解决排列组合问题的常用方法

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)是“相邻”问题,应先捆绑后排位:
(4)是“不相邻”问题,可以用插空法直接求解:
【例4】四面体的顶点和各棱的中点共10个点。
(1)设一个顶点为A,从其他9点中取3个点,使它们和点A在同一平面上,不同的取法有多少种?
(2)在这10点中取4个不共面的点,不同的取法有多少种?
(2)在这10点中取4个不共面的点,不同的取法有多少种?
2个、3个、4个元素的错位排列容易计算。关于5个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题:
①5个元素的全排列为: ;
②剔除恰好有5对球盒同号1种、恰好有3对球盒同号(2个错位的) 种、恰好有2对球盒同号(3个错位的) 种、恰好有1对球盒同号(4个错位的) 种
∴120-1- - - =44
分步计数原理(乘法原理)中,“完成一件事,需要分成n个步骤”,是说每个步骤都不能完成这件事,这些步骤,彼此间也不能有重复和遗漏.
如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么完成这件事的方法数就可以直接用乘法原理
2、从 五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.
解:形如 的数共有 个,当这些数相加时,由“ ”产生的和是 ;形如 的数也有 个,当这些数相加时,由“ ”产生的和是 ;形如 的数也有 个,当这些数相加时,由“ ”产生的和应是 .这样在所有三位数的和中,由“ ”产生的和是 .同理由 产生的和分别是 , , , ,因此所有三位数的和是 .
【变式】求不同的排法种数:
(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;
(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.
解:(1)是“相邻”问题,用捆绑法解决:
(2)是“不相邻”问题,可以用插空法直接求解.6男先排实位,再在7个空位中排2女,即用插孔法解决: 。另法:用捆绑与剔除相结合:
分组(堆)问题的六个模型:①有序不等分;②有序等分;③有序局部等分;④无序不等分;⑤无序等分;⑥无序局部等分;
插空法:解决一些不相邻问题时,可以先排一些元素然后插入其余元素,
捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列。
排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法
取出的4点共面有三类:
第一类:从四面体的同一个面上的6点取出4点共面,有 种取法
第二类:每条棱上的3个点与所对棱的中点共面,有6种取法
第三类:从6条棱的中点取4个点共面,有3种取法
根据分类计数原理4点共面取法共有
故取4个点不共面的不同取法有 (种)
【变式】1、假设在100件产品中有3件是次品,从中任意抽取5件,求下列抽取方法各多少种?
【变式】(浙江)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答)。
【例5】将6本不同的书按下列分法,各有多少种不同的分法?
⑴分给学生甲3本,学生乙2本,学生丙1本;
⑵分给甲、乙、丙3人,其中1人得3本、1人得2本、1人得1本;
解决排列组合问题的常用方法
知识点归纳
1、分类计数原理、步计数原理浅释
分类计数原理(加法原理)中,“完成一件事,有n类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事只有满足这个条件,才能直接用加法原理,否则不可以
解:(1)如图,含顶点A的四面体的三个面上,除点A外都有5个点,从中取出3点必与点A共面,共有 种取法
含顶点A的棱有三条,每条棱上有3个点,它们与所对棱的中点共面,共有3种取法
根据分类计数原理和点A共面三点取法共有 种
(2)取出的4点不共面比取出的4点共面的情形要复杂,故采用间接法:先不加限制任取4点( 种取法)减去4点共面的取法
第二类,从97件正品中抽取2件,并将3件次品全部抽取,有 种
按分类计数原理有 种
2、在∠源自文库OB的OA边上取m个点,在OB边上取n个点(均除O点外),连同O点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )
第一类办法从OA边上(不包括O)中任取一点与从OB边上(不包括O)中任取两点,可构造一个三角形,有C C 个;第二类办法从OA边上(不包括O)中任取两点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有C C 个;第三类办法从OA边上(不包括O)任取一点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有C C 个由加法原理共有N=C C +C C +C C 个三角形
【例3】分别求出符合下列要求的不同排法的种数
(1)6名学生排3排,前排1人,中排2人,后排3人;
(2)6名学生排成一排,甲不在排头也不在排尾;
(3)从6名运动员中选出4人参加4×100米接力赛,甲不跑第一棒,乙不跑第四棒;
(4)6人排成一排,甲、乙必须相邻;
(5)6人排成一排,甲、乙不相邻;
(6)6人排成一排,限定甲要排在乙的左边,乙要排在丙的左边(甲、乙、丙可以不相邻)
⑶分给甲、乙、丙3人,每人2本;
⑷分成3堆,一堆3本,一堆2本,一堆1本;
⑸分成3堆,每堆2本
⑹分给分给甲、乙、丙3人,其中一人4本,另两人每人1本;
⑺分成3堆,其中一堆4本,另两堆每堆1本
分析:①分书过程中要分清:是均匀的还是非均匀的;是有序的还是无序的
②特别是均匀的分法中要注意算法中的重复问题
解:⑴是指定人应得数量的非均匀问题:方法数为 ;(无序非等分)
【例2】用0,1,2,3,4,5这六个数字,
(1)可以组成多少个数字不重复的三位数?
(2)可以组成多少个数字允许重复的三位数?
(3)可以组成多少个数字不允许重复的三位数的奇数?
(4)可以组成多少个数字不重复的小于1000的自然数?
(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?
解(1)分三步:①先选百位数字.由于0不能作百位数,因此有5种选法;
1分排坐法与直排坐法一一对应故排法种数为甲不能排头尾让受特殊限制的甲先选位置有种选法然后其他5人选有a种选法故排法种数为乙不跑第一棒则跑第一棒的人有毘种选法第四棒除了乙和第一棒选定的人外也有乂种选法其余两棒次不受限制故有国国冷种排法由分类计数原理共有1252种排法将甲乙捆绑成一个元与其他4人一起作全排列共有局住240种排法甲乙不相邻第一步除甲乙外的其余4人先排好
④还有5420也是满条件的1个.
故所求自然数共120+48+6+1=175个.
∴正因数之和为31×40×6=7440
【变式】1、72的正约数(包括1和72)共有__________个
解析:72=23×32
∴2m·3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正约数
m的取法有4种,n的取法有3种,由分步计数原理共3×4个。答案:12
解:(1)分排坐法与直排坐法一一对应,故排法种数为
(2)甲不能排头尾,让受特殊限制的甲先选位置,有 种选法,然后其他5人选,有 种选法,故排法种数为
(3)有两棒受限制,以第一棒的人选来分类:
①乙跑第一棒,其余棒次则不受限制,排法数为 ;
②乙不跑第一棒,则跑第一棒的人有 种选法,第四棒除了乙和第一棒选定的人外,也有 种选法,其余两棒次不受限制,故有 种排法,由分类计数原理,共有 种排法
点评:以上问题归纳为
分给人(有序)
分成堆(无序)
非均匀
均匀
部分均匀
【变式】有6本不同的书,分给甲、乙、丙三个人.
(1)如果每人得两本,有多少种不同的分法;
用此法可以逐步计算:6个、7个、8个、……元素的错位排列问题
题型讲解
【例1】某城市在中心广场建造一个花圃,花圃分为6个部分(如下图),现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种(以数字作答)
解:记颜色为A、B、C、D四色,先安排1、2、3有A 种不同的栽法,不妨设1、2、3已分别栽种A、B、C,则4、5、6栽种方法共5种,由以下树状图清晰可见根据分步计数原理,不同栽种方法有N=A ×5=120
隔板法:n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n个相同小球串成一串从间隙里(n-1个位置)选m-1个结点剪成m段(插入m-1块隔板)有 种
错位法:编号为1至n的n个小球放入编号为1到n的n个盒子里,每个盒子放一个小球要求小球与盒子的编号都不同,这种排列称为错位排列特别当n=2,3,4,5时的错位数各为1,2,9,44
(1)没有次品;(2)恰有两件是次品;(3)至少有两件是次品
解:(1)没有次品的抽法就是从97件正品中抽取5件的抽法,共有 种
(2)恰有2件是次品的抽法就是从97件正品中抽取3件,并从3件次品中抽2件的抽法,共有 种
(3)至少有2件次品的抽法,按次品件数来分有二类:
第一类,从97件正品中抽取3件,并从3件次品中抽取2件,有 种
(2)排列数的定义:从 个不同元素中,任取 ( )个元素的所有排列的个数叫做从 个元素中取出 元素的排列数,用符号 表示。即 = ( )
(3)组合的概念:一般地,从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合
(4)组合数的概念:从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数.用符号 表示.
(5)组合数的性质1: .规定: ;2: = +
3、排列组合解题方法:
特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法
科学分类法:对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生
(4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个.
(5)分四类:①千位数字为3,4之一时,共有2×5×4×3=120个;
②千位数字为5,百位数字为0,1,2,3之一时,共有4×4×3=48个;
③千位数字是5,百位数字是4,十位数字为0,1之一时,共有2×3=6个;
(4)将甲乙“捆绑”成“一个元”与其他4人一起作全排列共有 种排法
(5)甲乙不相邻,第一步除甲乙外的其余4人先排好;第二步,甲、乙选择已排好的4人的左、右及之间的空挡插位,共有 (或用6人的排列数减去问题(2)后排列数为 )
(6)三人的顺序定,实质是从6个位置中选出三个位置,然后排按规定的顺序放置这三人,其余3人在3个位置上全排列,故有排法 种
⑵是没有指定人应得数量的非均匀问题:方法数为 ;(非等分,有序)
⑶是指定人应得数量的均匀问题:方法数为 ;(等分有序)
⑷是分堆的非均匀问题(与⑴等价):方法数为 ;(非等分无序)
⑸是分堆的均匀问题:方法数为 ;(等分无序)
⑹是部分均匀地分给人的问题:方法数为 ;(局部等分有序)
⑺是部分均匀地分堆的问题:方法数为 (局部等分无序)
【变式】如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色现有4种颜色可供选择,则不同的着色方法共有_____________种(以数字作答)
解析:依次染①、②、③、④、⑤
故有4×3×2×3×1=72种
答案:72
【变式】(重庆卷16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答)
可以看出“分”是它们共同的特征,但是,分法却大不相同.
两个原理的公式是: ,
强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比.
2、排列组合
(1)排列的概念:从 个不同元素中,任取 ( )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从 个不同元素中取出 个元素的一个排列
②十位数字有5种选法;
③个位数字有4种选法.由乘法原理知所求不同三位数共有5×5×4=100个.
(2)分三步:(1)百位数字有5种选法;(2)十位数字有6位选法;(3)个位数字有6种选法.
所求三位数共有5×6×6=180个.
(3)分三步:①先选个位数字,有3种选法;②再选百位数字,有4种选法;③选十位数字也是4种选法,所求三位奇数共有3×4×4=48个.
相关文档
最新文档