初一实数的知识点总结及练习

合集下载

实数知识点及典型例题

实数知识点及典型例题

实数知识点及典型例题一、实数知识点。

(一)实数的分类。

1. 有理数。

- 整数:正整数、0、负整数统称为整数。

例如:5,0,-3。

- 分数:正分数、负分数统称为分数。

分数都可以表示为有限小数或无限循环小数。

例如:(1)/(2)=0.5,(1)/(3)=0.333·s。

- 有理数:整数和分数统称为有理数。

2. 无理数。

- 无理数是无限不循环小数。

例如:√(2),π,0.1010010001·s(每两个1之间依次多一个0)。

3. 实数。

- 有理数和无理数统称为实数。

(二)实数的相关概念。

1. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 实数与数轴上的点是一一对应的关系。

2. 相反数。

- 只有符号不同的两个数叫做互为相反数。

a的相反数是-a,0的相反数是0。

例如:3与-3互为相反数。

- 若a、b互为相反数,则a + b=0。

3. 绝对值。

- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

- 当a≥slant0时,| a|=a;当a < 0时,| a|=-a。

例如:| 5| = 5,| -3|=3。

4. 倒数。

- 乘积为1的两个数互为倒数。

a(a≠0)的倒数是(1)/(a)。

例如:2的倒数是(1)/(2)。

(三)实数的运算。

1. 运算法则。

- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

- 减法法则:减去一个数等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。

- 除法法则:除以一个数等于乘以这个数的倒数(除数不为0)。

2. 运算律。

- 加法交换律:a + b=b + a。

- 加法结合律:(a + b)+c=a+(b + c)。

- 乘法交换律:ab = ba。

初中实数性质知识点总结

初中实数性质知识点总结

初中实数性质知识点总结一、实数的基本性质1. 实数的定义:实数是有理数和无理数的统称。

有理数是可以表示为两个整数的比值的数,无理数是不能表示为有理数的数。

2. 实数的分类:实数可以分为有理数和无理数两类。

有理数包括整数、分数以及可以表示为分数的小数,无理数包括无穷不循环小数和无穷循环小数。

3. 实数的有序性:实数集合中的任意两个数都可以进行大小比较,即两个实数之间存在大小关系,这就是实数的有序性。

4. 实数的稠密性:实数集合中任意两个不相等的实数之间一定存在一个实数,这就是实数的稠密性。

5. 实数的无后继性和无穷性:任意一个实数都有比它大的实数,实数集合是无穷的。

6. 实数的运算封闭性:实数集合中任意两个实数进行加、减、乘、除运算的结果仍然是一个实数。

7. 实数的运算性质:实数集合中的运算满足交换律、结合律、分配律等。

二、实数的代数性质1. 实数的加法性质:(1)交换律:对于任意实数a和b,有a+b=b+a;(2)结合律:对于任意实数a、b和c,有(a+b)+c=a+(b+c);(3)加法单位元:对于任意实数a,有a+0=a;(4)加法逆元:对于任意实数a,有a+(-a)=0。

2. 实数的减法性质:减法可以看成加上一个数的相反数,所以减法的性质和加法的性质相同。

3. 实数的乘法性质:(1)交换律:对于任意实数a和b,有a×b=b×a;(2)结合律:对于任意实数a、b和c,有(a×b)×c=a×(b×c);(3)乘法单位元:对于任意实数a,有a×1=a;(4)乘法逆元:对于任意非零实数a,有a×(1/a)=1。

4. 实数的除法性质:(1)除法分配律:对于任意实数a、b和c,有a÷(b+c)=a÷b+a÷c;(2)除法与乘法结合:对于任意实数a、b和c,有a÷(b×c)=a÷b÷c。

七年级初一数学第六章 实数知识归纳总结附解析

七年级初一数学第六章 实数知识归纳总结附解析

七年级初一数学第六章 实数知识归纳总结附解析一、选择题1.下列说法中正确的是( )A .4的算术平方根是±2B .平方根等于本身的数有0、1C .﹣27的立方根是﹣3D .﹣a 一定没有平方根2.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍C 倍D .2m 倍3.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数4.2-是( )A .负有理数B .正有理数C .自然数D .无理数 5.下列数中,有理数是( )A B .﹣0.6 C .2π D .0.151151115… 6.若2a a a -=,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧7.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( )A .4mB .4m +4nC .4nD .4m ﹣4n8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 9.下列说法中不正确的是( )A .是2的平方根B 2的平方根C .2D .2 10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 二、填空题11.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .12.观察下列各式: 123415⨯⨯⨯+=; 2345111⨯⨯⨯+=; 3456119⨯⨯⨯+=;121314151a ⨯⨯⨯+=,则a =_____.13.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.14.如果一个数的平方根和它的立方根相等,则这个数是______. 15.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.16.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____. 17.34330035.12=30.3512x =-,则x =_____________.18.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________19.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____. 20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘. 你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试: ①3310001000000100==,又1000593191000000<<,31059319100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9. ③如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.22.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =.例如:因为328=,所以()3(8)23g g ==, 因为1021024=,所以()10(1024)210g g ==. (1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=-⎪⎝⎭. 根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 23.观察下列等式: ①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子 (2)猜想并写出:1n(n 1)+= . (3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 24.我们规定:a p -=1p a (a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__;(2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值.25.z 是64的方根,求x y z -+的平方根26.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=.(1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A 、4的算术平方根是2,故A 错误;B 、平方根等于本身的数是0,故B 错误;C 、(-3)3=-27,所以-27的立方根是-3,故C 正确;D 、﹣a 大于或等于0时,可以有平方根,故D 错误.故选:C.【点睛】本题考查了算术平方根、平方根、立方根的定义,熟记定义是解决此题的关键.注意平方根和算术平方根的异同.2.C解析:C【分析】设面积增加后的半径为R,增加前的半径为r,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R,增加前的半径为r,根据题意得:πR2=mπr2,∴,故选:C.【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A、实数包括有理数和无理数,故此命题是假命题;B、有理数就是有限小数或无限循环小数,故此命题是假命题;C、无限不循环小数就是无理数,故此命题是假命题;D、无论是无理数还是有理数都是实数,是真命题.故选:D.【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.4.A解析:A【解析】【分析】由于开不尽方才是无理数,无限不循环小数为无理数,根据有理数和无理数的定义及分类作答.【详解】∵2-是整数,整数是有理数,∴D错误;∵2-小于0,正有理数大于0,自然数不小于0,∴B、C错误;∴2-是负有理数,A正确.故选:A.【点睛】本题考查了有理数和实数的定义及分类,其中开不尽方才是无理数,无限不循环小数为无理数.5.B解析:B【分析】根据有理数的定义选出即可.【详解】解:A是无理数,故选项错误;B、﹣0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.l51151115…是无理数,故选项错误.故选:B.【点睛】本题考查了实数,注意有理数是指有限小数和无限循环小数,包括整数和分数.6.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.7.C解析:C【分析】根据题意得到m,n的相反数,分成三种情况⑴m,n;-m,-n ⑵m,-m;n,-n ⑶m,-n;n,-m 分别计算,最后相加即可.【详解】解:依题意,m,n(m<n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.8.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C.10.C解析:C【解析】试题分析:∵16<20<25,∴∴4<5.故选C.考点:估算无理数的大小.二、填空题11..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.12.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】观察各式得出其中的规律,再代入12n=求解即可.【详解】由题意得()31n n=⨯++将12n=代入原式中12151181a==⨯+=故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.13.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.14.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.15.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.16.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】17.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.18.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】=,故①错误;①10②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数. 19.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力. 20.12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】6a ==479<<<<23<<∴的整数部分是2,即2b =则6212ab =⨯=故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b 的值是解题关键.三、解答题21.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论; ②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①31000100==,10001951121000000<< ,∴10100<<,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<<∴56<<,可得5060<<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.22.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.23.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)⨯ =12×(111122334++⨯⨯⨯+…+15051⨯) =12×5051=2551. 点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.24.(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a 为不同值时,p 的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14; (2)如果2﹣p =18,那么p =3;如果a ﹣2=116,那么a =±4; (3)由于a 、p 为整数,所以当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.故答案为(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.【点睛】 本题考查新定义,能够理解a 的负P 次幂等于a 的p 次幂的倒数这个规定定义是解题关键.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.26.(1)2,3 (2)①5722x ≤<②330,,42(3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->= ∴1121222x --<+≤解得5722x ≤<; ②∵43x x <>=∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去 ②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.。

实数知识点大题总结归纳

实数知识点大题总结归纳

实数知识点大题总结归纳一、实数概念实数是数学中的一个重要概念,是指包括有理数和无理数在内的数的集合。

实数是所有数的集合,包括正数、负数、零以及所有的小数和分数。

实数的概念是数学分析和代数学的基础,它涉及到数轴上所有点的集合,实数的概念在数学分析和代数学的研究中有广泛的应用。

实数可以用来表示现实生活中的各种量和计算过程,比如长度、时间、温度、速度等等。

实数是一种用来比较、计算和度量现实生活中各种量的数学工具。

在数学的各个分支中,实数都有着重要的作用,比如在代数、几何、微积分、概率论等方面都有着广泛的应用。

实数的概念是从有理数的概念推广而来的,有理数是整数和分数的集合,而实数则包括了有理数以及无理数。

实数的概念比有理数更加广泛,它包括了所有可以用数轴上的点表示出来的数。

数轴是表示实数的一种图形工具,可以用来比较和计算各种实数的大小和关系。

实数的运算规则和性质是数学中的重要内容,实数的加减乘除运算和各种性质都是数学教育的重点。

实数的运算规则和性质是代数学的基础,它们是解决各种数学问题和证明数学定理的基础。

实数的运算规则和性质可以帮助人们更深刻地理解和使用实数,它们是数学分析和代数学的重要内容。

二、实数的分类实数根据其表示形式和特点可以分成不同的种类,比如有理数和无理数。

有理数是可以表示为两个整数的比值的数,它包括整数、分数和各种有限小数。

有理数是数学中比较容易理解和使用的一类数,它们有着严格的运算规则和性质,可以进行加减乘除等各种运算。

无理数是不能表示为两个整数的比值的数,它们是一些特殊的数,比如根号2、圆周率π等。

无理数在数轴上的位置很难准确表示出来,因为它们不能用整数比值的形式表示。

无理数是实数中比较独特和特殊的一类数,它们在数学研究和应用中有着独特的地位。

实数还可以根据其大小和性质进行分类,比如正数、负数、零等。

正数是大于零的实数,负数是小于零的实数,零是一个特殊的实数。

正数、负数和零是实数中的基本分类,它们有着严格的定义和性质,可以用来表示各种计量和度量。

实数知识点及例题

实数知识点及例题

实数知识点及例题一、实数的概念实数是有理数和无理数的总称。

有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数是无限不循环小数。

例如,π(圆周率)、根号 2 等都是无理数。

而像 3、-5、025 等则是有理数。

二、实数的分类1、按定义分类:有理数:整数和分数。

无理数:无限不循环小数。

2、按性质分类:正实数:大于 0 的实数,包括正有理数和正无理数。

负实数:小于 0 的实数,包括负有理数和负无理数。

三、实数的基本性质1、实数的有序性:任意两个实数 a 和 b,必定有 a > b、a = b 或a <b 三种关系之一成立。

2、实数的稠密性:两个不相等的实数之间总有另一个实数存在。

3、实数的四则运算:实数的加、减、乘、除(除数不为 0)运算满足相应的运算律。

四、数轴数轴是规定了原点、正方向和单位长度的直线。

实数与数轴上的点一一对应,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

例如,在数轴上表示 2 的点在原点右侧距离原点 2 个单位长度。

五、绝对值实数 a 的绝对值记作|a|,定义为:当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a。

绝对值的性质:1、|a| ≥ 0,即绝对值是非负的。

2、若|a| =|b|,则 a = ±b。

例如,|3| = 3,|-5| = 5。

六、相反数实数 a 的相反数是 a,它们的和为 0,即 a +(a) = 0。

例如,5 的相反数是-5,它们的和为 0。

若两个实数的乘积为 1,则这两个数互为倒数。

非零实数 a 的倒数是 1/a。

例如,2 的倒数是 1/2,-3 的倒数是-1/3。

八、实数的运算1、加法法则:同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

2、减法法则:减去一个数,等于加上这个数的相反数。

3、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

(完整版)实数知识点和练习

(完整版)实数知识点和练习

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类,7等;(1)开方开不尽的数,如32π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)是有理数,而不是无判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16理数。

3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。

(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

如果,那么x叫做a的平方根。

(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a的立方根。

2、运算名称(1)求一个正数a 的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号(1)正数a 的算术平方根,记作“a ”。

(2)a(a ≥0)的平方根的符号表达为。

(3)一个数a 的立方根,用表示,其中a 是被开方数,3是根指数。

4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。

实数_知识点+题型归纳

实数_知识点+题型归纳

第六章实数知识讲解+题型归纳知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。

数轴上的点与实数一一对应二、相反数、绝对值、倒数1. 相反数:只有符号不同的两个数互为相反数。

数a的相反数是-a。

正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。

2.绝对值:表示点到原点的距离,数a的绝对值为3.倒数:乘积为1的两个数互为倒数。

非0实数a的倒数为1a. 0没有倒数。

4.相反数是它本身的数只有0;绝对值是它本身的数是非负数〔0和正数〕;倒数是它本身的数是±1. 三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。

数a的平方根记作〔a>=0〕特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。

负数没有平方根。

正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。

开平方:求一个数的平方根的运算,叫做开平方。

2.立方根:如果一个数的立方等于a,那么称这个数为a立方根。

数a 的立方根用3a表示。

任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。

开立方:求一个数的立方根〔三次方根〕的运算,叫做开立方。

四、实数的运算有理数的加法法那么:a〕同号两数相加,取一样的符号,并把绝对值相加;b)异号两数相加。

绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。

2.有理数的减法法那么:减去一个数等于加上这个数的相反数。

3.乘法法那么:a| |aa〕两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.b〕几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c〕几个数相乘,只要有一个因数为0,积就为04.有理数除法法那么:a〕两个有理数相除〔除数不为0〕同号得正,异号得负,并把绝对值相除。

实数知识点总结及练习题

实数知识点总结及练习题

复习:实数知识点总结一、平方根:如果a x =2,那么x 叫做a 的平方根(或二次方根)。

记作a x ±=性质:(1)平方根号里的数是非负数,即0≥a(2)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

例 1、36的平方根是 ;16的算术平方根是 .2、如果102=x ,则x 是一个 数,x 的整数部分是 .3、=22 ,()23-= ,213= ,()=-225 ,20= , 综上所述,=2a .4、()=29 ,()=236 ,()=⎪⎭⎫ ⎝⎛-227 ,()=20 , 综上所述,()=2a .二、立方根:如果a x =3,那么x 叫做a 的立方根(或三次方根)。

记作3a x =性质:(1)立方根号里的数是任意实数(2)任意实数的立方根只有一个,且符号相同例 1、8的立方根是 ;327-= .2、=-3343 ,=-3343 ,则33433a3、37-的相反数是 .4、=33a ,()=33a .三、实数分类⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧ 0无限不循环小数负无理数正无理数无理数无限不循环小数有限小数或负分数正分数分数负整数正整数整数有理数实数说明:(1)实数与数轴上的点一一对应。

(2)相反数:a ,b 是实数且互为相反数b a b a -==+⇔,0(3)绝对值:设a 表示一个实数,则⎪⎩⎪⎨⎧<-=>=时当时当时当0 000 a a a a a a例 1、把下列各数分别填入相应的集合里:()2,2,3.0,1010010001.0,125,722,0,123-----•π 有理数集合:{ };无理数集合:{ };负实数集合:{ };2、2-的绝对值是,11-的绝对值是 .3+的相反数是,-的相反数的绝对值是 .4、计算:22322+-测试题:一、选择题:1、实数38 2π 34 310 25 其中无理数有()A 、 1个B 、 2个C 、 3个D 、 4个2、如果162=x ,则的值是()A 、 4B 、 -4C 、 4±D 、 2±3、下列说法正确的是()A 、 25的平方根是5B 、22-的算术平方根是2C 、 8.0的立方根是2.0D 、65是3625的一个平方根 4、下列说法其中错误的有( )个⑴无限小数都是无理数 ⑵无理数都是无限小数 ⑶带根号的数都是无理数⑷两个无理数的和还是无理数 (5)两个无理数的积还是无理数A 、 3B 、 1C 、 4D 、 25、如果x x -=2成立的条件是()A 、0≥xB 、0≤xC 、0>xD 、0<x6、下列说法错误的是()A 、2a 与2)(a -相等 B 、a 与a -互为相反数C 、3a 与3a -是互为相反数D 、a 与a -相等 7、b a ,的位置如图所示,则下列各式中有意义的是( ).A 、b a +B 、b a -C 、abD 、a b - 8、16的平方根是( ) A. 4 B. -4 C. 4± D. 2±9、下列说法:① 任意一个数都有两个平方根; ② 3的平方根是3的算术平方根 ; ③ -125的立方根是5±; ④23是一个分数; ⑤ 32-无意义。

(完整版)七年级实数知识点、典型例题及练习题单元复习

(完整版)七年级实数知识点、典型例题及练习题单元复习

和 1 的大小
2
t a 2 的画法:画边长为 1 的正方形的对角线 ing a 3
ethin 练习:
om 一、比较下列各组数的大小:
for s ① 2 和 3

4 15 和 3
5
re good ④ 7 和-2.45
⑤ 72与1 33
1.当 x= _________时, 3 5x 2 有意义; 2.若 x 4 16 ,则 x=_________;若 3n 81,则 n= ________。 3.若 3 x 2 ,则 x= __________; 若 3 64 x ,则 x =__________;
(1)-a2 一定是负数吗?-a 一定是正数吗?
(2)大家都知道 是一个无理数,那么 -1 在哪两个整数之间?
(3) 15 的整数部分为 a,小数部分为 b,则 a=
, b=
(4)判断下面的语句对不对?并说明判断的理由。 ① 无限小数都是无理数; ② 无理数都是无限小数; ③ 带根号的数都是无理数; ④ 有理数都是实数,实数不都是有理数; ⑤ 实数都是无理数,无理数都是实数; ⑥ 实数的绝对值都是非负实数; ⑦ 有理数都可以表示成分数的形式。
for so 例 2.若 y x 1 1 x 1,求 x,y 的值。
re good 例 3.若 3 2a 1 和 3 1 3b 互为相反数,求 a 的值。 b
ing a 跟踪练习: be 1. y 2 x x 2 x2 5 ,求 y x 的平方根和算术平方根。
their 3.若 x 1 | y 2 | 0 ,求 x+y 的值。
g a 根, a 叫做 a 的负平方根。
ein ⑵一个正数有两个平方根: a (根指数2省略)

七年级下册实数知识点总结及常见问题

七年级下册实数知识点总结及常见问题

七年级下册实数知识点总结及常见问题一、知识点总结1. 实数的定义:实数是指有理数和无理数的总称。

有理数包括整数、分数和小数,而无理数指不能表示为有理数的数。

2. 实数的分类:- 正数:大于零的实数,可以表示为有限小数或无限循环小数。

- 负数:小于零的实数,可以表示为有限小数或无限循环小数。

- 零:不大于零也不小于零的实数,可以表示为有限小数。

3. 实数的比较:可以利用大小关系符号(>、<、≥、≤、=)来比较两个实数的大小。

4. 实数的运算:- 加法:实数的加法满足交换律和结合律,可以利用数轴理解实数的加法。

- 减法:实数的减法可以转化为加法运算,即a - b = a + (-b)。

- 乘法:实数的乘法满足交换律和结合律,可以利用数轴理解实数的乘法。

- 除法:实数的除法可以转化为乘法运算,即a ÷b = a ×(1/b)。

5. 实数的绝对值:实数a的绝对值是其到零点的距离,表示为|a|。

非负实数的绝对值即为其本身,而负数的绝对值为其相反数。

6. 实数的分数形式和小数形式相互转化:分数形式可以转化为小数形式,小数形式也可以转化为分数形式。

二、常见问题1. 如何判断一个实数是正数、负数还是零?- 如果一个实数大于零,则它是正数。

- 如果一个实数小于零,则它是负数。

- 如果一个实数等于零,则它是零。

2. 实数的加法和减法有哪些特点?- 加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。

- 减法可以转化为加法,即a - b = a + (-b)。

3. 实数的乘法和除法有哪些特点?- 乘法满足交换律和结合律,即a × b = b × a,(a × b) × c = a ×(b × c)。

- 除法可以转化为乘法,即a ÷ b = a × (1/b)。

七年级下册实数知识点概括及常见题目

七年级下册实数知识点概括及常见题目

七年级下册实数知识点概括及常见题目
一、知识点概括
1.实数的概念
实数是包括有理数和无理数的数的集合,它们可以表示在数轴
上的位置。

实数具有加法、减法、乘法和除法等运算规则。

2.有理数
有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、正分数和负分数。

有理数之间可以进行加减乘除运算,还可以
比较大小。

3.无理数
无理数是不能表示为两个整数之比的数,它们的十进制表示是
无限不循环的小数。

无理数包括根号2、根号3等。

4.实数的分布
实数可以在数轴上表示出来,正数在右侧,负数在左侧。

实数
之间可以进行大小比较。

二、常见题目
以下是七年级下册实数部分常见的题目类型:
1.判断题:给出一个数,判断它是有理数还是无理数。

2.计算运算结果:计算两个实数的和、差、积、商。

3.比较大小:给出两个实数,判断它们的大小关系。

4.补全数轴:给出数轴上的几个点,补全数轴上其它的实数点。

5.排序实数:给出几个实数,按大小顺序排列它们。

6.选择题:根据题目描述选择符合条件的实数。

以上是七年级下册实数知识点的概括及常见题目类型。

通过熟
练掌握这些知识点和题目类型,可以提高对实数的理解和应用能力。

第六章--实数(知识点+知识点分类练习)

第六章--实数(知识点+知识点分类练习)

【知识要点】被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如.25 5, 2500 50.一、算数平方根算数平方根的定义:一般的,如果一个非负数x的平方等于a,即x2=a ,(a>0),那么这个非负数x叫做a的算术平方根。

a的算术平方根记为谄,读作“根号a”,a叫做被开方数。

求一个正数a的平方根的运算叫做开平方。

1.0的算术平方根是02. 被开方数越大,对应的算术平方根也越大(对所有正数都成立)。

3. 一个正数如果有平方根,那么必定有两个,它们互为相反数。

显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

4. 负数在实数系内不能开平方。

二、平方根平方根的定义:如果一个数x的平方等于a ,即x2=a,那么这个数x就叫做a的平方根,求一个数a的平方根的运算,叫做开平方。

平方根的性质:一个正数有2个平方根,它们互为相反数,其中正的平方根就是这个数的算数平方根;0只有1个平方根,它是0;负数没有平方根。

开平方:求一个数a的平方根的运算,叫做开平方。

三、立方根立方根的定义:如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根或三次方根,求一个数的立方根的运算叫做开立方,a的立方根记为鴛读作“三次根号a”,其中a是被开方数。

立方根的性质:每个数a都只有1个立方根。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

四、实数1. 无理数的定义:无限不循环小数叫做无理数。

2. 实数的定义:有理数和无理数统称实数。

3. 实数的分类:整数宀拓有理数八”有限小数或无限循环小数 实数 分数无理数无限不循环小数像有理数一样,无理数也有正负之分。

例如2 ,3 3 , 是正无理数, 2, 3 3, 是负无理数。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:4. 实数与数轴上的点的对应关系:实数与数轴上的点是 -- 对应的。

5. 有关概念:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的意义相同。

实数复习及习题.docx

实数复习及习题.docx

实数复习及习题.docx知识要点:-。

平⽅根和⽴⽅根类型项⽬7^平⽅根⽴⽅根被开⽅数⾮负数任意实数符号表⽰ ± y[al/a 性质—个正数有两个平⽅根,且互为相反数;零的平⽅根为零;负数没有平⽅根; —个正数有⼀个正的⽴⽅根;⼀个负数有⼀个负的⽴⽅根;零的⽴⽅根是零;重要结论 (亦⼫=a(p. > 0) 圧科如0) ri [- a(a < 0) 阿=a ^ = a= -\[a⼆.实数有理数和⽆理数统称为实数.1. 实数的分类有理数:有限⼩数或⽆限循环⼩数⽆理数:⽆限不循环⼩数正数按与0的⼤⼩关系分:实数< 0负数2. 实数与数轴上的点⼀⼀对应.数轴上的任何⼀个点都対应⼀个实数,反之任何⼀个实数都能在数轴上找到⼀个点A/Z 对应.三、实数⼤⼩的⽐较对于数轴上的任意两个点,右边的点所表⽰的实数总是⽐左边的点表⽰的实数⼤.⽌实数⼤于0,负实数⼩于0,两个负数,绝对值⼤的反⽽⼩.四. 实数的运算:数4的相反数是⼀a ; —个正实数的绝对值是它本⾝;⼀个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成⽴.实数混合运算的运算顺序:先乘⽅、开⽅、再乘除,最后算加减?同级运算按从左到右顺序进⾏,有括号先算括号⾥.实数复习按定义分: 实数五.实数的⼤⼩的⽐较:有理数⼤⼩的⽐较法则在实数范围内仍然成⽴。

法则1.实数和数轴上的点⼀⼀对应,在数轴上表⽰的两个数,右边的数总⽐左边的数⼤;法则2.正数⼤于0, 0⼤于负数,⽌数⼤于⼀切负数,两个负数⽐较,绝对值⼤的反⽽⼩;法则3.两个数⽐较⼤⼩常见的⽅法有:求差法,求商法,倒数法,估算法,平⽅法。

例题分析J ⽆-3 + ^3 — |x| + 121、x-3求⽦⼙的值.练习1.已知y = &-2 + - x + 3,求严的平⽅根。

练习2?若勿3— 7和哥3⼙+ 4互为相反数,求x+y的值。

2、已知〃是满⾜不等式-巧X < ------2的最⼤整数.求』什"的平⽅根.3、已知a是怖的整数部分,&是它的⼒澈部分,求° f 1 b + 3 f 的值.练习:已知5 + TH的⼒澈部分为a, 5- VH的⼩数部分为b,则⾊+b的值是_______ ; a—b的值是__________4、阅读理解,回答问题.在解决数学问题的过程⼬,有时会遇到⽐较两数⼈⼩的问题,解决这类问题的关键是根据命题的题设和结论特征,采川相应办法,其中巧川“作差法”是解决此类问题的⼀种⾏之有效的⽅法:若 a —b>0,则 a 〉b ;若 a —b=0,则 a = b ;若 a —b<0,则 a 〈b.例如:在⽐较m2 + l 与m2的⼤⼩时,⼩东同学的作法是:T (陀$ +1)⼀(叨⼻)=叨2 * ] _ ⾎2 = 1 >:.m 2+1 > ^2.请你参考⼩东同学的作法,⽐较⼈⼩:4$ ----------- (2 + 练习: a 在数轴上的位置如图所⽰,则丄卫*的⼤⼩关系是:a.----- * ----- ? ------------------- * ---------------------------------- > -1 a 05、L 2? 知 a 、b ['两⾜ +8 + |b — = 0解关于x 的⽅程 @ + 2)兀+沪=么-1练习:设a 、b 、c 都是实数’且满⾜(2_拧+』/+⼼+以+ * +別=0 求代数式 2a-3b-c 的值。

实数的相关知识点总结

实数的相关知识点总结

实数的相关知识点总结一、实数的分类根据数轴上的位置,实数可以分为正数、负数和零。

1. 正数:指大于零的实数,通常用正号(+)表示。

2. 负数:指小于零的实数,通常用负号(-)表示。

3. 零:指等于零的实数。

根据是否可以用分数表示,实数可以分为有理数和无理数。

1. 有理数:指可以表示为两个整数的比值的实数,包括整数和分数。

有理数的特点是其小数部分是有限的或者循环的。

2. 无理数:指不能表示为两个整数的比值的实数,其小数部分是无限不循环的。

常见的无理数有π、e和根号2等。

实数还可以分为代数数和超越数。

1. 代数数:指可以是方程的根的实数,即代数方程的解。

例如,整数、分数、无理数都是代数数。

2. 超越数:指不能是任何代数方程的解的实数,即不能用代数表达式表示的实数。

π和e都是超越数的例子。

二、实数的性质1. 实数的比较性质:对于任意两个不相等的实数a和b,要么a>b,要么a<b。

2. 实数的加法性质:对于任意三个实数a、b、c,有加法交换律a+b=b+a和加法结合律(a+b)+c=a+(b+c)。

3. 实数的乘法性质:对于任意三个实数a、b、c,有乘法交换律a×b=b×a和乘法结合律(a×b)×c=a×(b×c)。

4. 实数的分配律:对于任意三个实数a、b、c,有乘法对加法的分配律a×(b+c)=a×b+a×c。

5. 实数的零元素:存在一个实数0,使得对于任意实数a,有a+0=a。

6. 实数的负元素:对于任意实数a,存在一个实数-b,使得a+(-b)=0。

7. 实数的乘法单位元素:存在一个实数1,使得对于任意实数a,有a×1=a。

8. 实数的除法单位元素:对于任意非零实数a,存在一个实数1/a,使得a×(1/a)=1。

9. 实数的绝对值:对于任意实数a,有其绝对值|a|≥0,当a≠0时,|a|就是a的绝对值。

实数知识点和典型例题练习题总结(超全面)

实数知识点和典型例题练习题总结(超全面)

实数知识点和典型例题练习题总结(超全面).doc实数知识点和典型例题练习题总结(超全面)引言实数是数学中最基本的数的概念之一,它包括有理数和无理数。

掌握实数的知识点对于解决各种数学问题至关重要。

本文档旨在全面总结实数的知识点和典型例题,以帮助学生深入理解和掌握实数的概念、性质和运算。

实数的定义与分类实数的定义实数是可以在数轴上表示的数,它包括有理数和无理数。

有理数有理数是可以表示为两个整数的比的数,即形式为 ( \frac{p}{q} ) 的数,其中 ( p ) 和 ( q ) 是整数,且 ( q \neq 0 )。

无理数无理数是不能表示为两个整数比的实数,例如圆周率 ( \pi ) 和黄金分割比 ( \phi )。

实数的性质有序性实数具有有序性,即对于任意两个实数 ( a ) 和 ( b ),要么 ( a < b ),要么 ( a > b ),或者 ( a = b )。

完备性实数的完备性指的是,任意实数的上界和下界都存在极限点。

稠密性实数具有稠密性,即在任意两个不同的实数之间,都存在无穷多个实数。

实数的运算加法实数的加法满足交换律和结合律。

减法实数的减法是加法的逆运算。

乘法实数的乘法同样满足交换律、结合律和分配律。

除法实数的除法是乘法的逆运算,但除数不能为零。

乘方实数的乘方表示将一个数自乘若干次。

开方实数的开方是乘方的逆运算,表示求一个数的 ( n ) 次根。

典型例题例题1:实数的比较给定两个实数 ( a = \sqrt{2} ) 和 ( b = \sqrt{3} ),比较它们的大小。

解答:由于 ( 2 < 3 ),因此 ( \sqrt{2} < \sqrt{3} ),即 ( a < b )。

例题2:实数的运算计算 ( (-3)^2 + \pi - \frac{1}{2} ) 的值。

解答:根据实数的运算法则,我们有 ( (-3)^2 = 9 ),所以 ( 9 + \pi - \frac{1}{2} )。

初一实数总复习(总结全面)

初一实数总复习(总结全面)

/*总复习一:实数一、单元知识网络:二、考试目标要求:了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义.进一步,对上述知识理解程度的评价既可以用纯粹数学语言、符号的方式呈现试题,也可以建立在应用知识解决问题的基础之上,即将考查的知识、方法融于不同的情境之中,通过解决问题而考查学生对相应知识、方法的理解情况.了解乘方与开方的概念,并理解这两种运算之间的关系.了解平方根、算术平方根、立方根的概念,了解整数指数幂的意义和基本性质.具体目标:1.有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.(2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的问题.(6)能对含有较大数字的信息作出合理的解释和推断.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.(3)了解无理数和实数的概念,知道实数与数轴上的点—一对应.(4)能用有理数估计一个无理数的大致范围.(5)了解近似数与有效数字的概念.在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.三、知识考点梳理知识点一、实数的分类1.按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.3.有理数:整数和分数统称为有理数或者“形如(m,n是整数n≠0)”的数叫有理数.4.无理数:无限不循环小数叫无理数.5.实数:有理数和无理数统称为实数.知识点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a是实数,则|a|≥0.3.倒数(1)实数的倒数是;0没有倒数;(2)乘积是1的两个数互为倒数.a、b互为倒数.4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根仍是零.知识点三、实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.知识点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.对于实数a、b,若a-b>0a>b;a-b=0a=b;a-b<0a<b.4.对于实数a,b,c,若a>b,b>c,则a>c.5.无理数的比较大小:利用平方转化为有理数:如果a>b>0,a2>b2a>b;或利用倒数转化:如比较与.知识点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)a n所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数6.实数的六种运算关系加法与减法互为逆运算;乘法与除法互为逆运算;乘方与开方互为逆运算.7.实数运算顺序加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.8.实数的运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc知识点六、有效数字和科学记数法1.近似数:一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.2.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法:把一个数用(1≤<10,n为整数)的形式记数的方法叫科学记数法.四、规律方法指导1.数形结合思想实数与数轴上的点一一对应,绝对值的几何意义等,数轴在很多时候可以帮助我们更直观地分析题目,从而找到解决问题的突破口.2.分类讨论思想(算术)平方根,绝对值的化简都需要有分类讨论的思想,考虑问题要全面,做到既不重复又不遗漏.3.从实际问题中抽象出数学模型以现实生活为背景的题目,我们要抓住问题的实质,明确该用哪一个知识点来解决问题,然后有的放矢.4.注意观察、分析、总结对于寻找规律的题目,仔细观察变化的量之间的关系,尝试用数学式子表示规律.对于阅读两量大的题目,经常是把规律用语言加以叙述,仔细阅读,找到关键的字、词、句,从而找到思路.经典例题精析考点一、实数概念及分类1.(舟山市)下列各数中是正整数的是()A.1B.-2C.0.3D.思路点拨:考查实数的分类,首先判断性质符号为正,其次判断是否为整数.答案:A.2.下列实数、sin60°、、、3.14159、、、中无理数有()个A.1B.2C.3D.4答案:C.无理数有sin60°、、.总结升华:对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【变式1】把下列各数填入相应的集合里:(1)自然数集合:{…}(2)整数集合:{…}(3)分数集合:{…}(4)无理数集合:{…}答案:(1)自然数集合:(2)整数集合:(3)分数集合:(4)无理数集合:考点二、数轴、倒数、相反数、绝对值3.(1)a的相反数是,则a的倒数是_______.(2)实数a、b在数轴上对应点的位置如图所示:则化简=______.思路点拨:(1)注意相反数和倒数概念的区别,互为相反数的两个数只有性质符号不同,互为倒数的两个数要改变分子分母的位置;或者利用互为相反数的两个数之和等于0,互为倒数的两个数乘积等于1来计算.由a的相反数是,所以a=,的倒数为5.(2)此题考查绝对值的几何意义,绝对值和二次根式的化简.注意要去掉绝对值符号,要判别绝对值内的数的性质符号.由图知:答案:(1)5;(2)-a-b.举一反三:【变式1】化简-(-2)的结果是()A.-2B.C.D.2答案:选D.【变式2】若m+1与m–3互为相反数,则m=_______.思路点拨:互为相反数的两个数之和等于0.∴m+1+m–3=0,解得m=1.答案:1.【变式3】-2的倒数是_______.思路点拨:注意倒数与相反数的区别,乘积为1的两个数互为倒数.答案:.【变式4】的绝对值是()A.B.C.D.答案:选B.【变式5】若|x-1|=1-x,则x的取值范围是()A.x≥1B.x≤1C.x<1D.x>1答案:选B.总结升华:(1)考查绝对值的意义;(2)考查绝对值的非负性,绝对值具有以下性质:①|a|≥0,即绝对值的非负性;②若|x|=a(a≥0),则x=±a,即绝对值的原数的双值性.【变式6】下列说法正确的是()A.-1的倒数是1B.-1的相反数是-1C.1的算术平方根是1D.1的立方根是±1思路点拨:本例考查了实数中涉及的四个重要概念:互为倒数、互为相反数、算术平方根、立方根.解答时,一方面应从概念蕴含着的数学关系式入手,可知-1的倒数是-1,-1的相反数是1;另一方面根据定义具有的双重性,可知1的算术平方根是1,1的立方根是1.答案:选C.【变式7】甲、乙两同学进行数字猜谜游戏:甲说一个数a的相反数就是它本身,乙说一个数b的倒数也等于它本身,请你猜一猜|a-b|=________.解析:欲求|a-b|,首先应知道a、b的值.由于甲、乙两同学所说的内容隐含着a和b的值,因此易得,∴a=0,b=±1,∴|a-b|=|±1|=1.【变式8】(长沙市)如图,数轴上表示数的点是.思路点拨:实数与数轴上的点一一对应,表示正数的点在原点的右侧,.答案:B.考点三、近似数、有效数字、科学记数法4.(1)根据统计,某市2008年财政总收入达到105.5亿元.用科学记数法(保留三位有效数字)表示105.5亿元约为()A.1.055×1010元B.1.06×1010元C.1.06×1011元D.1.05×1011元(2)2007年5月3日,中央电视台报道了一则激动人心的新闻,我国在渤海地区发现储量规模达10.2亿吨的南堡大油田,10.2亿吨用科学记数法表示为(单位:吨)()A.1.02×107B.1.02×108C.1.02×109D.1.02×1010思路点拨:解答本题的关键是正确理解近似数的精确度及有效数字等概念.精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位;一个近似数,从左边第一个不为0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字.一个数的近似数,常常要用科学记数法来表示.用科学记数法表示数的有效数字位数,只看乘号前的部分,因此(1)中105.5亿元=10 550 000 000元,用科学记数法表示为1.055×1010,保留三个有效数字为1.06×1010;(2)中应表示为1.02×109.答案:(1)B;(2)C.举一反三:【变式1】废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水量用科学记数法表示为_________立方米.解:600×50=30000=3×104.总结升华:本题既考查有理数的乘法运算,又考查科学记数法以及分析问题的能力.从数学的角度来考查废旧电池对环境造成的危害,促使我们从小就要热爱大自然,树立环保意识.【变式2】用科学记数法表示0.00608的结果是()A. B. C. D.思路点拨:首先选项C、D所表示的记数方法不是科学记数法,因为它们中的a不符合只有一位整数数位,B中的n值错误.科学记数法只是一种表示数的方法,并没有改变数的大小.答案:A.【变式3】近似数0.030万精确到______位,有_____个有效数字,用科学记数法表示记作__________.思路点拨:带有单位或以科学记数法形式给出的近似数,首先要把它转化为以“个”为单位的数,再确定其精确的位数.如,即“1”后面的第一个“0”在十位上,因此精确到十位,而不是百位.答案:十;2;.考点四、实数的大小比较5.比较下列每组数的大小:(1)与;(2)与;(3)与;(4)a与(a≠0).思路点拨:(1)有理数比较大小:两个负数,绝对值大的反而小.因此比较和的大小,可将其通分,转化成同分母分数比较大小;(2)无理数比较大小,往往通过平方转化以后进行比较;(3)有时无理数比较大小,通过平方转化以后也无法进行比较,那么我们可以利用倒数关系比较;(4)这道题实际上是互为倒数的两个数之间的比较大小,我们可以利用数轴进行比较,我们知道,0没有倒数,±1的倒数等于它本身,这样数轴就被这3个数分成了4部分,下面就可以分类讨论每种情况.解:(1),,,所以(2)因为所以;(3),,而与可以很容易进行比较得到,所以;(4)当a<-1或O<a<1时,a<;当-1<a<0或a>1时,a>;总结升华:第(4)题我们还可以利用函数图象来解决这个问题,把的值看成是关于a的反比例函数,把a的值看成是关于a的正比例函数,在坐标系中画出它们的图象,可以很直观的比较出它们的大小.考点五、快速准确地进行实数运算6.计算:.思路点拨:该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂,正整数指数幂.只要准确把握各自的意义,就能正确的进行运算.解:总结升华:本题考点是实数的混合运算.易错点是忘记负整数指数(0指数)幂的意义,而使举一反三:【变式1】填空:-1-1-1-1=_________;=_________;=__________;(为正整数)=__________;=___________;=____________;=__________.思路点拨:(1)根据同号两数、异号两数相加、减、乘、除的法则,先确定符号,再算绝对值.(2)多个因数相乘时,由负因数个数的奇偶先定符号,再将绝对值相乘,乘方时注意负数的偶次方为正,奇次方为负,先乘方,再乘除.(3)合理运用乘法分配律和使用可使运算显得更加简便.答案:-4、+1、-1、-5、-6、4096、.【变式2】计算:(1)(2)(3)思路点拨:(1)题可将改写成……,然后用加法的交换律、结合律将整数和分数分别放在一起便得结果;(2)题善于使用乘法分配律的顺逆两用,可使运算简便;(3)题注意混合运算的顺序,不能先算.答案:(1)11109;(2)-110;(3).7.已知:x,y是实数,,若axy-3x=y,则实数a的值是_______.思路点拨:此题考查的是非负数的性质.解:即两个非负数相加和为0,则这两个非负数必定同时是0∴,(y-3)2=0,∴x=,y=3又∵axy-3x=y,∴a=.举一反三:【变式1】已知,求的值.思路点拨:利用≥0,≥0,≥0(为自然数)等常见的三种非负数及其性质,分别令它们为零,得一个三元一次方程组,解得、、的值,再代入后本题得以解决.答案:-3.考点六、探索与创新8.计算:思路点拨:近年来,为了突出考察学生创造思维的水平,中考命题时不仅考查运算的熟练,准确,更注重考查算理的运用和灵活处理运算问题的能力,使运算更加合理简便的能力、我们从复习数开始,就要加强含字母的式子变形技能的训练及能力的提高.解:设n=2001,则原式=(把n2+3n看作一个整体)==n2+3n+1=n(n+3)+1=2001×2004+1=4010005.9. 下面由火柴棒拼出的一系列图形中,第个图形是由个正方形组成的,通过观察可以发现:(1)第四个图形中火柴棒的根数是______________;(2)第个图形中火柴棒的根数是______________.思路点拨:观察各个图形的根数与图形个数之间的关系,并由此归纳出第个图形中火柴棒的根数.答案:(1)13;(2).10.细心观察图形,认真分析各式,然后解答问题(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S12+S22+S32+…+S102的值.思路点拨:近几年各地的中考题中越来越多的出现了一类探究问题规律的题目,这些问题素材的选择、文字的表述、题型的设计不仅考察了数学的基础知识,基本技能,更重点考察了创新意识和能力,还考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力.(1)由题意可知,图形满足勾股定理,(2)因为OA1=,OA2=,OA3=…,所以OA10=(3)S12+ S22+ S32+…+ S102.中考题萃:实数一、考试目标:了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学 第一讲 实数1.0.0016的算术平方根是( )A. 0.4B. 0.04C. 0.4±D. 0.04±2.计算:(1 (2(3) (4)3125-3.81的算术平方根是 .4.算术平方根等于它本身的数是 ;立方根等于它本身的数是 。

5.下列各数:21,3030030003.0,722,23.0,9,0,2-π 中无理数有( ) A. 2个 B. 3个 C. 4个 D. 5个知识点一、平方根.立方根概念【例1】已知a m 的立方根,则=+b a 22 .【变式1】已知A =3的算术平方根,m B =2的立方根,求n m ,的值.知识点二、算术平方根具有双重非负性:0,0≥≥a a 【例2】若1-a 有意义,则a 能取的最小整数为 【变式2】m -2是m -2的算术平方根,求m 满足什么条件?【例3】若310x x y -+-+=,计算422y xy x ++.【变式3】已知,x y 为实数,且111,521y x x x y =-+-++-求的值.知识点三、⎩⎨⎧<-≥===)0()0(||)(22a a a a a a aa【例4】x 是2)9(的平方根,2)4(-=y 的立方根,则=+y x【变式4】下列说法错误的是( )A.1的平方根是1B.1-的立方根是1-C.2是2的平方根D.3-是2)3(-的平方根【例5】如果x x -=2成立的条件是( ) A.x ≥0 B.0≤x C.0>x D.0<x【变式5】若1<a ,化简=--1)1(2a知识点四、实数和数轴上的点一 一对应【例6】下列说确的是( )A. 无限小数都是无理数B. 带根号的数都是无理数C. 开方开不尽的数是无理数D. π是无理数, 故无理数也可能是有限小数【变式6】下面说法错误的是( )A. 两个无理数的和还是无理数B. 有限小数和无限小数统称为实数C. 两个无理数的积还是无理数D. 数轴上的点表示实数 【例7】; 。

【变式7】满足32<<-x 的整数x 是 .【例8】如图,数轴上表示1,3的对应点分别为点A ,点B ,若点B 关于点A 的对称点为点C ,则点C 所表示的数为( )A .31-B .13-C .23-D .32-【变式8】b a ,在数轴上的位置如图所示,且a >b ,化简a a b b a -+--0ba知识点五、平方根、立方根的应用 【例9】求下列x 的值 (1)1)32(412=+x (2)933-=x【变式9】求下列x 的值(1)0147)12(32=-+x (2)08)1(3=--x【例10】已知b a ,为两个连续整数,且b a <<7,求b a +的值【变式10】7 3.(填“>”或“<”)1.下列说法中,正确的是( )A . 正数的算术平方根一定是正数 C.如果a 表示一个实数,那么a -一定是负数B . 和数轴上的点一一对应的数是有理数 D .1的平方根是12.已知,x y 为实数,且1|2|0x y -+-=,则x y -的值为( ) A.3 B.3- C.1 D.1-3.求下列各式中的x : ⑴2x 49= ⑵81252=x ⑶8333=-x ⑷125)2(3=+x4.已知实数a b c 、、在数轴上的位置,如图所示,化简114a b a b b c ++--++-+.5.2(3)3x x -=-,则x 的取值围是_______. 6.(116___________________(2)一个数的平方是4,这个数的立方是____________________. 7.55+的整数部分是 .第二讲 平面直角坐标系1.原点O 的坐标是,x 轴上的点的坐标的特点是 ,y 轴上的点的坐标的特点是 ;点)0,(a M 在 轴上.2.如图,下列各点在阴影区域的是 ( )A .(3,2)B .(-3,2)C .(3,-2)D .(-3,-2)3.如图,在平面直角坐标系x o y 中,(15)A -,,(10)B -,,(43)C -,. (1)求出A B C △的面积.(2)在图中作出A B C △关于y 轴的对称图形111A B C △;(3)写出点111A B C ,,的坐标.类型一、点与坐标的对应关系 【例1】如图所示的象棋盘上,若“将”位于点(1,-2)上,“象”位于点(3,-2)上,则“炮”位于点 .【变式1】一个长方形在平面直角坐标系中三个顶点的坐标为)1,1(--、)2,1(-、)1,3(-,则第四个顶点的坐标为( )A .(2,2)B .(3,2)C .(3,3)D .(2,3)类型二、点的坐标的特征【例2】若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( ) A .(3,0) B .(3,0)或(–3,0) C .(0,3) D .(0,3)或(0,–3)【变式2】已知P 点坐标为)63,2(+-a a ,且点P 到两坐标轴的距离相等,则点P 的坐标是 .xy A B C O 5 24 6 -5-21234O4321yx【例3】若点P (m -1,m )在第二象限,则下列关系正确的是( )A 10<<mB 0<mC 0>mD 1>m 【变式3】(1)已知点)2,3(b a A 在x 轴上方,y 轴的左边,则点A 到x 轴、y 轴的距离分别为( )A.b a 2,3- B .b a 2,3- C .a b 3,2- D .a b 3,2-(2)若4||,5||==b a ,且点),(b a M 在第二象限,则点M 的坐标是( )A .(5,4)B .(-5,4)C .(-5,-4)D .(5,-4)【例4】已知点P (x ,y -)在第一、三象限的角平分线上,由x 与y 的关系是_____________.【变式4】已知点)92,3(++-a a A 在第二象限的角平分线上,则a 的值是____________.类型三、坐标系中对称问题【例5】(1)已知点(34)P -,,关于x 轴的对称点是 ,关于y 轴的对称点是 ,关于原点的对称点是 .(2)如图方格纸中每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点在格点上,点B 的坐标为(5,-4),请你作出ABC '''∆,使ABC '''∆与△ABC 关于y 轴对称,并写出B '的坐标.【变式5】(1)点1(3)P a ,和点2(2)P b -,关于y 轴对称,则____a =,____b =. (2)已知点(P x ,)y ,(Q m ,)n ,如果0x m +=,0y n +=,那么点P ,Q ( ) A.关于原点对称 B.关于x 轴对称C.关于y 轴对称D.关于过点(0,0),(1,1)的直线对称类型四、坐标系中点的平移【例6】如图,已知△ABC 的顶点B 的坐标是(2,1),将△ABC 向左平移两个单位后,点B 平移到B 1,则点B 1的坐标是( ) A.(4,1) B .(0,1) C .(-1,1) D .(1,0)例6图 变式6(2)图【变式6】(1)将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .(2)如图,在R t O A B △中,90O A B ∠=,且点B 的坐标为(4,2).画出O A B △向下平移3个单位后的111O A B △;并求出11,B A 的坐标.类型五、坐标系的综合性问题【例7】如图,已知点(1,0)A -和点(1,2)B ,在坐标轴上确定点P ,使得△ABP 为直角三角形,则满足这样条件的点P 共有 个.【变式7】在平面直角坐标系中,已知平行四边形ABCD 中三个顶点的坐标分别是(0,0)、(1,0)-、(2,3),求第四个顶点的坐标,并求出平行四边形的面积.1.如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A .点AB .点BC .点CD .点D北南西东B A DC OM2.在平面直角坐标系中,点()1,12+-m 一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.若4,5==b a ,且点M(a ,b)在第二象限,则点M 的坐标是( )4.在图所示的平面直角坐标系中表示下面各点:A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0) (1)A 点到原点O 的距离是 . (2)将点C 向x 轴的负方向平移6个单位,它与点 重合. (3)连接CE ,则直线CE 与y 轴是什么关系? (4)点F 分别到x 、y 轴的距离是多少?5.(1)已知(2,3)P ,(2,3)Q -,则P 和Q 关于 轴对称.(2)已知点(23,2)A a b +-和点(8,32)B a b +关于x 轴对称,那么a b += .6.点P到x轴的距离是2,到y轴的距离是1,求点P的坐标.7.一个平行四边形的三个顶点坐标分别为(0,0)、(2,0)、(1,2),求平行四边形的第四个顶点的坐标.。

相关文档
最新文档