直流电机的主要结构及用途电动机
直流电动机(原理)
电动机 PN U N I N N 103 kW 发电机 PN UNIN 103 kW
2、直流电动机工作原理
2、直流电动机工作原理
直流电动机是将电能转变成机械能的旋转机械。
把电刷A、B接到直流电源上,电刷A接正极,电刷B接负极。 此时电枢线圈中将有电流流过。 在磁场作用下,有导体产生F=BIL。该电磁力形成电磁转矩,使 电机转子旋转。
思考:电磁力的方向怎么判断?大小与哪些因素有关?分析转动过程?
换向极绕组与电枢绕组串联, 换向磁极的作用是消弱电枢磁场。
(3)电刷装置 与换向器配合,完成交直流的互换。数目与主磁极相同。
电刷座
电刷
3.转子 又称为电枢
(1)电枢铁心
既是主磁路的一部分, 又可以放置电枢绕组。 (2)电枢绕组 电枢绕组与换向器联结。 主要作用产生感应电动势和电 磁转矩,实现机电能量的转换。 (3)换向器 换向器由许多彼此绝缘的钢 质换向片组成一个圆柱体,装在 转子转轴的一端,与电刷装置配 合,完成直流与交流的互换。
二、直流电动机的种类和铭牌
1. 直流电机绕组端子标号: 电枢绕组:始端A1-末端A2 ;换向绕组:始端B1-末端B2 ; 补偿绕组:始端C1-末端C2 ;串励绕组:始端D1末端D2 ; 并励绕组:始端E1-末端E2 ;他励绕组:始端F1-末端F2 2.直流电动机的分类 直流电动机按产生磁场的方式来进行区分,分为两大类:他励和自励。 他励是指通入电动机定子中,产生磁场的电 流If与通入电动机转子,产生转矩的电流 Ia分 别由两个电源提供。 他励的特点是,励磁电流If的大小与 电枢电压U及负载等参数无关。
直流电动机的原理及特性
直流电机
定子
机座 换向极 主磁极 电刷装置 电枢铁心 换向器
转子
电枢绕组 轴承
风扇 转轴
2.1.2 直流电动机的励磁方式 定义:直流电机产生磁场的励磁绕组的接线方式称为励磁方式。 实质上就是励磁绕组和电枢绕组如何联接,就决定了它是什么 样的励磁方式。
1.他励式
若励磁绕组不与电枢 绕组联接,励磁绕组单独 由其他电源供电的直流电 机称为他励式直流电机。
2.1.2 直流电动机的励磁方式
并励式
励磁绕组与电枢绕组并联,称为并励式直流电机。 并励式直流电机的电枢电流Ia。励磁绕组流过的 电流为If ,经过负载或电源供给电机的总电流 为 I,三者须满足以下关系: 直流发电机:Ia =I+If 直流电动机:Ia =I-If
2.1.2 直流电动机的励磁方式
第2章 直流电动机的原理及特性
直流电机的用途
测速
伺服
励磁机
电源
直流电机的特点
• 直流发电机的电势波形较好,对电磁干扰的影响小。 • 直流电动机的调速范围宽广,调速特性平滑。 直流电动机过载能力较强,起动和制动性能良好。
• 由于存在换向器,其制造复杂,价格较高
2.1直流电动机的基本结构和工作原理
端盖 —— 端盖装在机座两端并通过端盖中的轴承支 撑转子,将定转子连为一体。同时端盖对电机内部还 起防护作用。
定子部分
电刷装置——电刷装置是电枢电路的引出(或引入) 装置,它由电刷,刷握,刷杆和连线等部分组成,右 图所示,电刷是石墨或金属石墨组成的导电块,放在 刷握内用弹簧以一定的压力按放在换向器的表面,旋 转时与换向器表面形成滑动接触。刷握用螺钉夹紧在 刷杆上。每一刷杆上的一排电刷组成一个电刷组,同 极性的各刷杆用连线连在一起,再引到出线盒。刷杆 装在可移动的刷杆座上,以便调整电刷的位置。
永磁直流电机的主要结构
永磁直流电机的主要结构永磁直流电机是一种将直流电能转换成机械能的电动机。
它的主要结构包括永磁体、转子、定子、电刷和端子等部分。
下面将从这几个方面进行详细介绍。
一、永磁体永磁直流电机的永磁体通常采用稀土永磁材料或钴磁铁氧体材料制成。
这些材料具有高磁导率和较高的剩磁,可以提供强大的磁场,使电机具有较高的输出功率和效率。
永磁体通常呈环形,固定在电机的转子外侧,通过磁场与定子产生转矩。
二、转子转子是永磁直流电机的旋转部分,它由轴、铁芯和绕组组成。
铁芯通常由硅钢片叠压而成,以降低铁损。
绕组通常采用导线绕制在铁芯上,根据不同的电机类型和性能要求,绕组的形式和连接方式也有所不同。
转子通过与永磁体之间产生的磁场相互作用,从而实现电能到机械能的转换。
三、定子定子是永磁直流电机的静止部分,它的主要结构包括铁芯和绕组。
铁芯通常也是由硅钢片叠压而成,以降低铁损。
绕组通常采用导线绕制在铁芯上,并与电刷相连。
当电流通过定子绕组时,产生的磁场与永磁体的磁场相互作用,从而产生力矩,驱动转子旋转。
四、电刷永磁直流电机的电刷通常由碳材料制成,它们与转子的集电环相接触,传递电流到定子绕组。
由于电刷与集电环之间存在摩擦和磨损,因此电刷通常需要定期更换。
电刷的质量和接触情况直接影响永磁直流电机的性能和寿命。
五、端子永磁直流电机的端子是电机的外部引出接口,用于连接外部电源和负载。
通常有两个端子用于接入电源,两个端子用于连接负载。
端子的数量和形式根据具体的电机类型和应用需求可能会有所不同。
综上所述,永磁直流电机的主要结构包括永磁体、转子、定子、电刷和端子等部分。
这些部分相互作用,共同实现了电能到机械能的转换,并为电机的运行提供了基础。
对永磁直流电机的结构有清晰的了解可以帮助我们更好地理解其工作原理和能力,从而更好地进行选型和应用。
直流无刷电机工作原理应用和结构
电机控制技术《直流无刷电机的基本结构及工作原理和应用》直流无刷电机的基本结构及工作原理和应用一、直流无刷电机的工作原理直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。
在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。
直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。
也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。
直流无刷驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。
电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。
不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器 (inverter)转成3相电压来驱动电机。
换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂 (Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。
控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。
直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall- sensor),做为速度之闭回路控制,同时也做为相序控制的依据。
但这只是用来做为速度控制并不能拿来做为定位控制。
图一:直流无刷驱动器包括电源部及控制部要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器 (inverter)中功率晶体管的顺序,如下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。
第3章 直流电机原理
电机与拖动基础
结论:
由于静止电刷和旋转换向器的作用,
eBA 为脉动的直流电动势。
电机与拖动基础
直流电动势产生
1) 线圈内感应电动势的 性质; 2) 整流:机械式和电子 式;导电片又叫换向片 3) 脉振电动势的消除— —多线圈
按照一定的规律把它们连接起来,构成电枢绕组。
若流过电机的电流大于额定值,叫过载运行,损坏电 机。
电机与拖动基础
例3.1、直流发电机,PN=145KW,UN=230V, nN=1450r/min,ηN=90%,求该发电机的输入功率P1, 额定电流IN各为多少?
例3.2、直流电动机, PN=160KW,UN=220V, ηN=90%,nN=1500r/min,求该电动机的输入功率、额 定电流、额定输出转矩各为多少?
电刷 刷握 绝缘支架 压紧力调整装置
转子
换向器 电枢铁心 电枢绕组
(产生电动势,流过电 流,产生电磁转矩)
§3.2.2 直流电机的铭牌数据
1、额定值 电机制造厂按国家标准的要求,对电机的一些电量或机械
量所规定的数据 2、额定工况
电机运行时,有关电量和机械量都符合额定值的运行情况 3、常用额定数据
额定功率 PN (W) 额定电压 UN (V) 额定电流 IN (A) 额定转速 nN (r/min) 额定励磁电流 IfN (A)和励磁方式等
§3.2.1 主要结构
旋转电机结构形式必须有满足电磁和机械两方面要求 的结构,旋转电机必须具备静止和转动两大部分
• 直流电机静止部分----定子 作用 —— 产生磁场 由主磁极、换向极、机座和电刷装置等组成
• 直流电机转动部分——转子(通常称作电枢) 作用——产生电磁转矩和感应电动势 由电枢铁心和电枢绕组、换向器、风扇、轴和轴承等组
直流电机的工作原理及特性
特性变软
Rad
If
U
Ia M E
Uf
Ra
Ф
n n0
Rad1< Rad1
0
Rad=0 Rad1 Rad2
T
2. 改变电枢电压U时的人为特性 N ,R a d 0
把nKU e NNKeK RtaN2T 与 nKU eNKeK RtaN2T
➢空载速度随着U的减小而减小;
硬度的概念,其定义为: dTΔT10% 0
dn Δn
n n0 nN △n
△T
即转矩变化与所引起的 转速变化的比值,称为机械 特性的硬度。
根据值的不同,可将
电动机机械特性分为三类。
0
TN T
(1)绝对硬特性
(2)硬特性>10
(3)软特性<10
dTΔT10% 0
dn Δn
二、固有机械特性
直流他励电动机的固有机械特性指的是在额定条件
2. 额定电压 UN: 指额定状态下电枢出线端的 电压,以 V为量纲单位。
3. 额定电流 IN: 指电机在额定电压、额定功率 时的电枢电流值,以 A为量纲单位。
4. 额定转速 nN: 指额定状态下运行时转子的 转速,以r/min为量纲单位。
5. 额定励磁电流 If: 指电机在额定状态时的励 磁电流值。
直流发电机和直流电动机的电磁转矩的作用是不同的
发电机的电磁转矩是阻转矩,它与电枢转动的方向或 原动机的驱动转矩的方向相反。因此,在等速转动时, 原动机的转矩T1必须与发电机的电磁转矩T及空载损耗 转矩T0相平衡。
电动机的电磁转矩是驱动转矩,它使电枢转动。因此, 电动机的电磁转矩TM必须与机械负载转矩TL及空载损 耗转矩T0相平衡。
直流电动机
Ea=CeΦn
Ce= pN/60a
Te=CtΦIa
Ct=9.55Ce
二、直流电动机的种类和铭牌
1、直流电动机的分类 直流电动机按产生磁场的方式来进行区分,分为 两大类:他励和自励。 他励是指通入电动机定子中,产生磁场的电流If 与通入电动机转子,产生转矩的电流Ia分别由两个电 源提供。 他励的特点是,励磁电流If 的大小与电枢电压U及负载等 参数无关。若U=Uf,则他励 电动机与并励电动机性能相 同。
Ia = IN-If =155-1.765 = 153.235 A
Rf =
UN If
=
220 1 . 765
= 124 . 6 W
Ea=UN-IaRa=220-153.235×0.1=204.68 V
一台并励直流电动机, 电源电压UN=230 V时, 电枢电流IN=60 A, 电枢电组Ra=0.1 Ω, Φ=0.08 Wb, Ce=2.5, 求电枢反电势Ea及此时的转速n。
Ec
a Eab b
Ea Eb
C
x
y
(a)接线图
图4-25 Yy0联结组别的接线图和相量图
直流电动机
直流电动机
直流电机可分为直流发电机和直流电动机两大类。 将机械能转化为电能的直流电机是直流发电机,将电 能转化为机械能的直流电机是直流电动机。直流电机 具有良好的调速性能、较大的起动转矩和过载能力, 一般应用于对起动和调速要求较高的场合。另外,结 构复杂、成本较高、维护较困难是直流电机的不足之 处。
反转方法 1.改变电枢电流方向,励磁电流方向不变; 2.改变励磁电流方向,电枢电流方向不变。 即:单独改变电枢绕组或单独改变励磁绕组的接线。 注意:反转瞬间,电枢电流很大,应该采取措施限流。 同时改变电枢和励磁绕组的接线,则电枢电流和励磁电流的 方向将同时改变,电动机的电磁转矩的方向不变,电动机的转 速也不变。交、直流两用电动机的工作原理就是以此为依据的。 交、直流两用电动机实际上是一台直流电动机,使用时若电源 为交流电,则转向仍然不会发生变化。
直流电动机的工作原理结构及分类
直流电动机的工作原理结构及分类直流电动机是一种将直流电能转化为机械能的设备。
其工作原理基于电磁感应和洛伦兹力。
当电流通过电动机的定子(电枢)绕组时,产生的磁场与永磁体(或励磁绕组)的磁场相互作用,产生一个力矩。
这个力矩使得转子开始旋转,将电能转化为机械能。
下面将分别介绍直流电动机的工作原理、结构和分类。
工作原理:直流电动机的工作原理基于两个物理规律:电磁感应和洛伦兹力。
在直流电动机中,电流经过电动机的定子绕组时产生一个磁场。
这个磁场与转子上的永磁体或励磁绕组的磁场相互作用,产生一个力矩。
根据洛伦兹力定律,电流在磁场中受到一个力的作用。
力的方向使得转子开始旋转,并将电能转化为机械能。
结构:直流电动机主要由定子、转子和端盖组成。
定子是装有绕组的铁芯,其绕组通常是平行于转轴方向的螺线管。
绕组上连接有电源,通过电源提供电流。
转子由永磁体或励磁绕组构成。
永磁体提供一个恒定的磁场,而励磁绕组通过外部电源提供磁场。
端盖用来保护电机内部的部件,并提供安装和轴承支撑。
分类:1.按照励磁方式分类:永磁直流电动机:转子上的永磁体产生磁场,不需要额外的励磁绕组。
电枢磁场直流电动机:通过外部提供稳定的励磁磁场。
自励直流电动机:电动机的励磁由自身电机的电源提供。
2.按照电枢绕组和永磁体的连接方式分类:并励直流电动机:电枢线圈和永磁体在电路中并联,即二者共用一个电源。
串励直流电动机:电枢线圈和永磁体在电路中串联,即电枢和永磁体分别接受不同的电源。
3.按照换向器绕组的类型分类:喷刷式直流电动机:使用机械的换向器和电刷。
无刷式直流电动机:采用电子换向器和定子通电来实现换向。
此外,直流电动机还可以根据转子类型、转子连接方式和功率等因素进行分类。
总结:直流电动机是一种将电力转化为机械能的装置,其工作原理基于电磁感应和洛伦兹力。
直流电动机的结构包括定子、转子和端盖。
根据不同的励磁方式、电枢绕组和永磁体的连接方式以及换向器绕组的类型,直流电动机可以分为不同的类型。
2直流电动机
直流电动机直流电机直流电机是实现直流电能与机械能之间相互 转换的电力机械。
按其用途可以分为直流电 动机和直流发电机两类。
将机械能转换成直流电能的电机称为直流发电 机;将直流电能转换成机械能的电机称为直流 电动机。
直流电动机直流电动机具有优良的调速性能和启动性能 ,可实现频繁的快速启动、无级调速、制动和反 转;过载能力强;能满足自动化生产系统各种不 同的特殊运行要求。
直流电动机制造工艺复杂,生产成本高;可靠 性较差,维护比较困难。
直流电动机随着变频调速技术的迅速发展,但是在某些 要求调速范围大、快速性能高、精密度好、控 制性能优异的场合,直流电动机的应用目前仍 占有一定的比重。
直流电动机的结构国产Z2系列直流电动机直流电动机的结构国产Z4系列直流电动机直流电动机的结构直流电动机的结构直流电动机的结构组成:定子、转子。
直流电动机的结构定子作用:产生磁场和作为电动机的机械支撑。
组成:主磁极、机座、换向磁极、电刷装置、端盖和轴承。
3作用:产生磁场。
组成:主磁极铁心和主磁极绕组。
主磁极主磁极铁心作为电动机磁路的一部分,一般用1~1.5mm薄钢板冲制成型后,再用铆钉铆紧成一个整体,最后用螺钉固定在机座上。
主磁极铁心主磁极铁心极靴与极身交界的肩部,用以支撑主磁极绕组。
极身极靴极靴沿气隙表面处作成弧形,使磁通密度分布更为合理。
主磁极绕组通常用绝缘铜线制成一个集中的线圈,经过绝缘处理,套在磁极铁心外面。
主磁极绕组主磁极绕组主磁极总是N、S两极成对出现、交替排列。
作用:改善换向条件。
换向磁极组成:换向磁极铁心和换向磁极绕组。
主磁极与换向磁极的空间位置排列。
定子(机座)机座是主磁路的一部分,起支撑作用。
主磁极、换向磁极及端盖均固定在机座上,机座机座一般为铸钢件。
作用:通过电刷与换向器表面之间的滑动接触,把电枢绕组中的电流引入或引出组成:电刷、刷握、刷杆、刷杆座等。
电刷一般用石墨粉压制而成。
电刷置于电刷盒内,用弹簧把它压紧在换向器上。
直流电机的组成及工作原理
直流电机的组成及工作原理一、引言直流电机是一种常见的电动机,广泛应用于工业生产和日常生活中。
它具有结构简单、运行可靠、转速调节范围广等优点。
本文将详细介绍直流电机的组成及工作原理。
二、直流电机的组成直流电机由定子和转子两部分组成。
1. 定子定子是由磁极和线圈构成的。
磁极通常是用钢铁制成,它们被安装在定子的周围,并且被分为南北两极。
线圈则是由导体制成,它们被缠绕在磁极上,并且被连接到电源上。
2. 转子转子是由导体制成,通常被称为“集电环”。
集电环被安装在轴上,并且与转子内部的线圈相连。
当定子中的线圈通电时,会产生磁场,这个磁场将影响转子中的集电环,并使其开始旋转。
三、直流电机的工作原理直流电机通过交替通断线圈来产生一个不断变化方向和大小的磁场,从而驱动转子旋转。
具体来说,其工作原理可以分为以下几个步骤:1. 初始状态在初始状态下,定子中的线圈不通电,因此没有磁场产生。
此时,转子处于静止状态。
2. 电流通过定子线圈当电源接通时,电流开始通过定子线圈。
这将在定子中产生一个磁场,该磁场将影响转子中的集电环,并使其开始旋转。
3. 磁场与集电环的相互作用当集电环旋转时,它会与定子中的磁场相互作用。
这种相互作用会导致集电环上的导体被感应出一种电动势(EMF),并且产生一个由正极到负极的电流。
4. 通过换向器改变方向随着集电环继续旋转,它会与另一个磁极相遇,并且开始受到一个相反方向的力。
为了保持转子的运动方向不变,需要通过换向器来改变定子线圈中的电流方向。
5. 重复以上步骤重复以上步骤可以使直流电机持续运行,并且控制线圈中的电流可以调节直流电机的速度和扭矩大小。
四、总结直流电机是一种常见、可靠、易于控制的电动机。
它由定子和转子两部分组成,通过交替通断线圈来产生一个不断变化方向和大小的磁场,从而驱动转子旋转。
了解直流电机的组成及工作原理对于维护和使用直流电机具有重要意义。
简要说明直流电动机的主要部件及作用
简要说明直流电动机的主要部件及作用直流电动机是一种常见的电动机类型,其结构较为简单,主要包括定子、转子、换向器、集电器以及电枢等组成部分。
下面将对直流电动机的主要部件及其作用进行简要说明。
1.定子(Stator):定子是直流电动机的不动部分,通常由一组绕组组成。
该绕组通过电流激励产生磁场,并通过与转子磁场相互作用来产生转矩。
定子的主要作用是提供磁场,使转子产生力矩,从而实现机械能转换为电能。
2.转子(Rotor):转子是直流电动机的旋转部分,通常由一组绕组以及电枢铁芯组成。
电枢绕组通常由导线绕制而成,并与集电器相连接。
转子通过旋转产生磁场,并与定子磁场相互作用来产生力矩。
转子的主要作用是将机械能转换为电能。
3.换向器(Commutator):换向器是直流电动机的核心部件,位于转子的轴上。
换向器主要由一组分段的导电材料(通常是铜条)和绝缘材料组成。
换向器在电枢绕组与外电源之间起到交换电流方向的作用,使电机能正常工作。
4.集电器(Brush):集电器是与换向器配合使用的零件,通常由碳刷制成。
集电器的作用是通过与换向器接触,将电枢绕组中的电流引出,并向外电路提供电能。
5.电枢(Armature):电枢是直流电动机的主要元件之一,是绕制在转子上的绕组。
电枢绕组通常由多个线圈组成,这些线圈与换向器相连。
通过电流在电枢绕组中的流动,地动转子磁场,从而实现机械能转换为电能。
除了上述主要部件外,还有一些辅助部件对直流电动机的运行起到至关重要的作用,如定子铁芯、转子铁芯、轴承、滑环等。
这些部件不仅能够增强电机的结构刚度,还能够增加磁路的连续性,提高电机的性能。
电机学-直流电机
左行
y
yK
K -1 p
右行
y
yK
K 1 p
单波绕组元件
直流电机-电枢绕组
➢ 单叠绕组
并联支路数恒等于2,并联支路数a==1
单波绕组电路图
单波绕组展开图
➢ 总结
直流电机-电枢绕组
直流电机的电枢绕组总是自成回路; 电枢绕组的支路数(2a)永远是成对出现,因为磁极数(2p)是一个偶数;且至少 有2条并联支路;
直流电机-励磁方式
➢ 励磁方式
主磁极的励磁方式有永磁式和电励磁两种。电励磁式是给励磁绕组供电,产生励磁 磁动势而建立主磁场的方式。根据供电方式的不同,它又可以分为他励和自励两类,而自励 又被分为并励、串励和复励三种。
他励
I Ia
并励
I Ia +I f
串励
I Ia =I f
复励
I I f ' =Ia +I f
主磁极的中心线称为直轴,相邻N极和S极的分界线称为
交轴。
直流电机-磁动势和磁场
➢ 电枢磁动势和磁场(电刷位于几何中性线)
N
Hdl D 2x ia
Nia 2x A 2x
D
Fax
1 2
A2x
Ax
Faq
Fa
A
2
τ= D/2p
Bax
0Hax
0
Fax
k
直流电机-磁动势和磁场
➢ 负载气隙磁场(电刷位于几何中性线)
单叠绕组:a= p, 即并联支路对数恒等于电机极对数 单波绕组:a = 1, 即并联支路对数恒等于1 电刷放置的一般原则是空载时通过正、负电刷间的电动势最大,或者说,被电刷 短路的元件中的电动势为零; 对于端接对称的元件,电刷也就放置在主极轴线下的换向片上,电刷总是与位于 几何中线上的导体相接触。
《电机与拖动》第1章 直流电机的结构和工作原理
直 流 电 机 的 组 成
作
用:产生感应电动势和电磁转 矩,实现能量的转换
12
1.2
直流电机的结构和工作原理
图1-3 直流电机的结构图 a)直流电机的结构 b)轴端剖面图 1-风扇 2-机座 3-电枢 4-主磁极 5-刷架 6-换向器 7-接线板 8-出线盒 9-换向极 10-端盖
13
1.2
1、定子
30
1.2
3.励磁方式
直流电机的结构和工作原理
励磁绕组获得励磁电流的方式称为励磁方式,如图1-14所示。
图1-14 直流电机的励磁方式 a)他励 b)并励 c)串励 d)复励
31
1.2
直流电机的结构和工作原理
三、直流电机的工作原理
1.直流发电机的基本工作原理
当原动机拖着电枢以一定的转速在磁场中逆时针旋转时,根据 电磁感应原理,线圈边ab和cd以线速度v切割磁力线产生感应电动势, 其方向用右手定则确定。在图中所示的位置,线圈的边ab处于N极下, 产生的电动势从b指向a;线圈的cd边处于S极下,产生的感应电动势 从d指向c。从整个线圈来看,电动势的方向为d c b a。反之, 当ab边转到S极下,边cd转到N极下时,每个边的感应电动势
图1-8 线圈在槽内的放置示意图 1-上层有效边 2、5-端接部分 3-下层有 效边 4-线圈尾端 6-线圈首端
20
1.2
直流电机的结构和工作原理
绕组联接如图1-9所示。
y1
--极距,就是一个磁极在电枢表面的空间距离,其计算是: --第一节距
yk
--换向器节距
y2
Z 2p
--第二节距
y
--合成节距
冒烟(是否冒烟)
第三章 直流电机原理(最新)
3.1直流电机的用途、结构及基本工作原理 直流电机的用途、 直流电机的用途 3.2直流电机的励磁磁场 直流电机的励磁磁场 3.3直流电机的电枢绕组 直流电机的电枢绕组 3.4 直流电机的负载磁场及电枢反应 3.5 直流电机的感应电势与电磁转矩 3.6 直流发电机 3.7 直流电动机 3.8 直流电机的换向
1.定子 定子
主磁极; 换向磁极; 机座; 主磁极; 换向磁极; 机座;电刷
主磁极 主磁极的作 用是建立主磁场。 用是建立主磁场。
S N N S
主磁极
换向磁极
换向极:它的作用是改善直流电机的换向情况, 换向极 它的作用是改善直流电机的换向情况, 它的作用是改善直流电机的换向情况 使电机运行时不产生有害的火花。 使电机运行时不产生有害的火花。
– – – – 调速范围广,平滑。 过载、起动、制动转矩大。 易于控制,可靠性高 调速时能量损耗小
• 直流电机缺点
– 换向困难 – 结构复杂,维修不方便 – 价格高
用途、 §3-1用途、结构及基本工作原理 用途
二、直流电机的工作原理
(1)直流发电机的工作原理
Shockwave Flash Object
第二节矩y2:在相串连的两个元件中,第一个元件的下层 第二节矩 边与第二个元件的上层边在电枢表面上所跨的距离,称为 第二节矩。第二节矩用y2表示,也用虚槽数计算。
合成节矩y:相串连的两个元件的对应边在电枢表面所跨的距 合成节矩y 离,称为合成节矩。 叠绕组: 叠绕组:y = y1 - y2
Shockwave Flash Object
随着的增大,铁心部分所需磁势 将很快增大,磁化曲线偏离气隙 线而开始弯曲,进入饱和区. 饱和系数 Φ0 a b c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流电机的主要结构及用途 - 电动机
直流电机的工作原理仅仅揭示了如何利用基本电磁规律以实现机电能量转换的道理,但是要将其付诸应用,直流电机必需具有能满足电磁和机械两方面要求的合理的结构型式。
直流电机的结构型式是多种多样的,图1是一台常用的小型直流电机的结构剖面图。
直流电机是由静止的定子部分和转动的转子部分构成的,定、转子之间有肯定大小的间隙(以后称为气隙)。
现对各主要结构部件的基本结构及其作用简述如下。
图1 电流电机的结构剖面图
1—换向器;2—电刷装置;3—机座;4—主磁极;
5—换向极;6—端盖;7—风扇;8—电枢绕组;9—电枢铁心
1.定子部分
直流电机定子部分主要由主磁极、换向极、机座和电刷装置等组成。
(1)主磁极又称主极。
在一般大中型直流电机中,主磁极是一种电磁铁。
只有个别类型的小型直流电机的主磁极才用永久磁铁,这种电机叫永磁直流电机。
主磁极的作用是能够在电枢表面外的气隙空间里产生肯定外形分布的气隙磁密。
图2是主磁极的装配图。
主磁极的铁心用1~1.5mm厚的低碳钢板冲
片叠压紧固而成。
把事先绕制好的励磁绕组套在主极铁心外面,整个主磁极再用螺钉固定在机座的内表面上。
各主磁极上的励磁绕组联接必需使通过励磁电流时,相邻磁极的极性呈极和极交替的排列,为了让气隙磁密沿电枢圆周方向的气隙空间里分布得更加合理一些,铁心下部(称为极靴)比套绕组的部分(称为极身)宽。
这样也可使励磁绕组坚固地套在铁心上。
图2 直流电机的主磁极
1—主极铁心;2—励磁绕组;3—机座;4—电枢
(2)换向极容量在1kw以上的直流电机,在相邻两主磁极之间要装上换向极。
换向极又称附加极或间极,其作用为了改善直流电机的换向,至于如何改善换向的,将在后面介绍。
换向极的外形比主磁极简洁,也是由铁心和绕组构成。
铁心一般用整块钢或钢板加工而成。
换向极绕组与电枢绕组串联。
(3)机座一般直流电机都用整体机座。
所谓整体机座,就是一个机座同时起两方面的作用:一方面起导磁的作用,一方面起机械支撑的作用。
由于机座要起导磁的作用,所以它是主磁路的一部分,叫定子磁轭,一般多用导磁效果较好的铸钢制成,小型直流电机也有用厚钢板的。
主磁极、换向极和端盖都固定在电机的机座上,所以机座又起了机械支撑的作用。
(4)电刷装置电刷装置是把直流电压、直流电流引入或引出的装置。
电刷放在电刷盒里,用弹簧压紧在换向器上,电刷上有个铜丝辫,
可以引出、引入电流。
直流电机里,经常把若干个电刷盒装在同一个绝缘的刷杆上,在电路连接上,把同一个绝缘刷杆上的电刷盒并联起来,成为一组电刷。
一般直流电机中,电刷组的数目可以用电刷杆数表示,刷杆数与电机的主磁极数相等。
各电刷杆在换向器外表面上沿圆周方向均匀分布,正常运行时,电刷杆相对于换向器表面有一个正确的位置,假如电刷杆的位置放得不合理,将直接影响电机的性能。
电刷杆装在端盖或轴承内盖上,调整位置后,将它固定。
2.转子部分
直流电机转子部分主要由电枢铁心和电枢绕组、换向器、转轴和风扇等组成。
图3为直流电机电枢装配示意图。
图3 直流电机的电枢
1—转轴;2—轴承;3—换向器;4—电枢铁心;5—电枢绕组;6—风扇;7—轴承
(1)电枢铁心电枢铁心作用有二,一个是作为主磁路的主要部分;另一个是嵌放电枢绕组。
由于电枢铁心和主磁场之间的相对运动,会在铁心中引起涡流损耗和磁滞损耗(这两部分损耗合在一起称为铁心损耗,简称铁耗),为了削减铁耗,通常用0.5mm厚的涂有绝缘漆的硅钢片的冲片叠压而成,固定在转轴上。
电枢铁心沿圆周上有均匀分布的槽,里面可嵌入电枢绕组。
(2)电枢绕组电枢绕组是由很多按肯定规律排列和联接的线圈组成,它是直流电机的主要电路部分,是通过电流和感应产生电动势以
实现机电能量转换的关键性部件。
线圈用包有绝缘的圆形和矩形截面导线绕制而成,线圈亦称为元件,每个元件有两个出线端。
电枢线圈嵌放在电枢铁心的槽中,每个元件的两个出线端以肯定规律与换向器的换向片相连,构成电枢绕组。
(3)换向器换向器也是直流电机的重要部件。
在直流发电机中,它的作用是将绕组内的交变电动势转换为电刷端上的直流电动势;在直流电动机中,它将电刷上所通过的直流电流转换为绕组内的交变电流。
换向器安装在转轴上,主要由很多换向片组成,片与片之间用云母绝缘,换向片数与元件数相等。