a1= ,d= − ,Sn=−5,求n.
2
6
解:(1)∵a1=7,a50=101,
当n=6时,an=0;
所以 an+1<an .所以{an}是递减数列.
当n>6时,an<0.
由 a1=10,dБайду номын сангаас=-2,
得 an=10+(n-1)×(-2) =-2n+12.
所以 , S1<S2<…<S5=S6> S7>…
令 an>0,解得 n <6.
所以,当n=5或6时,Sn最大.
因为5 = 5 × 10
2

= + (1 − ).
2
2
Sn=Sn-1+an(n≥2)
函数思想
课后作业
1.某市一家商场的新年最高促销奖设立了两种领奖方式:第一种,
所以2 = (1 + ) + (1 + ) + ⋯ + (1 + )
= (1 + ).
(1 + )
=
.
2
等差数列的前n项和公式
等差数列{an}的前n项和Sn公式:
(1 + )
=
.
2
作用:已知 a1,an 和 n,求 Sn.
an=a1+(n-1)d,(n∈N*)
,有
2
101 + 45 = 310,

等差数列前n项和的性质

等差数列前n项和的性质
性质:若数列{an}是等差数列,那么数列Sk,S2k-Sk, S3k-S2k , …仍然成等差数列 公差为k2d
想一想: 在等差数列{an}中,Sn,S2n,S3n三者之间有什么
关系?
S3n=3(S2n-Sn)
思考2:若{an}为等差数列,那么
{Sn n
}是什么数列?
性质:数列{an}是等差数列
(2)∵an=2n-1, ∴bn=2n-112n+1=212n1-1-2n1+1, ∴Bn=b1+b2+b3+…+bn =121-13+2113-15+2115-17+…+122n1-1-2n1+1 =121-2n1+1=2nn+1.
『变式探究』
1.已知在正整数数列{an}中,前 n 项和 Sn 满足: Sn=18(an+2)2, (1)求证:{an}是等差数列; (2)若 bn=12an-30,求数列{bn}的前 n 项和的最小值.
则S2k 1 等于什么? T2k 1
ak S2k 1 bk T2k 1
例4:Sn,Tn分别是等差数列{an}、{bn}的前n项的和,

Sn Tn
7n 2 n3
,则
a5 b5
.
『变式探究』
1.已知两个等差数列{an}和{bn}的前n项和分别为An和
Bn,且
An Bn
7n 45,则使得 n3
3.设等差数列{an}的前n项和为Sn,若a1=12,S12>0, S13<0. (1)求数列{an}公差d的取值范围;(2)指出 S1, S2, S3, …,S12中哪一个值最大。
4.数列{an}首项为23,公差为整数的等差数列,且第六 项为正,第七项为负. (1)求数列{an}的公差d; (2)求前n项和Sn的最大值; (3)当Sn>0时,求n的最大值;

(完整版)等差数列的前n项和与首项、末项之间的关系总结

(完整版)等差数列的前n项和与首项、末项之间的关系总结

(完整版)等差数列的前n项和与首项、末
项之间的关系总结
一、定义:
等差数列是指数列中的相邻两项之差为常数的数列。

它的一般
形式可以表示为:a₁, a₁+d, a₁+2d, ...,其中a₁为首项,d为公差。

二、前n项和的计算:
等差数列的前n项和可以通过以下公式求得:
Sn = (n/2)(a₁ + an)
其中,Sn表示前n项和,a₁为首项,an为末项(第n项)。

三、首项、末项与前n项和的关系:
1. 首项和末项的关系:
首项a₁和末项an之间的关系可以表示为:
an = a₁ + (n-1)d
其中,d为公差。

2. 前n项和与首项、末项之间的关系:
根据前n项和的计算公式,可以得出以下关系:
Sn = (n/2)(a₁ + a₁ + (n-1)d)
= (n/2)(2a₁ + (n-1)d)
= (n/2)(2a₁ + nd - d)
= n(a₁ + (n-1)d)/2
四、应用示例:
假设有等差数列{2, 5, 8, 11, ...},其中首项a₁=2,公差d=3。

计算该数列前n项和的步骤如下:
1. 根据首项和公差,确定该数列的末项计算公式:an = 2 + (n-
1)3。

2. 根据前n项和的计算公式,将首项a₁、末项an代入计算:Sn = n(2 + (n-1)3)/2。

以上就是对等差数列的前n项和与首项、末项之间的关系进行总结的内容。

注意:本文档的内容仅供参考,不涉及法律问题。

等差数列前n项和的性质及应用

等差数列前n项和的性质及应用

S偶
an1
性质4:(2)若项数为奇数2n-1,则 S2n-1=(2n- 1)an (an为中间项),
此时有:S偶-S奇= an ,
S奇 S偶
n n1
Sn 性质5: { } 为等差数列. n
两等差数列前n项和与通项的关系
性质6:若数列{an}与{bn}都是等差数列,且 a n S 2 n 1 前n项的和分别为Sn和Tn,则 bn T2 n 1
等差数列{an}前n项和的性质 在等差数列{an}中,其前n项的和为Sn,则有 性质1:Sn,S2n-Sn,S3n-S2n, …也是等差数列 ,公差为 n2d 性质2:若Sm=p,Sp=m(m≠p),则Sm+p= - (m+p) 性质3:若Sm=Sp (m≠p),则 Sp+m= 0 性质4:(1)若项数为偶数2n,则 S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中 间两项), S奇 an 此时有:S偶-S奇= nd ,
2: 若数列{an}的前n项和Sn满足 Sn=an2+bn,试判断{an}是否是等差数列 。 3、设等差数列{an}的前n项和为Sn, 已知a3=12, S12>0, S13<0。 (1)求公差d的取值范围; (2)指出S1 , S2, … , S12中哪个值最大,
95 25a 5b 1、 设Sn=an2+bn, 则有: 。 200 64a 8b
等差数列{an}前n项和的性质 例8.设等差数列的前n项和为Sn,已知 a3=12,S12>0,S13<0. (1)求公差d的取值范围; (2)指出数列{Sn}中数值最大的项,并说明 理由. a1+2d=12 解:(1)由已知得 12a1+6×11d>0

等差数列前n项和公式大全

等差数列前n项和公式大全

等差数列前n项和公式大全
等差数列是指数列中相邻两项之差相等的数列。

其前n项和公式如下:1. 等差数列首项为a,公差为d,前n项和为Sn,则有:Sn = n/2(2a + (n-1)d)这是最常用的等差数列前n项和公式,也是最基本的公式。

2. 等
差数列首项为a,公差为d,末项为an,前n项和为Sn,则有:Sn =
n/2(a + an)这个公式的推导需要用到等差数列的通项公式an = a + (n-1)d。

3. 等差数列首项为a,公差为d,第m项到第n项的和为Smn,则有:Smn = (n-m+1)/2(2a + (n-m)d)这个公式可以用来求等差数列中任意
一段连续项的和。

4. 等差数列首项为a,公差为d,第k项的值为ak,
则有:ak = a + (k-1)d这是等差数列的通项公式,可以用来求等差数列
中任意一项的值。

以上是等差数列前n项和公式的常见形式,需要根据具
体问题选择合适的公式进行计算。

等差数列前n项和公式大全

等差数列前n项和公式大全

等差数列前n项和公式大全为了更好地理解等差数列前$n$项和公式,我们首先来了解等差数列的定义和性质。

等差数列的定义:如果一个数列满足任意相邻两项之间的差值相等,那么这个数列就是等差数列。

等差数列的通项公式:等差数列的通项公式可以表示为$a_n=a_1+(n-1)d$,其中$a_n$是数列中的第$n$项,$a_1$是数列中的第一项,$d$是公差。

等差数列的前$n$项和公式:等差数列的前$n$项和可以表示为$S_n = \frac{n}{2}(a_1 + a_n)$,其中$S_n$表示前$n$项和。

现在让我们来证明等差数列前$n$项和公式。

我们从等差数列的通项公式出发,再利用数列中第一项与最后一项的关系来推导出前$n$项和公式:设等差数列的第$n$项为$a_n$,而第一项为$a_1$,公差为$d$。

根据通项公式:$a_n=a_1+(n-1)d$。

那么数列的最后一项可以表示为:$a_n=a_1+(n-1)d$。

那么数列的前$n$项和可以表示为:$S_n=a_1+(a_1+d)+(a_1+2d)+...+(a_1+(n-1)d)$。

将等差数列的最后一项代入前$n$项和公式,得到:$S_n=a_1+a_n+(a_1+d)+(a_1+2d)+...+(a_1+(n-2)d)$。

由于等差数列具有对称性,可以对以上等式进行变形,得到:$S_n=(a_1+a_n)+(a_1+d+a_n-d)+(a_1+2d+a_n-2d)+...+(a_1+(n-1)d+a_n-(n-1)d)$。

将等差数列的前$n$项和重新表示,得到:$S_n=(a_1+a_n)+(a_1+a_n)+(a_1+a_n)+...+(a_1+a_n)$。

一共有$n$项,所以:$S_n=n(a_1+a_n)$。

将$a_1$和$a_n$用$a_1 + (n-1)d$来表示,即:$S_n =\frac{n}{2}(2a_1 + (n-1)d)$。

根据等差数列的前$n$项和公式,我们得到了等差数列前$n$项和的公式。

等差数列求前n项和公式的应用

等差数列求前n项和公式的应用

等差数列求前n项和公式的应用等差数列求前n项和公式是数学中一个重要的公式,它可以利用来计算等差数列前n项的总和。

等差数列是指一组有序数组,每个元素均等于前一元素加上一个常数,即某项与它的前一项的差值是相同的。

在这种情形下,前n项和公式就可以派上大用场了。

等差数列求前n项和公式是这样的:假设等差数列的第一项为a1,首项为a,公差为d,则前n项和公式为:Sn=n/2*(a1+an);其中:an=a1+(n-1)*d。

例如,4,6,8,10,12是一个等差数列,a1=4,a2=8,d=2,n=5。

运用等差数列求前n项和公式,显然:Sn=5/2*(4+8)=30。

在日常中,等差数列求前n项和公式广泛应用于各种领域,比如:工业制造可以使用等差数字来确定某种产品在生产和销售上遵循的统一规定;在医学上,也可以使用这个公式来定量观测患者的恢复情况。

而在教育行业,等差数列求前n项和公式可以帮助学生掌握数学概念,解决实际问题,空前经久式地学习数学知识。

总而言之,等差数列求前n项和公式在建筑、投资等领域有着广泛的应用,并能够更有效地解决实际的问题。

其中给人们带来巨大的效用,值得我们进一步探索和发挥这种知识的功效。

等差数列求前n项和公式是数学中一个重要的公式,它可以利用来计算等差数列前n项的总和。

等差数列是指一组有序数组,每个元素均等于前一元素加上一个常数,即某项与它的前一项的差值是相同的。

在这种情形下,前n项和公式就可以派上大用场了。

等差数列求前n项和公式是这样的:假设等差数列的第一项为a1,首项为a,公差为d,则前n项和公式为:Sn=n/2*(a1+an);其中:an=a1+(n-1)*d。

例如,4,6,8,10,12是一个等差数列,a1=4,a2=8,d=2,n=5。

运用等差数列求前n项和公式,显然:Sn=5/2*(4+8)=30。

在日常中,等差数列求前n项和公式广泛应用于各种领域,比如:工业制造可以使用等差数字来确定某种产品在生产和销售上遵循的统一规定;在医学上,也可以使用这个公式来定量观测患者的恢复情况。

等差数列的前n项和的性质

等差数列的前n项和的性质

A.22 B.26 C.30 D.34
C 由等差数列的前n项和性质知S673,S1346-S673,S2019-S1346 成等差数列,所以由等差中项的性质知 2(S1346-S673)=S673+S2019-S1346,又S673=2,S1346=12, 所以S2019=3(S1346-S673)=30,故选C.
Sn在转折项有最大值
an 0 an1 0
a1 0, d 0 , , ,(0),+, , , Sn在转折项有最小值
an 0
an1
0
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法1 由S3=S11得 1.根据Sn二次模型,寻找对称轴
法一 : 基本量思想 转为a1和d 法二 : 整体做差
3. an 是等差数列, Sn是前n项的和,求证: S6, S12 S6, S18 S12也成等差 推广: 若 an 是等差数列, Sn , S2n Sn , S3n S2n也成等差
等差数列an, Sn 100, S2n 500,求S3n
练习题
1.等差数列 an ,a10 30,a20 50,求a40
法一 : 基本量思想 转为a1和d 法二 : a10,a20 , a30, 还成等差
结论 : 若an是等差数列, 则 a10n还是等差 2.等差数列 an ,a1 a2 a3 35,a2 a3 a4 63,求a3 a4 a5
Sn 2n 3 ,求 a9 .
37
Tn 3n 1 b9
50
an S2n1 bn T2n1
an S2n1
bn
T2n1
二、等差数列的前n项的最值问题 Sn最值问题

等差数列前n项和

等差数列前n项和
这是个什么问题呢?
从上而下第一层是1颗宝石,第一层是2颗宝石,第三层是3颗宝石… …第一百层是100颗宝石 即: 1+2+3+······+100=?
点击此处添加正文,文字是您思想的提炼。
2.2 等差数列的前n项和
02
德国古代著名数学家高斯10岁的时候就已经解决了这个问题:1+2+3+…+100=?你知道高斯是怎样算出来的吗?
2S21=(1+21) + (2+20) +(3+19 )+ … + (21+1)
21个22
探究问题1:第1层到21层一共有多少颗圆宝石?
这实质上就是数学中数列求和的一种重要方法--------倒序相加法 总结一下这种方法特点?可以叫什么法呢?
上页
下页
等差数列前n项和的公式;
等差数列前n项和公式的推导方法——倒序相加法;
在两个求和公式中,各有五个元素,只要知道其中三个元素,结合通项公式就可求出另两个元素. (两个)
课堂小结
问题2:等差数列1,2,3,…,n, …的前n项和怎么求?
sn=1 + 2 + … + n-1 + n
2sn =(n+1) + (n+1) + … + (n+1) + (n+1)
sn=n + n-1 + … + 2 + 1
北京天坛圆丘
由等差数列前n项和公式,
解 (1)设从第1圈到第9圈石板数构成数列 ,由题意可知 是等差数列,其中
(块)

(块)
方式1
答 第9圈有81块石板, 前9圈一共有405块石板

等差数列的前n项和公式

等差数列的前n项和公式

等差数列的前n项和公式等差数列是指数列中相邻两项之间的差值保持一致的一种数列。

在数学中,我们经常需要求等差数列的前n项和,即将等差数列前n个数相加的结果。

这里,我们将探讨等差数列的前n项和公式,并通过实例进行验证。

一、等差数列的定义与性质:等差数列的定义:若数列An(简称为数列A)满足An+1 - An = d,其中d为常数,则称数列A为等差数列。

等差数列通常用a1, a2, a3, ..., an来表示。

等差数列的性质:在等差数列中,任意一项An可以表示为第一项a1与项数n和公差d的关系,即An = a1 + (n-1)d。

二、等差数列的前n项和公式推导:为了求解等差数列的前n项和,我们需要推导出一个通用的公式。

设等差数列的前n项和为Sn,我们来看一下如何得出Sn的公式。

我们观察等差数列的前n项和情况,可以列出以下两个等式:S1 = a1S2 = a1 + (a1 + d)S3 = a1 + (a1 + d) + (a1 + 2d)...Sn = a1 + (a1 + d) + (a1 + 2d) + ... + (a1 + (n-1)d)接下来,我们将Sn与Sn的逆序相加,可以得到以下结果:Sn = a1 + (a1 + d) + (a1 + 2d) + ... + (a1 + (n-1)d)Sn = (a1 + (n-1)d) + (a1 + (n-2)d) + ... + a1将这两个式子相加,我们可以得到:2Sn = n(a1 + (a1 + (n-1)d))2Sn = n(2a1 + (n-1)d)整理一下得到:Sn = n(2a1 + (n-1)d) / 2这就是等差数列前n项和的通用公式。

三、等差数列前n项和公式实例验证:现在,我们通过一个实例来验证等差数列前n项和的公式。

例题:计算等差数列3, 8, 13, 18, 23的前4项和。

首先,我们需要确定各项的值:a1 = 3,首项为3d = 8 - 3 = 5,公差为5n = 4,项数为4将这些值代入公式Sn = n(2a1 + (n-1)d) / 2,我们可以得到:S4 = 4(2*3 + (4-1)*5) / 2= 4(6 + 3*5) / 2= 4(6 + 15) / 2= 4(21) / 2= 42所以,等差数列3, 8, 13, 18, 23的前4项和为42。

等差数列的前n项和性质+练习

等差数列的前n项和性质+练习

1、等差数列{a n }前n 项和公式: n S = n a n 2a 1+=d n n n a 2)1(1-+=d n n na n 2)1(--。

等差数列的前n 项之和公式可变形为,若令A =,B =a 1-,则=An 2+Bn.在解决等差数列问题时,如已知,a 1,a n ,d ,,n 中任意三个,可求其余两个。

2、等差数列{a n }前n 项和的性质性质1:S n ,S 2n -S n ,S 3n -S 2n , …也在等差数列,公差为n 2d性质2:(1)若项数为偶数2n,则 S 2n =n(a 1+a 2n )=n(a n +a n+1) (a n ,a n+1为中间两项),此时有:S 偶-S 奇= nd , 性质3:(2)若项数为奇数2n -1,则 S 2n-1=(2n - 1)a n (a n 为中间项), 此时有:S 奇-S 偶= a n ,1-n n s =偶奇s 性质4:数列{nn s }为等差数列 性质5:若数列{a n }与{b n }都是等差数列,且前n 项的和分别为S n 和T n ,则2121n n n n a S b T --= 典型例题:热点考向1:等差数列的基本量(a 1,a n ,d ,,n 中任意三个,可求其余两个)例1、在等差数列{n a }中,已知81248,168S S ==,求1,a 和d 已知6510,5a S ==,求8a 和8S训练: 1、在等差数列{}n a 中,已知102030,50a a ==.(1)求通项公式{}n a ;(2)若242n S =,求n .2.在等差数列{}n a 中,n S 为数列{}n a 的前n 项和,已知7157,75S S ==,n T 为数列{n S n }的前n 项和,求n T 3、已知等差数列的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。

4. 已知是等差数列,且满足,则等于________。

等差数列的前n项和-概念解析

等差数列的前n项和-概念解析

数学教育
等差数列的前n项和公式是数学 教育中的重要内容,是中学数学
课程中的必修知识点。
在物理领域的应用
物理学中的周期性现象
等差数列的前n项和公式可以用于描述物理学中的周期性现象,例如声音的振 动、波动等。
物理学中的序列问题
等差数列的前n项和公式可以用于解决物理学中的序列问题,例如在研究粒子运 动、流体动力学等领域中,可以通过等差数列的前n项和公式来描述一系列物理 量的变化规律。
解答
由于该等差数列是偶数项,所以它的前10项和等于中间两 项之和(第5项和第6项)乘以10除以2,即$(3 - 3) times 10 / 2 = 0$。
习题三:等差数列前n项和的实际应用问题
01 总结词
02 详细描述
03 应用1
04 应用2
05 应用3
掌握等差数列前n项和在实 际问题中的应用
等差数列前n项和在实际问 题中有着广泛的应用,如 计算存款、贷款、工资等 问题。
总结词
详细描述
公式
示例
解答
理解等差数列前n项和的 概念
等差数列的前n项和是指 从第一项到第n项的所有 项的和,可以通过公式 或递推关系式来求解。
$S_n = frac{n}{2} times (2a_1 + (n-1)d)$,其中 $a_1$是首项,$d$是公 差,$n$是项数。
求等差数列$1, 3, 5, 7, ldots$的前5项和。
等差数列前n项和的公式推导
等差数列前n项和的公式可以通过数学归 纳法进行推导。
化简得:$S_{k+1} = frac{(k+1)}{2}(2a_1 + kd)$,所以当n=k+1时,公式也成立。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2等差数列的前n项和
内容分析
本节课教学内容是《普通高中课程标准实验教科书·数学必修5》北师大版第一章2.2“等差数列的前n项和”本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法.
学情分析
在本节课之前学生已经学习了等差数列的通项公式及基本性质,也对高斯算法有所了解,这都为倒序相加法的教学提供了基础;同时学生已有了函数知识,因此在教学中可适当渗透函数思想.高斯的算法与一般的等差数列求和还有一定的距离,如何从首尾配对法引出倒序相加法,这是学生学习的障碍.
设计理念
学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构.在教学过程中,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,让学生在问题解决中学会思考、学会学习.
教学目标
1. 理解等差数列前n项和公式的推导过程;掌握并能熟练运用等差数列前n项和公式;了解倒序相加法的原理;
2. 通过公式的推导过程,体验从特殊到一般的研究方法,渗透函数思想与方程(组)思想,培养学生观察、归纳、反思的能力;通过小组讨论学习,培养学生合作交流、独立思考等良好的个性品质.
教学重难点
本节教学重点是探索并掌握等差数列前n项和公式,学会用公式解决一些实际问题;
教学设计
(一)创设情景,提出问题,激发思维
个三角形图案,以相同大小的圆宝石镶饰而成,共有100
这个图案一共花了多少宝石吗?
(展示三角形图案)
[链接] 高斯,德国著名数学家,被誉为“数学王子”。

多年前,高斯的算术教师提出了下面的问题:
1+2+3+…+100=?
据说,当其他同学忙于把100个数逐项相加时,10岁的高斯却用下面的方法迅速算出了正确答案:
(1+100)+(2+99)+……+(50+51)=101×50=5050.
[学情预设]高斯的算法蕴涵着求等差数列前n项和一般的规律性.教学时,应给学生提供充裕的时间和空间,让学生自己去观察、探索发现这种数列的内在规律.学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但估计他们对这种方法的认识可能处于记
忆阶段,为了促进学生对这种算法的进一步理解,设计了以下三道由易到难的问题.
(二)由易到难,探究研究,合作学习
问题1 图案中,第1层到第51层一共有多少颗宝石?
该题组织学生分组讨论,在合作中学习,并把小组发现的方法一一呈现.
[学情] 学生可能出现以下求法
方法1:原式=(1+2+3+……+50)+51
方法2:原式=0+1+2+……+50+51
方法3:原式=(1+2+…+25+27…+51)+26
以上方法实际上是用了“化归思想”,将奇数个项问题转化为偶数个项求解,教师应进行充分肯定与表扬.
问题2求图案中从第1层到第n 层(1<n <100,n ∈N +)共有多少颗宝石?
[学情] 学生通过激烈的讨论后,发现n 为奇数时不能配对,可能会分n 为奇数、偶数的情况分别求解,教师如何引导学生避免讨论成为该环节的关键.
[目标] 从求确定的前n 个正整数之和到求一般项数的前n 个正整数之和,让学生领会从特殊到一般的研究方法,旨在让学生对“首尾配对求和”这一算法的改进.
通过以上启发学生再自主探究,相信容易得出解法:
∵1 + 2 + 3 +…(n -1) + n
n +(n -1)+ (n -2)+… + 2 + 1
_____________________________________________________
_______________
(n+1) + (n+1) +
+… +(n+1) + (n+1)
∴1+2+3+…+n= 问题3 在公差为d 的等差数列{a n }中,定义前n 项和
Sn=a 1+a 2+…+a n ,如何求Sn ?
由前面的大量铺垫,学生应容易得出如下过程:
∵S n =a 1 + (a 1+d) + (a 1+2d) +…+[a 1+(n -1)d]
S n =a n + (a n -d) +(a n -2d )+…+[a n -(n -1)d]
∴1112()()()n n n n n S a a a a a a =++++⋅⋅⋅++ 个
1()2
n n n a a S +∴= (公式1) 组织学生讨论:
在公式1中若将a n =a 1+(n -1)d 代入又可得出哪个表达式?
即:1(1)2
n n n S na d -=+(公式2) (三)知识应用,解题研究,促进掌握
对于以上两个公式,初学的学生在解决一些问题时,往往不知道该如何选取.教师应通过适当的例子引导学生对这两个公式进行分析,根据公式各自的特点,帮助学生恰当地选择合适的公式.
n (n +1)2
例1 求前n 正奇数的和。

解 由等差数列前n 项和公式,得
1+3+5+…+(2n+1)=22
)121(n n n =-+ 让学生观察右图与本题的关系。

练习 课本练习1
注:通过练习让学生更好的记忆住前n 项和公式,为后面解题打好基础。

例2 在数列{n a }中,32+=n a n ,求这个数列
自第100项到第200项之各S的值。

解 由于2]32[]3)1(2[1=+-++=-+n n a a n n 。

所以,数列{n a }是公差为2的等差数列,共101项,所以求和为
S=306031012
)32002(310021012200100=⨯+⨯++⨯=⨯+a a 学生思考另解:选用另外一个公式。

例3 在新城大道一侧A处,运来20棵新树苗,一名工人从A处起沿大道一侧路边每隔10m 栽一棵树苗,这名工人每次只能运一棵。

要栽完这20棵树苗,并返回A处,植树工人共走了多少路程?
解 植树工人每种一棵树并返回A处所要走的路程(单位:m )
组成一个数列
0,20,40,60,…,380
这是首项为0,公差为20,项数为20的等差数列,其和
S=)(3800202
)120(20m =⨯-⨯。

答: 植树工人共走了3800m 的路程。

例4 已知等差数列5,4
,3 ,… 求:(1)数列{a n }的通项公式;
(2)数列{a n }的前几项和为1257
? [分析] 通项公式与求和公式中共有a 1、d 、n 、a n 、Sn 五个基本元素,如果已知其中三个,就可求其余两个,主要是训练学生的方程(组)思想。

[链接](1)由211(1)(),222n n n d d S na d n a n -=+=+-若令,2d A =1,2
d a B -=2,An Bn =+n 则S 可知当0d ≠时,点(,)n n S 是在常数项为0的二次函数图象上,
(2)若数列{}n a 的前n 项和2An Bn =+n S (B A ∈R 、),则数列{}n a 一定是等差数列;
(3)由2An Bn =+n S ,可知S n An B n =+,点,n S n n ⎛⎫ ⎪⎝⎭
在直线上; 2747
(四)随堂练习,反馈调控,掌握公式
练习1 已知数列{2n-11},那么Sn 的最小值是( )
A.1s B. 5s C. 6s D. 11s
练习2 等差数列{a n }中,a 1= - 4, a 8= -18, n=8,求公差d 及前n 项和Sn. 练习3 已知等差数列{a n }的前10项和是310,前20项的和是1220,求前n 项和Sn.
[分析] 分层练习使学生在完成必修教材基本任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而实现“以人为本”的教育理念.
(五)整理知识,归纳深化
组织学生分组共同反思本节课的教学内容及思想方法,小组之间互相补充完成课堂小结,实现对等差数列前n 项和公式的再次深化.
1.从特殊到一般的研究方法;
2.体会倒序相加的算法,掌握等差数列的两个求和公式,领会方程(组)思想;
3. 前n 项和公式的函数意义
4、用梯形面积公式记忆等差数列的前n 项和公式;
(六)布置作业
1.课本P20习题1-2 A组 第12,13题.、
B组 第4,5题
2.探索题(选做)
(1)数列{}的前n 项和n S = + + + …+
,求n S ; 教学反思
“等差数列前n 项和”的推导不只一种方法,本节课是通过介绍高斯的算法,探究这种方法如何推广到一般等差数列的求和.该方法反映了等差数列的本质,可以进一步促进学生对等差数列性质的理解,而且该推导过程体现了人类研究、解决问题的一般思路.本节课教学过程的难点在于如何获得推导公式的“倒序相加法”这一思路.为了突破这一难点,在教学中采用了以问题驱动的教学方法,设计的三个问题体现了分析、解决问题的一般思路,即从特殊问题的解决中提炼方法,再试图运用这一方法解决一般问题.在教学过程中,通过教师的层层引导、学生的合作学习与自主探究,尤其是借助图形的直观性,学生“倒序相加法”思路的获得就水到渠成了.
1n (n +1)11×21
2×31
3×41n ×(n +1)。

相关文档
最新文档