安徽省宣城市2021版中考数学试卷A卷

合集下载

2021年安徽省中考数学试题(word版,含答案解析)

2021年安徽省中考数学试题(word版,含答案解析)

2021年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。

1.(4分)9-的绝对值是( ) A .9B .9-C .19D .19-2.(4分)《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险.其中8990万用科学记数法表示为( ) A .689.910⨯B .78.9910⨯C .88.9910⨯D .90.89910⨯3.(4分)计算23()x x ⋅-的结果是( ) A .6xB .6x -C .5xD .5x -4.(4分)几何体的三视图如图所示,这个几何体是( )A .B .C .D .5.(4分)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒6.(4分)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( ) A .23cmB .24cmC .25cmD .26cm7.(4分)设a ,b ,c 为互不相等的实数,且4155b ac =+,则下列结论正确的是( )A .a b c >>B .c b a >>C .4()a b b c -=-D .5()a c a b -=-8.(4分)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33+B .223+C .23+D .123+9.(4分)如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A 的概率是( )A .14B .13C .38D .4910.(4分)在ABC ∆中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是( )A .2CD ME =B .//ME ABC .BD CD =D .ME M D =二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:04(1)+-= .12.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是51-,它介于整数n 和1n +之间,则n 的值是 .13.(5分)如图,圆O 的半径为1,ABC ∆内接于圆O .若60A ∠=︒,75B ∠=︒,则AB = .14.(5分)设抛物线2(1)y x a x a =+++,其中a 为实数. (1)若抛物线经过点(1,)m -,则m = ;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是 .三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:1103x -->. 16.(8分)如图,在每个小正方形的边长为1个单位的网格中,ABC ∆的顶点均在格点(网格线的交点)上.(1)将ABC ∆向右平移5个单位得到△111A B C ,画出△111A B C ;(2)将(1)中的△111A B C 绕点1C 逆时针旋转90︒得到△221A B C ,画出△221A B C .四、(本大题共2小题,每小题8分,满分16分)17.(8分)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10AB cm =,6BC cm =.求零件的截面面积.参考数据:sin 530.80︒≈,cos 530.60︒≈.18.(8分)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列. [观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;(2)若一条这样的人行道一共有(n n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?五、(本大题共2小题,每小题10分,满分20分)19.(10分)已知正比例函数(0)y kx k=≠与反比例函数6yx=的图象都经过点(,2)A m.(1)求k,m的值;(2)在图中画出正比例函数y kx=的图象,并根据图象,写出正比例函数值大于反比例函数值时x的取值范围.20.(10分)如图,圆O中两条互相垂直的弦AB,CD交于点E.(1)M是CD的中点,3OM=,12CD=,求圆O的半径长;(2)点F在CD上,且CE EF=,求证:AF BD⊥.六、(本题满分12分)21.(12分)为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:)kW h ⋅调查,按月用电量50~100,100~150,150~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如图.(1)求频数分布直方图中x 的值;(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果); (3)设各组居民用户月平均用电量如表:组别 50~100100~150150~200200~250250~300300~350月平均用电量(单位:)kW h ⋅75 125 175 225 275 325根据上述信息,估计该市居民用户月用电量的平均数.七、(本题满分12分)22.(12分)已知抛物线221(0)y ax x a =-+≠的对称轴为直线1x =.(1)求a 的值;(2)若点1(M x ,1)y ,2(N x ,2)y 都在此抛物线上,且110x -<<,212x <<.比较1y 与2y 的大小,并说明理由;(3)设直线(0)y m m =>与抛物线221y ax x =-+交于点A 、B ,与抛物线23(1)y x =-交于点C ,D ,求线段AB 与线段CD 的长度之比.八、(本题满分14分)23.(14分)如图1,在四边形ABCD 中,ABC BCD ∠=∠,点E 在边BC 上,且//AE CD ,//DE AB ,作//CF AD 交线段AE 于点F ,连接BF . (1)求证:ABF EAD ∆≅∆;(2)如图2.若9AB =,5CD =,ECF AED ∠=∠,求BE 的长; (3)如图3,若BF 的延长线经过AD 的中点M ,求BEEC的值.2021年安徽省中考数学参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。

2021年安徽省中考数学试题解析版

2021年安徽省中考数学试题解析版

2021年安徽省中考数学试题解析版一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.运算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.2021年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107 B.83.62×106 C.0.8362×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.方程=3的解是()A.﹣B.C.﹣4 D.46.2020年我省财政收入比2020年增长8.9%,2020年比2020年增长9.5%,若2020年和2020年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.49.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A动身,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人动身后2小时内运动路程y(千米)与时刻x(小时)函数关系的图象是()A.B.C.D.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a=.13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.运算:(﹣2021)0++tan45°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观看下列图形与等式的关系,并填空:(2)观看下图,依照(1)中结论,运算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB 上),测得∠DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求现在点M 的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌平均,再任取一个小球,对应的数字作为那个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象通过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2021年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【考点】绝对值.【分析】直截了当利用数轴上某个数与原点的距离叫做那个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.运算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直截了当利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.2021年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107 B.83.62×106 C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】依照三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.5.方程=3的解是()A.﹣B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.6.2020年我省财政收入比2020年增长8.9%,2020年比2020年增长9.5%,若2020年和2020年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】依照2020年我省财政收入和2020年我省财政收入比2020年增长8.9%,求出2020年我省财政收入,再依照出2020年比2020年增长9.5%,2020年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2020年我省财政收入为a亿元,2020年我省财政收入比2020年增长8.9%,∴2020年我省财政收入为a(1+8.9%)亿元,∵2020年比2020年增长9.5%,2020年我省财政收为b亿元,∴2020年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户【考点】扇形统计图.【分析】依照除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:依照题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】依照AD是中线,得出CD=4,再依照AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A动身,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人动身后2小时内运动路程y(千米)与时刻x(小时)函数关系的图象是()A.B.C.D.【考点】函数的图象.【分析】分别求出甲乙两人到达C地的时刻,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C 地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.【考点】点与圆的位置关系;圆周角定理.【分析】第一证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,现在PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,现在PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是x≥3.【考点】解一元一次不等式.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥312.因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.【考点】切线的性质;弧长的运算.【分析】依照已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.【解答】解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【考点】相似形综合题.【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可运算出AF=8,因此DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,因此可对①进行判定;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判定△ABG与△DEF不相似,则可对②进行判定;依照三角形面积公式可对③进行判定;利用AG=3,GF=5,DF=2可对④进行判定.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,因此①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,因此②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,因此③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,因此④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.运算:(﹣2021)0++tan45°.【考点】实数的运算;零指数幂;专门角的三角函数值.【分析】直截了当利用专门角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2021)0++tan45°=1﹣2+1=0.16.解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边确实是完全平方式,右边确实是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x 1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【考点】作图-平移变换.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(1)观看下列图形与等式的关系,并填空:(2)观看下图,依照(1)中结论,运算图中黑球的个数,用含有n 的代数式填空:1+3+5+…+(2n ﹣1)+( 2n+1 )+(2n ﹣1)+…+5+3+1= 2n 2+2n+1 .【考点】规律型:图形的变化类.【分析】(1)依照1+3+5+7=16可得出16=42;设第n 幅图中球的个数为a n ,列出部分a n 的值,依照数据的变化找出变化规律“a n ﹣1=1+3+5+…+(2n ﹣1)=n 2”,依此规律即可解决问题;(2)观看(1)可将(2)图中得黑球分三部分,1到n 行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n 幅图中球的个数为a n ,观看,发觉规律:a 1=1+3=22,a 2=1+3+5=32,a 3=1+3+5+7=42,…,∴a n ﹣1=1+3+5+…+(2n ﹣1)=n 2.故答案为:42;n 2.(2)观看图形发觉:图中黑球可分三部分,1到n 行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n ﹣1)+[2(n+1)﹣1]+(2n ﹣1)+…+5+3+1,=1+3+5+…+(2n ﹣1)+(2n+1)+(2n ﹣1)+…+5+3+1,=a n ﹣1+(2n+1)+a n ﹣1,=n 2+2n+1+n 2,=2n 2+2n+1.故答案为:2n+1;2n 2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB 上),测得∠DEB=60°,求C、D两点间的距离.【考点】两点间的距离.【分析】直截了当利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求现在点M 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),依照MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌平均,再任取一个小球,对应的数字作为那个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【考点】列表法与树状图法;算术平方根.【分析】(1)利用树状图展现所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后依照概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,因此算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象通过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范畴,利用二次函数性质即可确定出S的最大值,以及现在x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.【考点】相似形综合题.【分析】(1)依照三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC是平行四边形,因此得到∠OCE=∠ODE,依照等腰直角三角形的定义得到∠PCO=∠QDO=90°,依照等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,依照四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,依照相似三角形的性质得到ARB=∠PEQ=90°,依照四边形的内角和得到∠MON=135°,求得∠APB=90°,依照等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AP=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,现在P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ ,∴=.2021年6月25日。

安徽省2021年中考数学试卷(含解析)

安徽省2021年中考数学试卷(含解析)

安徽省2021年中考数学试卷(含解析)安徽省2021年中考数学试卷(含解析)
第一部分选择题
1. 题目内容
解析:这是第一题的解析。

2. 题目内容
解析:这是第二题的解析。

...
第二部分解答题
1. 题目内容
解答:这是第一题的解答。

2. 题目内容
解答:这是第二题的解答。

...
第三部分计算题
1. 题目内容
解析:这是第一题的解析。

2. 题目内容
解析:这是第二题的解析。

...
总结:
本次安徽省2021年中考数学试卷涵盖了选择题、解答题和计算题三个部分。

每个部分的题目都经过精心设计,旨在考察学生对数学知识和解题能力的掌握情况。

通过解析每道题目,我们可以更好地理解题目的解题思路和方法。

希望同学们在备考过程中认真复习,多做练习题,提升数学水平,取得优异的成绩。

以上是安徽省2021年中考数学试卷的内容及解析。

希望本次试卷对同学们的数学学习有所助益。

祝愿大家考试顺利!。

安徽省2021年中考数学试卷(含解析)

安徽省2021年中考数学试卷(含解析)

2021年安徽省中考数学试卷一、选择题1.下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.22.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.下面四个几何体中,主视图为三角形的是()A.B.C.D.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=06.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13 7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD的长度为()A.B.C.D.49.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=.12.分解因式:ab2﹣a=.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2021年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2021年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2021年4月份 1.1a 1.43x(2)求2021年4月份线上销售额与当月销售总额的比值.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【分析】直接利用同底数幂的除法运算法则计算得出答案.解:原式=a6÷a3=a3.故选:C.3.下面四个几何体中,主视图为三角形的是()A.B.C.D.【分析】根据主视图是从正面看得到的图形,可得答案.解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:54700000用科学记数法表示为:5.47×107.故选:D.5.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=0【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13【分析】根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.解:A、当点A的坐标为(﹣1,2)时,﹣k+3=3,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD的长度为()A.B.C.D.4【分析】在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.解:∵∠C=90°,AC=4,cos A=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【分析】根据垂径定理,平行四边形的性质判断即可.解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=2.【分析】直接利用二次根式的性质化简进而得出答案.解:原式=3﹣1=2.故答案为:2.12.分解因式:ab2﹣a=a(b+1)(b﹣1).【分析】原式提取a,再利用平方差公式分解即可.解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为2.【分析】分别求出矩形ODCE与△OAB的面积,即可求解.解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y =k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积=OA•OB=k2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为30°;(2)当四边形APCD是平行四边形时,的值为.【分析】(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD∥BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB=2QR,AB=PB,即可求解.解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x>.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【分析】(1)分别作出A,B的对应点A1,B2即可.(2)作出点A1的对应点A2即可.解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:×(1+)=2﹣;(2)写出你猜想的第n个等式:×(1+)=2﹣(用含n的等式表示),并证明.【分析】(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【分析】根据三角函数的定义和直角三角形的性质解答即可.解:由题意,在Rt△ABD中,tan∠ABD=,∴tan42.0°=≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=,∴tan36.9°=≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2021年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2021年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2021年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2021年4月份线上销售额与当月销售总额的比值.【分析】(1)由线下销售额的增长率,即可用含a,x的代数式表示出2021年4月份的线下销售额;(2)根据2021年4月份的销售总额=线上销售额+线下销售额,即可得出关于x的一元一次方程,解之即可得出x的值(用含a的代数式表示),再将其代入中即可求出结论.解:(1)∵与2019年4月份相比,该超市2021年4月份线下销售额增长4%,∴该超市2021年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=,∴===0.2.答:2021年4月份线上销售额与当月销售总额的比值为0.2.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.【分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【分析】(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为=.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y =x+m上;(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B 点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;(3)设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),根据题意得出+q =+1,由抛物线y=﹣x+px+q与y轴交点的纵坐标为q,即可得出q=﹣﹣1=﹣(p﹣1)2+,从而得出q的最大值.解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣x2+2x+1,设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣﹣1,∵抛物线y=﹣x+px+q与y轴的交点的纵坐标为q,∴q=﹣﹣1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.【分析】(1)证明△AEF≌△ADB(SAS),得出∠AEF=∠ADB,证得∠EGB=90°,则结论得出;(2)证明△AEF∽△DCF,得出,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP=∠DAG,证得△PAG为等腰直角三角形,可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE=.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=AG.。

安徽省2021年中考数学试卷真题(word版,含答案解析)

安徽省2021年中考数学试卷真题(word版,含答案解析)

安徽省2021年中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)(共10题;共40分) 1.﹣9的绝对值是( )A. 9B. ﹣9C. 19D. -19 【答案】 A【考点】绝对值及有理数的绝对值【解析】【解答】解:-9的绝对值为9故答案为:A.【分析】根据绝对值的性质和含义,求出-9的绝对值。

2.《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险,其中8990万用科学记数法表示为( )A. 89.9×106B. 8.99×107C. 8.99×108D. 0.899×109【答案】 B【考点】科学记数法—表示绝对值较大的数【解析】【解答】8990万=89900000=8.99×107故答案为:B.【分析】根据题意,由科学记数法的含义表示数字即可。

3.计算 x 2⋅(−x)3 的结果是( )A. x 4B. -x 6C. x 5D. -x 5【答案】 D【考点】同底数幂的乘法,积的乘方【解析】【解答】解:原式=x 2×(-x 3)=-x 5故答案为:D.【分析】根据同底数幂的乘法、积的乘方的性质,化简式子,求出结果。

4.几何体的三视图如图所示,这个几何体是( )A. B.C. D.【答案】C【考点】简单几何体的三视图,简单组合体的三视图【解析】【解答】解:根据三视图,即可得到几何体为C表示的几何体故答案为:C.【分析】根据提题意,由三视图判断得到几何体即可。

5.两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M,若BC∥EF,则∠BMD的大小为()A. 60°B. 67.5°C. 75°D. 82.5°【答案】C【考点】平行线的判定与性质,三角形内角和定理,直角三角形的性质【解析】【解答】解:在△ABC和△DEF中∠BAC=∠EDF=90°,∠E=45°,∠C=30°∴∠B=90°-∠C=60°∠F=90°-∠E=45°∵BC∥EF∴∠MDB=∠F=45°在△BMD中∠BMD=180°-∠B-∠MDB=75°故答案为:C.【分析】根据直角三角形的性质,继而由平行线的性质,求出∠MDB的度数,根据三角形的内角和定理求出∠BMD的度数即可。

宣城市2021版九年级上学期数学期末考试试卷A卷

宣城市2021版九年级上学期数学期末考试试卷A卷

宣城市2021版九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共8小题,每小题3分,共24分) (共8题;共24分)1. (3分)已知实数x , y , z满足,则代数式4x-4z+1的值是()A . -3B . 3C . -7D . 72. (3分) (2017七下·西华期末) 以方程组的解为坐标的点(x,y)在第()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (3分)(2017·莲池模拟) 如图,关于x的一次函数l1:y1=k1x+b1 , l2:y2=k2x+b2的图象如图所示,则y1>y2的解集表示在数轴上为()A .B .C .D .4. (3分)下列说法正确的是()A . 圆内接正六边形的边长与该圆的半径相等B . 在平面直角坐标系中,不同的坐标可以表示同一点C . 一元二次方程ax2+bx+c=0(a≠0)一定有实数根D . 将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等5. (3分) (2017·东营模拟) 已知点P(a+1,﹣ +1)关于y轴的对称点在第一象限,则a的范围在数轴上表示正确的是()A .B .C .D .6. (3分)(2017·日照) 下列说法正确的是()A . 圆内接正六边形的边长与该圆的半径相等B . 在平面直角坐标系中,不同的坐标可以表示同一点C . 一元二次方程ax2+bx+c=0(a≠0)一定有实数根D . 将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等7. (3分) (2019九上·宝安期末) 下列说法正确的是A . 两条对角线互相垂直且相等的四边形是正方形B . 任意两个等腰三角形相似C . 一元二次方程,无论a取何值,一定有两个不相等的实数根D . 关于反比例函数,y的值随x值的增大而减小8. (3分) (2020九上·宽城期末) 如图,在平面直角坐标系中,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p)B(2,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是()A . x<-1B . x>2C . -1<x<2D . x<-1或x>2二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)9. (3分) (2017八下·兴化月考) 如图,正方形ABCD的边长为16,M在DC上,且DM=4,N是AC上的一动点,则DN+MN的最小值是________.10. (3分)已知点,现将点先向左平移个单位,之后又向下平移个单位,得到点,则 ________.11. (3分)(2019·资阳) 给出以下命题:①平分弦的直径垂直于这条弦;②已知点、、均在反比例函数的图象上,则;③若关于x的不等式组无解,则;④将点向左平移3个单位到点,再将绕原点逆时针旋转90°到点,则的坐标为.其中所有真命题的序号是________.12. (3分) (2016八上·海门期末) 若点P(1﹣m,2+m)关于x轴对称的点的坐标在第一象限,则m的取值范围是________.13. (3分) (2020九上·宽城期末) 如图,在平面直角坐标系中,半径为3的⊙A经过坐标原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则sinB的值为________。

安徽省宣城市2021年九年级上学期数学期末考试试卷A卷

安徽省宣城市2021年九年级上学期数学期末考试试卷A卷

安徽省宣城市2021年九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020八下·鼓楼期末) 在下列事件中,是必然事件的是()A . 3天内将下雨B . 367人中至少有2人的生日相同C . 买一张电影票,座位号是奇数号D . 在某妇幼保健医院里,下一个出生的婴儿是女孩2. (2分)(2019·金华模拟) 已知a2+2a-3=0,则代数式2a2+4a-3的值是()A . -3B . 0C . 3D . 63. (2分)(2020·乐清模拟) 已知抛物线的对称轴为直线,记,则下列选项中一定成立的是()A .B .C .D .4. (2分) (2020八下·黄石期中) 如图所示,数轴上点所表示的数为,则的值是()A .B .C .D .5. (2分)(2018·开封模拟) 如图,点O是矩形ABCD的对角线AC的中点,OM//AB交AD于点M,若OM=3,BC=10,则OB的长为()A . 5B . 4C .D .6. (2分)(2020·福州模拟) 如图,在△ABC中,D、E分别为AB、AC边上的点,且∠AED=∠B , AD=3,AC=6,DB=5,则AE的长度为()A .B .C .D . 47. (2分) (2017九上·南平期末) 抛物线y=ax2﹣4ax﹣3a的对称轴是()A . 直线x=3B . 直线x=2C . 直线x=1D . 直线x=﹣48. (2分)如图,点B、C在⊙O上,且BO=BC,则圆周角∠BAC等于()A . 60°B . 50°D . 30°9. (2分)下列命题中,真命题是()A . 对角线互相垂直且相等的四边形是正方形B . 等腰梯形既是轴对称图形又是中心对称图形C . 圆的切线垂直于经过切点的半径D . 垂直于同一直线的两条直线互相垂直10. (2分)(2018·越秀模拟) 如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A . 2B . 3C . 4D . 511. (2分) (2020九上·中山期末) 如图,AD是半圆的直径,点C是弧BD的中点,∠ADC=55°,则∠BAD 等于()A . 50°B . 55°C . 65°D . 70°12. (2分)如图,点D,E,F分别是△ABC(AB>AC)各边中点,下列说法不正确的是()A . AD平分∠BACB . EF与AD相互平分D . △DEF是△ABC的位似图形二、填空题 (共6题;共6分)13. (1分)(2020·西湖模拟) 学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是________.14. (1分)(2018·苏州模拟) 如图,已知是线段的黄金分割点,且 .若表示以为一边的正方形的面积,表示长是、宽是的矩形的面积,则 ________ .(填“>”“=”或“<”)15. (1分)(2020·昌吉模拟) 圆锥的侧面展开图是一个弧长为6π的扇形,则这个圆锥底面半径是________.16. (1分) (2016九上·高台期中) 在△ABC中,D,E分别是AB,AC的中点,DE=4,则BC=________17. (1分) (2019九上·呼和浩特期中) 已知二次函数的图象上有三点,,,则、、的大小关系为________.18. (1分) (2019九上·哈尔滨月考) 如图,是中点,,若,,则、、三点所在圆的半径为________.三、解答题 (共8题;共81分)19. (5分)(2019·莲湖模拟)(1)计算:(2)化简:20. (5分)(2018·青羊模拟) 如图,小明到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B 时,它经过了200 m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200 m,缆车由点B到点D的行驶路线与水平夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21. (10分) (2019九下·秀洲月考) 目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,八年级数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种),并将调查结果绘制成如下不完整的统计图.(1) m=________,n=________.(2)将这两个统计图补全.(3)根据抽样调查的结果,请估算全校2000名学生中大约有多少人最认可“微信”这一新生事物?(4)已知A,B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”,从这四名同学中抽取两名同学,请你通过列表或画树状图的方法求出这两位同学最认可的新生事物不一样的概率.22. (10分)(2020·鄞州模拟) 如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2 ,则称DE为Rt△ABC的“完美分割线”,显然,当DE为△ABC的中位线时,DE是△ABC的一条完美分割线。

安徽省宣城市2021版中考数学试卷B卷(模拟)

安徽省宣城市2021版中考数学试卷B卷(模拟)

安徽省宣城市2021版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题3分,共36分.) (共12题;共36分)1. (3分) (2018七上·台州期中) -3的倒数的绝对值是()A .B .C .D .2. (3分) (2017七下·苏州期中) 若是完全平方式,则()A . 4B . 8C .D .3. (3分)(2017·郴州) 如图所示的圆锥的主视图是()A .B .C .D .4. (3分)下列关系式中,哪个等式表示y是x的反比例函数()A . y=B . y=C . y= +2D . y=−5. (3分) (2020七上·云梦期末) 如图,货轮O在航行过程中,发现灯塔A在它北偏东30°的方向上,海岛B在它南偏东60°方向上.则下列结论:①∠NOA=30°;②图中∠NOB的补角有两个,分别是∠SOB和∠EOA;③图中有4对互余的角;④货轮O在海岛B的西偏北30°的方向上.其中正确结论的个数有()A . 1个B . 2个C . 3个D . 4个6. (3分) (2019八下·廉江期末) 将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A . y=2x-1B . y=2x+2C . y=2x-2D . y=2x+17. (3分)如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则的度数是()A .B .C .D .8. (3分) (2019七下·福田期末) 如图,P在线段AB的垂直平分线l上,已知,,,则线段PB的长度是()A . 6B . 5C . 4D . 39. (3分)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A .B .C .D .10. (3分)(2018·嘉兴模拟) 两组数据:8,9,9,10和8.5,9,9,9.5,它们之间不相等的统计量是()A . 平均数B . 中位数C . 众数D . 方差11. (3分)如图,AB是⊙O的弦,OC⊥AB于点C,若AB=16cm,OC=6cm,则⊙O的半径为()A . 3 cmB . 5 cmC . 6 cmD . 10 cm12. (3分) (2017九上·北京月考) 如果二次函数(a>0)的顶点在x轴的上方,那么()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分.) (共6题;共18分)13. (3分)的算术平方根是________,的立方根是________,绝对值是________.14. (3分)(2013·遵义) 如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=________cm.15. (3分)(2017·新疆模拟) 计算: =________.16. (3分)已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为6,则另一条对角线长为________ .17. (3分) (2019八上·道外期末) 等腰三角形一腰上的高与另一腰的夹角为,则这个等腰三角形的一个底角度数为________.18. (3分)如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,则C′D=________三、解答题(本大题共8小题,满分66分.) (共8题;共66分)19. (6分)(2018七上·广东期中) 计算(1)(2)(3)20. (6分)(2018·菏泽) 先化简再求值(﹣y)÷ ﹣(x﹣2y)(x+y),其中x=﹣1,y=2.21. (6分) (2018八上·泸西期末) 解方程: + =122. (8分) (2019九上·白云期末) 如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y= 图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?23. (8分) (2017九下·盐都期中) 如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)24. (10.0分)(2016·龙岗模拟) 小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)25. (10分)(2016·河池) 如图,在△ABC中,∠ABC=90°,以BC为直径作⊙O,交AC于D,E为的中点,连接CE,BE,BE交AC于F.(1)求证:AB=AF;(2)若AB=3,BC=4,求CE的长.26. (12分) (2019九上·白云期末) 如图,有一块矩形铁皮(厚度不计),长10分米,宽8分米,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.(1)若无盖方盒的底面积为48平方分米,那么铁皮各角应切去边长是多少分米的正方形?(2)若要求制作的无盖方盒的底面长不大于底面宽的3倍,并将无盖方盒内部进行防锈处理,侧面每平方分米的防锈处理费用为0.5元,底面每平方分米的防锈处理费用为2元,问铁皮各角切去边长是多少分米的正方形时,总费用最低?最低费用为多少元?参考答案一、选择题(本大题共12小题,每小题3分,共36分.) (共12题;共36分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(本大题共6小题,每小题3分,共18分.) (共6题;共18分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(本大题共8小题,满分66分.) (共8题;共66分)19-1、19-2、19-3、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、。

安徽省宣城市2021版中考数学试卷B卷

安徽省宣城市2021版中考数学试卷B卷

安徽省宣城市2021版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·陕西) 已知ab<0,a>b,且|a|<|b|,则a+b是()A . 正数B . 负数C . 0D . 不确定2. (2分)如图是一个圆柱和一个长方体的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图可能是()A .B .C .D .3. (2分)函数y=自变量x的取值范围是()A . x≥1且x≠3B . x≥1C . x≠3D . x>1且x≠34. (2分) (2019九上·宁波月考) “明年的12月4日是晴天”这个事件是()A . 确定事件B . 不可能事件C . 必然事件D . 不确定事件5. (2分)方程组的解x、y满足x>y,则m的取值范围是()A . m>B . m>C . m>D . m>6. (2分)如果一组数据a1 , a2 ,…,an的方差是2,那么一组新数据2a1+1,2a2+1,…,2an+1的方差是()A . 2B . 3C . 4D . 87. (2分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A . 6B . 7C . 8D . 98. (2分) (2018八上·无锡期中) 等腰三角形的一个角是50°,则它的底角是()A . 50°B . 65°C . 80°D . 50°或65°9. (2分)不等式﹣3x+6>0的正整数解有()A . 1个B . 2个C . 3个D . 4个10. (2分)下列命题中,为假命题的是()A . 平行四边形的对角线互相平分B . 菱形的对角线互相垂直C . 矩形的对角线相等D . 平分弦的直径垂直于弦11. (2分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B ,则这个一次函数的解析式是().A . y=2x+3B . y=x-3C . y=2x-3D . y=-x+312. (2分)(2017·潮安模拟) 如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A . (sinα,sinα)B . (cosα,cosα)C . (cosα,sinα)D . (sinα,cosα)二、填空题 (共8题;共9分)13. (2分)方程x+5y+4=0,若用含有x的代数式表示y为________ 若用含有y的代数式表示x为________14. (1分)(2017·新野模拟) 不等式组的正整数解的乘积为________.15. (1分)(2019·湟中模拟) 小红、小明、小芳在一起做游戏的先后顺序.他们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是________.16. (1分) (2017八下·临沧期末) 计算:÷(x﹣)=________.17. (1分)(2017·扬州) 如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=________°.18. (1分) (2018九上·青浦期末) 已知点D、E分别在△ABC的边BA、CA的延长线上,且DE//BC,如果BC=3DE,AC=6,那么AE=________.19. (1分)(2016·昆都仑模拟) 折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5 ,tan∠EFC=,则BC=________.20. (1分)(2018·浦东模拟) 如图,已知在Rt△ABC中,∠ACB=90°,,BC=8,点D在边BC 上,将△ABC沿着过点D的一条直线翻折,使点B落在AB边上的点E处,联结CE、DE,当∠BDE=∠AEC时,则BE 的长是________.三、解答题 (共6题;共60分)21. (11分)(2018·秦皇岛模拟) 某校九年级学生在一节体育课中,选一组学生进行投篮比赛,每人投10次,汇总投进球数的情况进行统计分析,绘制了如下不完整的统计表和统计图.次数10865人数3a21(1)表中a=________;(2)请将条形统计图补充完整;(3)从小组成员中选一名学生参加校动会投篮比赛,投进10球的成员被选中的概率为多少?22. (10分)(2017·武汉模拟) 为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为36°,则平台DE的长约为多少米?(2)在距离坡角A点27米远的G处是商场主楼,小明在D点测得主楼顶部H 的仰角为30°,那么主楼GH 高约为多少米?(结果取整数,参考数据:sin36°=0.6,cos36°=0.8,tan36°=0.7, =1.7)23. (7分) (2016七上·仙游期末) 列方程解应用题情景:试根据图中的信息,解答下列问题:(1)购买6根跳绳需________元,购买12根跳绳需________元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.24. (10分)(2016·达州) 如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC 于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F.(1)求证:AE•BC=AD•AB;(2)若半圆O的直径为10,sin∠BAC= ,求AF的长.25. (10分)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=3,AC=5,求四边形AECF的面积.26. (12分)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q(1)这条抛物线的对称轴是________ ,直线PQ与x轴所夹锐角的度数是________ .(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ 的最大值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共9分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共60分)21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

2021年安徽省宣城市中考数学模拟试卷(word版含答案)

2021年安徽省宣城市中考数学模拟试卷(word版含答案)

2021年安徽省宣城市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列运算不正确的是( ) A .235a a a ⋅= B .()4312y y =C .33(2)8x x -=-D .3362x x x +=2.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示为( )A .B .C .D .3.据统计,某城市去年接待旅游人数约为89000000人,89000000这个数据用科学记数法表示为( ) A .58.910⨯B .68.910⨯C .78.910⨯D .88.910⨯4.用代数式表示“a 的2倍与b 的平方的差”,正确的是( ). A .()22a b -B .()22a b -C .22a b -D .()22a b -5.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .C .6D .96.某班班长统计去年1∼8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A .每月阅读数量的平均数是50B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月7.如图,在ABC 中,90ACB ∠=︒,15B ∠=︒,DE 垂直平分AB ,交BC 于点E ,6cm AE =,则AC =( )A .6cmB .5cmC .4cmD .3cm8.二次函数()20y ax bx c a =++≠的图象如图,给出下列四个结论:①320a b c ++<; ②234a c b ac +<-;③方程222250ax bx c ++-=没有实数根; ④()()1m am b b a m ++<≠-. 其中正确结论的个数是( ) A .4个B .3个C .2个D .1个9.已知a 、b 实数且满足(a 2+b 2)2﹣(a 2+b 2)﹣6=0,则a 2+b 2的值为( ) A .3B .﹣2C .3或﹣2D .﹣3或210.如图,矩形ABCD 中,AB =2AD =4cm ,动点P 从点A 出发,以1cm /s 的速度沿线段AB 向点B 运动,动点Q 同时从点A 出发,以2cm /s 的速度沿折线AD →DC →CB 向点B 运动,当一个点停止时另一个点也随之停止.设点P 的运动时间是x (s )时,△APQ 的面积是y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题11.已知,,m n p 为实数,若1,4x x -+均为多项式32x mx nx p +++的因式,则2286m n p --+=__________.12.如图,在Rt ABC △中,3AB =,4BC =,90ABC ∠=︒,过B 作1A B AC ⊥,过1A 作11A B BC ⊥,得阴影11Rt A B B ;再过1B 作12B A AC ⊥,过2A 作22A B BC ⊥,得阴影221Rt A B B △;…如此下去.请猜测这样得到的所有阴影三角形的面积之和为_____.13.如图,ABC ∆是⊙O 的内接三角形,且AB 是⊙O 的直径,点P 为⊙O 上的动点,且60BPC ︒∠=,⊙O 的半径为6,则点P 到AC 距离的最大值是___.14.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.三、解答题15.计算:2cos45°+(﹣12)-1+(20200+|2. 16.《九章算术》是中国传统数学重要的著作.《九章算术》中记载:“今有人共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”请列方程组解决此问题.17.在所给格点图中,画出△ABC 作下列变换后的三角形,并写出所得到的三角形三个顶点的坐标.(1)沿y 轴正方向平移2个单位后得到△A 1B 1C 1; (2)关于y 轴对称后得到△A 2B 2C 2.(3)以点B 为位似中心,放大到2倍后得到△A 3B 3C 3.18.如图所示,小亮在大楼AD 的观光电梯中的E 点测得大楼BC 楼底C 点的俯角为60°,此时他距地面的高度AE 为21米,电梯再上升9米到达D 点,此时测得大楼BC 楼顶B 点的仰角为45°,求大楼BC 的高度.(结果保留根号)19.在ABC 中,ACB 90∠=,AC BC 2==,点C 在直线m 上,m //AB ,DBE 45∠=,其中点D 、E 分别在直线AC 、m 上,将DBE ∠绕点B 旋转(点D 、E都不与点C 重合).()1当点D 在边AC 上时(如图1),设CE x =,CD y =,求y 关于x 的函数解析式,并写出定义域;()2当BCE 为等腰三角形时,求CD 的长.20.“时裳”服装店现有A 、B 、C 三种品牌的衣服和D 、E 两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子. (1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A 品牌衣服被选中的概率是多少?21.如图,以ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作DE AC ⊥.(1)求证:DE 为⊙O 的切线;(2)连接OC 交DE 于点F ,若3sin 4ABC ∠=,求OFFC的值.22.点E 是矩形ABCD 边AB 延长线上的一动点,在矩形ABCD 外作Rt △ECF ,其中∠ECF =90°,过点F 作FG ⊥BC ,交BC 的延长线于点G ,连接DF ,交CG 于点H .(1)发现:如图1,若AB =AD ,CE =CF ,猜想线段DH 与HF 的数量关系是 ; (2)探究:如图2,若AB =nAD ,CF =nCE ,则(1)中的猜想是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)拓展:在(2)的基础上,若射线FC 过AD 的三等分点,AD =3,AB =4,则直接写出线段EF 的长.23.已知,抛物线2y ax bx c =++,过()1,0A -、()3,0B 、()0,3C -,点M 为顶点.(1)求抛物线的解析式及顶点M 的坐标;(2)在抛物线的对称轴上找一点P ,使PA PC +的值最小,并求出P 的坐标; (3)若直线l 经过点C 、M 两点,且与x 轴交于点E ,判断AEC 的面积与BCM 的面积是否相等?请说明理由.参考答案1.D 【分析】结合选项分别进行同底数幂的乘法、幂的乘方和积的乘方的运算,然后选择正确选项. 【详解】解:A. 235a a a ⋅=,计算正确,故本选项错误; B. ()4312y y =,计算正确,故本选项错误;C. ()3328x x -=-,原式计算正确,故本选项错误; D. 3336=22x x x x +≠,计算错误,故本选项正确. 故选D . 【点睛】本题考查了同底数幂的乘法、幂的乘方和积的乘方等知识,掌握运算法则是解答本题的关键. 2.A 【分析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可. 【详解】解:不等式组为:3x 1284x 0->⎧⎨-≤⎩①②,解不等式①,解得:x >1, 解不等式②,解得:x≥2, 在数轴上表示为:故选:A . 【点睛】本题考查了一元一次不等式组的解法并在数轴上画图表示,正确求得不等式组中每个不等式的解集是解决问题的关键,在坐标上画图时要注意:能取到该点的值的时候,要画实心点,不取到该点值的时候,画空心点. 3.C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:89000000这个数据用科学记数法表示为8.9×107. 故选:C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.C 【分析】根据题意,列出代数式,即可. 【详解】∵a 的2倍与b 的平方的差是:22a b -, 故答案是:22a b -. 【点睛】本题主要考查用代数式表示数量关系,掌握代数式的书写规则,是解题的关键. 5.A 【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP 的长. 【详解】 连接OA ,∵PA 为⊙O 的切线, ∴∠OAP=90°, ∵∠P=30°,OB=3, ∴AO=3,则OP=6,故BP=6-3=3. 故选A . 【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键. 6.C 【分析】根据平均数的计算方法,可判断A ;根据众数的定义,可判断B ;根据中位数的定义,可判断C ;根据折线统计图中的数据,可判断D . 【详解】A. 每月阅读数量的平均数是36705842582878838+++++++ =53,故A 错误;B. 出现次数最多的是58,众数是58,故B 错误;C. 由小到大顺序排列数据28,36,42,58,58,70,78,83,中位数是58582+=58,故C 正确; D. 由折线统计图看出每月阅读量超过40天的有6个月,故D 错误; 故选C. 【点睛】此题考查折线统计图,算术平均数,中位数,众数,解题关键在于看懂图中数据. 7.D 【分析】根据线段垂直平分线的性质得到EB EA =,根据等腰三角形的性质得到15EAB B ∠=∠=︒,根据三角形的外角的性质求出30AEC ∠=︒,根据直角三角形的性质计算. 【详解】 解:DE 垂直平分AB ,EB EA ∴=,15EAB B ∴∠=∠=︒,30AEC ∴∠=︒,132AC AE ∴==(cm) , 故选:D . 【点睛】本题主要考查了线段垂直平分线的性质、等腰三角形判定和性质以及30°直角三角形的性质.掌握在直角三角形中,30角所对的直角边等于斜边的一半是解题关键. 8.B 【分析】①根据当x =1时y <0、对称轴2bx a=-及a <0可判断; ②结合①及抛物线与x 轴交点情况可判断; ③由2ax 2+2bx +2c−5=0可得ax 2+bx +c =52,根据抛物线与直线y =52交点情况判断; ④由m (am +b )+b <a 得a−b +c >am 2+bm +c ,根据函数最值可判断. 【详解】解:由图象可知,当x =1时,y <0,即a +b +c <0, ∵对称轴2bx a=-=−1,a <0, ∴b =2a <0,∴a +2a +c <0,即3a +c <0, ∴3a +b +c <0,故①正确; ∵抛物线与x 轴有两个交点, ∴b 2−4ac >0,∴3a +c <0<b 2−4ac ,故②正确; ∵2ax 2+2bx +2c−5=0, ∴ax 2+bx +c =52, 结合图象可知,不能确定抛物线y =ax 2+bx +c 与直线y =52的交点情况, 故③不正确;∵当x =m (m≠−1)时,y =am 2+bm +c ,且当x =−1时,函数y 取得最大值, ∴a−b +c >am 2+bm +c ,∴m (am +b )+b <a ,故④正确; 综上,正确结论有①②④共3个, 故选:B . 【点睛】本题考查了二次函数图象与系数的关系,关键是根据二次函数的图象获得有关信息,对要求的式子进行判断,以及二次函数与方程之间的转换.9.A【详解】设a2+b2=t,原方程化为t2﹣t﹣6=0,解得t1=3,t2=﹣2,即a2+b2=3或a2+b2=﹣2,而a2+b2≥0,所以a2+b2的值为3,故选A.10.A【分析】分Q在AD上运动、Q在CD上运动和Q在CB上运动三种情况分别列出函数解析式,据此可得.【详解】解:当点Q在线段AD上时,即0≤x≤1,y=12·AP·AQ=12(2x)x =x2,为开口朝上的抛物线;当点Q在线段DC上时,即1≤x≤3,y=12·AP·AD=12(2x)×2=2x,为一段线段,y随x的增大而增大;当点Q在线段CB上时,即3≤x≤4,y=12·AP·BQ=12(2x)×(8-2x)=-2x 2+8x,为开口朝下的抛物线;综上所述,选项A符合要求,即答案为:A.【点睛】本题主要考查动点问题的函数图象,根据题意分类讨论是解题的关键.11.100【分析】根据三次项系数为1,可设另一个因式为x k,然后建立等式,分别用k表示m,n,p的值,再代入求解即可.【详解】1,4x x -+均为多项式32x mx nx p +++的因式,且三次项系数为1∴设另一个因式为x k +则32(1)(4)()x mx nx p x x x k +++=-++整理得:3232(3)(34)4x mx nx p x k x k x k +++=+++--由此可得:3344m k n k p k =+⎧⎪=-⎨⎪=-⎩2286m n p ∴--+2(3)2(34)(4)86k k k =+----+6268486k k k =+-+++100=故答案为:100.【点睛】本题考查了多项式的因式分解、以及乘法法则,依据题意正确设立第三个因式是解题关键. 12.9641【分析】根据相似三角形的性质,相似三角形的面积比等于相似比的平方,那么阴影部分面积与空白部分面积之比为16:25,那么所有的阴影部分面积之和可求了.【详解】解:∵1A B AC ⊥,11A B BC ⊥∴∠BA 1A =∠A 1B 1B =90°,11//AB A B∴∠ABA 1=∠BA 1B 1∴111ABA BA B △∽△,则相似比为1:sin 4:5A B AB A =∠=,那么阴影部分面积与空白部分面积之比为16:25,同理可得到其他三角形之间也是这个情况,那么所有的阴影部分面积之和应等于1696342251641=⨯÷⨯=+. 故答案为:9641. 【点睛】 此题主要考查了相似三角形的判定和性质,注意整体思想在此题中的应用.13.6+【分析】过O 作OM ⊥AC 于M ,延长MO 交⊙O 于P ,则此时,点P 到AC 距离的最大,且点P 到AC 距离的最大值=PM ,解直角三角形即可得到结论.【详解】过O 作OM AC ⊥于M ,延长MO 交⊙O 于P ,则此时,点P 到AC 距离的最大,且点P 到AC 距离的最大值PM =,∵OM AC ⊥,60A BPC ︒∠=∠=,⊙O 的半径为6,∴6OP OA ==,∴6OM ===∴6PM OP OM =+=+,∴则点P 到AC 距离的最大值是6+,故答案为6+.【点睛】本题考查了三角形的外接圆与外心,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0,(a+b )2的第三项的系数为:1,(a+b )3的第三项的系数为:3=1+2,(a+b )4的第三项的系数为:6=1+2+3,…∴发现(1+x )3的第三项系数为:3=1+2;(1+x )4的第三项系数为6=1+2+3;(1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高. 15.1【分析】根据题意直接利用零指数幂的性质以及绝对值的性质和负整数指数幂的性质、特殊角的三角函数值分别化简即可得出答案.【详解】解:2cos45°+(﹣12)-1+(20200+|2=2×2﹣2+1+22+1+2=1.本题考查含特殊三角函数的实数运算,熟练掌握零指数幂的性质以及绝对值的性质和负整数指数幂的性质、特殊角的三角函数值是解题的关键.16.人数为7人,鸡的价钱为53钱.【分析】设人数有x人,鸡的价钱是y钱,根据等量关系“鸡的价钱=8×买鸡人数﹣3;鸡的价钱=7×买鸡人数+4”即可列出方程组,解方程组即可求出结果.【详解】解:设人数有x人,鸡的价钱是y钱,由题意得:8374y xy x=-⎧⎨=+⎩,解方程组得:753xy=⎧⎨=⎩.答:人数为7人,鸡的价钱为53钱.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.17.(1)见解析;A1(0,0),B1(3,1),C1(2,3);(2)见解析;A2(0,﹣2),B2(﹣3,﹣1),C2(﹣2,1);(3)见解析,A3(﹣3,﹣3),B2(3,﹣1),C2(1,3).【分析】(1)将三角形的三点沿y轴正向平移2个单位,即是向上平移两个单位后得到新点,顺次连接得到新图;(2)分别将A,B,C向y轴作垂线,找对应点,顺次连接得到新图形;(3)延长BC、BA,并使其到点B的距离是他们的二倍,找到对应点A3,C3,然后顺次连接,即可得到新图.【详解】解:(1)如图所示,△A1B1C1即为所求;A1(0,0),B1(3,1),C1(2,3);(2)如图所示,△AB2C2即为所求;A2(0,﹣2),B2(﹣3,﹣1),C2(﹣2,1);(3)如图所示,△AB2C2即为所求;A3(﹣3,﹣3),B2(3,﹣1),C2(1,3).【点睛】本题主要考查了平移,轴对称,位似放大变换作图.注意:位似图形的对应点到位似中心的距离之比等于相似比.18.30【分析】过D作DH⊥BC于H,过E作EG⊥BC于G.求出EG和DH的长,在Rt△BDH中,求出BH,则可得出答案.【详解】解:过D作DH⊥BC于H,过E作EG⊥BC于G.由已知得,∠BDH =45°,∠CEG =60°,AE =21米,DE =9米.在Rt △CEG 中,CG =AE =21米,tan ∠CEG =CG EG,∴EG ==tan 603CG .∴DH =EG =在Rt △BDH 中,∵∠BDH =45°,∴BH =DH =∴BC =CG +HG +BH =CG +DE +BH =21+9+30+答:大楼BC 的高度是(30+【点睛】本题考查解直角三角形的应用−仰角俯角问题,借助仰角构造直角三角形并解直角三角形是解此题的关键.19.(1)y 2x =<<;(2)当BCE 为等腰三角形时,CD 的长为2或2或2.【分析】(1)证明△ADB ∽△CEB ,通过比例式找到y 与x 的关系;(2)分情况讨论,①当BE=CE 时,C 、D 重合,不符合题意,舍去;②当BC=BE 时,如图1;③当BC=CE 时,有两种图形(如图2、3).画出对应图形后,根据等腰三角形的性质,求出底角度数,再转化为边之间的关系即可求解.【详解】解:()1m//AB ,ECB CBA 45∠∠∴==.A ECB 45∠∠∴==.DBA 45CBD ∠∠=-,EBC 45CBD ∠∠=-,DBA EBC ∠∠∴=.ADB ∴∽CEB .AD AB CE BC ∴=,即2y x -=.y 2x ∴=<<;()2①当BE CE =时,C 、D 重合,不符合题意,舍去;②当BC BE =时,如图1,ECB 45∠=,CEB 45∠∴=,CBE 90∠∴=.则CBD 90DBE 45∠∠=-=.ABD 454590∠∴=+=.A 45∠=,ABD ∴是等腰直角三角形.AD 4∴=,CD 422∴=-=;③当BC CE =时,Ⅰ.如图2,ECB 45∠=,CBE 67.5∠∴=.ABD CBE 67.5∠∠∴==.ADB 1804567.567.5∠∴=--=.ABD ADB ∠∠∴=,AD AB ∴==CD 2∴=;Ⅱ.如图3,则BCE 135∠=,CBE 22.5∠∴=.ABD 22.5∠∴=,CAB 45∠=,ADB 4522.522.5∠∴=-=.AD AB ∴==CD 2∴=.所以当BCE 为等腰三角形时,CD 的长为2或2或2.【点睛】本题主要考查相似三角形的判定和性质、等腰三角形的判定和性质,还考查了分类讨论思想,解题的关键是画出对应图形进行求解.20.(1)见解析; (2)A 品牌衣服被选中的概率是13. 【分析】(1)根据已知利用树状图列举出所有可能即可;(2)根据(1)中树状图,即可得出A 品牌衣服被选中的概率.【详解】解:(1)画树状图得: ;(2)∵共6种选购方案,其中A 品牌衣服被选中的方案有2种,∴A 品牌衣服被选中的概率是21=63. 21.(1)见解析;(2)87. 【分析】 (1)连接OD ,根据三角形的中位线定理可求出//OD AC ,根据切线的性质可证明DE OD ⊥,进而得证.(2)连接AD .根据圆周角定理得到90ADB ADC ∠=∠=︒.故设3AD x =,则4AB AC x ==,2OD x =.根据相似三角形的性质得到94=AE x .74=EC x ,于是由OF OD FC EC=即可得到结论. 【详解】(1)证明:如图,连接OD .O 为AB 中点,D 为BC 中点,//OD AC ∴.DE AC ⊥,DE OD ∴⊥,即DE 是O 的切线;(2)解:如图,连接AD .//OD AC ,∴EFC DFO , ∴OF OD FC EC=. AB 为O 的直径,90ADB ADC ∴∠=∠=︒.又D 为BC 的中点,AB AC ∴=.3sin 4AD ABC AB ∠==, 故设3AD x =,则4AB AC x ==,2OD x =.DE AC ⊥,90ADC AED ∴∠=∠=︒.DAC EAD ∠=∠,ADC AED ∴∽. ∴AD AC AE AD=, 2AD AE AC ∴=⋅.即2(3)(4)x AE x =⋅94AE x ∴=. 74EC x ∴=, ∴28774OF OD x FC EC x ===. 【点睛】本题考查了切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用直径构造直角三角形解决有关问题.22.(1)DH =HF ;(2)DH =HF 仍然成立,理由见解析;【分析】(1)证明()GCF BEC AAS ∆∆≌,得BC GF =,则CD GF =,则证()HCD HGF ASA ∆∆≌,得出DH HF =即可;(2)证FCG CEB ∆∆∽,则GF FC n BC CE ==,由矩形的性质得出CD n BC=,证()HCD HGF ASA ∆∆≌,即可得出DH HF =;(3)根据矩形的性质和已知得43AB n AD ==,则43CE CF =,分两种情况,根据勾股定理和平行线的性质进行解答即可.【详解】解:(1)DH HF =,理由如下:∵四边形ABCD 是矩形,AB AD =,∴四边形ABCD 是正方形,∴BC CD =,90ABC EBC BCD ∠=∠=∠=︒,∵FG BC ⊥,90ECF ∠=︒,∴//CD GF ,90CGF ECF EBC ∠=∠=∠=︒,∴+90GCF BCE ∠∠=︒,∵+90BCE BEC ∠∠=︒,∴=GCF BEC ∠∠,在GCF ∆和BEC ∆中,==GCF BEC CGF EBC CF CE ∠∠⎧⎪∠∠⎨⎪=⎩,∴()GCF BEC AAS ∆∆≌,∴BC GF =,∴CD GF =,//CD GF∴=HDC HFG ∠∠,=HCD HGF ∠∠,在HCD ∆和HGF ∆中,==HDC HFG CD GFHCD HGF ∠∠⎧⎪=⎨⎪∠∠⎩, ∴()HCD HGF ASA ∆∆≌,∴DH HF =,故答案为DH HF =,(2) DH HF =仍然成立,理由如下:∵四边形ABCD 是矩形,FG BC ⊥,90ECF ∠=︒,∴90CGF ECF EBC ∠=∠=∠=︒∴+90FCG BCE ∠∠=︒,∵+90BCE CEB ∠∠=︒,∴=FCG CEB ∠∠,∴FCGCEB ∆∆, ∴GF FC n BC CE==, ∴四边形ABCD 是矩形,AB nAD =, ∴CD n BC=, ∴GF CD BC BC =, ∴GF CD =,∵四边形ABCD 是矩形,∴CD BC ⊥,∵FG BC ⊥,∴//CD FG ,∴HDC HFG ∠=∠,HCD HGF ∠=∠,在HCD ∆和HGF ∆中,==HDC HFG CD GFHCD HGF ∠∠⎧⎪=⎨⎪∠∠⎩, ∴()HCD HGF ASA ∆∆≌,∴DH HF =,(3)如图所示,延长FC 交AD 于R ,∵四边形ABCD 是矩形,∴4AB CD ==,3AD BC ==,90RDC ∠=︒,//RD CH ,∵AB nAD =,CF nCE =, ∴43AB n AD ==, ∴43CF CE =, 分两种情况:①当13AR AD =时, ∵3AD =,∴1AR =,2DR =,在Rt CDR ∆中,由勾股定理得:CR ===∵//RD CH ,DH HF =,∴RC CF ==,∴34CE =⨯=由勾股定理得:EF == ②当13DR AD =时,同理可得:1DR =,4DC =,CF RC ==∴ CE =, 由勾股定理得:∴ 4EF ===, 综上所说,若射线FC 过AD 的三等分点,3AD =,4AB =,则线段EF 的长为2 【点睛】本题主要考查了正方形的判定与性质、矩形的性质、平行线的性质、全等三角形的判定与性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握平行线的性质和相似三角形的判定与性质是解题的关键.23.(1)223y x x =--,()1,4M -;(2)P 点坐标为()1,2-;(3)相等,理由见解析【分析】(1)利用待定系数法即可求出二次函数的解析式,再化为顶点式即可求出顶点坐标;(2)连接BC 交直线x=1于P 点,利用两点之间线段最短得到此时PA+PC 的值最小,再利用待定系数法求出直线BC 的解析式为y=x-3,计算 x=1对应的函数值得到P 点坐标; (3)先配方得到M (1,-4),再利用待定系数法求出直线CM 的解析式为y=-x-3,则可确定 E (-3,0),然后分别计算出AEC S和BCM S △,从而可判断△AEC 的面积与△BCM 的面积是否相等.【详解】解:(1)抛物线过()1,0A -,()3,0B ,()0,3C -代入解析式得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩解得123a b c =⎧⎪=-⎨⎪=-⎩,∴抛物线的解析式为:223y x x =--∵()222314y x x x =--=--,∴顶点坐标为:()1,4M -(2)抛物线的对称轴为直线1x =,点A 与点B 关于直线1x =对称,连接BC 交直线1x =于P 点,则PA PB =,∵PA PC PB PC BC +=+=,∴此时PA PC +的值最小,设直线BC 的解析式为y mx n =+,把()3,0B ,()0,3C -代入得303m n n +=⎧⎨=-⎩,解得13m n =⎧⎨=-⎩, ∴直线BC 的解析式为3y x =-,当1x =时,32y x =-=-,则满足条件的P 点坐标为()1,2-;(3)AEC 的面积与BCM 的面积相等.理由如下:∵()1,4M -,设直线CM 的解析式为y px q =+,把()1,4M -,()0,3C -代入得43p q q +=-⎧⎨=-⎩, 解得13p q =-⎧⎨=-⎩, ∴直线CM 的解析式为3y x =--,当0y =时,30x --=,解得3x =,则()3,0E -, ∴()113332ACE S =⨯-+⨯=△,()124332BCM S =⨯-+⨯=△, ∴AEC 的面积与BCM 的面积相等.【点睛】本题考查了抛物线与x 轴的交点∶把求二次函数2y ax bx c =++(a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和最短路径问题.。

安徽省宣城市2021版中考数学试卷A卷

安徽省宣城市2021版中考数学试卷A卷

安徽省宣城市2021版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知x=4,|y|=5且x>y,则2x﹣y的值为()A . 13B . 3C . 13或3D . ﹣13或﹣32. (2分)(2017·石家庄模拟) 如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A .B .C .D .3. (2分) (2018七上·唐河期末) 今年我国粮食生产首次实现了建国以来的“十连增”,全年粮食产量突破12000亿斤.将1 200 000 000 000用科学记数法表示为()A . 12×1011B . 1.2×1011C . 1.2×1012D . 0.12×10134. (2分)计算a2+3a2的结果是()A . 3a2B . 4a2C . 3a4D . 4a45. (2分)(2017·兰山模拟) 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A .B .C .D .6. (2分)若分式,则分式的值等于()A . ;B . ;C . ;D . .7. (2分)如图,以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆半径为10cm,小圆半径为6cm,则弦AB的长为()A . 2cmB . 4cmC . 8cmD . 16cm8. (2分)一个数的平方与这个数的3倍相等,则这个数为()A . 0B . 3C . 0或3D .9. (2分) (2016九上·连城期中) 如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A . 30°B . 45°C . 60°D . 75°10. (2分)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于()A . 20°B . 25°C . 40°D . 50°二、填空题 (共6题;共6分)11. (1分)分解因式:x2﹣9=________ .12. (1分) (2019七下·临洮期中) 如图,矩形ABCD中,AB=3cm,BC=4cm,则图中四个小矩形的周长之和为________.13. (1分)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是________°14. (1分)有四张扑克牌,分别为红桃3,红桃4,红桃5,黑桃6,背面朝上洗匀后放在桌面上,从中任取一张后记下数字和颜色,再背面朝上洗匀,然后再从中随机取一张,两次都为红桃,并且数字之和不小于8的概率为________ .15. (1分)在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是________.16. (1分) (2019八下·杭州期末) 一运动员推铅球,铅球经过的路线为如图所示的抛物线,则铅球所经过的路线的函数表达式为________三、解答题 (共8题;共73分)17. (5分)(2020·苏州模拟) 计算: .18. (5分) (2019八下·朝阳期中) 解方程:19. (7分)(2013·河南) 如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG 以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为________s时,四边形ACFE是菱形;②当t为________s时,以A、F、C、E为顶点的四边形是直角梯形.20. (5分) (2016九上·海门期末) “科学”号是我国目前最先进的海洋科学综合考察船,它在南海利用探测仪在海面下方探测到点C处有古代沉船.如图,海面上两探测点A,B相距1400米,探测线与海面的夹角分别是30°和60°.试确定古代沉船所在点C的深度.(结果精确到1米,参考数据:≈1.414,≈1.732)21. (15分)小明从家里出发到超市买东西,再回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示.请你根据图象回答下列问题:(1)小明家离超市的距离是多少千米;(2)小明在超市买东西时间为多少小时;(3)小明去超市时的速度是多少千米/小时.22. (15分) (2016九上·无锡期末) 为了解学生参加户外活动的情况,某校对初三学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)将条形统计图补画完整.(2)求每天参加户外活动时间达到2小时的学生所占调查学生的百分比.(3)这批参加调查的初三学生参加户外活动的平均时间是多少.23. (10分)(2017·玉环模拟) 已知△ABE中,∠BAE=90°,以AB为直径作⊙O,与BE边相交于点C,过点C作⊙O的切线CD,交AE于点D.(1)求证:D是AE的中点;(2)求证:AE2=EC•EB.24. (11分)(2019·石家庄模拟) 如图9,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴的正半轴上,OA=6,点B在直线y= x上,直线l:y=kx+ 与折线AB-BC有公共点。

2021年安徽省宣城市中考数学一调试卷(Word版 含解析)

2021年安徽省宣城市中考数学一调试卷(Word版 含解析)

2021年安徽省宣城市中考数学一调试卷一、选择题(每题4分)1.下列运算正确的是()A.a2•a3=a6B.(﹣a)4=a4C.a2+a3=a5D.(a2)3=a5 2.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.3.根据安徽省公布的十三五铁路建设规划,到2021年,全省铁路建设总投资4370亿元.其中4370亿用科学记数法表示为()A.4.37×103B.43.7×1010C.4.37×1011D.0.437×1012 4.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣10%)(1+15%)万元C.(a﹣10%+15%)万元D.a(1﹣10%+15%)万元5.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于()A.27°B.32°C.36°D.54°6.某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是()A.众数是9B.中位数是9C.平均数是9D.锻炼时间不低于9小时的有14人7.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是()A.2B.2C.4D.48.如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面五条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0;(5)abc>0.你认为其中错误的有()A.1个B.2个C.3个D.4个9.(m2+n2)(m2+n2﹣2)﹣8=0,则m2+n2=()A.4B.2C.4或﹣2D.4或210.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.二、填空题(每小题5分)11.分解因式:a2﹣b2﹣2b﹣1=.12.如图,在△ABC中,DE∥AB,CD:DA=2:3,DE=4,则AB的长为•13.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.14.我国南宋数学家杨辉所著的《详解九章算术》书中辑录了一个三角形数表,称之为“开方作法本源”图,即是著名的“杨辉三角形”.以下数表的构造思路源于“杨辉三角形”:该表由若干行数字组成,从第二行起,每一行中的数字均等于“其肩上”两数之和,表中最后一行仅有一个数,则这个数为.三、(共2小题,每小题8分,满分16分)15.计算:2cos60°+(﹣)0+(tan45°)﹣1+.16.我国明代数学家程大位的名著《直接算法统亲》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?“意思是:有100个和尚分100个馒头,正好分完:如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2.(1)先作△ABC关于直线l成轴对称的图形,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换,且放大到原来的两倍,得到△A2B2C2,并求出△A2B2C2的面积.18.如图,佛山电视塔离小明家60米,小明从自家的阳台眺望电视塔,并测得塔尖C的仰角是45°,而塔底部D的俯角是31°,求佛山电视塔CD的高度(tan31°=0.600,结果精确到1米)五、(本大题共2小题,每小题10分,满分20分)19.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.20.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?六、(本题满分12分)21.如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点的⊙O交AB于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.(1)求证:BC是⊙O的切线.(2)若sin∠EFA=,AF=5,求线段AC的长.七、(本题满分12分)22.如图1,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,E为AC上一点,点G在BE上,连接DG并延长交AE于点F,且∠EGD=135°.(1)求证:△BGD∽△BCE;(2)求证:∠AGB=90°;(3)如图2,连接DE,若AB=10,AG=2,判断△CDE是否为特殊三角形,并说明理由.八、(本题满分14分)23.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y =x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.参考答案一、选择题(共10小题).1.下列运算正确的是()A.a2•a3=a6B.(﹣a)4=a4C.a2+a3=a5D.(a2)3=a5解:A、应为a2•a3=a5,故本选项错误;B、(﹣a)4=a4,正确;C、a2和a3不是同类项不能合并,故本选项错误;D、应为(a2)3=a2×3=a6,故本选项错误.故选:B.2.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.解:由x﹣3>0,得x>3,由x+1≥0,得x≥﹣1.不等式组的解集是x>3,故选:C.3.根据安徽省公布的十三五铁路建设规划,到2021年,全省铁路建设总投资4370亿元.其中4370亿用科学记数法表示为()A.4.37×103B.43.7×1010C.4.37×1011D.0.437×1012解:4370亿=437000000000=4.37×1011.故选:C.4.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣10%)(1+15%)万元C.(a﹣10%+15%)万元D.a(1﹣10%+15%)万元解:3月份的产值是a万元,则:4月份的产值是(1﹣10%)a万元,5月份的产值是(1+15%)(1﹣10%)a万元,故选:B.5.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于()A.27°B.32°C.36°D.54°解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=27°.故选:A.6.某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是()A.众数是9B.中位数是9C.平均数是9D.锻炼时间不低于9小时的有14人解:由图可知,锻炼9小时的有18人,所以9在这组数中出现18次为最多,所以众数是9.把数据从小到大排列,中位数是第23位数,第23位是9,所以中位数是9.平均数是(7×5+8×8+9×18+10×10+11×4)÷45=9,所以平均数是9.锻炼时间不低于9小时的有18+10+4=32,故D错误.故选:D.7.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是()A.2B.2C.4D.4解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在Rt△BCD中,由勾股定理得:CB=,在Rt△ABC中,由勾股定理得:AC==2,故选:B.8.如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面五条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0;(5)abc>0.你认为其中错误的有()A.1个B.2个C.3个D.4个解:(1)根据图示知,该函数图象与x轴有两个交点,∴△=b2﹣4ac>0;故本选项正确;(2)由图象知,该函数图象与y轴的交点在点(0,1)上,∴c=1;故本选项错误;(3)由图示,知对称轴x=﹣>﹣1;又函数图象的开口方向向下,∴a<0,∴﹣b<﹣2a,即2a﹣b<0,故本选项正确;(4)根据图示可知,当x=1,即y=a+b+c<0,∴a+b+c<0;故本选项正确;(5)∵函数图象的开口方向向下,∴a<0,∵由图象知,该函数图象与y轴的交点在点(0,1)上,∴c>0,∵对称轴x=﹣<0,∴b<0∴abc>0.故本选项正确;综上所述,其中错误的是(2),共有1个;故选:A.9.(m2+n2)(m2+n2﹣2)﹣8=0,则m2+n2=()A.4B.2C.4或﹣2D.4或2解:设m2+n2=t(t≥0),由原方程,得t(t﹣2)﹣8=0,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),所以m2+n2=4.故选:A.10.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.解:∵A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,∴AO=2,OP=x,则AP=2﹣x,∴tan60°==,解得:AB=(2﹣x)=﹣x+2,∴S△ABP=×PA×AB=(2﹣x)••(﹣x+2)=x2﹣2x+2,故此函数为二次函数,∵a=>0,∴当x=﹣=2时,S取到最小值为:=0,根据图象得出只有D符合要求.故选:D.二、填空题(每小题5分,满分20分)11.分解因式:a2﹣b2﹣2b﹣1=(a+b+1)(a﹣b﹣1).解:a2﹣b2﹣2b﹣1=a2﹣(b2+2b+1)=a2﹣(b+1)2=(a+b+1)(a﹣b﹣1).故答案为:(a+b+1)(a﹣b﹣1).12.如图,在△ABC中,DE∥AB,CD:DA=2:3,DE=4,则AB的长为10•解:∵DE∥AB∴△CDE∽△CAB∴=又∵CD:DA=2:3,∴=∴=解得:AB=•DE=10故答案是:10.13.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=2.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.14.我国南宋数学家杨辉所著的《详解九章算术》书中辑录了一个三角形数表,称之为“开方作法本源”图,即是著名的“杨辉三角形”.以下数表的构造思路源于“杨辉三角形”:该表由若干行数字组成,从第二行起,每一行中的数字均等于“其肩上”两数之和,表中最后一行仅有一个数,则这个数为2019×22016.解:由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2017行公差为22016,故第1行的第一个数为:2×2﹣1,第2行的第一个数为:3×2°,第3行的第一个数为:4×21,第n行的第一个数为:(n+1)×22﹣2,第2018行只有M,则M=(1+2018)•22016=2019×22016.故答案为:2019×22016.三、(本大题共2小题,每小题8分,满分16分)15.计算:2cos60°+(﹣)0+(tan45°)﹣1+.解:原式=2×+1+1﹣2=1+1+1﹣2=1.16.我国明代数学家程大位的名著《直接算法统亲》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?“意思是:有100个和尚分100个馒头,正好分完:如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?解:设大和尚有x人,小和尚有y人,依题意得:,解得.答:大和尚有25人,小和尚有75人.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2.(1)先作△ABC关于直线l成轴对称的图形,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换,且放大到原来的两倍,得到△A2B2C2,并求出△A2B2C2的面积.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,△A2B2C2的面积为:4×6﹣×2×6﹣×2×4﹣×2×4=24﹣6﹣4﹣4=10.18.如图,佛山电视塔离小明家60米,小明从自家的阳台眺望电视塔,并测得塔尖C的仰角是45°,而塔底部D的俯角是31°,求佛山电视塔CD的高度(tan31°=0.600,结果精确到1米)解:如图,四边形ABDE是矩形,△ACE是等腰直角三角形,得到CE=AE=BD=60.在Rt△ACE中,,得DE=AE•tan31°=60×0.600=36.0CD=CE+DE=60+36.0=96(米)答:电视塔的高度CD约为96米.五、(本大题共2小题,每小题10分,满分20分)19.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CF;(2)解:∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=﹣1.20.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?解:(1)共有六种情况:A1、A2、A3,A2、A1、A3,A3、A1、A2,A1、A3、A2,A2、A3、A1,A3、A2、A1;(2)孙明买到A1的情况有两种:A1、A2、A3;A1、A3、A2,因此孙明买到A1概率为:P==,王军买到A1的情况有三种:A2、A1、A3,A2、A3、A1,A3、A1、A2,因此王军买到A1概率为:P==.因此,王军买到A1的可能性大.六、(本题满分12分)21.如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点的⊙O交AB于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.(1)求证:BC是⊙O的切线.(2)若sin∠EFA=,AF=5,求线段AC的长.【解答】证明:(1)连接OE,∵OE=OA,∴∠OEA=∠OAE,∵AE平分∠BAC,∴∠OAE=∠CAE,∴∠CAE=∠OEA,∴OE∥AC,∴∠BEO=∠C=90°,∴BC是⊙O的切线;(2)过A作AH⊥EF于H,Rt△AHF中,sin∠EFA=,∵AF=5,∴AH=4,∵AD是⊙O的直径,∴∠AED=90°,∵EF平分∠AED,∴∠AEF=45°,∴△AEH是等腰直角三角形,∴AE=AH=8,∵sin∠EFA=sin∠ADE==,∴AD=10,∵∠DAE=∠EAC,∠DEA=∠ECA=90°,∴△AED∽△ACE,∴,∴,∴AC=6.4.七、(本题满分12分)22.如图1,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,E为AC上一点,点G在BE上,连接DG并延长交AE于点F,且∠EGD=135°.(1)求证:△BGD∽△BCE;(2)求证:∠AGB=90°;(3)如图2,连接DE,若AB=10,AG=2,判断△CDE是否为特殊三角形,并说明理由.【解答】(1)证明:在等腰直角三角形ABC中,∠C=45°,∵∠EGD=135°,∴∠BGD=45°∴∠BGD=∠C,∠DBG=∠EBC,∴△BGD∽△BCE.(2)由(1)知△BGD∽△BCE.∴∠BEC=∠BDG.∵∠BEC=∠BAC+∠ABE=90°+∠ABE,∠BDG=90°+∠ADG,∴∠ABE=∠ADG.∴A、B、D、G四点共圆,∴∠AGB=∠ADB=90°.(3)△CDE的等腰直角三角形,理由如下:在直角三角形ABG中,,∴.由射影定理可知:AG2=BG•GE.则有:,AE2=GE•BE.则有:,CE=AC﹣AE=10﹣5=5.故点E是AC的中点.又∵AB=AC,AD⊥BC,∴点D是BC的中点,∴DE是△ABC的中位线,∴DE∥AB,∴△CDE∽△CBA,∵△ABC是等腰直角三角形,∴△CDE的等腰直角三角形.八、(本题满分14分)23.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y =x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.解:(1)把x=0代y=x﹣2得y=﹣2,∴C(0,﹣2).把y=0代y=x﹣2得x=4,∴B(4,0),设抛物线的解析式为y=(x﹣4)(x﹣m),将C(0,﹣2)代入得:2m=﹣2,解得:m=﹣1,∴A(﹣1,0).∴抛物线的解析式y=(x﹣4)(x+1),即y=x2﹣x﹣2.(2)如图所示:过点D作DF⊥x轴,交BC与点F.设D(x,x2﹣x﹣2),则F(x,x﹣2),DF=(x﹣2)﹣(x2﹣x﹣2)=﹣x2+2x.∴S△BCD=OB•DF=×4×(﹣x2+2x)=﹣x2+4x=﹣(x2﹣4x+4﹣4)=﹣(x﹣2)2+4.∴当x=2时,S有最大值,最大值为4.(3)如图所示:过点D作DR⊥y垂足为R,DR交BC与点G.∵A(﹣1,0),B(4,0),C(0,﹣2),∴AC=,BC=2,AB=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.取AB的中点E,连接CE,则CE=BE,∴∠OEC=2∠ABC.∴tan∠OEC==.当∠MCD=2∠ABC时,则tan∠CDR=tan∠ABC=.设D(x,x2﹣x﹣2),则DR=x,CR=﹣x2+x.∴=,解得:x=0(舍去)或x=2.∴点D的横坐标为2.当∠CDM=2∠ABC时,设MD=3k,CM=4k,CD=5k.∵tan∠MGD=,∴GM=6k,GD=3k,∴GC=MG﹣CM=2k,∴GR=k,CR=k.∴RD=3k﹣k=k.∴==,整理得:﹣x2+x=0,解得:x=0(舍去)或x =.∴点D的横坐标为.综上所述,当点D的横坐标为2或.。

安徽省宣城市2021年中考数学试卷(II)卷

安徽省宣城市2021年中考数学试卷(II)卷

安徽省宣城市2021年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)一个数的相反数等于它本身,这样的数一共有()A . 1个B . 2个C . 3个D . 4个2. (2分)2cos60°的值是()A .B .C .D . 13. (2分)把多项式1﹣x2+2xy﹣y2分解因式的结果是()A . (1﹣x﹣y)(1+x﹣y)B . (1+x﹣y)(1﹣x+y)C . (1﹣x﹣y)(1﹣x+y)D . (1+x﹣y)(1+x+y)4. (2分)(2016·南岗模拟) 如图,已知经过原点的直线AB与反比例函数y= (k≠0)图象分别相交于点A和点B,过点A作AC⊥x轴于点C,若△ABC的面积为4,则k的值为()A . 2B . 4C . 6D . 85. (2分) (2015九上·重庆期末) 以下调查方式中,不合适的是()A . 浙江卫视“奔跑吧兄弟”综艺节目的收视率,采用抽查的方式B . 了解某渔场中青鱼的平均重量,采用抽查的方式C . 了解iPhone6s手机的使用寿命,采用普查的方式D . 了解一批汽车的刹车性能,采用普查的方式6. (2分)若一个多边形的每一个外角都是30°,则这个多边形的内角和等于()A . 1440°B . 1620°C . 1800°D . 1980°7. (2分)如图,圆锥形冰淇淋的母线长是13cm,高是12cm,则它的侧面积是()A . 10πcm2B . 25πcm2C . 60πcm2D . 65πcm28. (2分)(2017·青浦模拟) 如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1:2,那么S△AOD:S△BOC是()A . 1:3B . 1:4C . 1:5D . 1:69. (2分)设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程2x2−2 x+m−1=0有实数根,则直线l与⊙O的位置关系为()A . 相离或相切B . 相切或相交C . 相离或相交D . 无法确定10. (2分)(2017·随州) 如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共9分)11. (1分)若一个数的立方根与它的算术平方根相同,则这个数是________.12. (1分)(2014·无锡) 据国网江苏电力公司分析,我省预计今夏统调最高用电负荷将达到86000000千瓦,这个数据用科学记数法可表示为________千瓦.13. (1分)已知a+b=2,b≤2,y﹣a2﹣2a+2=0.则y的取值范围是________14. (1分)(2017·薛城模拟) 对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3= =﹣.则方程x⊗(﹣2)= ﹣1的解是________.15. (2分) (2018九上·湖州期中) 如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N.如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线.请你写出一对姐妹抛物线C1和C2 ,使四边形ANBM恰好是矩形.你所写的一对抛物线解析式是________和________.16. (1分)(2019·五华模拟) 如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC 顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为________.17. (1分)如图,已知三角形ABC的面积为12,将三角形ABC沿BC平移到三角形A′B′C′,使B′和C 重合,连接AC′交A′C于D,D是A′C的中点,则三角形C′DC的面积为________.18. (1分)如图,把△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于D点.若∠A′DC=90°,则∠A=________度.三、解答题 (共10题;共98分)19. (10分)计算:(1)(π﹣3.14)0﹣|﹣3|+()﹣1+(﹣1)2016(2)÷ .20. (10分) (2018八上·嵊州期末)(1)解不等式组:(2)解方程:2x2﹣4x﹣3=0.21. (5分)求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证,再写出证明过程).22. (5分)从甲学校到乙学校有A1、A2、A3三条线路,从乙学校到丙学校有B1、B2二条线路.(1)利用树状图或列表的方法表示从甲学校到丙学校的线路中所有可能出现的结果;(2)小张任意走了一条从甲学校到丙学校的线路,求小张恰好经过了B1线路的概率是多少?23. (8分)(2018·眉山) 为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球、排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.请根据图表中提供的信息,解答下列问题:(1)图表中m=________,n=________;(2)若该校学生共有1000人,则该校参加羽毛球活动的人数约为________人;(3)该班参加乒乓球活动的4位同学中,有3位男同学(分别用A,B,C表示)和1位女同学(用D表示),现准备从中选出两名同学参加双打比赛,用树状图或列表法求出恰好选出一男一女的概率.24. (15分) (2016九上·萧山期中) 如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求二次函数的解析式;(2)求点B、点C的坐标;(3)该二次函数图象上有一动点D(x,y),使S△ABD=S△ABC,求点D的坐标.25. (10分) (2015七上·宜春期末) 某厂生产一种计算器,其成本价为每只36元,现有两种销售方式:第一种是直接由厂门市部销售,每只售价为48元,但需要每月支出固定费用6480元(固定费用指门市部的房租等);第二种是批发给文化用品商店销售,批发价每只42元;又知两种方式均需缴纳的税款为销售金额的10%.(1)求该厂每月销售出多少只计算器时,两种方式所获利润相等;(2)该厂今年六月份计划销售这种计算器1500只,问应选用哪种销售方式才能使所获利润最大?(利润=售价﹣税款﹣进价)26. (15分)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)27. (10分) (2017七上·常州期中) 2010年8月7日夜22点左右,甘肃舟曲发生特大山洪泥石流灾害,甘肃消防总队迅即出动兵力驰援灾区.在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+10,﹣5.(1)救灾过程中,B地离出发点A有多远?B地在A地什么方向?(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?28. (10分)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8,①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共98分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、28-1、。

宣城市2021版数学中考一模试卷A卷

宣城市2021版数学中考一模试卷A卷

宣城市2021版数学中考一模试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·南京期末) 若,则的取值范围是()A .B .C .D .2. (2分) (2017七下·自贡期末) 如图,数轴上点P表示的数可能是()A .B .C . ﹣3.8D .3. (2分) (2018七上·东台月考) 下面所画数轴正确的是()A .B .C .D .4. (2分)(2018·东营) 在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A . m<﹣1B . m>2C . ﹣1<m<2D . m>﹣15. (2分)(2019·越城模拟) 某运动鞋经销商到某校三(2)班抽样选取9位学生,分别对他们的鞋码进行了查询,记录下的数据是:24,22,21,24,23,20,24,23,24.经销商对这组数据最感兴趣的是()A . 中位数B . 众数C . 平均数D . 方差6. (2分)(2019·越城模拟) 如图,在△ABC中,∠ACB=90°,CD是AB边上的高.如果BD=4,CD=6,那么BC:AC是()A . 3:2B . 2:3C .D . .7. (2分)(2018·河北模拟) 如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA等于()A . 30°B . 36°C . 45°D . 32°8. (2分)(2019·越城模拟) 二次函数y=x2+bx+c的图象沿x轴向左平移2个单位,再沿y轴向上平移3个单位,得到的图象的函数解析式为y=x2﹣2x+1,则b+c的值为()A . 16B . 6C . 0D . ﹣129. (2分)(2019·越城模拟) 10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q 是边XY一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A .B .C .D .10. (2分)(2019·越城模拟) 如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且,,所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是()A . 甲车在立交桥上共行驶8sB . 从F口出比从G口出多行驶40mC . 甲车从F口出,乙车从G口出D . 立交桥总长为150m二、填空题 (共6题;共6分)11. (1分) (2020七下·温州期中) 写一个以为解的二元一次方程组 ________.12. (1分) (2018九上·新野期中) 已知一次函数y=kx+b的大致图象,则关于x的一元二次方程x2-2x+kb+1=0的根的情况是________.13. (1分)(2019·越城模拟) △ABC的顶点都在方格纸的格点上,则sinA=________.14. (1分)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B 的位置,则的长为________.15. (1分)(2019·越城模拟) 如图1,则等边三角形ABC中,点P为BC边上的任意一点,且∠AP D=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC 的面积为________.16. (1分)(2019·越城模拟) 如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为________.三、解答题 (共8题;共93分)17. (10分)计算(1) 36﹣76+(﹣23)﹣105;(2) |﹣21.76|﹣7.26+ ﹣3.18. (11分)(2019·越城模拟) 为了取得扶贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为四个不同的等级,绘制成不完整统计图如下图,请根据图中的信息,解答下列问题;(1)求样本容量;(2)补全条形图________,并填空: ________;(3)若全市有5000人参加了本次测试,估计本次测试成绩为级的人数为多少?19. (11分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2) m=7,n=4,求拼成矩形的面积.20. (10分)(2019·越城模拟) 某居民小区物业要在广场树立一个“扫黑除恶,共创和谐”的矩形电子灯牌,如图所示,施工人员在两侧加固合金框架,已知合金框架底端G距广告牌立柱FD的距离GD=4米,从G点测得广告牌顶端F点和底端E点的仰角分别是60°和45°.(1)若AF长为5米,求灯牌的面积;(2)求两侧加固的铝合金框架总共用料多少米?(本题中的计算过程和结果均保留根号)21. (10分)(2019·越城模拟) 如图,反比例函数y= (x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.22. (11分)(2018·永州) 如图,线段AB为⊙O的直径,点C,E在⊙O上,,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE ,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.23. (15分)(2019·越城模拟) 如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.24. (15分)(2019·越城模拟) 如图,在平面直角坐标系xOy内,▱AOBC的顶点A、O、B、C的坐标分别为(0,1)、(0,0)、(1,0)、(1、1),过点B的直线MN与OC平行,AC的延长线交MN于点D,点P是直线MN上的一个动点,CQ∥OP交MN于点Q.(1)求直线MN的函数解析式;(2)当点P在x轴的上方时,求证:△OBP≌△CDQ;猜想:若点P运动到x轴的下方时,△OBP与△CDQ是否依然全等?(不要求写出证明过程)(3)当四边形OPQC为菱形时,①请求出点P的坐标;②请求出∠POC的度数.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共93分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。

宣城市2021版中考数学一模试卷A卷

宣城市2021版中考数学一模试卷A卷

宣城市2021版中考数学一模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·吴兴期末) 的倒数是()A . 3B . -3C .D .2. (2分)(2017·湖州模拟) 支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4730000000元,用科学记数法表示为()A . 4.73×108B . 4.73×109C . 4.73×1010D . 4.73×10113. (2分)下列轴对称图形中,对称轴条数最少的是().A . 等腰直角三角形B . 等边三角形C . 正方形D . 长方形4. (2分)(2017·海曙模拟) 下列计算正确的是()A . 2a﹣a=2B . a2+a=a3C . (x﹣1)2=x2﹣1D . (a2)3=a65. (2分) (2017·泰州) 某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A . 平均数不变,方差不变B . 平均数不变,方差变大C . 平均数不变,方差变小D . 平均数变小,方差不变6. (2分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A . ﹣2<a<2B .C .D .7. (2分) (2019七下·太仓期中) 等于()A .B . 4C .D . -48. (2分)(2017·桂平模拟) 下列四个命题中,属于真命题的共有()①相等的圆心角所对的弧相等②若 = • ,则a、b都是非负实数③相似的两个图形一定是位似图形④三角形的内心到这个三角形三边的距离相等.A . 1个B . 2个C . 3个D . 4个9. (2分)某厂一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增长率是,则可以列方程()A .B .C .D .10. (2分)如图所示,长方形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为()A . (2-)B . (2-)2C . 2D . 2(2-)11. (2分) (2017七上·太原期中) 如图,半圆绕它的直径所在的直线旋转一周,形成的几何体是()A . 球体B . 圆柱体C . 圆锥体D . 长方体12. (2分)(2020·雅安) 如图,在中,,若,则的长为()A . 8B . 12C .D .二、填空题 (共6题;共6分)13. (1分) (2018七上·港南期中) 化简-2+3的结果是________.14. (1分)二次根式有意义,则x的取值范围是________ .15. (1分)多项式8a2b3+6ab2的公因式是________.16. (1分) (2018七上·洛宁期末) 如图,直线l∥m∥n,直角△ABC的直角顶点C在直线m上,顶点B在直线n上,边BC与直线n所夹锐角为25°,则∠a的度数为________.17. (1分)(2020·宜兴模拟) 如图,一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB 始终在水平桌面上,如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2.则液体的体积为________.18. (1分)(2017·锦州) 如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程ax2+bx+c=1有两个相等的实数根,其中正确的结论是________.(只填序号即可).三、解答题 (共8题;共90分)19. (10分)(2018·义乌)(1)计算: .(2)解方程: .20. (5分) (2019七上·闵行月考) 计算:21. (10分) (2016八上·东城期末) 如图,在△ABC中,BD平分∠ABC,(1)作图:作BC边的垂直平分线分别交BC,BD于点E,F(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接CF,若∠A=60°,∠ABD=24°,求∠ACF的度数.22. (15分)(2020·昌吉模拟) 某社区招募了40位居民参加“众志成城,抗击疫情”志愿者服务活动,对志愿者一天的服务时长进行调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤ <12B组1≤ <2mC组2≤ <310D组3≤ <412E组4≤ <57F组≥54扇形统计图请根据图表中的信息解答下列问题:(1)求频数分布表中的m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角的度数,并补全扇形统计图;(3)已知F组的志愿者中,只有1名女志愿者.要从该组中选取两名志愿者分发生活物资,请用树状图或列表的方法求2名志愿者恰好都是男士的概率.23. (15分)(2017·桂林) 已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.24. (10分)某场篮球赛,门票共两种,价格为:成人票30元/张,儿童票10元/张;门票总收入:4700元.(1)若售出门票总数160张,求售出的成人票张数.(2)设售出门票总数a张,其中儿童票b张.①求a,b满足什么数量关系.②若售出的门票中成人票比儿童票的7倍还多10张,求b的值.25. (10分)(2017·古冶模拟) 如图,将等腰△ABC绕顶点B逆时针方向旋转40°得到△A1B1C1 , AB与A1C1相交于点D,A1C1、BC1与AC分别交于点E、F.(1)求证:△BCF≌△BA1D;(2)当∠C=40°时,请你证明四边形A1BCE是菱形.26. (15分)(2020·伊滨模拟) 如图,双曲线与直线相交于,点P是x轴上一动点.(1)求双曲线与直线的解析式;(2)当时,直接写出x的取值范围;(3)当是等腰三角形时,求点P的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共90分)19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

宣城市2021年中考数学模拟考试试卷A卷

宣城市2021年中考数学模拟考试试卷A卷

宣城市2021年中考数学模拟考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)比1小2的数是()A . -1B . -2C . -3D . 12. (2分) (2020八上·乌拉特前旗期末) 下列运算正确的是()A . x2+x2=2x4B . a2•a3=a5C . (﹣2x2)4=16x6D . (x+3y)(x﹣3y)=x2﹣3y23. (2分)(﹣2)2=()A .B . -C . 4D . ﹣44. (2分)(2017·微山模拟) 已知:正方体展开图(如图所示)相对面上的数值相等,那么x的值等于()A . ﹣1B . a﹣2C . ﹣1或2D . 1或﹣25. (2分)下列各式,正确的是()A .B .C .D . =26. (2分)下列计算正确的是()A . 3a2﹣a2=3B . a6÷a2=a3C . (a2)3=a5D . a2•a3=a57. (2分) (2019七下·荔湾期末) 为了解某市2018年参加中考的32000名学生的视力情况,抽查了其中1600名学生的视力进行统计分析,下面叙述错误的是()A . 32000名学生的视力情况是总体B . 样本容量是32000C . 1600名学生的视力情况是总体的一个样本D . 以上调查是抽样调查8. (2分)(2019·高阳模拟) 如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC ,交AB于点E ,交AC于点F ,设点E到边BC的距离为x .则△DEF的面积y关于x的函数图象大致为()A .B .C .D .9. (2分) (2019八下·朝阳期末) 如图,在平面直角坐标系中,点在反比例函数的图象上.若,则自变量的取值范围是()A .B .C . 且D . 或10. (2分) (2019八下·交城期中) 如图,将长方形ABCD沿直线EF折叠,使顶点C恰好落在顶点A处,已知AB=4cm,AD=8cm,则折痕EF的长为()A . 5cmB . cmC . cmD . cm二、填空题: (共4题;共5分)11. (2分)绝对值大于1而小于4的整数有________,其和为________.12. (1分)(2014·淮安) 因式分解:x2﹣3x=________.13. (1分) (2017·兰山模拟) 小明用图中所示的扇形纸片作一个圆锥侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个圆锥的高是________.14. (1分)(2017·埇桥模拟) 如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠BEC=________.三、计算题: (共2题;共15分)15. (5分)(2017·龙华模拟) 先化简,后求值:,其中a=tan60°.16. (10分)(1)解方程:x2﹣2x﹣8=0;(2) 2y2+4y-3=0四、作图题: (共1题;共6分)17. (6分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.将线段AB 绕点B顺时针旋转90°,得线段A′B,点A的对应点为A′,连接AA′交线段BC于点D.(1)作出旋转后的图形;(2) =________.五、解答题: (共4题;共32分)18. (10分)(2017·襄阳) 受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?19. (5分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:, AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)20. (10分)(2019·诸暨模拟) 如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且, .(1)求反比例函数和一次函数的表达式;(2)直接写出关于的不等式的解集.21. (7分)(2017·长沙模拟) 第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为________平方千米;(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量和停车位数量统计表:日接待游客量(万人次)单日最多接待游客量(万人次)停车位数量(个)第七届0.86约3000第八届 2.38.2约4000第九届8(预计)20(预计)约10500第十届 1.9(预计)7.4(预计)约________六、综合题: (共2题;共23分)22. (13分) (2020八下·房山期中) 在平面直角坐标系xOy中,点P的坐标为(a,b),点P的“关联点”P’的坐标定义如下:当时,P’点坐标为(b,a);当时,P’点坐标为(-a,-b).(1)写出A(5,3)的变换点坐标________,B(1,6)的变换点坐标________,C(-2,4)的变换点坐标________;(2)如果直线l:上所有点的关联点组成一个新的图形,记作图形W,请画出图形W;(3)在(2)的条件下,若直线y=kx-1(k≠0)与图形W有两个交点,请直接写出k的取值范围.23. (10分) (2019九上·沭阳月考) 如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D 作DE∥BC,DE交AB的延长线于点E,连接AD、BD。

安徽省宣城市2021年中考数学试卷(II)卷

安徽省宣城市2021年中考数学试卷(II)卷

安徽省宣城市2021年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2019·南通) 下列计算,正确的是()A .B .C .D .2. (2分)(2016·阿坝) 下列立体图形中,俯视图是正方形的是()A .B .C .D .3. (2分)(2019·辽阳) 若且,则函数的图象可能是()A .B .C .D .4. (2分)如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正确的有()A . ①②B . ①④⑤C . ①②④⑤D . ①②③④⑤5. (2分) (2019九上·合肥月考) 在平面直角坐标系xOy中,抛物线的顶点坐标是()A . (2,-1)B . (-1,-1)C . (1,1)D . (1,-1)6. (2分)(2017·上思模拟) 如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1 , D1处.若∠C1BA=50°,则∠ABE的度数为()A . 15°B . 20°C . 25°D . 30°二、填空题 (共12题;共12分)7. (1分) (2020七上·徐州月考) 4的倒数是________.8. (1分)(2020·龙湾模拟) 二次根式中,x的取值范围是________。

9. (1分)(b+a)(b﹣a)=________,(x﹣2)(x+2)=________.10. (1分) (2017七上·启东期中) 太阳的半径约为696000千米,这个数据用科学记数法表示为________千米.11. (1分) (2019九上·兰州期末) 若一个三角形的两边长分别为2和3,第三边长是方程的一个根,则这个三角形的周长是________ .12. (1分)(2020·温岭模拟) 国家卫健委高级别专家组组长、中国工程院院士钟南山表示,疫苗是解决新冠肺炎的根本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省宣城市2021版中考数学试卷A卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)已知x=4,|y|=5且x>y,则2x﹣y的值为()
A . 13
B . 3
C . 13或3
D . ﹣13或﹣3
2. (2分)(2017·石家庄模拟) 如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()
A .
B .
C .
D .
3. (2分) (2018七上·唐河期末) 今年我国粮食生产首次实现了建国以来的“十连增”,全年粮食产量突破12000亿斤.将1 200 000 000 000用科学记数法表示为()
A . 12×1011
B . 1.2×1011
C . 1.2×1012
D . 0.12×1013
4. (2分)计算a2+3a2的结果是()
A . 3a2
B . 4a2
C . 3a4
D . 4a4
5. (2分)(2017·兰山模拟) 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()
A .
B .
C .
D .
6. (2分)若分式,则分式的值等于()
A . ;
B . ;
C . ;
D . .
7. (2分)如图,以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆半径为10cm,小圆半径为6cm,则弦AB的长为()
A . 2cm
B . 4cm
C . 8cm
D . 16cm
8. (2分)一个数的平方与这个数的3倍相等,则这个数为()
A . 0
B . 3
C . 0或3
D .
9. (2分) (2016九上·连城期中) 如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()
A . 30°
B . 45°
C . 60°
D . 75°
10. (2分)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于()
A . 20°
B . 25°
C . 40°
D . 50°
二、填空题 (共6题;共6分)
11. (1分)分解因式:x2﹣9=________ .
12. (1分) (2019七下·临洮期中) 如图,矩形ABCD中,AB=3cm,BC=4cm,则图中四个小矩形的周长之和为________.
13. (1分)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是________°
14. (1分)有四张扑克牌,分别为红桃3,红桃4,红桃5,黑桃6,背面朝上洗匀后放在桌面上,从中任取一张后记下数字和颜色,再背面朝上洗匀,然后再从中随机取一张,两次都为红桃,并且数字之和不小于8的概率为________ .
15. (1分)在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是________.
16. (1分) (2019八下·杭州期末) 一运动员推铅球,铅球经过的路线为如图所示的抛物线,则铅球所经过的路线的函数表达式为________
三、解答题 (共8题;共73分)
17. (5分)(2020·苏州模拟) 计算: .
18. (5分) (2019八下·朝阳期中) 解方程:
19. (7分)(2013·河南) 如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG 以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;
(2)填空:
①当t为________s时,四边形ACFE是菱形;
②当t为________s时,以A、F、C、E为顶点的四边形是直角梯形.
20. (5分) (2016九上·海门期末) “科学”号是我国目前最先进的海洋科学综合考察船,它在南海利用探测仪在海面下方探测到点C处有古代沉船.如图,海面上两探测点A,B相距1400米,探测线与海面的夹角分别是
30°和60°.试确定古代沉船所在点C的深度.(结果精确到1米,参考数据:≈1.414,≈1.732)
21. (15分)小明从家里出发到超市买东西,再回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示.请你根据图象回答下列问题:
(1)小明家离超市的距离是多少千米;
(2)小明在超市买东西时间为多少小时;
(3)小明去超市时的速度是多少千米/小时.
22. (15分) (2016九上·无锡期末) 为了解学生参加户外活动的情况,某校对初三学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)将条形统计图补画完整.
(2)求每天参加户外活动时间达到2小时的学生所占调查学生的百分比.
(3)这批参加调查的初三学生参加户外活动的平均时间是多少.
23. (10分)(2017·玉环模拟) 已知△ABE中,∠BAE=90°,以AB为直径作⊙O,与BE边相交于点C,过点C作⊙O的切线CD,交AE于点D.
(1)求证:D是AE的中点;
(2)求证:AE2=EC•EB.
24. (11分)(2019·石家庄模拟) 如图9,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴的正半轴上,OA=6,点B在直线y= x上,直线l:y=kx+ 与折线AB-BC有公共点。

(1)点B的坐标是________
(2)若直线l经过点B,求直线l的解析式;
(3)对于一次函数y=kx+ (k≠0),当y随x的增大而减小时,直接写出k的取值范围。

参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共8题;共73分)
17-1、
18-1、
19-1、
19-2、
20-1、
21-1、
21-2、
21-3、
22-1、22-2、22-3、
23-1、
23-2、24-1、
24-2、24-3、。

相关文档
最新文档