模式识别理论及应用
什么是模式识别模式识别的方法与应用
什么是模式识别模式识别的方法与应用模式识别是通过计算机用数学技术方法来研究模式的自动处理和判读。
那么你对模式识别了解多少呢?以下是由店铺整理关于什么是模式识别的内容,希望大家喜欢!模式识别的简介模式识别(英语:Pattern Recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。
我们把环境与客体统称为“模式”。
随着计算机技术的发展,人类有可能研究复杂的信息处理过程。
信息处理过程的一个重要形式是生命体对环境及客体的识别。
对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。
这是模式识别的两个重要方面。
市场上可见到的代表性产品有光学字符识别、语音识别系统。
人们在观察事物或现象的时候,常常要寻找它与其他事物或现象的不同之处,并根据一定的目的把各个相似的但又不完全相同的事物或现象组成一类。
字符识别就是一个典型的例子。
例如数字“4”可以有各种写法,但都属于同一类别。
更为重要的是,即使对于某种写法的“4”,以前虽未见过,也能把它分到“4”所属的这一类别。
人脑的这种思维能力就构成了“模式”的概念。
在上述例子中,模式和集合的概念是分未弄的,只要认识这个集合中的有限数量的事物或现象,就可以识别属于这个集合的任意多的事物或现象。
为了强调从一些个别的事物或现象推断出事物或现象的总体,我们把这样一些个别的事物或现象叫作各个模式。
也有的学者认为应该把整个的类别叫作模去,这样的“模式”是一种抽象化的概念,如“房屋”等都是“模式”,而把具体的对象,如人民大会堂,叫作“房屋”这类模式中的一个样本。
这种名词上的不同含义是容易从上下文中弄淸楚的。
模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。
随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。
(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。
模式识别的基本理论与方法
模式识别的基本理论与方法模式识别是人工智能和计算机科学领域中的一个重要分支,也是现代科学技术中广泛应用的一种技术手段。
它涉及到从大量的数据中自动识别出某种模式的过程,其应用领域非常广泛,如人脸识别、指纹识别、语音识别等领域。
一、模式识别的基本理论模式是事物或现象中简单重复的部分或整体,模式识别是通过对数据进行分类、聚类等方式分析、发现事物或现象中的规律性,并将其应用于实际生产和科学研究中。
模式识别的基本理论主要包括数据分析、统计学、人工神经网络及算法模型等。
1. 数据分析数据分析是模式识别的一个重要组成部分,它是指通过对数据进行收集、分析、处理和应用,从中发现有用的信息以及可用于决策或预测的模型。
数据分析可以采用统计学、机器学习、人工神经网络等方法,无论采用何种方法,数据分析的目的都是找到数据表达的规律和模式。
2. 统计学统计学是模式识别所使用的数学工具之一,主要通过收集和分析数据来提供决策支持和预测结果。
统计学的主要应用领域包括控制过程、质量控制、风险评估和数据挖掘等。
3. 人工神经网络人工神经网络是一种基于人类大脑神经结构的人工智能技术,它通过对输入的数据进行处理、学习,将数据转换为信号输出,以此模拟人脑的神经网络功能。
人工神经网络可以应用于图像识别、音频识别等领域。
4. 算法模型算法模型是模式识别的基本理论之一,它是指在进行数据分析和处理的时候所采用的算法模型。
常用的算法模型包括决策树、支持向量机、神经网络等。
二、模式识别的方法模式识别的方法主要包括监督学习、无监督学习和半监督学习。
1. 监督学习监督学习是指在训练模型时,数据集中已知了对应的标签或类别信息。
监督学习的主要步骤是将已知数据输入到模型中进行训练,训练好的模型之后可以将未知的数据进行分类或预测处理。
监督学习包括分类和回归两种类型。
2. 无监督学习无监督学习是指在训练模型时,数据集中没有对应的标签或类别信息。
无监督学习的主要步骤是将数据输入到模型中进行训练,训练好的模型之后可以从数据中提取出特定的模式、结构或规律。
基于免疫计算的模式识别研究及应用
基于免疫计算的模式识别研究及应用随着信息技术的飞速发展,模式识别技术日益成为人们重要的研究领域之一。
在这方面,基于免疫计算的模式识别技术近年来引起了越来越多的关注。
本文将对基于免疫计算的模式识别研究及应用进行探讨。
一、基础理论免疫计算是一种仿生的计算方法,主要模拟了生物体免疫系统的特性和行为。
根据免疫学的基础理论,免疫系统具有学习能力和记忆功能,能够识别和区分外来抗原。
基于这种特点,免疫计算的基础理论主要包括免疫应答、抗原-抗体作用、克隆选择和免疫调节等。
在模式识别中,免疫计算主要利用免疫系统的抗原-抗体作用和克隆选择机制来实现特征提取和分类识别。
具体来说,抗体代表了样本的特征向量,抗原则代表待分类的样本。
通过计算抗体与抗原之间的相似度,可有效地实现样本的分类。
二、相关算法1. AIA算法AIA全称Artificial Immune Algorithm,是免疫计算中常用的一类算法。
AIA算法的基本思想是通过学习和适应来提高算法的性能,进而实现模式识别。
AIA算法包括了免疫克隆算法、免疫突变算法、抗体多峰分布算法等。
其中,免疫克隆算法是最为常见的一类算法。
2. AIS算法AIS全称Artificial Immune System,是免疫计算方法的一种。
AIS算法的特点在于能够自适应地生成、评估和修正抗体,具有强大的学习能力和记忆能力。
目前,AIS算法已经被广泛应用于模式识别以及其他领域,取得了一定的成果。
三、应用研究1. 图像识别图像识别是模式识别领域中的一个重要分支,也是免疫计算的重要应用领域之一。
图像识别需要对一幅或多幅图像进行分类和识别,其中最常见的分类方式是根据图片中的颜色、纹理和形状等特征来进行划分。
免疫计算中的AIS算法已经被应用于图像识别领域,取得了一定的成果。
2. 生物识别生物识别是通过生物信息来实现模式识别的一种技术,主要应用于安全、保密和身份认证等领域。
当前,生物识别技术主要包括指纹识别、面部识别、虹膜识别等。
基于模糊逻辑的模式识别理论与应用研究
基于模糊逻辑的模式识别理论与应用研究摘要:模式识别是计算机科学中的重要研究领域,它旨在从大量数据中寻找可重复的模式和规律,并根据这些模式和规律进行分类、识别以及预测。
虽然传统的模式识别方法在某些情况下能够取得良好的效果,但是对于那些复杂、模糊或者不确定的问题,传统的方法存在局限性。
因此,基于模糊逻辑的模式识别理论逐渐引起研究者们的关注。
本文将介绍基于模糊逻辑的模式识别理论的基本概念、原理以及应用,并对其进行总结与展望。
一、引言模式识别是一门综合性的研究领域,它涉及信号处理、模式分类、机器学习等方面的知识,并且在图像识别、人脸识别、语音识别等领域有着广泛的应用。
然而,传统的模式识别方法主要基于精确逻辑,难以处理模糊、混乱、不确定的问题。
而基于模糊逻辑的模式识别理论在处理模糊问题时表现出了良好的效果,因此逐渐成为研究者们的关注焦点。
二、基于模糊逻辑的模式识别理论的基本概念1. 模糊逻辑的基本原理模糊逻辑是一种用来处理模糊概念和模糊问题的数学理论,它基于隶属度的概念,将事物划分为不同的模糊集合,并定义了模糊集合之间的运算规则。
在模糊逻辑中,每个元素都有一个与之相关的隶属度,代表了其属于某个集合的程度。
2. 模糊集合和隶属函数模糊集合是指具有模糊性质的集合,其中的元素隶属于该集合的程度可以用隶属函数来描述。
隶属函数可以看作是一个映射,将元素映射到一个隶属度值,代表了元素属于该模糊集合的程度。
3. 模糊逻辑的推理机制模糊逻辑的推理机制主要包括模糊逻辑运算和模糊推理两个方面。
模糊逻辑运算包括模糊交、模糊并和模糊补等操作,用来对模糊集合进行运算。
模糊推理则是基于模糊规则,通过模糊推理机制来实现对未知事物的推理和预测。
三、基于模糊逻辑的模式识别应用研究基于模糊逻辑的模式识别应用研究已经涉及到多个领域,并取得了一些重要的成果。
1. 图像识别在图像识别领域,基于模糊逻辑的模式识别方法能够有效处理图像中的模糊和噪声问题。
课件--7.2模式识别技术应用
原始数据进行选择或者变换,得到最能反映分类本质的特征,构成特征向量。根据被识别的对象 产生出一组基本特征,它可以是计算出来的,也可以是仪表或者传感器测量出来的,这样产生出 来的特征叫原始特征。一般将原始数据组成的空间叫测量空间。
本做法是:用一定数量的样本(称为训练样本集),确定出一套分类判别规则,使得按这套 分类判别规则对待识模式进行分类所造成的错误识别率最小或引起的损失最小。 分类决策。在特征空间中用模式识别方法把被识别对象归为某一类别。基本做法是:在样本 训练集基础上确定某个判决规则,使得按这种规则对被识别对象进行分类所造成的错误识别 率最小或引起的损失最小。
《物联网技术》
模式识别的主要应用
1、文字识别
利用计算机自动识别字符的技术,是模式识别应用的一个重要领域。如图7-4所示。 文字识别系统一般包括文字信息的采集、信息的分析与处理、信息的分类判别等几个部分。 OCR(Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相
《物联网技术》
模式识别的主要应用
4、遥感图像识别
遥感图像识别已广泛用于农作物估产、资源勘察、气象预报和军事侦察等。如图7-6所示。
在癌细5胞、检医测学、X诊射断线照片分析、血液化验、染色体分析、心电图诊断和脑电图诊断等方面,模式识别
已取得了成效。
《物联网技术》
模式识别的主要应用
6、机器人视觉
用于景物识别、三维图像识别、解决机器人视觉问题,以控制机器人行动。
图7-8 医学诊断
模式识别详细PPT
无监督学习在模式识别中的应用
无监督学习是一种从无标签数据中提取有用信息的机器学习方法,在模式识别中主要用于聚类和降维 等任务。
无监督学习在模式识别中可以帮助发现数据中的内在结构和规律,例如在图像识别中可以通过聚类算 法将相似的图像分组,或者通过降维算法将高维图像数据降维到低维空间,便于后续的分类和识别。
通过专家知识和经验,手 动选择与目标任务相关的 特征。
自动特征选择
利用算法自动筛选出对目 标任务最相关的特征,提 高模型的泛化能力。
交互式特征选择
结合手动和自动特征选择 的优势,先通过自动方法 筛选出一组候选特征,再 由专家进行筛选和优化。
特征提取算法
主成分分析(PCA)
通过线性变换将原始特征转换为新的特征, 保留主要方差,降低数据维度。
将分类或离散型特征进行编码 ,如独热编码、标签编码等。
特征选择与降维
通过特征选择算法或矩阵分解 等技术,降低特征维度,提高 模型效率和泛化能力。
特征生成与转换
通过生成新的特征或对现有特 征进行组合、转换,丰富特征
表达,提高模型性能。
04
分类器设计
分类器选择
线性分类器
基于线性判别分析,适用于特征线性可 分的情况,如感知器、逻辑回归等。
结构模式识别
总结词
基于结构分析和语法理论的模式识别方法,通过分析输入数据的结构和语法进行分类和 识别。
详细描述
结构模式识别主要关注输入数据的结构和语法,通过分析数据中的结构和语法规则,将 输入数据归类到相应的类别中。这种方法在自然语言处理、化学分子结构解析等领域有
模式识别的含义及其主要理论
模式识别的含义及其主要理论(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职业道德、时事政治、政治理论、专业基础、说课稿集、教资面试、综合素质、教案模板、考试题库、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as professional ethics, current affairs and politics, political theory, professional foundation, lecture collections, teaching interviews, comprehensive qualities, lesson plan templates, exam question banks, other materials, etc. Learn about different data formats and writing methods, so stay tuned!模式识别的含义及其主要理论在心理学记忆的分类中,按照记忆内容保持的时间长短可以将记忆分成瞬时记忆、短时记忆和长时记忆,而在瞬时记忆的影响因素中我们常常会看到模式识别这一名词,这里主要来介绍一下模式识别的含义以及其相关理论。
《模式识别及应用》课程教学大纲
《模式识别及应用》课程教学大纲编号:英文名称:Pattern Recognition and Its Applications适用专业:电子信息工程责任教学单位:电子工程系电子信息教研室总学时:32学分:2.0考核形式:考查课程类别:专业课修读方式:必修教学目的:模式识别是电子信息工程专业的一门专业必修课。
通过该课程的学习,学生能够掌握模式识别的基本理论和主要方法,并且能掌握在大量的模式样本中获取有用信息的原理和算法,通过课外上机练习,学会编写模式识别的算法程序,达到理论和实践相结合的目的,使学生了解模式识别的应用领域,为将来从事这一方面的研究打下初步基础。
本课程的主要教学方法:本课程以理论教学为主,实践教学为辅。
本课程与其他课程的联系与分工:本课程的先修课程是线性代数、概率与数理统计。
它与数字图像处理课可并开。
所学知识可以直接应用于相关课题的毕业设计中,并可为学生在研究生阶段进一步深入学习模式识别理论和从事模式识别方向的研究工作打下基础。
主要教学内容及要求:由于本课程的目标是侧重在应用模式识别技术,因此在学习内容上侧重基本概念的讲解,辅以必要的数学推导,使学生能掌握模式识别技术中最基本的概念,以及最基本的处理问题方法。
本课程安排了一些习题,以便学生能通过做练习与实验进一步掌握课堂知识,学习了本课程后,大部分学生能处理一些简单模式识别问题,如设计获取信息的手段,选择要识别事物的描述方法以及进行分类器设计。
第一部分模式识别及应用概述教学重点:模式识别的概念。
教学难点:模式识别的概念。
教学要点及要求:理解模式识别系统,模式识别的应用;掌握模式识别的概念。
第二部分统计模式识别——概率分类法教学重点:概率分类的判别标准。
教学难点:概率分类的判别标准,正态密度及其判别函数。
教学要点及要求:了解密度函数的估计;理解正态密度及其判别函数:(1)正态密度函数,(2)正态分布样品的判别函数;掌握概率分类的判别标准:(1)Bayes法则,(2)Bayes风险,(3)基于Bayes法则的分类器,(4)最小最大决策,(5)Neyman-pearson决策。
人工智能的模式识别和模式分类方法
人工智能的模式识别和模式分类方法人工智能(Artificial Intelligence,AI)是研究、开发用于模拟、扩展和拓展人的智能的理论、方法、技术及应用系统的学科。
模式识别和模式分类是人工智能的重要领域之一,在计算机视觉、语音识别、自然语言处理等众多应用领域发挥着重要作用。
本文将探讨人工智能中模式识别和模式分类的方法及其应用。
一、模式识别与模式分类的定义模式识别(Pattern Recognition)是指通过对对象的观察、测量,选择关键特征并建模,最后根据模型的规则决策、分类对象的过程。
模式分类(Pattern Classification)是指将对象按照事先定义好的类别进行归类的过程。
模式识别是模式分类的前置步骤,而模式分类是模式识别的结果。
二、模式识别的方法1.特征提取特征提取是模式识别的重要一步,通过选取合适的特征来描述模式的内在属性。
特征提取常用的方法有:几何特征(如位置、形状、大小)提取、颜色直方图提取、纹理特征提取等。
特征提取的目的是使不同的模式在特征空间中有明显的区分度,便于进一步分类。
2.特征选择特征选择是在众多特征中选取最有用的特征进行分类,以减少计算量和提高分类精度。
常见的特征选择方法有:信息增益、方差选择、互信息等。
特征选择的关键是在保证模式信息丢失最小的情况下,尽可能地选取更少的特征。
3.分类器设计分类器设计是模式识别的核心部分,决定了模式识别的整体性能。
目前常见的分类器有:几何分类器(如K近邻分类器)、统计分类器(如朴素贝叶斯分类器)、神经网络分类器、支持向量机等。
不同的分类器适应不同的应用场景,需要根据具体情况选取。
三、模式分类的方法1.监督学习监督学习是指通过已标记的训练数据建立模型,然后使用这个模型对未知数据进行分类。
常用的监督学习方法有:决策树、朴素贝叶斯、支持向量机等。
监督学习方法需要较多的标记数据,但其分类效果较好。
2.无监督学习无监督学习是指通过未标记的训练数据发现模式,并将数据进行聚类。
模式识别理论及其应用综述
模式识别理论及其应用综述
模式识别是指通过对已知模式的学习,从输入数据中自动识别并分类相似的模式或对象。
它是一种基于统计和机器学习的技术,可以应用于多个领域,例如图像处理、语音识别、自然语言处理等。
在模式识别中,最常用的技术是机器学习算法。
机器学习算法是一种通过对大量训练数据的学习,从中发现规律和模式,然后应用这些规律和模式来解决问题的方法。
常用的机器学习算法包括支持向量机、决策树、神经网络等。
在图像处理领域,模式识别可以用于图像分类和目标检测。
例如,当我们要对图像库中的图像进行分类时,可以使用模式识别技术来自动识别和分类不同类型的图像。
在目标检测方面,模式识别可以帮助我们在图像中快速准确地检测和定位目标。
在语音识别领域,模式识别可以用于语音识别和语音合成。
语音识别是将语音信号转化为文本或命令的过程,而语音合成则是将文本转化为语音信号的过程。
模式识别可以通过对大量语音数据的学习,发现语音信号的特征和模式,从而实现准确的语音识别和语音合成。
在自然语言处理领域,模式识别可以用于文本分类和信息提取。
文本分类是将文本数据根据其内容分类到不同的类别中,例如将新闻文章分类到不同的主题类别中。
信息提取是从大量文本中提取出指定信息的过程,例如从新闻文章中提取出人物、地点和事件等信息。
模式识别可以通过对大量文本数据的学习,发现文本的特征和模式,从而实现准确的文本分类和信息提取。
总之,模式识别是一种基于统计和机器学习的技术,可以应用于多个领域,例如图像处理、语音识别、自然语言处理等。
它可以通过对大量数据的学习,发现数据中的规律和模式,从而实现准确的模式识别和分类。
仿生模式识别(拓扑模式识别)——一种模式识别新模型的理论和应用
——一全里堡璺苎查兰兰些查垦主茎丝苎6神经网络高维空闯复杂几何形体覆盖识别方法及其应用实例在实际的仿生模式识别中为了判别是否属于集合P。
,必须用软件或硬件为手段,在特征空问RⅡ中构筑一个能覆盖集合P。
的n维空间几何形体。
近似于覆盖集合P。
的n维空间几何形体是以不同维数的“流形”(集合A)中,无穷多的点作球心,以常数k作半径的无穷多个n维超球体的并,即集合A与n维超球体的拓扑乘积。
根据维数理论f”,要把n维空间分成两部分,其界面必须是一个n-1维的超平面或超曲面。
而人工神经网络中一个神经元正是在11维空间中作一个n-1维的超平面或超曲面,把Rn分成两个部分。
一个神经元,也可以是多种多样的复杂的封闭超曲面睥】。
冈而,人工神经网络是实现仿生模式识别的十分合适的手段。
为了方便发展神经网络仿生模式识别,我们在前一篇论文中一】引入了神经网络高维空间几何分析方法,用来作为发展仿生模式识别的一种实用性工具,该文中对n维空间的点、直线、平面、超平面、圆、球面、超球面间的关系作了叙述,但未对非球超曲面进行讨论。
以下,将介绍和讨论一个应用非球超曲面的仿生模式识别的实例。
仿生模式识别应用实例的要求是在海面上或地平面上对不同方向观察的目标(如舰艇、坦克、汽车、牛、马、羊等)的认识。
样本的采集是从不同方向观察所采集到的bmp文件,进行前处理(连续映射)后压缩成256维特征空间样本点。
由于观察方向都是水平的,可咀说方向的改变只有一个变量,因而,特征空问中样本点的分布应近似于呈一维流形分布。
加以其他方向存在的微弱变动,可以考虑某类对象在特征空间中的覆盖形状应是个与圆环同胚的一维流形与256维超球的拓扑乘积。
用语言描述也就是在256维特征空间中,离开一条头尾相接的空问曲线的最小距离小于某定值k的所有点的集合P。
,而该空间曲线包含所有采集的样本点集合S,即S={Xx=S。
(i=1,2….采集样本总数)}图3Pa=(xfp()【,y)<kY∈A,X∈舯}其中A={x{x2Xi,i_(I,2,…,n)’11CN,P(xm,x叶1)<£,p(X1x。
03认知心理学-模式识别
“映象鬼”——对外部刺激信息进行编码,形成刺激模式的表象或映象。 “特征鬼”——从“映象鬼”得到的表象中搜索一定的特征,每个“特征 鬼”都有 其特定的功能和任务,它们只搜索和选择自己负责的那个特 征,找到后就喊叫或标记出这种刺激特征及其数量。
“认知鬼”——每个“认知鬼”负责一个特殊的模式,它们在倾听“特征 鬼”的喊 叫中搜索自己负责的某个模式的有关特征,一旦发现有关特 征,就会大喊大叫,发现的特征越多,喊叫声就越大。 “认知鬼”的喊叫声表明它们已经组合了某个字母。
四、自上而下加工和模式识别
1、背景和模式识别 字词优势效应:识别一个字词中的字母,比识别一个单独的字母 的
正确率要高。
客体优势效应:识别一个客体图形时,图形中的线段要优于识别
Байду номын сангаас
结
构不严的图形中的同一线段或单独的线段。
Word Superiority Effect
(Reicher, 1969; Wheeler, 1970)
刺激的大小。
* 谢夫里奇和奈塞尔根据特征匹配理论,设计了一套计算机 程序让计算机识别,这些字母区别于人用手写的英文字 母,结果计算机能够很好地完成这个任务。
“魔鬼城堡”模型(Pandemonium Model)(谢夫里奇)
“魔宫”里群居着许多“鬼”,他们分属于4个层次,每个层次的“
鬼”执行着某个特殊的任务,并依次工作,直到最终实现模式识别。
例:各种不同形状、型号的飞机,其原型是有2个翅膀的
长筒,机场停着的飞机和画里的飞机,尽管差异很 大,但由于与脑中表征的原型相似,仍然能够被识
别出来。
换了发型的张老师仍然能被识别出。 原型匹配理论的优点:减轻记忆负担,使人的模式识别 活动更加灵活。 缺点:没有非常具体和详细地描述刺激 与原型之间的匹配过程。
模糊模式识别在计算机识别中的应用
未来发展方向与挑战
01 02
数据质量和标注问题
在许多实际应用中,数据质量和标注问题仍然是制约模糊模式识别性能 的重要因素。如何有效利用无标注数据进行半监督学习或无监督学习是 一个值得探讨的问题。
可解释性和鲁重要方向,有助于 增强其在关键领域的应用信心。
VS
详细描述
在场景理解与解析中,模糊模式识别技术 可以帮助计算机对场景中的对象、关系和 上下文进行深入分析。通过构建模糊逻辑 系统和引入隶属度函数,计算机能够更好 地处理场景中的不确定性,并实现更准确 的语义理解和描述。这有助于提高计算机 对人类视觉世界的理解能力。
04
模糊模式识别在自然语言处理 中的应用
模糊模式识别在计算机识别 中的应用
汇报人: 2024-01-09
目录
• 模糊模式识别概述 • 模糊模式识别的基本方法 • 模糊模式识别在计算机视觉中
的应用 • 模糊模式识别在自然语言处理
中的应用
目录
• 模糊模式识别在其他领域的应 用
• 总结与展望
01
模糊模式识别概述
模糊模式识别的定义
模糊模式识别是一种基于模糊逻辑和 模糊集合理论的识别方法,用于处理 具有不确定性、不完全性和模糊性的 信息。
02
模糊模式识别的基本方法
模糊逻辑
模糊逻辑是一种处理不确定性和模糊性的逻辑方法,它允许 将模糊的输入映射到模糊的输出,从而在不确定的情况下进 行推理和决策。
模糊逻辑通过使用隶属度函数来描述模糊集合,将精确的逻 辑转换为模糊逻辑,使得计算机能够处理不确定和模糊的信 息。
模糊集合
模糊集合是传统集合的扩展,它允许元素属于集合的程度 在0和1之间变化。
详细描述
通过利用模糊模式识别技术,计算机能够更好地处理目标形状、颜色和运动的不确定性,从而提高跟 踪和识别的性能。这种方法能够适应目标的变化和遮挡,并在复杂场景中实现更可靠的目标检测和识 别。
模式识别理论及其应用综述
( 签训 练样 本) 监 督学 习( 签训 练样 标 对非 未标
本) ,监督学 习和非监督学习又可分为参数
模式识 别理 论
及 其 应 用 综述
熊超 浙江理工大学公共 计算机教 学部
学工作者近 几十年来的努 力,已经取得 了
模 式识 删技 术近 年 来得 到 了迅 速 的 发展 。 本文托其理论基础 与应 并作 了详细的介鳝 与 l
模 式识 剐 ;应 舶 ; 发_ 状 况 ;综 述 晨
统计模式识别方法和结构( 句法) 模式识别方 法 。统计 模式 识 别是 对 模 式 的 统 计 分 类 方 法 ,即结合统计概率论 的贝叶斯决策 系统 进行模式识别的技 术 ,又称为决 策理论识 别方 法 。利 用 模 式 与 子 模式 分 层 结构 的树
状 信 息 所 完 成 的 模 式识 别 工 作 ,就 是 结 构 模 式 识 别或 句 法 模式 识 别 。 13 .模式 识 别系统 不论 是 以 哪 种 模式 识 别方 法 为 基 础 的 模 式 识 别 系统 , 本 上都 是 由两个 过程 组 成 基 的,即设计与实现。设计是指用一定数量的 样本 ( 叫做 训练 集或 学 习集 )进 行 分类 器的 设 计 。实现 是指 用 所设计 的 分 类器对 待识 别 的样 本进 行分 类决 策 。基于 统计 方 法的 模式
征提取 , 选择模块找到合适的特征来表示输 人模 式 ,分类 器被 训练 分割 特 征空 间 。在 分 类模式 中, 被训练的分类器根据测量的特征
将 输 入模 式分 配 到某 个 模式 类 。 统 计 模式 识 别 的 决 策过 程 可 以总 结如
识 别 系统 如 图所 示 :
现代统计学 习理论—— V C理论的建立 ,该 理 论不 仅在 严格 的数学 基 础上 圆满地 回答 了
模式识别理论及应用
模式识别的历史与发展
模式识别的概念最早可以追溯到20世纪初,当时主要是基 于手工和经验的方法进行模式识别。
随着计算机技术的发展,模式识别技术逐渐得到广泛应用, 特别是在20世纪80年代以后,随着人工智能技术的兴起, 模式识别技术得到了迅速发展。
目前,模式识别技术已经广泛应用于各个领域,如医学诊 断、安全检查、智能交通等,为人们的生活和工作带来了 极大的便利。
03
模式识别的应用领域
图像识别
总结词
图像识别是模式识别的一个重要应用领域,通过计算机技术 自动识别和分析图像,实现目标检测、分类和跟踪等功能。
详细描述
图像识别广泛应用于安防监控、智能交通、人脸识别、智能 制造等领域。通过图像处理和机器学习等技术,实现对人脸 、车牌等目标的自动识别,提高生产效率和安全性。
关注隐私保护
在模式识别技术的应用中,应重视用户隐私保护 问题,制定相应的政策和标准,保护个人信息安 全。
THANKS
感谢观看
提升生活质量
在医疗、交通、安全等领域,模式识别技术的应用为人们提供了更便 捷、高效的服务,提高了生活品质。
对未来研究和应用的建议
1 2 3
加强跨学科研究
模式识别技术涉及多个学科领域,如计算机科学、 数学、物理学等,应加强跨学科合作,推动模式 识别技术的创新发展。
拓展应用领域
随着技术的不断进步,模式识别技术的应用领域 应进一步拓展,例如在环境监测、农业智能化等 领域的应用。
统计模式识别
参数统计方法
基于概率分布假设,利用参数估计和假设检验进行模式识别。
非参数统计方法
不假设概率分布形式,直接从数据中提取特征进行分类。
贝叶斯决策论
基于贝叶斯定理,利用先验概率和似然函数进行分类决策。
常见的模式识别方法
常见的模式识别方法一、引言在现代科技的推动下,模式识别技术已经广泛应用于各个领域,如图像识别、语音识别、文本分类等。
模式识别是指通过对已知模式的学习和分类,来识别新的、未知模式的技术。
在这篇文章中,我们将介绍一些常见的模式识别方法,并对其原理和应用进行简要概述。
二、特征提取特征提取是模式识别的关键步骤之一,其目的是从原始数据中提取出能够代表模式的特征。
常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)和局部二值模式(LBP)等。
PCA 通过线性变换将高维数据映射到低维空间,以保留原始数据中的主要信息。
LDA则是通过最大化类间散布矩阵和最小化类内散布矩阵的方式,进行特征投影,以达到最佳分类效果。
LBP是一种用于纹理分析的特征描述子,通过计算像素点与其周围像素点之间的灰度差异,来描述图像的纹理信息。
三、分类方法在特征提取之后,接下来需要将提取到的特征用于分类。
常见的分类方法有K最近邻算法(KNN)、支持向量机(SVM)和决策树等。
KNN算法是一种基于实例的学习方法,通过计算待分类样本与训练样本之间的距离,来确定其所属类别。
SVM是一种基于统计学习理论的分类方法,通过在特征空间中找到一个最优的超平面,来将不同类别的样本分开。
决策树是一种基于递归分割的分类方法,通过对特征空间进行划分,以达到最佳的分类效果。
四、聚类方法聚类是一种无监督学习方法,其目的是将数据集划分为若干个组,使得组内的样本相似度高,组间的样本相似度低。
常见的聚类方法有K均值聚类、层次聚类和密度聚类等。
K均值聚类将数据集划分为K个簇,通过计算样本与簇中心之间的距离,将样本分配到距离最近的簇中。
层次聚类是一种自底向上的聚类方法,通过计算样本之间的相似度,不断合并最相似的样本或簇,最终形成一个完整的聚类树。
密度聚类是一种基于密度的聚类方法,通过计算样本周围的密度,来确定样本所属的簇。
五、神经网络神经网络是一种模仿人脑神经元网络结构的计算模型,其应用于模式识别可以取得很好的效果。
知觉(模式识别)
实验证据:
由点组成字母及其变形(Posner,1967)。 Reed(1972)人脸简图的归类实验。
证据:各种不同形状、型号的飞机,其原型是有2个翅膀 的长筒,机场停着的飞机和画里的飞机,尽管差异很
大,但由于与脑中表征的原型相似,仍然能够被识
别出来。
换了发型的张老师仍然能被识别出。
原型匹配理论的优点:减轻记忆负担,使人的模式识别
刺激的大小。
* Selfridge和Neisser根据特征匹配理论,设计了一套计算 机程序让计算机识别,这些字母区别于人用手写的英文字 母,结果计算机能够很好地完成这个任务。
“魔鬼城堡”模型(Pandemonium Model)( Selfridge ,1959)
“魔宫”里群居着许多“鬼”,他们分属于4个层次,每个层次的“ 鬼”执行着某个特殊的任务,并依次工作,直到最终实现模式识别。 “映象鬼”——对外部刺激信息进行编码,形成刺激模式的表象或映 象。 “特征鬼”——从“映象鬼”得到的表象中搜索一定的特征,每个 “特征鬼”都有其特定的功能和任务,它们只搜索和选择自己负 责的那个特征,找到后就喊叫或标记出这种刺激特征及其数量。
刺激信息最为吻合,就把该刺激信息确认为是与头脑中
的某个模板相同,模式得到识别。 模式识别是刺激信息与脑中某个或某些模板产生最 佳匹配的过程。
模板匹配理论的缺陷:
强调刺激信息与脑中模板的最佳匹配,如果刺激信息稍有变化,
就无法与模板最佳匹配,无法完成模式识别。
要求在长时记忆中存储无数个模板,会给记忆带来沉重负担, 也会使人在识别事物时缺少灵活性。
成分识别理论的支持证据:
Biederman, Ju & Clapper(1985)向被试快速呈现
设计如何应用模式识别和原型说的理论举例说明
设计如何应用模式识别和原型说的理论举例说明模式识别和原型说是两种常用的理论框架,可以应用于各个领域,比如计算机科学、心理学、社会科学等。
它们可以帮助我们识别和解释事物之间的关联性和相似性,从而提高我们的认知水平和问题解决能力。
首先,我们来介绍一下模式识别。
模式识别是一种研究对象之间的关联性和相似性的方法。
它的基本思想是通过比较事物之间的相似之处,找到它们的共同特征或规律。
模式识别可以帮助我们从海量的数据中提取出有用的信息,并将其应用于实际问题的解决中。
下面举一个计算机科学中的应用例子。
假设我们要开发一个能够自动识别图片中物体的系统,比如识别猫的系统。
我们可以使用模式识别的方法来训练此系统。
首先,我们需要收集大量的猫的图片作为数据集。
然后,我们可以使用机器学习算法,比如卷积神经网络,来训练我们的模型。
通过反复的训练和调整参数,我们可以使模型具备识别猫的能力。
最后,当我们给系统输入一张新的图片时,它就能够通过比对图片的特征和已有的模式来判断出其中是否有猫的存在。
接下来,我们来介绍一下原型说。
原型说是一种心理学理论,认为人类在形成概念时会根据已有的原型或范例进行分类和判断。
原型说认为人们对于一些概念的理解是基于一种典型的例子,而不是根据所有实例的综合。
下面举一个心理学中的应用例子。
假设我们要研究人类对于美的感知。
我们可以采用原型说的方法,首先让被试评价一系列图片的美观程度,并记录下他们的评分。
然后,我们可以分析这些评分数据,找出评分较高的几个图片,并将它们作为我们研究的“美的原型”。
接下来,我们可以设计更多的实验,观察人们对于这些原型的反应。
通过检测人们对于这些原型的注意力、情绪等方面的反应,我们可以研究出人们对于美的感知的一些普遍规律。
无论是模式识别还是原型说,它们都可以帮助我们在认知和问题解决中起到指导作用。
模式识别通过发现事物之间的关联性和相似性,帮助我们提取有用的信息;而原型说通过找出典型范例,帮助我们建立概念和判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
梯度下降算法
感知器 准则
梯度下降算法:对(迭代)向量沿某函数的负 梯度方向修正,可较快到达该函数极小值。
J p (a )
J p (a ) a
y Y
k
( y )
a ( k 1) a ( k ) rk J p ( a ) a ( k ) rk
S w T (S S )w w T S w S1 1 1 2 w
第四章 线性判别函数
15
Fisher准则函数
Fisher 判别
评价投影方向w的原则,使原样本向量在该方向上 的投影能兼顾类间分布尽可能分开,类内样本投影 尽可能密集的要求 Fisher准则函数的定义:
J F (w) Sb S1 S 2 w Sbw w Sww
第四章 线性判别函数
20
基本概念
感知器 准则
感知器:Perceptron,Rosenblatt,50d/20thc 线性可分性:训练样本集中的两类样本在特征空间 可以用一个线性分界面正确无误地分开。在线性可 分条件下,对合适的(广义)权向量a应有:
如 果 y 1 , 则 a y 0
选择最佳准则
训练样本集
决策规则: 判别函数 决策面方程
4
第四章 线性判别函数
线性判别函数
引言
d维空间中的线性判别函 数的一般形式:
g (x ) w x w0
T
x是样本向量,即样本在d维特征空间中的描述, w是权向 量,w0是一个常数(阈值权)。
x x 1 , x 2 , ... x d
w * a rg m a x J ( K , w )
w
对于未知样本x,计算g(x),判断其类别
第四章 线性判别函数
9
4.2 Fisher线性判别
线性判别函数y=g(x)=wTx:
• 样本向量x各分量的线性加权 • 样本向量x与权向量w的向量点积 • 如果|| w ||=1,则视作向量x在向量w上的投 影
5
线性判别函数的几何意义
引言
决策面(decision boundary)H方程:g(x)=0 向量w是决策面H的法向量
g(x)是点x到决策面H的距离的一种代数度量
x xp r w w , g (x ) r w
x2
w x
r是 x 到 H 的 垂 直 距 离 x p是 x 在 H 上 的 投 影 向 量
T
如 果 y 2, 则 a y 0
T
规范化样本向量 :将第二类样本取其反向向量
y y = y 如 果 y 1 如 果 y 2
a y 0 i 1, ..., N i
T
第四章 线性判别函数
21
解向量与解区
感知器 准则
第四章 线性判别函数
22
感知器准则函数
引言
线性分类器设计任务:给定样本集K,确定线性 判别函数g(x)=wTx的各项系数w。步骤:
1. 收集一组样本K={x1,x2,…,xN} 2. 按需要确定一准则函数J(K,w),其值反映分类器的性 能,其极值解对应于“最好”决策。 3. 用最优化技术求准则函数J的极值解w*,从而确定判 别函数,完成分类器设计。
R
1
w S w S b w S w ( m 1 m 2 )( m 1 m 2 ) w
S w (m 1 m 2 )R
1
w
*
S w (m 1 m 2 ) S w
1
1
(m 1 m 2 )
19
第四章 线性判别函数
4.3 感知器准则
感知准则函数是五十年代由 Rosenblatt提出的一种自学习判别函 数生成方法,由于Rosenblatt企图将 其用于脑模型感知器,因此被称为感知 准则函数。其特点是随意确定的判别函 数初始值,在对样本分类训练过程中逐 步修正直至最终确定。
线性判别函数的齐次简化: g ( x ) w x w 0 a y
T T
增广样本向量使特征空间增加了一维,但保持了样本间的 欧氏距离不变,对于分类效果也与原决策面相同,只是在Y 空间中决策面是通过坐标原点的,这在分析某些问题时具 有优点,因此经常用到。 第四章 线性判别函数
8
线性分类器设计步骤
Fisher准则的基本原理:找到一个最合适的 投影轴,使两类样本在该轴上投影之间的距 离尽可能远,而每一类样本的投影尽可能紧 凑,从而使分类效果为最佳。
第四章 线性判别函数
10
Fisher线性判别图例
x2 w
1
Fisher 判别
H: g=0
Fisher准则的描述:用投影后数据的统计性质 —均值和离散度的函数作为判别优劣的标准。
m
ln P ( 1 ) / P ( 2 ) N1 N 2 2
分类规则:
y w x w0 0 x 1 y w x w0 0 x 2
T
第四章 线性判别函数
18
Fisher公式的推导
J F (w) Sb S1 S 2 w Sbw w Sww
1 Ni
y i
y,
i 1, 2
样本类内离散度和总类内离散度
Si
y i
( y mi ) ,
2
i 1, 2
S w S1 S 2
2 S b (m1 m 2 )
样本类间离散度
以上定义描述d维空间样本点到一向量投影的分 散情况,因此也就是对某向量w的投影在w上的 分布。样本离散度的定义与随机变量方差相类似
感知器 准则
对于任何一个增广权向量a ,
• 对样本y正确分类,则有:aTy>0 • 对样本y错误分类,则有:aTy<0
定义一准则函数JP(a) (感知准则函数):
J P (a )
y Y
k
(a y )
T
被错分类的规范化 增广样本集
恒有JP(a)≥0,且仅当a为解向量,Yk为空集(不 存在错分样本)时, JP(a)=0,即达到极小值。 确定向量a的问题变为对JP(a)求极小值的问题。
第四章 线性判别函数
13
样本与其投影统计量间的关系
Fisher 判别
样本x与其投影y的统计量之间的关系:
mi 1 Ni
y i
y
1 Ni
y K i
w x w mi,
T T
i 1, 2
(m m )2 (w T m w T m )2 1 2 Sb 1 2 w ( m 1 m 2 )( m 1 m 2 ) w w S b w
3
第四章 线性判别函数
直接确定判别函数
引言
基于样本的直接确定判别函数方法:
• 针对各种不同的情况,使用不同的准则函数, 设计出满足这些不同准则要求的分类器。 • 这些准则的“最优”并不一定与错误率最小相 一致:次优分类器。 • 实例:正态分布最小错误率贝叶斯分类器在特 殊情况下,是线性判别函数g(x)=wTx(决策 面是超平面),能否基于样本直接确定w?
y Y
k
y
24
第四章 线性判别函数
算法(step by step)
1. 初值: 任意给定一向量 初始值a(1) 2. 迭代: 第k+1次迭代时 的权向量a(k+1)等于 第k次的权向量a(k)加 上被错分类的所有样本 之和与rk的乘积 3. 终止: 对所有样本正确 分类
T
a
i 1
3
i
yi
第四章 线性判别函数
7
广义线性判别函数(2)
引言
按照上述原理,任何非线性函数g(x)用级数展开成高次多 项式后,都可转化成线性判别函数来处理。 一种特殊映射方法:增广样本向量y与增广权向量a
x T y x 1 , ..., x d ,1 1 w T a w 1 , ..., w d , w 0 1
武汉大学电子信息学院
模式识别理论及应用
Pattern Recognition - Methods and Application
第四章 线性判别函数
模式识别与神经网络
内容目录
4.1 引言 4.2 Fisher线性判别 4.3 感知器准则 4.4 最小平方误差准则 4.5 多类问题 4.6 分段线性判别函数 4.7 讨论
T T T
第四章 线性判别函数
14
样本与其投影统计量间的关系
Si
y i
Fisher 判别
( y mi)
T
2
x K i T
(w x w m i)
T
2
w
T ( x m i )( x m i ) w x K i
w Siw
T
二次函数的一般形式: 映射X→Y
g ( x ) c 0 c1 x c 2 x
2
g(x)又可表示成:
y1 1 a1 c0 y y 2 x , a a 2 c1 2 y3 x a3 c2 g(x) a y
第四章 线性判别函数
11
w2
x1
d维空间样本分布的描述量