矩阵及其运算课件

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(
i j
1,2, 1,2,
,,mp)
k 1
就是说,矩阵C 的第 i 行第 j 列的元素等于
矩阵 A 的第 i 行的所有元素与矩阵 B 的第 j 列的
对应元素的乘积之和。
☞ ... ... ... ... b1 j ...
ai1 ...
... ...
ain ...
... ...
... bnj
A
a21 ...
a22 ...
... ...
a2n ...
am1 am2 ... amn
这 m×n 个数称为矩阵 A 的元素,简称为元, 数 aij 位于矩阵 A 的第 i 行第 j 列,称为矩阵 A的 ( i,j )元。以数 aij 为(i,j)元的矩阵可简记作 (aij) 或 (aij)m×n,m×n 矩阵 A也记作A m×n。
元素是实数的矩阵,称为实矩阵;元素是复
数的矩阵称为复矩阵。
行数与列数都等于 n 的矩阵称之为 n 阶方阵, 记作 An。
2.行矩阵、列矩阵与方阵 只有一行的矩阵称行矩阵,又称行向量。 只有一列的矩阵称为列矩阵,又称为列向量。 行数与列数都等于n的矩阵叫方阵,记为An。
3.同型矩阵与矩阵相等: 如果两个矩阵的行数相 等、列数也相等,就称它们是同型矩阵。
A
a21
...
a22
...
... ...
a2n
...
am1 am2 ... amn
由此可见,矩阵的数乘仍然是一个与原矩阵
同型的矩阵,并且,是用数λ与矩阵的每一个 元素相乘。
矩阵数乘的运算律:
☞ (1) ()A (A)
(2) ( )A A A (3) (A B) A B
矩阵的加法与数乘合起来通称为矩阵的线性
第二章 矩阵及其运算
矩阵是线性代数的一个主要研究对象, 也是数学上的一个重要工具。矩阵的应用已经 渗透到了包括自然科学、人文科学、社会科学 在内的各个领域。在矩阵理论中,矩阵的运算 起着重要的作用,本章主要讨论有关矩阵运算 的一些基本规则与技巧。
§2.1 矩阵的概念及运算 §2.2 逆矩阵 §2.3 矩阵的分块
5.矩阵的转置:把矩阵 A 的行换成同序数的列 得到的一个新矩阵,叫做 A的转置矩阵,记作 AT。
如果 A是一个 m×n 阶矩阵,那么 AT 就是 一个 n×m 阶矩阵。且 A 的行一定就是 AT中同 序数的列
☞ (1) ( AT )T A
(2) ( A B)T AT BT
(3) ( A)T AT (4) ( AB)T BT AT
如果两个同型矩阵的对应元素相等,那么就称 这两个矩阵相等。记作:A=B 4.零矩阵: 元素都是零的矩阵称为零矩阵,记作 O。不同型的零矩阵是不相等的。
5. 对角矩阵、单位矩阵与数量矩阵 如果 n 阶方阵除主对角线上的元素不全为零
外,其余元素全为零,这样的 n 阶方阵称为对 角矩阵。记作 A=diag(λ1,λ2,…,λn)
证明:设矩阵 A为m×s 阶矩阵,矩阵 B为s×n 阶矩阵,那么: ( AB)T与 BTAT 是同型矩阵; 又设 C = A B,因为 CT的第 i 行第 j 列的元素正 好是 C 的 cji ,即 cji=aj1b1i+aj2b2i+…+ajsbsi =b1iaj1+b2iaj2+…+bsiajs
如果n 阶方阵如果满足主对角线上的元素全 为1,其余元素全为零,这样的 n 阶矩阵称为 n 阶单位矩阵。记作En 或 E。
如果n 阶方阵主对角线上的元素全为k,其 余元素全为零,这样的 n 阶矩阵称为 n 阶数量 矩阵。
二、矩阵的运算
1.矩阵的加法: 设有两个同型的 m×n 阶矩阵
A= (aij) 、B= (bij),则矩阵 A 与 B 的和记为 A+B,并规定
运算。
3.矩阵的乘法:设矩阵 A为m×n 阶矩阵、矩阵 B为 n×p 阶矩阵,A= (aij) m×n 、B= (bij) n×p , 则矩阵 A与 B 的乘积为一 m×p 阶矩阵
C = (cij) m×p,记 C = AB, 且
cij ai1b1 j ai2b2 j ainbnj
n
aikbkj
☞矩阵的乘法中,必须注意矩阵相乘的顺序,
AB是A左乘B的乘积,BA是A右乘B的乘积;
☞AB与BA不一定同时会有意义;即是有意义,
也不一定相等;
☞AB = O 不一定有A= O或B= O ;
A(XY ) = O 且 A≠ O 也不可能一定有X=Y
如:A 11
11
B
1 1
11
AB O
BA
2 2
2 2
... ...
cij
(1)( AB)C A(BC )
(2)( AB) ( A)B A(B)
(3) A(B C) AB AC (B C ) A BA CA
☞(4) Em Amn Amn
Amn En Amn
矩阵 A 与矩阵 B 做乘法必须是左矩阵的列
数与右矩阵的行数相等;
Байду номын сангаас
第一节 矩阵的概念
一、概念:
1.定义 由m×n个数aij(i=1,2,…,m;j=1,2,…,n)排 成的m行n列的数表a11 a12 ... a1n
a21 a22 ... a2n ... ... ... ... am1 am2 ... amn
称m行n列矩阵,简称m×n矩阵。记作
a11 a12 ... a1n
显然有:AB 0 AB BA
总结:矩阵乘法不满足交换律与消去律.
4.矩阵的乘幂:设 A 是 n 阶方阵,定义:
An AA A (n为正数)
n
只有方阵,它的乘幂才有意义。由于矩阵的 乘法满足结合律,而不满足交换律,因而有 下面的式子:
(1) An Am = An+m (2) ( An )m= An m (3) ( AB ) k ≠ Ak Bk
(2) ( A+B )+ C = A+ ( B+ C ) 设矩阵 A= (aij) ,记A= ( aij),称 A为矩阵 A的负矩阵。
由矩阵加法的定义,显然有 A+ ( A) = O,
由此,矩阵的减法可定义为
A B =A+ ( B)
2.矩阵的数乘: 数λ与矩阵A的乘积记为λA或
Aλ,并规定:
a11 a12 ... a1n
a11b11 a12b12 ... a1nb1n
A
B
a21b21 ...
a22b22 ...
... ...
a2nb2n ...
am1bm1 am2bm2 ... amnbmn
注:矩阵的加法只能在两个 同型矩阵之间进行;
两个矩阵相加时,对应 元素进行相加。
矩阵加法的运算律:
☞(1) A+ B = B+ A
相关文档
最新文档