湖北省黄冈市七年级(上)期末数学试卷
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库
![湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库](https://img.taocdn.com/s3/m/99bccfe2804d2b160a4ec057.png)
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 4.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)35.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .6.将图中的叶子平移后,可以得到的图案是()A .B .C .D .7.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④10.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 11.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 12.方程312x -=的解是( ) A .1x =B .1x =-C .13x =- D .13x =13.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )14.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题16.若|x |=3,|y |=2,则|x +y |=_____.17.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.20.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).21.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________. 22.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.23.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 24.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 25.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.26.五边形从某一个顶点出发可以引_____条对角线.27.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.28.A 学校有m 个学生,其中女生占45%,则男生人数为________. 29.观察“田”字中各数之间的关系:则c 的值为____________________.30.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.33.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.34.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.35.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)36.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.37.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值. 38.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对;B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.2.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.C解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .4.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.5.A解析:A 【解析】此题考查同底数幂的乘法运算,即(0)m n m n a a a a +⋅=>,所以此题结果等于325a a +=,选A ;6.A解析:A 【解析】 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.7.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.8.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.10.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。
湖北省黄冈市七年级上学期期末数学试卷
![湖北省黄冈市七年级上学期期末数学试卷](https://img.taocdn.com/s3/m/4c6fee4a700abb68a882fb21.png)
湖北省黄冈市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018七上·惠东期中) 下列各对数中,互为相反数的是().A . -(+3)和+(-3)B . –(-3)和+(-3)C . –(-3)和+|-3|D . +(-3)和–|-3|2. (2分) (2017七上·洪湖期中) 单项式的系数和次数分别是()A . ﹣2,3B . ﹣2,2C . ﹣,3D . ﹣,23. (2分) (2018七上·阿城期末) 化简m+n-(m-n)的结果为()A . 2mB . 2nC . 0D . -2n4. (2分)(2017·孝感模拟) 如图,AB∥CD,射线AE交CD于点F,若∠1=105°,则∠2的度数是()A . 75°B . 85°C . 95°D . 105°5. (2分)(2017·道里模拟) 如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A .B .C .D .6. (2分) (2019七上·江阴期中) 点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3.1,若点B 与点C之间的距离是2,则点A与点C之间的距离是()A . 5B . 2C . 3或5D . 2或67. (2分)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015 ,到BC的距离记为h2015 .若h1=1,则h2015的值为()A .B .C . 1-D . 2-8. (2分)如图,在梯形ABCD中,AD∥BC,两对角线交于点O,则图中面积相等的三角形有().A . 4对B . 3对C . 2对D . 1对二、填空题 (共6题;共6分)9. (1分) 2015中国﹣东盟博览会旅游展5月29日在桂林国际会展中心开馆,展览规模约达23000平方米,将23000平方米用科学记数法表示为________平方米.10. (1分)某天的最高温度是15℃,最低温度是﹣6℃,这一天温差是________℃.11. (1分)比较大小:﹣________-(填“>”或“<”).12. (1分)(2017·崇左) 在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是________.13. (1分) (2019七下·兴化期末) 一副直角三角尺如图①叠放,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,要求两块三角尺的一组边互相平行.如图②,当∠BAD=15°时,有一组边BC∥DE,请再写出两个符合要求的∠BAD(0°<∠BAD<180°)的度数________.14. (1分)平移线段AB,使点B移动到点C的位置,若AB=10cm,BC=8cm,则点A移动的距离是________ cm.三、解答题 (共8题;共77分)15. (10分) (2016七上·长兴期末) 计算与解方程(1)计算:﹣22(2)解方程:2(x+8)=3x﹣1.16. (5分)若(x2+3mx﹣)(x2﹣3x+n)的积中不含x和x3项,(1)求m2﹣mn+n2的值;(2)求代数式(﹣18m2n)2+(9mn)﹣2+(3m)2014n2016的值.17. (5分)小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm,长方形的长为8cm,请计算修正后所折叠而成的长方形的表面积.18. (10分)如图,M是线段AC的中点,N是线段BC的中点.(1)如果AC=8cm,BC=6cm,求MN的长.(2)如果AM=5cm,CN=2cm,求线段AB的长.19. (10分) (2019七下·西湖期末) 如图,将一长方形纸片沿着折叠,已知,,交于点,过点作,交线段于点 .(1)判断与是否相等,并说明理由.(2)①判断是否平分,并说明理由.②若,求的度数.20. (5分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.21. (22分)如图所示,梯形上底的长是x,下底的长是15,高是8.(1)梯形面积y与上底长x之间的关系式是什么?(2)用表格表示当x从10变到15时(每次增加1),y的相应值x10111213141516y________________________________________________________(3)当x每增加1时,y如何变化?(4)当x=0时,y等于什么?此时它表示的是什么?22. (10分) (2017七下·抚宁期末) 如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共8题;共77分)15-1、15-2、16-1、17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、21-4、22-1、22-2、。
黄冈市七年级数学上册期末测试卷及答案
![黄冈市七年级数学上册期末测试卷及答案](https://img.taocdn.com/s3/m/72c5826bc1c708a1294a4465.png)
黄冈市七年级数学上册期末测试卷及答案一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =3.﹣3的相反数是( ) A .13- B .13C .3-D .34.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=5.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个 6.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)7.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 8.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180°9.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .10.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定11.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .12.下列计算正确的是( ) A .3a +2b =5ab B .4m 2 n -2mn 2=2mn C .-12x +7x =-5xD .5y 2-3y 2=2二、填空题13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C运算”如下:若n =26,则第2019次“C 运算”的结果是_____.17.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.18.若a a -=,则a 应满足的条件为______.19.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.20.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.21.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.22.﹣225ab π是_____次单项式,系数是_____.23.3.6=_____________________′24.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.三、解答题25.解方程3142125x x -+=-. 26.先化简,再求值:()()22326m n mn mn m n +--,其中3m =,2n =-.27.解方程(1)3x-1=3-x, (2)3y 23y123+--= 28.计算: -22×(-9)+16÷(-2)3-│-4×5│ 29.解方程:4x ﹣3(20﹣x )+4=030.如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”,图中点A 表示﹣12,点B 表示12,点C 表示20,我们称点A 和点C 在数轴上相距32个长度单位,动点P 从点A 出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1单位/秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t 秒,问:(1)动点Q 从点C 运动至点A 需要 秒;(2)P 、Q 两点相遇时,求出t 的值及相遇点M 所对应的数是多少?(3)求当t 为何值时,A 、P 两点在数轴上相距的长度是C 、Q 两点在数轴上相距的长度的54倍(即P 点运动的路程=54Q 点运动的路程). 四、压轴题31.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?32.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.33.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
湖北省黄冈市2023-2024学年七年级上学期期末数学试题
![湖北省黄冈市2023-2024学年七年级上学期期末数学试题](https://img.taocdn.com/s3/m/7967e442591b6bd97f192279168884868762b889.png)
湖北省黄冈市2023-2024学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,绝对值最大的是()A .3-B .1-C .0D .22.我国约有9600000平方千米的土地,平均1平方千米土地一年从太阳得到的能量相当于燃烧150000吨煤所产生的能量,把150000用科学记数法可表示为()A ..41510⨯B .41510⨯C .51.510⨯D .51510⨯3.如图所示的平面图形绕直线l 旋转一周,可以得到的立体图形是()A .B .C .D .4.下列计算正确的是()A .233a a a +=B .235a b ab +=C .32ab ab ab --=D .32ab ab ab-+=-5.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥.若70AOC ∠=︒,则CON ∠的度数为()A .35︒B .45︒C .55︒D .60︒6.小石家的脐橙成熟了!今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从甲脐橙园运脐橙x 千克到乙脐橙园,则可列方程为().A .()700025000x =+B .700025000x -=⨯C .()700025000x x -=+D .()700025000x x +=-7.某商店换季促销,将一件标价为240元的T 恤7折售出,获利20%,则这件T 恤的成本为()A .138元B .140元C .162元D .170元8.如图,将一些形状相同的小五角星按图中所示放置,据此规律,第59个图形五角星的个数为()A .3600B .3500C .3599D .3499二、填空题14.钟表上2时35分时,时针与分针所成的角是15.如图所示,在长方形ABCD 中,AD 的边长为m ,正方形GBIH 的边长为16.如图,将一段长为100cm 绳子AB 拉直铺平后折叠(绳子无弹性,折叠处长度忽略不计),使绳子与自身一部分重叠.若将绳子(1)如图1,若120AOB ∠=︒,求EOF ∠的度数;(2)如图2,若AOB a ∠=,求EOF ∠的度数;(3)若将题中的“平分”的条件改为“23EOB ∠=其他条件不变,求EOF ∠的度数.(用含α23.某超市在春节期间开展打折促销活动,方案如下:一次性购物优惠办法少于300元不予优惠低于600元但不低于300元九折优惠600元或超过600元其中600元部分给予九折优惠,超过优惠(1)求A 和B 两点之间的距离;t(秒);①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.。
湖北省黄冈市2022-2023学年七年级上学期期末数学试题
![湖北省黄冈市2022-2023学年七年级上学期期末数学试题](https://img.taocdn.com/s3/m/e498bf561fb91a37f111f18583d049649a660e45.png)
16.图(1)是边长为 24cm 的正方形纸板,裁掉阴影后将其折叠成图(2)所示的长方体盒子, 已知该长方体的宽和高相等,则它的体积是 cm3 .
试卷第 2 页,共 4 页
三、解答题 17.计算或解方程:
(1) 12 18 7 6 ;
(2)
12022
2
3 2
2
1 4
;
(3) 2 x 4 3x 8 ;
21.已知多项式 A 2x2 my 12 , B nx2 3y 6 ,若 A B 的结果中不含有 x2 项以及 y 项,求 m n mn 的值. 22.如图,点 A、O、B 在一条直线上, AOC 3COD , OE 平分 BOD .
(1)若 COD 10 ,求 BOC 的度数; (2)若 AOC 45 ,求 COE 的度数. 23.某校篮球社团决定购买运动装备.经了解,甲、乙两家运动产品经销店以同样的价 格出售某种品牌的队服和篮球,已知每套队服比每个篮球多 50 元,两套队服与三个篮 球的费用相等.经洽谈,甲店的优惠方案是:每购买十套队服,送一个篮球,乙店的优 惠方案是:若购买队服超过 80 套,则购买篮球打八折. (1)求每套队服和每个篮球的价格是多少? (2)若篮球社团购买100 套队服和 m 个篮球( m 是大于10 的整数),请用含 m 的式子分 别表示出到甲经销店和乙经销店购买装备所花的费用;
2
运动到 C 点后立即返回再沿数轴向左运动.当 PQ 10 时,求点 P 运动的时间.
试卷第 4 页,共 4 页
(4) 2x 1 x 5 1. 36
18.先化简,后求值:3(a2-ab+7)-2(3ab-a2 +1)+3,其中 a=2,b= 1 3
19.关于 x 的方程 3x 2m 1与方程 x 2 2x 1的解相同,求 m 的值. 20.某医疗器械企业计划购进 20 台机器生产口罩,已知生产口罩面的机器每台每天的 产量为 12000 个,生产耳挂绳的机器每台每天的产量为 96000 个,口罩是一个口罩面和 两个耳挂绳构成,为使每天生产的口罩面和耳挂绳刚好配套,该企业应分别购进生产口 罩面和生产耳挂绳的机器各多少台?
湖北省黄冈市七年级上册数学期末考试试卷
![湖北省黄冈市七年级上册数学期末考试试卷](https://img.taocdn.com/s3/m/31a042d703d8ce2f006623fb.png)
湖北省黄冈市七年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·林西期末) 下列说法①乘积是1的两个数互为倒数;②负整数、负分数都是有理数;③一个数的绝对值越大,表示它的点在数轴上越靠右;④单项式的系数是0;⑤如果两个角是同一个角的余角,那么它们相等.其中正确的是()A . ①②③④⑤B . ③④⑤C . ①②⑤D . ②③④2. (2分)若-2xm+1y2与3x3yn-1是同类项,则m+n的值()A . 3B . 4C . 5D . 63. (2分)沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为()A . 3.04×105B . 3.04×106C . 30.4×105D . 0.304×1074. (2分) (2019七上·甘井子期中) 若是方程的解,则的值是()A . 1B . 2C . -1D . -25. (2分)有30位同学参加数学竞赛,已知他们的分数互不相同,按分数从高到低选15位同学进入下一轮比赛.小明同学知道自己的分数后,还需知道哪个统计量,才能判断自己能否进入下一轮比赛?()A . 中位数B . 方差C . 众数D . 平均数6. (2分) (2018八上·台州期中) 如图,△ABC中,∠A=60°,点E,F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A .B .C .D .7. (2分) (2020七上·昌平期末) 有理数a,b在数轴上对应点的位置如图所示,下列说法中正确的是()A . a>bB . ﹣a>bC .D . a+b>08. (2分) (2019七下·景县期中) 数轴上有两点A、B,点A表示数2 ,点B表示数3,则线段AB的长为()A . 3+2B . 3-2C . 2 -3D .9. (2分) (2020九上·正定期中) 小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300 ,同一时刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A . 米B . 12米C . 米D . 10米10. (2分) (2019七上·双流月考) 观察下列各算式:21=2,22=4,23=8,24=16,25=32,26=64…通过观察,用你所发现的规律确定22016的个位数字是()A . 2B . 4C . 6D . 8二、填空题 (共8题;共10分)11. (1分) (2019九上·临沧期末) 若a﹣3=0,则a的相反数是________.12. (1分)2700″=________°.13. (1分) (2017七上·江津期中) 如图,是计算机程序计算,若开始输入,则最后输出的结果是________14. (1分)小明做这样一道题:“计算:|(﹣4)+■|”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于9,那么“■”表示的数是________.15. (3分)如图所示,图中能用一个大写字母表示的角是________;以A为顶点的角有________个,它们分别是________.16. (1分) (2020七上·武汉期末) 已知方程为一元一次方程,则这个方程的根为________.17. (1分)在3时45分时,时针和分针的夹角是________度.18. (1分)如图,平面展开图折叠成正方体后,相对面上的两个代数式值相等,则x+y=________.三、解答题 (共6题;共57分)19. (15分) (2017七上·官渡期末) 计算:(1)﹣9﹣(﹣8)+(﹣12)﹣6(2)(﹣12)×(﹣ + )(3)﹣22×4﹣(﹣2)2÷4.20. (5分) (2017七上·路北期中) 若多项式4xn+2﹣5x2﹣n+6是关于x的三次多项式,求代数式n2﹣2n+3的值.21. (5分) (2018七上·沙依巴克期末) 小明在实践课中做了一个长方形模型,模型的一边长为,另一边长比它小,则此长方形的周长为多少?22. (10分) (2017八上·阜阳期末) 广州火车南站广场计划在广场内种植A,B两种花木共 6600棵,若A 花木数量是B花木数量的2倍少600棵.(1) A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?23. (12分)(2019·丹东模拟) 《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为________,圆心角度数是________度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.24. (10分) (2018七上·海淀月考) 在数轴上,动点A从原点O出发向负半轴匀速运动,同时动点B从原点O出发向正半轴匀速运动,动点B的速度是动点A的速度的两倍,经过5秒后A、B两点间的距离为15个单位长度,(1)直接写出动点B的运动速度;(2)若5秒后,动点A立即开始以原来的速度大小向正半轴运动,动点B继续按照原来的方式运动,问再经过多长时间OB=3OA(其中OB表示点B到原点的距离,OA表示点A到原点的距离)?参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共10分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共6题;共57分)答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:。
湖北省黄冈市七年级上学期数学期末试卷
![湖北省黄冈市七年级上学期数学期末试卷](https://img.taocdn.com/s3/m/67bc6ad8f12d2af90342e61c.png)
湖北省黄冈市七年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共40分)1. (4分)在﹣3、0、1、﹣2四个数中,最小的数为()A . -3B . 0C . 1D . -22. (4分)在-()=-x2+3x-2的括号里应填的代数式是()A . x2-3x-2B . x2+3x-2C . x2-3x+2D . x2+3x+23. (4分)如图所示,OC是∠AOB平分线,OD平分∠AOC,且∠AOB=60°,则∠COD为()A . 15°B . 30°C . 45°D . 20°4. (4分) (2020七上·罗湖期末) 有理数在数轴上的位置如图所示,则下列选项正确的是()A .B . >0C . >0D . >15. (4分) (2019七上·新兴期中) 国家提倡“低碳减排”。
某公司计划在海边建风能发电站,发电站年均发电量为213000 000,将数据213000 000科学记数法表示为()A . 213×106B . 21.3×107C . 2.13×108D . 2.13×1096. (4分) (2018七上·南昌期中) 下列各算式中,合并同类符合题意的是()A . x2+x2=2x2B . x2+x2=x4C . 2x2﹣x2=2D . 2x2﹣x2=2x7. (4分)某商品进价是200元,标价是300元,要使该商品利润为20%,则该商品销售应按()A . 7折B . 8折C . 9折D . 6折8. (4分)如图是一个正方体的表面展开图,则原正方体中,与“安”字所在面相对的面上标的字是()A . 重B . 泰C . 山D . 于9. (4分)若A=3x2+5x+2,B=4x2+5x+3,则A与B的大小关系是()A . A>BB . A<BC . A≤BD . 无法确定10. (4分)如果表示a,b两个实数的点在数轴上的位置如图所示,那么化简|a-b|+的结果等于()A . 2aB . 2bC . -2aD . -2b二、填空题 (共6题;共24分)11. (4分) (2017七上·揭西月考) 若|a-6|+|b+5|=0,则a+b的值为________.12. (4分) 7的倒数是________ 的倒数是________ 的倒数是________.13. (4分) (2016七上·临海期末) 如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于________14. (4分) (2018七上·瑶海期中) 由四舍五入得到的近似数5.2×103精确到________位.15. (4分) (2017七上·黄冈期中) 若x2-2x+1=2,则代数式2x2-4x-2的值为________.16. (4分) (2019七上·南关期末) 今年十一小长假期间,迟老师一家三口开着一辆轿车去长春市净月潭森林公园度假,若门票每人a元,进入园区的轿车每辆收费40元,则迟老师一家开车进入净月潭森林公园园区所需费用是________元(用含a的代数式表示).三、计算题 (共2题;共27分)17. (20分)计算:(﹣2)×5+3.18. (7分) (2019七上·梁子湖期中) 先化简,再求值:,其中a=-2,b=-1.四、作图题 (共1题;共9分)19. (9分)(1)如图所示,用5个小正方体搭成的立体图形,请你从正面、左面、上面观察这个几何体,分别画出你所看到的几何体的形状图;(2)一个几何体由几块大小相同的小立方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体从正面、左面观察的形状图.五、综合题 (共4题;共45分)20. (10分)如图,公路上依次有A、B、C三站,上午8时,甲骑自行车从A、B之间离A站18km的P点出发,向C站匀速前进,15分钟到达距离A站22km的某处.(1)设x小时后,甲离A站ykm,用含x的代数表示y;(2)若A、B和B、C间的距离分别是30km和20km,则上午________到________的时间内,甲在B、C两站之间(不包括B、C两站).21. (10分) (2019七下·闽侯期中) 已知∠MAN,点B是∠MAN内的点,以点B为顶点作∠CBD(1)如图1,若边BC∥AN,BD∥AM,点C,D分别在边AM,AN上,求证:∠CBD=∠MAN;(2)如图2,∠MAN是钝角,BD⊥AM,垂足为D,BC∥AN,且2∠MAN﹣∠CBD=30°,请你补全图形,并求∠MAN 的度数.22. (10分)(2019·镇海模拟) 某工厂计划招聘A、B两个工种的工人共120人,已知A、B两个工种的工人的月工费分别为2400元和3000元.(1)若工厂每月付A、B两个工种的总工费为330000元,那么两个工种的工人各招聘多少人.(2)若生产需要,要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的人数为多少时,可使每月支付的A、B两个工种的总工资最少.23. (15分) (2019七上·南浔期中) 平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)六、解答题 (共1题;共5分)24. (5分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,试判断DG 与BC的位置关系,并说明理由.参考答案一、单选题 (共10题;共40分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、计算题 (共2题;共27分)17-1、18-1、四、作图题 (共1题;共9分)19-1、五、综合题 (共4题;共45分) 20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、六、解答题 (共1题;共5分) 24-1、。
黄冈市七年级数学上册期末测试卷及答案
![黄冈市七年级数学上册期末测试卷及答案](https://img.taocdn.com/s3/m/762f6e917375a417866f8fd3.png)
黄冈市七年级数学上册期末测试卷及答案一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元 B .(b ﹣10)元 C .(10a ﹣b )元 D .(b ﹣10a )元 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1063.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 4.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.下列因式分解正确的是() A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+7.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -8.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13 D .x =13 9.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =10.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米11.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯ B .51510⨯ C .70.1510⨯ D .61.510⨯ 12.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 14.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 15.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____. 17.若3750'A ∠=︒,则A ∠的补角的度数为__________. 18.已知23,9n mn aa -==,则m a =___________.19.如果向东走60m 记为60m +,那么向西走80m 应记为______m. 20.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 21.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.22.化简:2x+1﹣(x+1)=_____. 23.计算7a 2b ﹣5ba 2=_____.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、解答题25.小明同学有一本零钱记账本,上面记载着某一周初始零钱为100元,周一到周五的收支情况如下(记收入为+,单位:元): +25,-15.5,-23,-17,+26(1)这周末他可以支配的零钱为几元?(2)若他周六用了a 元购得2本书,周日他爸爸给了他10元买早饭,但他实际用了15元,恰好用完了所有的零钱,求a 的值。
湖北省黄冈市七年级上学期期末数学试卷
![湖北省黄冈市七年级上学期期末数学试卷](https://img.taocdn.com/s3/m/07fd85a51eb91a37f0115c8c.png)
湖北省黄冈市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)(2019·聊城) 的相反数是()A .B .C .D .2. (2分) (2018七上·无锡月考) 的值与的取值无关,则的值为()A .B .C .D .3. (2分) 2008年在北京举办的第29届奥运会的火炬传递在各方面都是创记录的:火炬境外传递城市19个,境内传递城市和地区116个,传递距离为137万公里,火炬手的总数达到21780人.用科学记数法表示21780为()A . 2.178×105B . 2.178×104C . 21.78×103D . 217.8×1024. (2分)已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解等于()A . -1B . 1C .D . -5. (2分)下面几何体的截面图不可能是圆的是().A . 圆柱B . 圆锥C . 球D . 正方体6. (2分) (2018七上·滨州期中) ﹣2的相反数的倒数是()A .B . ﹣2C .D . 27. (2分)已知样本容量为30,样本频数分布直方图中各小长方形的高的比依次是2:4:3:1,则第二小组的频数是()A . 14B . 12C . 9D . 88. (2分) (2017七下·简阳期中) 如图,直线AB、CD、EF交与点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,则∠AOG=()A . 56°B . 59°C . 60°D . 62°9. (2分)长方形面积是,一边长为3a,则它周长()A . 2a-b+2B . 8a-2C . 8a-2b+4D . 4a-b+210. (2分)某商品标价为1375元,打八折(按照标价的80%)售出,仍可获利100元,设该商品的进价为x 元,则可列方程()A . 1375﹣100=80%xB . 1375×(1﹣80%)=x+100C . 1375×(1﹣80%)=x﹣100D . 1375×80%=x+100二、填空题: (共5题;共6分)11. (1分)调查某城市的空气质量,应选择________ (填抽样或全面)调查.12. (2分) (2016七上·萧山竞赛) 你的“24点游戏”玩的怎么样?(所给的四个数必须都使用一次且不能使用四个数之外的其他数)请你将“3,-3,8,-8”这四个数用加、减、乘、除或括号进行运算,使其结果为24,你写出的算式是________;如果可以用乘方、开方运算,那么3,4,8,8的“24点”算式是________(可以分步列式,每个数字只能用一次,例如:表示4和3都用过了)13. (1分)关于x的方程3(x+2)=k+2的解是正数,则k的取值范围是________.14. (1分)如图,从内到外,边长依次为2,4,6,8,…的所有正六边形的中心均在坐标原点,且一组对边与x轴平行,它们的顶点依次用A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12…表示,那么顶点A62的坐标是________15. (1分) (2016七上·大石桥期中) 甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________三、解答题: (共6题;共51分)16. (15分) (2017七上·宜兴期末) 计算:(1) 26﹣17+(﹣6)﹣33(2)﹣14﹣×[3﹣(﹣3)2](3)先化简,再求值:2ab2﹣3a2b﹣2(a2b+ab2),其中a=1,b=﹣2.17. (10分) (2016七上·昌平期末) 解方程:(1) 3(2x﹣1)=4x+3.(2).18. (10分) (2017九下·杭州开学考) 有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.19. (5分) (2016七上·防城港期中) 先化简,再求值:5(3a2b﹣ab2﹣1)﹣(﹣5ab2+3a2b﹣5),其中a=﹣1,b= .20. (5分)已知A=x3+2y3-xy-3,B=-y3+x3+2xy+1,且2A-M=B,求M.21. (6分) (2019七上·江津期中) 数轴上两点之间的距离等于相应两数差的绝对值,即:点A、B表示的数分别为a、b,这两点之间的距离为AB= ,如:表示数1与5的两点之间的距离可表示为,表示数-2与3的两点之间的距离可表示为 .(借助数轴,画出图形,写出过程)(1)数轴上表示2和7的两点之间的距离是________,数轴上表示3和-6的两点之间的距离是________;(2)数轴上表示x和-2的两点M和N之间的距离是________,如果 |MN|,则x为________;(3)当式子: |x+2|+|x-3|+|x-4| 取最小值时,x的值为________,最小值为________.四、解答题 (共2题;共22分)22. (12分)(2017·临沭模拟) 九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为________度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?23. (10分)某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题: (共6题;共51分)16-1、16-2、16-3、17-1、17-2、18-1、18-2、19-1、20-1、21-1、21-2、21-3、四、解答题 (共2题;共22分) 22-1、22-2、22-3、22-4、23-1、23-2、。
湖北省黄冈市区学校七年级(上)期末数学试卷
![湖北省黄冈市区学校七年级(上)期末数学试卷](https://img.taocdn.com/s3/m/8c6d6011284ac850ac02425f.png)
湖北省黄冈市区学校七年级(上)期末数学试卷一、选择题(每题3分,共30分)1.(3分)如图所示为黄冈市十二月份某一天的天气预报,这天最高气温比最低气温高()A.﹣30℃B.7℃C.3℃D.﹣7℃2.(3分)下列运算中,正确的是()A.x3÷x=x4B.a2+a2=2a4C.3x﹣2x=1D.3x﹣2x=x 3.(3分)检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是()A.﹣2B.﹣3C.3D.54.(3分)全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×108 5.(3分)下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.6.(3分)若﹣a x b与2ab1﹣y的和是一个单项式,则x﹣y2016的值为()A.1B.﹣3C.﹣1D.07.(3分)下列说法中,正确的是()A.延长直线ABB.在射线AM上顺次截取线段AC=CB=aC.如果AC=BC,则点C为AB的中点D.平角是一条直线8.(3分)有一个数值转换器,其工作原理如图所示,若输入﹣2,则输出的结果是()A.﹣8B.﹣6C.﹣4D.﹣29.(3分)某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是()A.亏2元B.亏4元C.赚4元D.不亏不赚10.(3分)已知一个由50个偶数排成的数阵.用如图所示的框去框住四个数,并求出这四个数的和.在下列给出备选答案中,有可能是这四个数的和的是()A.80B.148C.172D.220二、填空题(本大题共21分,每小题3分.请将正确结果填写在题后的横线上)11.(3分)如果x=1是关于x方程x+2m﹣5=0的解,则m的值是.12.(3分)已知x﹣3y=3,则6﹣x+3y的值是.13.(3分)若|x﹣|+(y+2)2=0,则(xy)2015的值为.14.(3分)一个整式减去a2﹣b2后所得的结果是﹣a2﹣b2,则这个整式是.15.(3分)如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB的中点,则线段DE的长为cm.16.(3分)已知∠α的补角是它的3倍,则∠α=.17.(3分)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是,并运用这个公式求得图2中多边形的面积是.三、解答题18.(10分)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣)×(﹣8)+(﹣6)÷(﹣)2.19.(10分)解方程:(1)2x﹣(x+10)=6x;(2)=3+.20.(7分)五•四青年节学校组织全校共青团员去距学校6km的烈士陵园进行革命传统教育,李明同学因事不能乘上学校包车,于是他准备在学校改乘出租车去烈士陵园.出租车的收费标准如下表:里程收费(元)起步费3千米以下(含3千米)33千米以上,每增加1千米 1.8(1)写出乘出租车里程数x千米(x>3)时,所付车费的式子;(2)李明同学身上仅有12元钱,含中餐生活3元,乘出租车去烈士陵园够不够?说明理由.21.(8分)如果方程的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子的值.22.(8分)已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|2a+1|+(2﹣b)2=0,求A﹣2B的值.23.(7分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.24.(8分)目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为44000元?(2)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?25.(11分)如图1,点A、B分别在数轴原点O的左右两侧,且OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO ﹣5PN的值.湖北省黄冈市区学校七年级(上)期末数学试卷参考答案一、选择题(每题3分,共30分)1.B;2.D;3.A;4.B;5.C;6.A;7.B;8.D;9.A;10.C;二、填空题(本大题共21分,每小题3分.请将正确结果填写在题后的横线上)11.2;12.3;13.﹣1;14.﹣2b2;15.1.5;16.45°;17.a;17.5;三、解答题18.;19.;20.;21.;22.;23.;24.;25.;。
湖北省黄冈市七年级上学期末数学试卷
![湖北省黄冈市七年级上学期末数学试卷](https://img.taocdn.com/s3/m/a7428fa96bd97f192279e9fb.png)
湖北省黄冈市七年级上学期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果甲数的绝对值大于乙数的绝对值,那么()A . 甲数必定大于乙数B . 甲数必定小于乙数C . 甲乙两数一定异号D . 甲乙两数的大小根据具体值确定2. (2分)据国家环保总局通报,北京市是“十五”水污染防治计划完成最好的城市.预计今年年底,北京市污水处理能力可以达到每日1684000吨.将1684000吨用科学记数法表示为()A . 吨B . 吨C . 吨D . 吨3. (2分)在四包真空小包装火腿,每包以标准克数(450克)0为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准的是()A . +2B . ﹣3C . ﹣1D . +44. (2分)下列运算中正确的是()A . (a2)3=a5B . a2•a3=a5C . a6÷a2=a3D . a5+a5=2a105. (2分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A . 两点之间,直线最短B . 两点确定一条直线C . 两点之间,线段最短D . 两点确定一条线段6. (2分)(2017·中原模拟) 下列运算结果正确的是()A . a3+a4=a7B . a4÷a3=aC . a3•a2=2a3D . (a3)3=a67. (2分)在“五·一”黄金周期间,某超市推出如下购物优惠方案:(1)一次性购物在100元(不含100元)以内的,不享受优惠;(2)一次性购物在100元(含100元)以上,300元(不含300元)以内的,一律享受九折的优惠;(3)一次性购物在300元(含300元)以上时,一律享受八折的优惠。
王茜在本超市两次购物分别付款80元、252元。
如果王茜改成在本超市一次性购买与上两次完全相同的商品,则应付款()A . 332元B . 316元或332元C . 288元D . 288元或316元8. (2分)下列结论中,正确的有()A . 符号相反的数互为相反数B . 符号相反且绝对值相等的数互为相反数C . 一个数的绝对值越大,表示它的点在数轴上越靠右D . 一个数的绝对值越大,表示它的点在数轴上越靠左9. (2分) (2020七上·通榆期末) 如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系A . ∠1=∠3B . ∠1=180°-∠3C . ∠1=90°+∠3D . 以上都不对10. (2分) (2017七下·长春期末) 解方程时,为了去分母应将方程两边同时乘以()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2017九下·盐都期中) 如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为________°.12. (1分)一个边长为4cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为________cm.13. (1分)多项式x+7是关于x的二次三项式,则m=________14. (1分) (2019七上·凉州月考) 已知关于x的方程2x=5-a的解为x=3,则a的值为________.15. (1分)小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为+0.25,﹣1,+0.5,﹣0.75,小红快速准确地算出了4筐白菜的总质量为________千克.16. (1分) (2017九上·深圳期中) 如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为n根火柴棍时,若摆出的正方形所用的火柴棍的根数为S,则S=________(用含n的代数式表示,n为正整数).三、计算题 (共4题;共40分)17. (15分) (2019七上·秦淮期中) 计算:(1) (- 5) ¸ ´ 5(2)(3)9 + 5 ´ (- 3) - (- 2)2 ¸ 418. (5分) (2017七下·江苏期中) 已知 ,求代数式的值.19. (10分)解方程(1) 9﹣3y=5y+5(2) = ﹣3.20. (10分)综合题。
湖北省黄冈市七年级上期末数学试卷(附答案解析)
![湖北省黄冈市七年级上期末数学试卷(附答案解析)](https://img.taocdn.com/s3/m/fc97aabd16fc700aba68fc68.png)
第 1 页 共 19 页
2020-2021学年湖北省黄冈市七年级上期末数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.如图是某兴趣社制作的模型,则它的俯视图是( )
A .
B .
C .
D .
2.如果一个物体向上移动1m ,记作+1m ,那么这个物体向下移动了2m 记作( )
A .+1m
B .﹣1m
C .+2m
D .﹣2m
3.下列选项中说法错误的是( )
A .正数和负数统称有理数
B .所有的有理数都能在数轴上找到表示它的点
C .互为相反数的两个数的绝对值相等
D .任何有理数的绝对值都是非负数
4.观察算式(﹣4)×17×(﹣25)×14,在解题过程中,能使运算变得简便的运算律是( )
A .乘法交换律
B .乘法结合律
C .乘法交换律、结合律
D .乘法对加法的分配律 5.若关于x 的方程1+ax =3的解是x =﹣2,则a 的值是( )
A .﹣2
B .﹣1
C .21
D .2
6.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a
>b ),则a ﹣b 的值为( )
A .6
B .8
C .9
D .12。
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库
![湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库](https://img.taocdn.com/s3/m/74af1042f705cc175427093e.png)
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线2.当x取2时,代数式(1)2x x-的值是()A.0 B.1 C.2 D.33.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数, 若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.2064.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是()A.B.C.D.5.下列判断正确的是()A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.6.下列每对数中,相等的一对是()A.(﹣1)3和﹣13B.﹣(﹣1)2和12C.(﹣1)4和﹣14D.﹣|﹣13|和﹣(﹣1)37.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5928.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .③D .④ 9.已知a =b ,则下列等式不成立的是( )A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣2 10.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .11.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°12.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 13.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 14.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1 15.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元二、填空题16.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.17.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.18.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.19.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________20.单项式﹣22πa b的系数是_____,次数是_____.21.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.22.计算:()222a -=____;()2323x x ⋅-=_____.23.若a a -=,则a 应满足的条件为______.24.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____.25.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.26.将520000用科学记数法表示为_____.27.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y )2019的值为_____. 28.3.6=_____________________′29.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.30.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.三、压轴题31.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库
![湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库](https://img.taocdn.com/s3/m/ba70f86e76a20029bc642dab.png)
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库一、选择题1.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.﹣ab<0 C.|a|<|b| D.a<﹣b 2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是()A.B.C.D.3.已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a–4ab)的值为()A.49 B.59C.77 D.1394.-2的倒数是()A.-2 B.12-C.12D.25.如图,点A,B在数轴上,点O为原点,OA OB=.按如图所示方法用圆规在数轴上截取BC AB=,若点A表示的数是a,则点C表示的数是( )A.2a B.3a-C.3a D.2a-6.一张普通A4纸的厚度约为0.000104m,用科学计数法可表示为() mA.21.0410-⨯B.31.0410-⨯C.41.0410-⨯D.51.0410-⨯7.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°8.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =9.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180°10.3的倒数是( ) A .3B .3-C .13D .13-11.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚B .赚了9元C .赚了18元D .赔了18元12.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .二、填空题13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.15.5535______.16.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.17.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.18.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 19.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 20.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.21.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.22.计算:3+2×(﹣4)=_____.23.当12点20分时,钟表上时针和分针所成的角度是___________. 24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题25.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.26.已知AODα∠=,OB、OC、OM、ON是AOD∠内的射线.(1)如图1,当160α=︒,若OM平分AOB∠,ON平分BOD∠,求MON∠的大小;(2)如图2,若OM平分AOC∠,ON平分BOD∠,20BOC∠=︒,60MON∠=︒,求α.27.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯.()1观察发现()1n n1=+______;()1111122334n n1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.28.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?29.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.30.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?31.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.32.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.2.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 3.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.4.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B 【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握5.B解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.6.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000104=1.04×10−4. 故选:C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB ,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.8.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A.考点:解一元一次方程.9.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.10.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.12.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解. 【详解】根据题意可得:∠AOB=(90解析:141︒【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.15.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 16.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE ,∠CPF=∠C′PF ,再根据角的和差关系,可得∠B′PE +∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF -∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE ,∠CPF=∠C′PF ,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF -∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE =∠B ′PE ,∠CPF =∠C ′PF ,∴2∠B ′PE+2∠C ′PF ﹣∠B ′PC ′=180°,即2(∠B ′PE+∠C ′PF )﹣∠B ′PC ′=180°,又∵∠EPF =∠B ′PE+∠C ′PF ﹣∠B ′PC ′=85°,∴∠B ′PE+∠C ′PF =∠B ′PC ′+85°,∴2(∠B ′PC ′+85°)﹣∠B ′PC ′=180°,解得∠B ′PC ′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键. 17.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 18.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.19.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.20.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,,∴AB=1–(,则点C 表示的数为,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.21.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.22.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.23.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.24.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、压轴题25.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.26.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC ,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC. ∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC, ∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC , ∵∠AOD=α,∠MON=60°,∠BOC=20°, ∴60°=12(α+20°)-20°, ∴α=140°.【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.27.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+,n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数, 对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 28.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A ,然后根据B 在A 的左侧和它们之间的距离确定点B ,由点P 从点A 出发向左以每秒5个单位长度匀速运动,表示出点P 即可;(2)①由于点P 和Q 都是向左运动,故当P 追上Q 时相遇,根据P 比Q 多走了10个单位长度列出等式,根据等式求出t 的值即可得出答案;②要分两种情况计算:第一种是点P 追上点Q 之前,第二种是点P 追上点Q 之后.【详解】解:(1)∵数轴上点A 表示的数为6,∴OA =6,则OB =AB ﹣OA =4,点B 在原点左边,∴数轴上点B 所表示的数为﹣4;点P 运动t 秒的长度为5t ,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P 所表示的数为:6﹣5t ,故答案为﹣4,6﹣5t ;(2)①点P 运动t 秒时追上点Q ,根据题意得5t =10+3t ,解得t =5,答:当点P 运动5秒时,点P 与点Q 相遇;②设当点P 运动a 秒时,点P 与点Q 间的距离为8个单位长度,当P 不超过Q ,则10+3a ﹣5a =8,解得a =1;当P 超过Q ,则10+3a+8=5a ,解得a =9;答:当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.29.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB即可得解; (2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.30.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP-NP=AP-BP=(AP-BP )=AB=15,∴综上所述,线段MN 的长度不发生变化,其值为15.(3)若点P 、Q 同时出发,设点P 运动t 秒时与点Q 距离为4个单位长度.①点P 、Q 相遇之前,由题意得4+5t=30+3t ,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.31.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=1 2AB,∴CM=14AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.32.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.向东行进-100m表示的意义是()A. 向东行进100mB. 向南行进100mC. 向北行进100mD. 向西行进100m2.下列单项式的书写正确的是()A. −1abB. 3×xC. 12xyD. a÷b3.关于x的方程2(x-1)-a=0的根是3,则a的值为()A. 4B. −4C. 5D. −54.一个角的度数比它的余角的度数大20°,则这个角的度数是()A. 20∘B. 35∘C. 45∘D. 55∘5.骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A. B. C. D.6.如果|a+2|+(b-1)2=0,那么(a+b)2019的值是()A. −2019B. 2019C. −1D. 17.今年哥哥的年龄是妹妹年龄的2倍,4年前哥哥的年龄是妹妹年龄的3倍,若设妹妹今年x岁,可列方程为()A. 2x−4=3(x−4)B. 2x=3(x−4)C. 2x+4=3(x−4)D. 2x+4=3x8.点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A. 点MB. 点NC. 点PD. 点O二、填空题(本大题共8小题,共24.0分)9.-1的相反数是______.10.现在网购越来越多地成为人们的一种消费方式,在2018年的“双11”网上促销活动中天猫和淘宝的支付交易额突破220000000000元,将数字220000000000用科学记数法表示为______.11.黄山主峰一天早晨气温为-1℃,中午上升了8℃,夜间又下降了10℃,那么这天夜间黄山主峰的气温是______.12.某商品的价格标签已丢失,售货员只知道“它的进价为90元,打七折出售后,仍可获利5%”,你认为售货员应标在标签上的价格为______元.13.如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB=______.14.若式子2x2+3y+7的值为8,那么式子6x2+9y+2的值为______.15.已知∠AOB=48°,∠BOC=20°,则∠AOC=______.16.某礼堂的座位排列呈圆弧形,横排座位按下列方式设置,根据提供的数据得出第n排有______个座位.三、计算题(本大题共3小题,共24.0分)17.计算:(1)12-(-18)+(-7)-15;(2)-22+|5-8|+27÷(-3)×13.18.计算:(1)3a2+3b2+2ab-4a2-3b2;(2)a2+(5a2-2a)-2(a2-3a).19.解方程:(1)2x-(x+10)=6x;(2)x+13=1-2x+14.四、解答题(本大题共6小题,共48.0分)20.先化简,再求值:x2+(2xy-3y2)-2(x2+yx-2y2),其中x=-1,y=2.21.如图,∠AOD=120°,∠2=2∠1=60°,求:(1)∠DOC的度数;(2)∠BOD的度数.22.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.23.学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,杉树的棵数比总数的13少14棵.问:两类树各种了多少棵?24.冬天来了,市场上的热水器开始畅销了,王涵家计划买个热水器,销售商都说自己的商品实惠,市场上有燃气热水器和太阳能热水器两种,燃气热水器每台580元,太阳能热水器每台3730元.(1)若燃气热水器的煤气每瓶70元,每年共需3瓶,太阳能热水器使用寿命达到多少年,才和使用燃气热水器一样合算?(2)若太阳能热水器的使用寿命是20年,燃气热水器的使用寿命为30年,王涵家计划使用30年,请你设计一个最合理的购买方案.25.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.(1)当点P、Q分别在线段AC、BC的中点时,线段PQ=______厘米;(2)若AC=6厘米,点P、点Q分别从点C、点B同时出发沿射线BA方向运动,当运动时间为2秒时,求PQ的长;(3)若AC=4厘米,点P、Q分别从点C、点B同时出发在直线AB上运动,则经过多少时间后PQ的长为5厘米.答案和解析1.【答案】D【解析】解:因为向东走为正,所以-100m表示的意义是向西走了100米.故选:D.从原点出发规定向东走为正,那么朝相反方向的西走就为负,所以-100m表示的意义是向西走了100米.此题考查正数和负数问题,解决此题关键在于理解负数的含义,即是表示相反意义的量.2.【答案】C【解析】解:A、应该书写为:-ab,错误;B、应该书写为:3x,错误;C、应该书写为:,正确;D、应该书写为:,错误;故选:C.根据代数式的书写要求判断各项.此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.【答案】A【解析】解:把x=3代入2(x-1)-a=0中:得:2(3-1)-a=0解得:a=4故选:A.虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.4.【答案】D【解析】解:设这个角为x,则它的余角为90°-x,由题意得,x-(90°-x)=20°,解得:x=55°.故选:D.设这个角为x,则它的余角为90°-x,根据题意可得出x的值.本题考查了余角和补角的知识,属于基础题,注意掌握互为余角的两角之和为90°.5.【答案】A【解析】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;B、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选:A.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.【答案】C【解析】解:∵|a+2|+(b-1)2=0,∴a+2=0,b-1=0,∴a=-2,b=1,∴(a+b)2019=(-2+1)2019=-1.故选:C.直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.7.【答案】A【解析】解:设妹妹今年x岁.2x-4=3(x-4).故选:A.若设妹妹今年x岁,根据今年哥哥的年龄是妹妹年龄的2倍,4年前哥哥的年龄是妹妹年龄的3倍,可列出方程.本题考查理解题意的能力,关键知道年龄差是不变的,所以根据倍数关系可列出方程.8.【答案】A【解析】解:∵ab<0,a+b>0,∴数a表示点M,数b表示点P或数b表示点M,数a表示点P,则数c表示点N,∴由数轴可得,c>0,又∵ac>bc,∴a>b,∴数b表示点M,数a表示点P,即表示数b的点为M.故选:A.根据数轴和ab<0,a+b>0,ac>bc,可以判断a、b、c对应哪一个点,从而可以解答本题.本题考查数轴,解题的关键是明确数轴的特点能根据题目中的信息,判断各个数在数轴上对应哪一个点.9.【答案】1【解析】解:根据相反数的定义,得-1的相反数是1.求一个数的相反数就是在这个数前面添上“-”号.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.10.【答案】2.2×1011【解析】解:将220000000000用科学记数法表示为:2.2×1011.故答案为:2.2×1011.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【答案】-3℃【解析】解:∵一天早晨的气温为-1℃,中午上升了8℃,夜间又下降了10℃,∴-1+8-10=-3℃,∴黄山主峰这天夜间的气温是-3℃.故答案为:-3℃.由题意上升是加号,下降是减号,然后利用有理数加减法则进行计算;此题是一道实际应用题,主要考查有理数加减的运算法则,计算要仔细,是一道基础题.12.【答案】135【解析】解:设售货员应标在标签上的价格为x元,依据题意70%x=90×(1+5%)可求得:x=135,应标在标签上的价格为135元,故答案为135.设出标签上写的价格,然后七折售出后,卖价为0.7x,仍获利5%,即折后价90×(1+5%)元,这样可列出方程,再求解.本题主要考查了一元一次方程的应用,此题首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.【答案】141°【解析】解:由题意得:∠1=54°,∠2=15°,∠3=90°-54°=36°,∠AOB=36°+90°+15°=141°.故答案为:141°.首先计算出∠3的度数,再计算∠AOB的度数即可.此题主要考查了方向角,关键是根据题意找出图中角的度数.14.【答案】5【解析】解:∵2x2+3y+7=8,∴2x2+3y=1,则原式=3(2x2+3y)+2=3×1+2=3+2=5,故答案为:5.根据题意得出2x2+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y+2的值.本题考查了代数式求值.整体法的运用是解决本题的关键.15.【答案】28°或68°【解析】解:①当∠BOC的一边OC在∠AOB外部时,则∠AOC=∠AOB+∠BOC=48°+20°=68°;②当∠BOC的一边OC在∠AOB内部时,则∠AOC=∠AOB-∠BOC=48°-20°=28°.故答案为:28°或68°.根据∠BOC的位置,当∠BOC的一边OC在∠AOB外部时,两角相加,当∠BOC 的一边OC在∠AOB内部时,两角相减即可.此题主要考查的是角的计算,分类讨论是解题的关键.16.【答案】4n+16【解析】解:根据表格中数据所显示的规律可知:第1排有16+4=20个座位,第2排有16+4×2=24个座位,第3排有16+4×3=28个座位,故第n排有16+4n个座位.通过分析数据可知,后面每加个排,就加四个座位,再通过计算推断得出第n 排的座位数.主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17.【答案】解:(1)原式=12+18-7-15=30-22=8;(2)原式=-4+3-9×19=-4+3-3=-4.【解析】(1)将减法转化为加法,再进一步计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.【答案】解:(1)原式=(3a2-4a2)+(3b2-3b2)+2ab=-a2+2ab;(2)原式=a2+5a2-2a-2a2+6a=4a2+4a.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键熟练运用整式的运算法则,本题属于基础题型.19.【答案】解:(1)方程去括号得:2x-x-10=6x,移项合并得:5x=-10,解得:x=-2;(2)等式的两边同时乘以12,得4(x+1)=12-3(2x+1),去括号、移项,得4x+6x=12-4-3,合并同类项,得10x=5,化未知数的系数为1,得x=12.【解析】(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.20.【答案】解:x2+(2xy-3y2)-2(x2+yx-2y2),=x2+2xy-3y2-2x2-2yx+4y2,=-x2+y2,当x=-1,y=2时,原式=-(-1)2+22=-1+4=3.【解析】先根据去括号、合并同类项化简,然后再把x、y的值代入求解;本题考查了完全平方公式,整式的化简,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.21.【答案】解:(1)∵∠DOC=∠AOD-∠2,∠AOD=120°,∠2=60°,∴∠DOC=120°-60°=60°;(2)∵∠2=2∠1=60°,∴∠1=12×60°=30°,∵∠BOD=∠AOD+∠1,∴∠BOD=120°+30°=150°.【解析】(1)由∠DOC=∠AOD-∠2,将∠AOD=120°,∠2=60°,代入即可;(2)由∠2=2∠1=60°,先求出∠1=30°,然后根据∠BOD=∠AOD+∠1,将∠AOD=120°,∠1=30°,代入即可.此题考查了角的计算,解题的关键是:将∠DOC化为∠AOD-∠2;将∠BOD化为∠AOD+∠1.22.【答案】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=12AD=5xcm所以BM=AM-AB=5x-2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD-CD=5x-3x=2x=2×2=4cm,AD=10x=10×2=20 cm.【解析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.23.【答案】解:设一共植了x棵树,则杨树为(12x+56)棵,杉树为(13x-14)棵,则12x+56+13x-14=x,解得x =252.则杨树的棵树是:12×252+56=182(棵).杉树为:13×252-14=70(棵).答:种了182棵杨树,70棵杉树.【解析】设一共植了x棵树,则杨树为(x+56)棵,杉树为(x-14)棵.根据杨树+杉树=总数列出方程.本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.【答案】解:(1)设使用x年时,两者一样合算,由题意得:580+70×3x=3730,解得:x=15;(2)方案一:买一台燃气热水器使用所需要的费用:580+70×3×30=6880(元);方案二:买2台太阳能热水器使用所需要的费用:3730×2=7460(元);方案三:购买一台燃气热水器和一台太阳能热水器所需的费用:①王涵家前20年使用太阳能热水器,后10年使用燃气热水器所需的费用:3730+580+70×3×10=6410(元);②王涵家前15年使用太阳能热水器(或者燃气热水器),后15年使用燃气热水器所需的费用:3730×2=7460(元);③王涵家前20年使用燃气热水器,后10年使用太阳能热水器所需的费用:580+70×3×20+3730=8510(元);因为,8510>7460>6880>6410,所以,王涵家购买一台燃气热水器和一台太阳能热水器所需的费用最少,即方案三①最合适.答:(1)太阳能热水器使用寿命达到15年时,才能和使用燃气热水器一样合算;(2)王涵家购买一台燃气热水器和一台太阳能热水器,前20年使用太阳能热水器,后10年使用燃气热水器.【解析】(1)设使用x年时,两者一样合算,分别表示出x年燃气及太阳能各自需要的费用,然后利用方程思想求解;(2)计算出30年燃气需要的费用,太阳能需要的费用,然后比较可得出答案.本题考查了一元一次方程的应用,属于基础题,解答本题的关键是表示出燃气及太阳能各自需要的费用.25.【答案】6【解析】解:(1)如图1,∵AB=12厘米,点C在线段AB上,∴当点P、Q分别在线段AC、BC的中点时,线段PQ=AB=6.故答案为:6;(2)如图2,当t=2时,BQ=2×2=4,则CQ=6-4=2.∵CP=2×1=2,∴PQ=CP+CQ=2+2=4(厘米).(3)设运动时间为t秒.①如图3,当点P、Q沿射线BA方向运动,若点Q在点P的后面,得:t+8-2t=5,解得t=3,②如图4,当点P、Q沿射线BA方向运动,若点Q在点P前面,得:2t-8-t=5,解得t=13.③如图5,当点P、Q在直线上相向运动,点P、Q在相遇前,得:t+2t=3,解得t=1.④如图6,当点P、Q在直线上相向运动,点P、Q在相遇后,得:t+2t=13,解得t=.(1)利用图象上点的位置得出当点P、Q分别在线段AC、BC的中点时,线段PQ=AB即可得出答案;(2)利用当t=2时,BQ=2×2=4,则CQ=6-4=2,再利用PQ=CP+CQ求出即可;(3)利用图形分别讨论:当点P、Q沿射线BA方向运动,若点Q在点P的后面,当点P、Q沿射线BA方向运动,若点Q在点P前面,当点P、Q在直线上相向运动,点P、Q在相遇前,当点P、Q在直线上相向运动,点P、Q在相遇后,进而得出答案即可.此题主要考查了点的运动问题,利用数形结合得出P,Q不同位置得出不同结论,注意不要漏解.。