车辆系统动力学仿真大作业(带程序)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Assignment
Vehicle system dynamics simulation
学院:机电学院
专业:机械工程及自动化
姓名:
指导教师:
The model we are going to analys:
The FBD of the suspension system is shown as follow:
According to the New's second Law, we can get the equation:
2
)()(221211mg
z z c z z k z m --+-=∙∙∙∙
221212)()(z k mg z z c z z k z m w +-----=∙
∙∙∙
0)()()()(222111222111=-++--+-++--+∙
∙
∙
∙
∙
∙
∙
∙w w w w z L z k z L z k z L z c z L z c z m χχχχ
0)()()()(2222111122221111=-++----++---∙
∙
∙
∙
∙
∙
∙
∙w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ
d w w w w Q z L z k z L z c z m ,111111111)()(-=------∙
∙
∙
∙
∙χχ
d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-∙
∙∙∙∙χχ
When there is no excitation we can get the equation:
2)()(221211mg z z c z z k z m --+-=∙∙∙∙
2
21212)()(z k mg z z c z z k z m w +-----=∙
∙∙∙
Then we substitude the data into the equation, we write a procedure to simulate the system:
Date:
⎪⎪⎪⎪
⎩⎪
⎪⎪⎪
⎨⎧==⋅==⋅===MN/m
0.10k
m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg
2100kg 3250w 2l c k I m m by w b
Program :
1.For the no excitation situation.
Buid a file named rigid1.m
function dy=rigid1(t,y)
dy=zeros(4,1);
dy(1)=y(2);
dy(3)=y(4);
dy(2)=-(615.38*y(1)-615.38*y(3)+12.31*dy(1)-12.31*dy(3)-9.81);
dy(4)=-(5238.1*y(3)-476.19*y(1)+9.52*dy(3)-9.52*dy(1)-9.81);
Buid an other file named test1.m
[T,Y]=ode45('rigid1',[0 1.5],[0 0 0 0]);
figure (1)
plot(T,Y(:,1))
grid
on,xlabel('time(sec)'),ylabel('displayment(m)'),title('displayment of boge')
figure (2)
plot(T,Y(:,2))
grid on,xlabel('time(sec)'),ylabel('velocity(m/s)'),title('velocity of boge')
figure (3)
plot(T,Y(:,3))
grid
on,xlabel('time(sec)'),ylabel('displayment(m)'),title('displayment of wheel')
figure (4)
plot(T,Y(:,4))
grid on,xlabel('time(sec)'),ylabel('velocity(m/s)'),title('velocity of wheel')
We can get the figures as follows: The velocity of m1:
Dumping, then it goes to zero. The velocity of m2 and m3:
Dumping, then goes to zero.
The displacement of m1:
Dump to a constant.
The displacement of m2 and m3:
Dump to a constant.
When there are excitations, according to Newton's second Law and momentum equation we can get
0)()()()(32321=-++--+-++--+∙
∙∙∙∙∙∙∙z l z k z l z k z l z c z l z c z m χχχχ
0)()()()(3232=-++----++---∙
∙
∙
∙
∙
∙
∙
∙z l z kl z l z kl z l z cl z l z l c J χχχχχ
d Q z l z k z l z c z m ,222)()(22-=------∙
∙
∙
∙
∙χχ
d Q z l z k z l z c z m ,33333)()(-=-+--+-∙
∙∙∙∙χχ )(22,2x z k Q w d -= )
(33,3x z k Q w d -=
There are four excitations, each wheel set get one excitation. X1=0.005sin(4πt) X2=0.005sin(8πt) X1 and X2 act on boge 1 X3=0.005sin(4πt) X4=0.005sin(6πt) X1 and X2 act on boge 2