高一下学期解三角形数列综合测试题
高一数学必修五测试题(解三角形及数列(精华版)
⎧n⎫ ⎬ 的前 n 和 Tn a ⎩ n⎭
认真就是能力,扎实就是水平,落实才是成绩。
2 高一数学试卷
��� � ��� � ��� � ��� � BA + BC = 2 ,求 BAi BC 的取值范围
2 2an ,且对任意的 n ∈ N * 都有 an +1 = . 3 an + 1
19、在数列 {an } 中, a1 =
(1)求证: {
1 − 1} 是等比数列; an
(2)若对任意的 n ∈ N * 都有 an+1 < pan ,求实数 p 的取值范围. (3)求数列 ⎨
)
(理科) 数学试题 数学试题(理科)
第Ⅰ卷(选择题,共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1 、 在 △ ABC 中 , 角 A,B,C 的 对 边 分 别 为 a,b,c , 若
� � � � � � � � � 9、设 a, b, c 是单位向量,且 a ⋅ b = 0, 则 a − b i b − c 的最小值为 (
��� �
����
排列成一个数列,则该数列的通项公式为 (
A. a n =
n(n − 1) 2
B. a n = n( n − 1)
C. a n = n − 1
D. a n = 2 n − 2
���� ��� � AD ⋅ AB =
.
4、在 △ ABC 中,角 A,B,C 的对边分别为 a,b,c ,若 S表示∆ABC的面积 ,若
20 、 已 知 f ( x) 在 ( −1,1) 上 有 定 义 , f ( 1 ) = 1 且 满 足 x, y ∈ ( −1,1) 时 有 15、�函数 y =
解三角形、数列综合练习 含答案
解三角形、数列综合练习1.在△ABC 中,若a =18,b =24,A =45°,则此三角形( )A .无解B .有两解C .有一解D .解的个数不确定解析:选B.∵a sin A =b sin B,∴sin B =b a sin A =2418sin 45°,∴sin B =223.又∵a <b ,∴B 有两个.2(2015·昆明三中、玉溪一中统考)等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝⎛⎭⎫1-14nD.23⎝⎛⎭⎫1-12n 3.(2015·山西省第三次四校联考)等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n (n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2[解析] (1)依题意,a n =2n -1,1a n a n +1=12n -1·2n =122n -1=12×14n -1,所以T n =12⎣⎡⎦⎤1-⎝⎛⎭⎫14n 1-14=23⎣⎡⎦⎤1-⎝⎛⎭⎫14n,故选C.(2)由等比数列的性质,得a 3·a 2n -3=a 2n =22n ,从而得a n =2n. log 2a 1+log 2a 2+…+log 2a 2n -1=log 2[(a 1a 2n -1)·(a 2a 2n -2)…(a n -1a n +1)a n ]=log 22n (2n -1)=n (2n -1). 5.已知数列{a n },则有( )A .若a 2n =4n ,n ∈N *,则{a n }为等比数列B .若a n ·a n +2=a 2n +1,n ∈N *,则{a n }为等比数列C .若a m ·a n =2m +n ,m ,n ∈N *,则{a n }为等比数列 D .若a n ·a n +3=a n +1·a n +2,n ∈N *,则{a n }为等比数列解析:选C.若a 1=-2,a 2=4,a 3=8,满足a 2n =4n ,n ∈N *,但{a n }不是等比数列,故A 错;若a n =0,满足a n ·a n +2=a 2n +1,n ∈N *,但{a n }不是等比数列,故B 错;若a n =0,满足a n ·a n +3=a n +1·a n +2,n ∈N *,但{a n }不是等比数列,故D 错;若a m ·a n =2m +n ,m ,n∈N *,则有a m ·a n +1a m ·a n =a n +1a n =2m +n +12m +n =2,则{a n }是等比数列.4.(2015·河北冀州中学期中)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,点(a ,b )在直线x (sin A -sin B )+y sin B =c sin C 上,则角C 的值为( )A.π6 B.π3 C.π4D.5π6解析:选B.因为点(a ,b )在直线x (sin A -sin B )+y sin B =c sin C 上,所以a (sin A -sin B )+b sin B =c sin C ,由正弦定理得a 2-ab +b 2=c 2,又c 2=a 2+b 2-2ab cos C ,故cos C =12,所以C =π3.5如图所示,△ABC 中,已知点D 在边BC 上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD=3,则BD 的长为________.(2)∵sin ∠BAC =sin ⎝⎛⎭⎫∠BAD +π2=cos ∠BAD =223,∴根据余弦定理可得cos ∠BAD =AB 2+AD 2-BD 22AB ·AD =(32)2+32-BD 22×32×3=223,∴BD = 3.6.(2015·山西省第二次四校联考)若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.(3)设数列{a n }的公比为q ,由已知得S 4S 2=1+a 3+a 4a 1+a 2=5,1+q 2=5,所以q 2=4,S 8S 4=1+a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=1+q 4=1+16=17. [答案] (1)C (2)A (3)177.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2或q =-3(舍去), a n =a 5qn -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1),a 1a 2…a n =2-52-42-3…2n -6=,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12. 答案 128.(2015·山西省第二次四校联考)若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________. (3)设数列{a n }的公比为q ,由已知得S 4S 2=1+a 3+a 4a 1+a 2=5,1+q 2=5,所以q 2=4,S 8S 4=1+a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=1+q 4=1+16=17. 9.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.(2)由S 10S 5=3132,a 1=-1知公比q ≠1,则S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.9.在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足3a -2b sin A =0.①求角B 的大小;②若a +c =5,且a >c ,b =7,求AB →·AC →的值. 答案:(1)D (2) 3(3)解:①因为3a -2b sin A =0, 所以3sin A -2sin B sin A =0. 因为sin A ≠0,所以sin B =32. 又B 为锐角,则B =π3.②由①可知,B =π3,因为b =7,根据余弦定理得7=a 2+c 2-2ac cos π3, 整理得(a +c )2-3ac =7. 由已知a +c =5,则ac =6. 又a >c ,可得a =3,c =2.于是cos A =b 2+c 2-a 22bc =7+4-947=714,所以AB →·AC →=|AB →|·|AC →|cos A =cb cos A =2×7×714=1.10.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,2a sin A =(2b -c )sin B +(2c -b )sin C .且sin B +sin C =3,试判断△ABC 的形状.解:∵2a sin A =(2b -c )sin B +(2c -b )sin C , 得2a 2=(2b -c )b +(2c -b )c , 即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,∴A =60°.∵A +B +C =180°,∴B +C =180°-60°=120°.由sin B +sin C =3,得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3, 即sin(B +30°)=1.又∵0°<B <120°,30°<B +30°<150°, ∴B +30°=90°, 即B =60°.∴A =B =C =60°, ∴△ABC 为正三角形.[规律方法] 判断三角形的形状,主要有如下两种途径:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角三角函数间的关系,通过三角函数恒等变换,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论,在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.11.(2015·洛阳市统考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2C +22cos C +2=0.(1)求角C 的大小;(2)若b =2a ,△ABC 的面积为22sin A sin B ,求sin A 及c 的值. 解:(1)∵cos 2C +22cos C +2=0, ∴2cos 2C +22cos C +1=0, 即(2cos C +1)2=0,∴cos C =-22. 又C ∈(0,π),∴C =3π4.(2)∵c 2=a 2+b 2-2ab cos C =3a 2+2a 2=5a 2, ∴c =5a ,即sin C =5sin A ,∴sin A =15sin C =1010.∵S △ABC =12ab sin C ,且S △ABC =22sin A sin B ,∴12ab sin C =22sin A sin B , ∴ab sin A sin B sin C =2,由正弦定理得:⎝⎛⎭⎫c sin C 2sin C =2,解得c =1. 12.(2015·东北三校联考)已知数列{a n }的前n 项和S n 满足S n =2a n +(-1)n (n ∈N *).(1)求数列{a n }的前三项a 1,a 2,a 3;(2)求证:数列{a n +23(-1)n }为等比数列,并求出{a n }的通项公式.[解] (1)在S n =2a n +(-1)n (n ∈N *)中分别令n =1,2,3得: ⎩⎪⎨⎪⎧a 1=2a 1-1a 1+a 2=2a 2+1a 1+a 2+a 3=2a 3-1,解得⎩⎪⎨⎪⎧a 1=1a 2=0.a 3=2(2)证明:由S n =2a n +(-1)n (n ∈N *),得S n -1=2a n -1+(-1)n -1(n ≥2),两式相减得: a n =2a n -1-2(-1)n (n ≥2),a n =2a n -1-43(-1)n -23(-1)n =2a n -1+43(-1)n -1-23(-1)n (n ≥2),∴a n +23(-1)n =2[a n -1+23(-1)n -1](n ≥2).故数列{a n +23(-1)n }是以a 1-23=13为首项,公比为2的等比数列.∴a n +23(-1)n =13×2n -1,a n =13×2n -1-23(-1)n=2n -13-23(-1)n .13.(2014·高考山东卷)在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .解:(1)由题意知(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6),解得a 1=2, 所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ·(n +1). 因为b n +1-b n =2(n +1),可得当n 为偶数时, T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2, n 为偶数.14.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5, 即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12. 故等比数列{a n }的通项公式为 a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n ,n 为偶数.当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n≤56.所以数列{T n }最大项的值为56,最小项的值为-712.。
解三角形小题综合 原卷版--高一下学期备战期末专题训练
期末专题04 解三角形小题综合一、单选题1.(2022春·江苏常州·高一校联考期末)在ABC 中,5AB =,6BC =,8AC =,则ABC的形状是( ) A .锐角三角形B .直角三角形C .钝角三角形D .无法判断2.(2022春·江苏连云港·高一统考期末)在锐角三角形ABC 中,2sin a b A =,则B =( )A .6πB .4π C .3πD .712π 3.(2022春·江苏泰州·高一统考期末)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,csin A =,则sin B =( )A B C D .134.(2022春·江苏淮安·高一统考期末)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若cos a c B =,则ABC 的形状( ) A .锐角三角形B .直角三角形C .钝角三角形D .不能确定5.(2022春·江苏淮安·高一统考期末)在ABC 中,45B =°,点D 是边BC 上一点,5AD =,7AC =,3DC =,则边AB 的长是( )A .BCD .6.(2022秋·江苏南京·高一南京市第九中学校考期末)中国早在八千多年前就有了玉器,古人视玉为宝,玉佩不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状、不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分(如图2),经测量知4ABCD ==,3BC =,7AD =,则该玉佩的面积为( )A .496πB .493πC .496πD .493π7.(2022秋·江苏南通·高一统考期末)图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h ,日影长为l .图2是地球轴截面的示意图,虚线表示点A 处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬2326′°)在某地利用一表高为2dm 的圭表按图1方式放置后,测得日影长为2.98dm ,则该地的纬度约为北纬( )(参考数据:tan 340.67°≈,tan 56 1.49°≈)A .2326′°B .3234′°C .34°D .56°8.(2022春·江苏镇江·高一扬中市第二高级中学校考期末)设()2πsin cos cos 4f x x x x =−+,在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若02A f=,1a =,则ABC 面积的最大值为( )A BC D 9.(2022春·江苏扬州·在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列各组条件中,使得ABC 恰有一个解的是( )A .π2,4,3ab A == B .π4,3a b A=C .2π4,3a b A === D .2π4,3a b A === 10.(2022春·江苏南通·高一统考期末)已知ABC 为锐角三角形,2AC =,π6A =,则BC 的取值范围为( )A .()1,+∞B .()1,2C .D .211.(2022春·江苏镇江·高一统考期末)已知A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,且测得点B 对点A 和点C 的张角为120°,则点B 到AC 的距离为( )km .A B C D 12.(2022春·江苏无锡·高一统考期末)设ABC 内角A ,B ,C 所对的边分别为a ,b ,c .若2b =,2sin 6sin a C A =,则ABC 面积的最大值为( )AB C D .313.(2022春·江苏南通·高一金沙中学校考期末)ABC 中,,,A B C 的对边分别为a b c ,,,则( )A .若a b c <<,则cos sinBC < B .,A B ∃使得sin()sin sin A B A B +=+ C .,B C ∀都有tan tan tan()1tan tan B CB C B C++=−⋅D .若sin cos A A +A 是钝角 14.(2022春·江苏南通·高一统考期末)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若8,sin 2sin cos 0ac B C A =+=,则ABC 面积的最大值为( ) A .1 B .3 C .2 D .415.(2022春·江苏扬州·高一期末)△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量()()p a c b q b a c a =+=−−,,,,若p q ∥,则角C 的大小为( )A .π6B .π3C .π2D .2π316.(2022春·江苏苏州·高一校考期末)如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为 ( )A .B .C .20(1+海里D .40海里17.(2022春·江苏苏州·高一统考期末)已知锐角三角形ABC 中,角,,A B C 所对的边分别为,,,a b c ABC 的面积为S ,且()22sin 2b c B S −⋅=,若a kc =,则k 的取值范围是( ) A .()1,2 B .()0,3 C .()1,3 D .()0,2二、多选题18.(2022春·江苏南京·高一南京市中华中学校考期末)在ABC 中,下列结论中,正确的是( )A .若cos2cos2AB =,则ABC 是等腰三角形B .若sin sin A B >,则A B >C .若222AB AC BC +<,则ABC 为钝角三角形D .若60A = ,4AC =,且结合BC 的长解三角形,有两解,则BC 长的取值范围是)+∞19.(2022春·江苏南京·高一统考期末)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知45,2A c =°=,下列说法正确的是( )A .若a ABC = 有两解B .若3,a ABC = 有两解C .若ABC 为锐角三角形,则b 的取值范围是D .若ABC 为钝角三角形,则b 的取值范围是20.(2022春·江苏宿迁·高一沭阳县修远中学校考期末)在三角形ABC 中,π3A ∠=,若三角形有两解,则ca的可能取值为( )A B .1.1 C D .1.0121.(2022春·江苏南通·高一统考期末)设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c若c =,30B = ,则角A 可能为( )A .135B .105C .45D .1522.(2022春·江苏苏州·高一校联考期末)在ABC 中,角,,A B C 对边分别为,,a b c ,设向量()(),,,m c a b n a c =+= ,且//m n,则下列选项正确的是( ) A .2A B =B .2C A =C .12ca<<D .若ABC 的面积为24c ,则2C π=23.(2022春·江苏泰州·高一统考期末)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若b =2c =cos 2cos 33A AC +=,则下列说法正确的有( )A .3A C π+=B .sinC =C .2a =D .ABC S =24.(2022春·江苏扬州·高一统考期末)如图所示,ABC 中,324AB AC BC ===,,,点M 为线段AB 中点,P 为线段CM 的中点,延长AP 交边BC 于点N ,则下列结论正确的有( ).A .1142AP AB AC =+ B .3BN NC =C .||AN =D .AP 与AC 25.(2022春·江苏徐州·高一统考期末)已知ABC 内角A ,B ,C 所对的边分别为a ,b ,c ,以下结论中正确的是( )A .若AB >,则sin sin A B >B .若2a =,b =3B π=,则该三角形有两解 C .若cos cos a A b B =,则ABC 一定为等腰三角形 D .若222sin sin sin C A B >+,则ABC 一定为钝角三角形26.(2022春·江苏无锡·高一统考期末)ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,下列说法中正确的是( )A .若sin sin AB >,则A B >B .若2220a b c +−>,则ABC 是锐角三角形 C .若cos cos a B b A a +=,则ABC 是等腰三角形D .若sin cos cos a b c A B C==,则ABC 是等边三角形27.(2022春·江苏苏州·高一江苏省昆山中学校考期末)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,则下列说法正确的是( ) A .cos cos ca Bb A +B .若cos cos a A b B =,则ABC 为等腰或直角三角形 C .若22tan tan a B b A =,则a b =D .若333a b c +=,则ABC 为锐角三角形28.(2022春·江苏苏州·高一校考期末)在△ABC 中,角,,A B C 所对的边分别是,,a b c ,下列说法正确的是( )A .若acosA=bcosB ,则ABC 是等腰三角形B .若45,3AB B AC °==,则满足条件的三角形有且只有一个C .若ABC 不是直角三角形,则tan tan tan tan tan tan A B C A B C ++=D .若0BC AB ⋅<,则ABC 为钝角三角形三、填空题29.(2022春·江苏连云港·高一统考期末)曲柄连杆机构的示意图如图所示,当曲柄OA 在水平位置OB 时,连杆端点P 在Q 的位置,当OA 自OB 按顺时针方向旋转角α时,P 和Q 之间的距离是cm x ,若3cm OA =,7cm AP =,120α°=,则x 的值是_________.30.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)已知轮船A 和轮船B 同时离开C 岛,A 船沿北偏东30°的方向航行,B 船沿正北方向航行(如图).若A 船的航行速度为40n mile /h ,1小时后,B 船测得A 船位于B 船的北偏东45°的方向上,则此时A ,B 两船相距_______________n mile .31.(2022春·江苏无锡·高一统考期末)ABC 的内角A ,B ,C 所对边分别为a ,b ,c,已知60C =°,1a =,c =b =___________.32.(2022春·江苏扬州·高一期末)《后汉书·张衡传》:“阳嘉元年,复造候风地动仪.以精铜铸成,员径八尺,合盖隆起,形似酒尊,饰以篆文山龟鸟兽之形.中有都柱,傍行八道,施关发机.外有八龙,首衔铜丸,下有蟾蜍,张口承之.其牙机巧制,皆隐在尊中,覆盖周密无际.如有地动,尊则振龙,机发吐丸,而蟾蜍衔之.振声激扬,伺者因此觉知.虽一龙发机,而七首不动,寻其方面,乃知震之所在.验之以事,合契若神.”如图为张衡地动仪的结构图,现在相距120km 的A ,B 两地各放置一个地动仪,B 在A 的东偏北75°方向,若A 地地动仪正东方向的铜丸落下,B 地地动仪东南方向的铜丸落下,则地震的位置距离B 地______km33.(2022春·江苏泰州·高一统考期末)如图所示,该图由三个全等的BAD 、ACF △、CBE △构成,其中DEF 和ABC 都为等边三角形.若2DF =,12DAB π∠=,则AB =_______.34.(2022春·江苏常州·高一统考期末)在ABC 中,AB =3BC =,45B =°,点D 在边BC 上,且cos ADC ∠tan DAC ∠的值为___________.35.(2022春·江苏南通·高一统考期末)设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c 已知6a =,2b =,要使ABC 则c 的大小可取__________(取整数值,答案不唯一).36.(2022春·江苏南京·高一南京市中华中学校考期末)拿破仑是十九世纪法国伟大的军事家、政治家,对数学也很有兴趣,他发现并证明了著名的拿破仑定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的中心恰为另一个等边三角形的顶点”,在△ABC 中,以AB ,BC ,CA 为边向外构造的三个等边三角形的中心依次为D ,E ,F ,若30,4BACDF ∠== ,利用拿破仑定理可求得AB +AC 的最大值为___.。
高一数学解三角形试题
高一数学解三角形试题1.△ABC的内角、、的所对的边、、成等比数列,且公比为,则的取值范围为()A.B.C.D.【答案】B.【解析】∵,,成等比数列,∴,,再由正弦定理可得,又∵,根据二次函数的相关知识,可知的取值范围是.【考点】三角形与二次函数一元二次不等式综合.2.在△ABC中,若最大角的正弦值是,则△ABC必是()A.等边三角形B.直角三角形C.钝角三角形D.锐角三角形【答案】【解析】根据题意,因为是最大角,所以角只能是,所以是钝角三角形.【考点】特殊函数值;三角形的判断.3.两地相距,且地在地的正东方。
一人在地测得建筑在正北方,建筑在北偏西;在地测得建筑在北偏东,建筑在北偏西,则两建筑和之间的距离为()A.B.C.D.【答案】C【解析】在△ABD中又∴点A、B、C、D四点共园,圆心是BC的中点(在同园或等圆中,同弧所对的圆周角相等) ,同理在Rt△ABC中,在Rt△BCD中【考点】解三角形4.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.5.在某次测量中,A在B的北偏东,则B在A的方向.【答案】南偏东【解析】根据题意,由于在某次测量中,A在B的北偏东,则可知B在A的南偏东方向.可知答案为南偏东【考点】方位角点评:主要是考查了方位角的求解,属于基础题。
6.对于,有如下命题:①一定有成立.②若, 则一定为等腰三角形;③若的面积为,BC=2,,则此三角形是正三角形;则其中正确命题的序号是 . (把所有正确的命题序号都填上)【答案】①②③【解析】根据题意,由于①结合投影的定义可知,一定有成立.②若, 则一定为等腰三角形;利用解三角形方程可成立③若的面积为,BC=2,,则此三角形是正三角形;利用解三角形可知成立,故可知答案为①②③【考点】解三角形点评:考查了解三角形的运用,属于基础题。
7.如图,在△中,已知,D是BC边上一点,AD=10,AC=14,DC=6,求AB的长.【答案】【解析】解:在△中,∵AD=10,AC=14,DC=6∴, 5分∴, ∴ 7分∴在△中,∵,∴, 11分∴ 15分【考点】解三角形点评:主要是考查了正弦定理的运用,属于基础题。
三角函数向量解三角形数列综合测试含答案
三角函数、向量、解三角形、数列综合测试含答案大冶一中 孙雷一、选择题每题只有一个正确选项,共60分1.若向量===BAC CB AB ∠),0,1-(),23,21(则 A.30° B.60° C. 120° D. 150°2.已知34,4,8===AC BC AB ABC Rt 中,△,则对于ABC △所在平面内的一点P ,)(PC PB PA +•的最小值是A.-8B. -14C.-26D.-303.已知在正方形ABCD 中,点E 为CD 的中点,点F 为CB 上靠近点B 的三等分点,O 为AC 与BD 的交点,则=DB A.OF AE 51858-+ B.OF AE 74718-+ C.OF AE 58518-+ D. OF AE 71874-+ 4.已知)2π-απ-(523-αsin -αcos <<=,则=+αααtan -1)tan 1(2sin A.7528- B.7528 C.7556- D. 7556 5.若函数m x x x f -2cos 2-sin 4)(=在R 上的最小值是3,则实数=mA.6-B.5-C.3-D.2-6.已知α为锐角,且2)8π-α(tan =,则=α2sin A.102 B.1023 C.1027 D. 4237.已知向量)sin 41-(α,=a ,)4πα0)(1-α(cos <<=,b ,且b a //,则=)4π-αcos( A.21- B.21 C.23- D.23 8.在ABC △中,3:2:1::=A B C ,则=a b c ::A.1:2:3B.3:2:1C.1:3:2D. 2: 3:19.在ABC △中,c b a ,,分别为内角C B A ,,的对边,若B A C sin sin sin 3+=,53cos =C ,且4=ABC S △,则=c A.364 B.4 C.362 D.5 10.在ABC △中,°=60C ,322==AC BC ,点D 在边BC 上,且772sin =∠BAD ,则CD =A. 334B.43 C.33 D.332 11.我国古代数学巨著九章算术中,有如下问题:“今有女善织,日自倍,五日织五尺,问日织几何”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少”根据上述问题的已知条件,若该女子共织布3135尺,则这位女子织布的天数是 A.2 B.3 C.4 D.112.数列}{n a 中,01=a ,且)2(2-1-1-≥+=+n a a n a a n n n n ,则数列})1-(1{2n a 前2019项和为A.20194036B.10102019C.20194037D.20204039 二、填空题共20分13.已知等差数列}{n a 的前n 项和n S 有最大值,且1-20192020<a a ,则当0<n S 时n 的最小值为_____________. 14.已知数列}{n a 满足2321)2(+=n a a a a n ,则该数列的通项公式为______________.15.已知数列}{n a 满足),2(1)13()1-(*1-1N n n a a n n n ∈≥++=+,且121==a a ,则数列}{n a 的前2020项的和为_______________.16.ABC △中,Ab B a B Ac C B A cos cos sin sin sin -sin sin 222+=+,若1=+b a ,则c 的取值范围是___________.三、解答题共70分17.已知n S 为等差数列}{n a 的前n 项和,81=a ,10-10=S1求n a ,n S ;2设||||||21n n a a a T +++= ,求n T .18.在ABC △中,c b a ,,分别为内角C B A ,,的对边,且552sin =B ,6=•BC BA 1求ABC △的面积;2若8=+c a ,求b 的值.19.已知函数)(|2||-|)(R a x a x x f ∈++=1当1=a 时,求不等式5≥)(x f 的解集;2当]1,0[∈x 时,不等式|4|≤)(+x x f 恒成立,求实数a 的取值范围.20.已知函数)0(23-sin 3cos sin )(2>+=ωωωωx x x x f 的最小正周期为π,将函数)(x f 的图象向左平移6π个单位长度,再向下平移21个单位长度,得到函数=y )(x g 的图象 1求函数)(x f 的单调递减区间;2在锐角ABC △中,角C B A ,,的对边为c b a ,,,若2,0)2(==a A g ,求ABC △面积的最大值.21.已知关于x 的函数1-2-2π3cos(cos 2)(2)x x x f += 1求不等式0)(>x f 的解集;2若关于x 的不等式x a x x f sin ≥|2sin )(|+在区间]4π3,3π[上有解,求实数a 的取值范围.22.已知数列}{n a 的前n 项和为n S ,且31-34n n a S =,等差数列}{n b 各项均为正数,223b a =,4246b b a += 1求数列}{n a ,}{n b 的通项公式;2设数列}{n c 的前n 项和为n T ,对一切*N n ∈有n n n b na c a c a c =++ 22112成立,求n T .。
数学北师大版高中必修5高一数学数列解三角形试题
高一数学周练命题人:黄平一、选择题(每题5分) 1、数列{}n a 中,11a =,12,()2nn n a a n N a ++=∈+,则5a =( ) A . 25B .13C . 23D . 122、已知数列{}a n 中,a 13=-且a a n n =+-211,则此数列的通项公式为( )A . 123-⋅-nB . n 2-C . 52-nD .12--n3、已知数列{}n a 的前n 项和12n n s n +=+,则4a 等于()A.130B.134C.120D.1324、若数列{}n a 的前n 项和为2n S n =-,则这个数列( )A .是等差数列,且21n a n =-B .不是等差数列,但21n a n =-C .是等差数列,且21n a n =-+D .不是等差数列,但21n a n =-+ 5、在ABC ∆中,已知a=52,c=10,∠A =30o,则∠B 等于( )A.105oB. 60oC. 15oD.105o或15o6、在ΔABC 中,∠A=450,∠B=600,a=2,则b=( ) A .6 B .26 C .36 D .467、 在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .锐角三角形8、不解三角形,下列判断正确的是( )A. a=7,b=14,A=30o,有两解. B. a=30,b=25,A=150o,有一解.C. a=6,b=9,A=45o,有两解. D. a=9,b=10,A=60o,无解.9、 数列{}n a 中,11a =,121,(2)n n a a n n -=+-≥,其通项公式n a = 10、在ΔABC 中,a=8, ∠B=1050, ∠C=150,则此三角形的最大边的长为11、已知△ABC 的三个内角比为A ∶B ∶C =3∶2∶1,那对应的三边比为a ∶b ∶c 为________12、已知a b c d ,,,成等比数列,且曲线223y x x =-+顶点是()b c ,,则ad 等于_______班级________ 姓名__________ 座号_______得分__________ 一、选择题 题号 12345678答案二、填空题9. __________ 10. __________ 11. __________ 12. __________三、解答题(第13题12分,第14题13分) 13.已知数列}{n a 满足1111,3(2)n n n a a a n --==+≥ (Ⅰ)求23,a a ; (Ⅱ)求n a .14.已知△ABC 中,A =60°,a =6,b =2,解三角形。
高一数学解三角形、数列同步检测 试题
2021年第一中学高一数学解三角形、数列同步检测一、选择题(5′×6=30′)1.数列:2,0,2,0,2,0,….前六项不合适...以下哪个通项公式 〔 〕 A .a n =1+(―1)n +1B .a n =2|sinn π2| C .a n =1-(―1)nD .a n =2sinn π22.在△ABC 中,假设A =60°,a =2 3 ,那么a +b +csinA +sinB +sinC等于〔 〕A .1B .2 3C .4D .4 3 3.假设锐角三角形三边长为2,3,x ,那么x 的取值范围是〔 〕A .1<x <5B .x <13C .5<x <13D .1<x <5 4.在△ABC 中,设,,CB AC ==a b 且|a |=2,|b |= 3 ,•=-a b 3 ,那么AB 的长为〔 〕A . C D .7-5.在等比数列}{n a 中,假设93-=a ,17-=a ,那么5a 的值是 〔 〕A .-3B .3C .3或者-3D .不存在6.在等差数列}{n a 中,3a 、8a 是方程0532=--x x 的两个根,那么10S 是 〔 〕A .15B .30C .50D .15+1229 二、填空题(4′×6=24′)7.△ABC 中,a =4,A =45°,B =60°,那么c = . 8.△ABC 中,a =6,b =6 3 ,A =30°,那么c = . 9.△ABC 中,a =2,b =2 2 ,A =30°,那么B = .10.假设a ,G ,b 成等比数列,那么称G 为a 和b 的等比中项,那么18和50的等比中项是 .11.在等差数列{a n }中,假如a 10=100,a 100=10,那么a 110= . 12.{a n }是等差数列,且公差d ≠0,又a 1,a 4,a 16依次成等比数列,那么a 1+a 4+a 16a 2+a 5+a 8= .三、解答题(本大题一一共6小题,满分是46分)13.在△ABC 中,cosA a =cosB b =sinCc,试判断△ABC 的形状.(6′)14.根据以下条件解三角形:a =2, b = 6 ,B =60°.(6′)15.如图,我炮兵阵地位于A 处,两观察所分别设于C ,D ,△ACD 为边长等于a 的正三角形.当目的出现于B 时,测得∠CDB =45°∠BCD =75°,试求炮击目的的间隔 AB .〔结果保存根式形式〕(8′)16.在等比数列{}n a 中,首项为a 1,公比为q ,有以下三个命题: 〔1〕数列{}1n n a a +是等比数列;BC AD〔2〕数列{}lg n a 是等差数列;〔3〕假设正整数m 、p 、n 成等差数列,那么a m 、a p 、a n 成等比数列.这些命题中,真命题的序号是 ,并选取其中一个真命题给出证明(8′)17.某企业利用银行无息贷款,HY400万元引进一条高科技消费流水线,预计每年可获产品利润100万元.但还另需用于此流水线的保养、维修费用第一年10万元,以后每年递增5万元,问至少几年可收回该项HY ?(8′)18.数列}{n a 是首项为1的等差数列,数列}{n b 是首项为1的等比数列,设n n n c a b =*()n ∈N ,且数列}{n c 的前三项依次为1,4,12, 〔1〕求数列}{n a 、}{n b 的通项公式;〔2〕〔只文科做....〕假设等差数列}{n a 的公差d >0,它的前n 项和为S n ,求数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和T n .〔2’〕〔只理科做....〕假设等差数列}{n a 的公差d >0, 求数列}{n c 的前n 项的和.(10′)参考答案选择题1D2C3C4B5A6A填空题7.2 3 +2;8.12或者6;9.135°或者45°;10.±30;11.0;12.75;解答题13.等腰直角三角形; 14.A =45°C =75°c = 3 +1;15; 16.〔1〕〔2〕〔3〕证明略;17.5≤n ≤32,答:至少5年.18.〔1〕11,1,32;26.n n n a n d d q b q -⎧==-⎧=⎧⎪⎪⇒⎨⎨⎨==⎪⎩=⎩⎪⎩或者1436n n nn a b --⎧=⎪⎨⎪=⎩ 〔2〕234n n n T +=〔2′〕(1)21nn -+励志赠言经典语录精选句;挥动**,放飞梦想。
高一数学必修5月考试卷《解三角形》与《数列》
高二数学(《解三角形》与《数列》)(满分:150分 时间:120分钟)一、选择题:(本大题共12小题,每小题5分,共60分)1、数列1,-3,5,-7,9,…的一个通项公式为 ( )A 12-=n a nB )21()1(n a nn --= C )12()1(--=n a nn D )12()1(+-=n a nn 2.已知{}n a 是等比数列,41252==a a ,,则公比q =( )A .21-B .2-C .2D .213.若∆ABC 中,sin A :sin B :sin C =2:3:4,那么cos C =( )A. 14-B.14C. 23-D.234.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .2±D .45.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则3132log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C)7 (D)86.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( )A. b=10, A=450, C=600B. a=6, c=5, B=60C. a=7, b=5, A=600D. a=14, b=16, A=4507.在数列{}n a 中,12a =, 11ln (1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 8.在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形9.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为( ) AB3C3Dm10.等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且132+=n n T S nn ,则55b a ( )A 32 B 149 C 3120 D9711.已知{}n a 为公比q >1的等比数列,若20052006a a 和是方程24830x x -+=的两根,则20072008a a +的值是( )A 18B 19C 20D 2112.已知数列{}n a 中,11,a =前n 项和为n S ,且点*1(,)()n n P a a n N +∈在直线10x y -+=上,则1231111nS S S S ++++=( )A.(1)2n n + B.2(1)n n + C.21n n + D.2(1)n n +二、填空题:(本大题共4小题,每小题4分,共16分)13.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 14. 已知数列{a n }的前n 项和是21n S n n =++, 则数列的通项a n =__15.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C =16.△ABC 中,a 、b 、c 成等差数列,∠B=30°,ABC S ∆=23,那么b =三、解答题:(本大题分6小题共74分) 17.(本小题满分12分) 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c18.(本小题满分12分)等比数列{}n a 中, 72=S ,916=S ,求4S .19. (本小题满分12分)在A B C △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若A B C △,求a b ,;(Ⅱ)若sin 2sin B A =,求A B C △的面积.20.(12分)已知{}n a 是等差数列,其中1425,16a a ==(1)求{}n a 的通项;(2)求n a a a a ++++ 321的值。
高一下周测二(A)解三角形数列
靖宇一中高一下周测二(A)—解三角形数列-3.4班级 学号 姓名 一、选择题:1.(2012(湖北文))设ABC ∆的内角,,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C ( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶42 .(2012年高考(陕西理))在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值( )A B C .12D .12-3.等差数列的首项为125,且从第10项开始为比1大的项,则公差d的取值范围是( )A .d >875B .d <325 C.875<d <325 D.875<d ≤3254.设等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 是( )A .48B .49C .50D .515.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( )A .a n =2n -2 (n ∈N *)B .a n =2n +4 (n ∈N *)C .a n =-2n +12 (n ∈N *)D .a n =-2n +10 (n ∈N *)6.若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1,d 2,则d 1d 2等于( ) A.32 B.23 C.43 D.347.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( ) A .1 B.34 C.12 D.388.(07)4.已知{}n a 是等差数列,1010a =,其前10项和1070S =, 则其公差d =( )A.2- B.1- C.1 D.29.(09)(16)等差数列{n a }前n 项和为n S 。
数学高一下册《解三角形、数列、不等式解法》试卷
第7周:《必修⑤解三角形、数列、不等式3.2》小测试卷时间:_______ 高一____班 姓名____________一.选择题(满分6⨯6分,每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = ( )A .4-B .6-C .8-D .10-2.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于 ( )A .1B .0或32C .32D .5log 23.数列 ,,,,,112-n a a a 的前n 项和为 ( ) A.a a n --11 B. aa n --+111 C. a a n --+112D.以上均不正确 4.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起五年内这个工厂的总产值是 ( )A. 41.1aB. 51.1aC. 510(1.11)a -D. 511(1.11)a - 5.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是 ( )A .1(0,2+B .1(2-C .)251,251(++-D .1[1,26.在ABC ∆中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以13为第三项, 9为第六项的等比数列的公比,则这个三角形是 ( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上都不对二. 填空题(本题满分4⨯6分)7.等差数列}{n a 中,241-=a ,且从第10项开始是正数,则公差的范围是_____________。
8.设不等式kx 2-2x+6k<0(k ≠0),若解集是{x|x<-3或x>-2},则k 的值为_________;若解集是R ,则k 的取值范围为______________;9.数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=且13k a =,则k =_________;10.已知}{na 的前n 项之和+++-=212,14a a n n S n 则…10a 的值为_________。
(完整版)三角函数、数列测试题
三角函数、解三角形、平面向量、数列专题测试题班级: 姓名: 学号:一、选择题 1. 若,且为第四象限角,则的值等于( ) A . B . C . D .2. sin20°cos10°-con160°sin10°= (A )(B(C ) (D ) 3. 函数f(x)=的部分图像如图所示,则f (x )的单调递减区间为 (A)(),k (b)(),k(C)(),k(D)(),k4. 设a ,b 是非零向量,“a b a b ⋅=”是“//a b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5sin 13α=-αtan α125125-512512-12-125. 已知 ,若 点是 所在平面内一点,且,则 的最大值等于( )A .13B .15C .19D .21 6.已知M (x 0,y 0)是双曲线C :上的一点,F1、F 2是C 上的两个焦点,若<0,则y 0的取值范围是 (A )(-,) (B )(-,) (C )()(D )()7. 等比数列{a n }满足a 1=3, =21,则 ( )(A )21 (B )42 (C )63 (D )84 8. 设{}n a 是等差数列. 下列结论中正确的是A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a -->9. 设为等比数列的前项和,若,且成等差数列,则 .A, . B.2n-3 C. -3n-2 D. 3n-210 已知数列中,,(),则数列的前9项和等于 。
A. 17B. 27C. 37D. 471,,AB AC AB AC t t⊥==P ABC ∆4AB AC AP ABAC=+PB PC ⋅2212x y -=1MF •2MF 3366n S {}n a n 11a =1233,2,S S S n a =32+n -}{n a 11=a 211+=-n n a a 2≥n }{n a11. 在等差数列中,若,则= A. 5 B.6 C. 8 D .12.(15年福建理科)若 是函数 的两个不同的零点,且 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 的值等于( ) A .6 B .7 C .8 D .10 二、填空题13.(15年江苏)已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 14.(15北京理科)在ABC △中,4a =,5b =,6c =,则sin 2sin A C=.15.(15北京理科)在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN x AB y AC =+,则x =;y = .16.(15年江苏)数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 三、解答题17. 的内角,,所对的边分别为,,.向量与平行. (I )求;(II )若求的面积.18. 在ABC ∆中,已知 60,3,2===A AC AB .(1)求BC 的长; (2)求C 2sin 的值.{}n a 2576543=++++a a a a a 82a a +10,a b ()()20,0f x x px q p q =-+>>,,2a b -p q +C ∆AB A B C a b c (),3m a b =()cos ,sin n =A B A a =2b =C ∆AB19.已知函数2()cos 222x x x f x =.(Ⅰ) 求()f x 的最小正周期;(Ⅱ) 求()f x 在区间[π0]-,上的最小值.20. 已知等差数列{}n a 满足1210a a +=,432a a -=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等?21. 设数列{}n a 的前n 项和为n S ,已知23 3.n n S =+ (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T . 22. 已知数列是递增的等比数列,且 (1)求数列的通项公式; (2)设为数列的前n 项和,,求数列的前n 项和{}n a 14239,8.a a a a +=={}n a n S {}n a 11n n n n a b S S ++={}n b n T。
高一数学解三角形综合练习题(2021年整理)
高一数学解三角形综合练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学解三角形综合练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学解三角形综合练习题(word版可编辑修改)的全部内容。
必修五 解三角形一、选择题1. 在ABC ∆中,若::1:2:3A B C ∠∠∠=,则::a b c 等于 ( )A.1:2:3B.3:2:1 C 。
2 D.22.在△ABC 中,222a b c bc =++ ,则A 等于 ( )A .60°B .45°C .120°D .30° 3.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长A. 1公里 B 。
sin 10°公里 C 。
cos10°公里 D. cos20°公里4.等腰三角形一腰上的高是3,这条高与底边的夹角为 60,则底边长= ( ) A .2 B .23C .3D .32 5.已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是 ( ) A .135<<xB .13<x <5C .2<x <5D .5<x <56. 在ABC ∆中,60A ∠=,a =3b =,则ABC ∆解的情况 ( )A. 无解 B 。
有一解 C 。
有两解 D. 不能确定 7.在△ABC 中,若)())((c b b c a c a +=-+,则∠A= ( )A .090B .060C .0120D .01508.在△ABC 中,A 为锐角,lg b +lg (c1)=lgsin A =-lg 2, 则△ABC 为( )A 。
高一数学练习(解三角形,数列)
高一数学练习三(解三角形,数列) 高一 班 学号__________ 姓名_______________一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.数列12,-34,58,-716的一个通项公式是( )A .n n a nn 212)1(-⋅-= B .n n a n n 212)1(1-⋅-=+ C .nn n n a 212)1(-⋅-=D .nn n n a 212)1(1-⋅-=+2. 设n S 是等差数列{}n a 的前n 项和,5283()S a a =+, 则53aa 的值为( )A. 16B. 56C. 13D. 353. 已知实数列2,,,,1--z y x 成等比数列,则xyz =( )A .4-B .4±C .22- D.±4. 在ABC ∆中,,,A B C 的对边分别为,,a b c,且1sin ,sin ::2B C a b c ==则为( )A.1:1:或B.C.D. 2 5. 下列说法正确的是:①若数列{}n a 是等差数列,且*)(N t s n m a a a a t s n m ∈+=+、、、,则t s n m +=+; ②若n S 是等差数列{}n a 的前n 项的和,则n n n n n S S S S S 232--,,成等差数列; ③若n S 是等比数列{}n a 的前n 项的和,则n n n n n S S S S S 232--,,成等比数列; ④若n S 是等比数列{}n a 的前n 项的和,且B Aq S n n +=;(其中B A 、是非零常数,*N n ∈),则B A +为零.A .①②B .②③C .②④D .③④6. 数列{}n a 中,123,7==a a ,当1≥n 时,2+n a 等于1+n n a a 的个位数,则该数列的第2015项是( ) A .1 B .3 C .7 D .97.设等差数列{}n a 的前n 项和为n S ,若675S S S >>,则满足10n n a a +<的正整数n 的值为( )A .5B .6C .7D .88.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,80a =,100b =,30A =︒,则此三角形( ) A .一定是钝角三角形 B .一定是锐角三角形 C .一定是直角三角形 D .可能是钝角三角形,也可能是锐角三角形 9.已知()cos , (,3),2f x x x ππ=∈ 若方程()f x m =有三个不同的实根,且从小到大依次成等比数列,则m =( )A .1-B .12- C. D .0 10.已知三个数1,1,5a a a -++成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三项,则能使不等式1212111n na a a a a a +++≤+++ 成立的自然数的最大值为( ) A. 9 B. 8 C. 7 D. 511.已知函数()y f x =的定义域为()0+∞,,当1x >时,()0f x >,对任意的()0x y ∈+∞,,,()()()f x f y f x y +=⋅成立,若数列{}n a 满足()11a f =,且()()()*121N n n f a f a n +=+∈,则2017a 的值为( )A .201521-B .201421-C .201721-D .201621-12.设数列{a n }的前n 项和为n S ,a 1=1,2(1)n n S a n n =+-(*n N ∈), 若2321(1)201523n SS S S n n++++--= ,则n 的值为( )A .2014B .2016C .1007D . 1008二.填空题:本大题共4小题,每小题5分,共20分.13.已知ABC ∆中,BC 边长为36,三角形的外接圆的半径为6,则=+)sin(C B ______ 14.设正项等比数列{}n a 的前n 项和为n S ,若12,3693=-=S S S ,则=6S .15. 数列}{n a 的前n 项和为)()1(,1*2N n a b n n S n n n n ∈-=++=,则数列}{n b 的前10项的和为________16.在ΔABC 中,22sin2A A =,sin()2cos sin B C B C -=,则AC AB=__________. 三.解答题:本大题共6小题,共计70分。
(完整word版)高一下学期解三角形数列综合测试题
一、选择题1在 ABC 中,已知a 6, b 4, C 120 ,则c 的值为A76 B... 76 C.28 D, 282•观察数列1, 1, 2, 3, 5, 8, x , 21, 34, 55的规律,x 应等于All B.12 C.13 D.143在 ABC 中,已知a ,6, C 60 ,c 3,则A 的值为A45B.135C.45 或 135D.60 或 1204.已知等差数列{a n }中,a s an 16, a ° 1,则氐的值为A15B.30C.31D.645.某船开始看见灯塔在南 偏东30方向,后来船沿南偏东60的方向航行90海里 后,看见灯塔在正西方 向,这时船与灯塔的距离为A.30...2海里B.30 3海里C.45. 3海里D.45、2海里6.已知等差数列{a n }中,a 1 a s 4, a ° a * 20,则盹的值为A26 B.30 C.28 D.367. 已知{a n }为等差数列,S n 是其前n 项和,且S 11 经,则tana 6的值为 3A. •. 3B.-3C. 3D. .38在 ABC中,已知a4, B -当ABC 的面积等于2・.3时,sinC 等于37.14小 1421 ABC- D.-1414 7 149.在ABC中,若a7,b 3,c8,则面积为()A 12 B21 C.28D6、32A.3B.4C.5D.611在 ABC 中,已知a 7,b & cosC里,则最大角正弦值等于14A ..32 一33.3r 4 3 A 一BC.D- 777710..等差数列{a n }的前n 项和为S n ,若a 15, a 4 a 10 14,则使S n 取最小值的n 为12 •等比数列{a n }前n 项乘积记为 M n ,若M 1020,M 2010,则M 30 ( )13.某人朝正东方向走 x km 后,向右转150°然后朝新方向走 好..3 km ,那么x 的值为( )A. .3B.2 .3C.2 .3或 314.在等差数列{ a n }中,前n 项和为S,若S 16— S 5=165,则a 8 a ? a^的值是( )A . 90B .90C . 45D .45S-I S 2 LS n 工-15.设数列{a n }的前n 项和为S n ,令T n12n,称T n 为数列3 , a ?,……na n 的“理想数”,已知数列a 1, a 2,……,a 5。
2023学年人教版高一数学下学期期中期末必考题精准练04 解三角形(解析版)
必考点04 解三角形题型一 利用正余弦定理解三角形例题1[在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°. (1)求边长a ;(2)求AB 边上的高CD 的长.【解析】(1)由题意得,b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos 120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,所以a=3或a =-2(舍去).所以a =3. (2)法一:由(1)知a =3,b =5,c =7, 由三角形的面积公式得 12ab sin ∠ACB =12c ×CD , 所以CD =ab sin ∠ACBc =3×5×327=15314,即AB 边上的高CD =15314.法二:由(1)知a =3,b =5,c =7, 由正弦定理得3sin A =7sin ∠ACB =7sin 120°.即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314.即AB 边上的高CD =15314.例题1(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2a +b =2c ,求sin C .[【解析】(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以sin(C +60°)=22,故 sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60°=6+24. 【解题技巧提炼】1.已知△ABC 中的某些条件(a ,b ,c 和A ,B ,C 中至少含有一条边的三个条件)求边长时可用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin C sin A ,a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .2.已知△ABC 的外接圆半径R 及角,可用公式a =2R sin A ,b =2R sin B ,c =2R sin C . [提醒] 已知△ABC 的两边及其一边的对角求边时可用正弦定理,但要对解的个数作出判断,也可用余弦定理解一元二次方程求得.涉及解三角形中的最值(范围)问题时若转化为边求解可利用基本不等式或二次函数;若转化为角求解可利用三角函数的有界性、单调性.1.已知△ABC 中某些条件求角时,可用以下公式sin A =a sin Bb ,sin B =b sin Aa,sin C =c sin Aa ,cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab . 2.已知△ABC 的外接圆半径R 及边,可用公式sin A =a 2R ,sin B =b 2R ,sin C =c2R. [提醒] (1)注意三角形内角和定理(A +B +C =π)的应用. (2)解三角形中经常用到两角和、差的三角函数公式.题型二 判断三角形形状例题1设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定【答案】B 【解析】(1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A=1,故A =π2,因此△ABC 是直角三角形.例题2在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( ) A .直角三角形 B .等腰非等边三角形 C .等边三角形 D .钝角三角形【答案】C【解析】因为sin A sin B =a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形. 【解题技巧提炼】[解题技法]1.判定三角形形状的2种常用途径2.判定三角形的形状的注意点在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.题型三 三角形面积问题例题1△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【解析】(1)由题设及正弦定理得sin A sin A +C 2=sin B sin A .因为sin A ≠0,所以sin A +C2=sinB由A +B +C =180°,可得sin A +C 2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,所以sin B 2=12,所以B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由(1)知A +C =120°,由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知,A +C =120°,所以30°<C <90°, 故12<a <2,从而38<S △ABC <32. 因此,△ABC 面积的取值范围是⎝⎛⎭⎫38,32. 【解题技巧提炼】 1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.题型四 解三角形的实际应用例题1如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为300 3 m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠P AB =90°,∠P AQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________ m. 【答案】900【解析】由已知,得∠QAB =∠P AB -∠P AQ =30°. 又∠PBA =∠PBQ =60°,所以∠AQB =30°,所以AB =BQ . 又PB 为公共边,所以△P AB ≌△PQB ,所以PQ =P A . 在Rt △P AB 中,AP =AB ·tan 60°=900,故PQ =900, 所以P ,Q 两点间的距离为900 m.例题2如图,为了测量河对岸电视塔CD 的高度,小王在点A 处测得塔顶D 的仰角为30°,塔底C 与A 的连线同河岸成15°角,小王向前走了1 200 m 到达M 处,测得塔底C 与M 的连线同河岸成60°角,则电视塔CD 的高度为________m. [【答案】6002[【解析】在△ACM 中,∠MCA =60°-15°=45°,∠AMC =180°-60°=120°,由正弦定理得AM sin ∠MCA =AC sin ∠AMC ,即1 20022=AC32,解得AC =6006(m).在△ACD 中,因为tan ∠DAC =DC AC =33,所以DC =6006×33=6002(m). 例题3游客从某旅游景区的景点A 处至景点C 处有两条线路.线路1是从A 沿直线步行到C ,线路2是先从A 沿直线步行到景点B 处,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处同时出发匀速步行,甲的速度是乙的速度的119倍,甲走线路2,乙走线路1,最后他们同时到达C 处.经测量,AB =1 040 m ,BC =500 m ,则sin ∠BAC 等于________. [【答案】513[【解析】依题意,设乙的速度为x m/s , 则甲的速度为119x m/s ,因为AB =1 040 m ,BC =500 m , 所以AC x =1 040+500119x ,解得AC =1 260 m.在△ABC 中,由余弦定理得,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =1 0402+1 2602-50022×1 040×1 260=1213,所以sin ∠BAC =1-cos 2∠BAC=1-⎝⎛⎭⎫12132=513.【解题技巧提炼】测量距离问题的2个策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.测量高度问题的基本思路高度也是两点之间的距离,其解法同测量水平面上两点间距离的方法是类似的,基本思想是把要求解的高度(某线段的长度)纳入到一个可解的三角形中,使用正、余弦定理或其他相关知识求出该高度.测量角度问题的基本思路测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.[提醒] 方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.题型五 正余弦定理在平面几何中的应用例题1如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列. (1)求sin ∠CED ; (2)求BE 的长. 【解析】设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理得EC sin ∠EDC =CD sin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin∠CED =217. (2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,cos ∠AEB =EA BE =2BE =714,所以BE =47. 【解题技巧提炼】与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.题型六 解三角形与三角函数的综合问题例题1已知函数f (x )=cos 2x +3sin(π-x )cos(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.【解析】(1)f (x )=cos 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.【解题技巧提炼】解三角形与三角函数综合问题的一般步骤题型一 利用正余弦定理解三角形1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( ) A.π6 B.π3 C.2π3 D.5π6【答案】A【解析】∵a sin B cos C +c sin B cos A =12b ,∴由正弦定理得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sinB .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6,故选A.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.【解析】(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A =3×(3+22)32×6=1+263.题型二 判断三角形形状1.在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形【答案】A【解析】已知等式变形得cos B +1=a c +1,即cos B =ac ①.由余弦定理得cos B =a 2+c 2-b 22ac ,代入①得a 2+c 2-b 22ac =ac ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.2.[在△ABC 中,已知sin A +sin C sin B =b +c a 且还满足①a (sin A -sin B )=(c -b )(sin C +sin B );②b cos A +a cos B =c sin C 中的一个条件,试判断△ABC 的形状,并写出推理过程. 【解析】由sin A +sin C sin B =b +c a 及正弦定理得a +c b =b +ca ,即ac +a 2=b 2+bc ,∴a 2-b 2+ac -bc =0, ∴(a -b )(a +b +c )=0,∴a =b . 若选①△ABC 为等边三角形.由a (sin A -sin B )=(c -b )(sin C +sin B )及正弦定理,得a (a -b )=(c -b )(c +b ),即a 2+b 2-c 2=ab .所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),所以C =π3.∴△ABC 为等边三角形. 若选②△ABC 为等腰直角三角形,因b cos A +a cos B =b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =2c 22c =c =c sin C ,∴sin C =1,∴C =90°,∴△ABC 为等腰直角三角形.题型三 三角形面积问题1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 【答案】63【解析】由余弦定理得b 2=a 2+c 2-2ac cos B . 又∵ b =6,a =2c ,B =π3,∴ 36=4c 2+c 2-2×2c 2×12,∴ c =23,a =43,∴ S △ABC =12ac sin B =12×43×23×32=6 3.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.【解析】(1)由已知及正弦定理得(2sin B -sin A )·cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.题型四 解三角形的实际应用1.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,相距a 海里的B 处,乙船正向北行驶,若甲船是乙船速度的 3 倍,甲船为了尽快追上乙船,朝北偏东θ方向前进,则θ=( )A .15°B .30°C .45°D .60°【答案】B【解析】设两船在C 处相遇,则由题意得∠ABC =180°-60°=120°,且AC BC=3,由正弦定理得AC BC =sin 120°sin ∠BAC =3,所以sin ∠BAC =12.又因为0°<∠BAC <60°,所以∠BAC =30°. 所以甲船应沿北偏东30°方向前进.2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 【答案】103【解析】如图,OM =AO tan 45°=30(m), ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300=103(m). 3.为了测量某新建的信号发射塔AB 的高度,先取与发射塔底部B 的同一水平面内的两个观测点C ,D ,测得∠BDC =60°,∠BCD =75°,CD =40 m ,并在点C 的正上方E 处观测发射塔顶部A 的仰角为30°,且CE =1 m ,则发射塔高AB =________ m. 【答案】202+1【解析】如图,过点E 作EF ⊥AB ,垂足为F ,则EF =BC ,BF =CE =1,∠AEF =30°.在△BCD 中,由正弦定理得, BC =CD ·sin ∠BDC sin ∠CBD=40·sin 60°sin 45°=20 6.所以EF =206,在Rt △AFE 中,AF =EF ·tan ∠AEF =206×33=20 2. 所以AB =AF +BF =202+1(m).题型五 正余弦定理在平面几何中的应用1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________. 【答案】66【解析】设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3.在△ABD 中,cos ∠ADB =a 2+4a 23-a 22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63.在△BDC中,BD sin C =BC sin ∠BDC ,sin C =BD ·sin ∠BDC BC =66.2.如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2. (1)求AD 的长; (2)求△CBD 的面积.【解析】(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD=255,又∠BCD =2∠ABD ,在平面四边形ABCD 中,∠BCD ∈(0,π),所以∠ABD ∈⎝⎛⎭⎫0,π2,所以cos ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·cos ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =cos ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·cos ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54,所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58. 题型六 解三角形与三角函数的综合问题1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.【解析】(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z ),得x =k π+5π12(k ∈Z ),即当x =k π+5π12(k ∈Z )时,f (x )取得最大值1.一、单选题1.如图,某城市有一条公路从正西方MO 通过市中心O 后转向东北方ON ,为了缓解城市交通压力,现准备修建一条绕城高速公路L ,并在,MO ON 上分别设置两个出口,A B ,若AB 部分为直线段,且要求市中心O 与AB 的距离为20千米,则AB 的最短距离为( )A .()2021-千米 B .()4021-千米C .)201D .)401【答案】D【解析】在ABC 中,135AOB ∠=︒, 设,AO a BO b ==,则(222222cos1352AB a b ab a b ab =+-︒=+≥,当且仅当a b =时取等号,设BAO α∠=,则45ABO α∠=︒-,又O 到AB 的距离为20千米,所以20sin a α=,()20sin 45b α=︒-,故()400sin sin 45ab αα==︒-(22.5α=︒时取等号),所以)221600216001AB ≥=,得)401AB ≥,故选:D2.某生态公园有一块圆心角为π3的扇形土地,打算种植花草供游人欣赏,如图所示,其半径100OA =米.若要在弧AB 上找一点C ,沿线段AC 和BC 铺设一条观光道路,则四边形OACB 面积的最大值为( )A .2500平方米B .25003平方米C .5000平方米D .50003平方米【答案】C【解析】连接OC ,2211sin sin 22OAC OCB OACB OA S S AOC OA CS BO =⋅∠+∠+⋅=四边形△△2π1sin sin 23OA AOC AOC ⎡⎤⎛⎫=∠+-∠ ⎪⎢⎝⎭⎣⋅⎥⎦15000(sin )322cos AOC AOC +=∠∠π5000sin 50003AOC ⎛⎫=∠+≤ ⎪⎝⎭,当π6AOC ∠=时,等号成立. 所以四边形OACB 面积的最大值为5000.故选:C3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b =,1c =,则B C +=( )A .90°B .120°C .60°D .150°【答案】C【解析】因为a =2b =,1c =, 所以2221471cos 22122c b a A bc +-+-===-⨯⨯,由0180A <<︒︒,则120A =︒,18060B C A ∴+=︒-=︒故选:C4.已知某圆锥的轴截面是腰长为3的等腰三角形,且该三角形顶角的余弦值等于19,则该圆锥的表面积等于( ) A .4π B .6π C .10π D .203π【答案】C【解析】设圆锥的底面半径为r ,则()2221233162339r -⨯=+⨯⨯=,解得2r =,故该圆锥的表面积等于12234102πππ⨯⨯⨯+=.故选:C.5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cA b<,则ABC 必为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等腰三角形【答案】A【解析】因为cos cA b <,由正弦定理可得sin cos sin C A B<,即sin cos sin C A B <, 又因为sin sin()sin cos cos sin C A B A B A B =+=+,所以sin cos cos s co si in s n A B A B A B +<,即sin cos 0A B <,因为,(0,)A B π∈,所以sin 0,0cos A B ><,所以(,)2B ππ∈,所以ABC 为钝角三角形.故选:A. 二、多选题6.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且2a =、3b =、4c =,下面说法错误的是( ) A .sin sin sin 234A B C =:::: B .ABC 是锐角三角形C .ABC 的最大内角是最小内角的2倍D .ABC 内切圆半径为12 【答案】BCD 【解析】A 选项,∵sin sin sin a b cA B C==,2a =、3b =、4c =,∵sin sin sin 234A B C =::::,对,B 选项,由于a b c <<,则ABC 中最大角为角C ,∵222222234cos 02223a b c C ab +-+-==<⨯⨯,∵2C π>,∵ABC 是钝角三角形,错,C 选项,假设ABC 的最大内角是最小内角的2倍,则2C A =, 即sin sin22sin cos C A A A ==⋅,又sin sin 12A C =::,即sin 2sin cos 12A A A ⋅=::,cos 1A =,不符合题意,错,D 选项,∵22222224311cos 222416a c b B ac +-+-===⨯⨯,∵sin B ==,∵11sin 2422ABCSac B =⋅=⨯⨯设ABC 的内切圆半径为r ,则()()1123422ABCS a b c r r =++⋅=⨯++⨯=∵r =故选:BCD.7.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2sin B C A +=( ) A .若π3A =,1c =,则1a =B .若π3A =,1c =,则ABC 的面积为πC .若2b =,则A 的最大值为π3D .若2b =,则ABC 周长的取值范围为()4,12【答案】ACD【解析】因为sin sin 2sin B C A +=,所以2b c a +=. 对于A ,B ,若1c =,则21b a =-,22223421cos 2422b c a a a A bc a +--+===-,解得1a =,ABC 的面积1sin 2S bc A ==,A 正确,B 错误. 对于C ,若2b =,则22c a =-,222238831cos 12128881b c a a a A a bc a a +--+⎛⎫===-++- ⎪--⎝⎭312182⎡⎤≥-=⎢⎥⎣⎦,当且仅当2a =时,等号成立,所以A 的最大值为π3,C 正确.对于D ,若2b =,则根据三边关系可得,,a c b a b c +>⎧⎨+>⎩即222,222,a a a a +->⎧⎨+>-⎩解得443a <<,则4312a <<,ABC 的周长为3a b c a ++=,故ABC 周长的取值范围为()4,12,D 正确.故选:ACD 三、填空题8.在ABC 中,D 为BC 的中点,若4AB =,2AC =,AD =BC =______.【答案】【解析】法一:设BD x =,因为180ADB ADC ∠+∠=︒,所以cos cos 0ADB ADC ∠+∠=,由余弦定理,得22222222BD AD AB DC AD AC BD AD DC AD+-+-+=⋅⋅220=,所以x BC =法二:由D 为BC 的中点,得()12AD AB AC =+,所以()222124AD AB AB AC AC =+⋅+,即()1816242cos 44BAC =+⨯⨯∠+,所以3cos 4BAC ∠=,所以22232cos 16424284BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=,所以BC =故答案为:9.如图所示,OA 是一座垂直与地面的信号塔,O 点在地面上,某人(身高不计)在地面的C 处测得信号塔顶A 在南偏西70°方向,仰角为45°,他沿南偏东50°方向前进20m 到点D 处,测得塔顶A 的仰角为30°,则塔高OA 为______m .【答案】20【解析】设塔高m OA x =,由题意得在直角AOC △中,45ACO ∠=︒,所以m OA OC x ==,由题意得在直角AOD △中,30ADO ∠=︒,所以m OD =, 由题意得在OCD 中,120,20m OCD CD ∠=︒=, 所以由余弦定理得2222cos OD OC CD OC CD OCD =+-⋅∠,所以22134002202x x x ⎛⎫=+-⋅⋅- ⎪⎝⎭,化简得2102000--=x x ,解得20x 或10x =-(舍去),所以塔高OA 为20m ,故答案为:20 四、解答题10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知1a b c ===. (1)求sin ,sin ,sin A B C 中的最大值; (2)求AC 边上的中线长. 【解析】(1)521>,故有sin sin sin b a c B A C >>⇒>>,由余弦定理可得cos B =又(0,)B π∈,34B π∴=,故sin B(2)AC 边上的中线为BD ,则1()2BD BA BC =+,2222223(2)()2cos 121cos 14BD BA BC c a ca B π∴=+=++=++⨯=, 1||2BD ∴=,即AC 边上的中线长为12.11.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c sin cos A a B a =+.(1)求角B 的值;(2)若8c =,ABC 的面积为BC 边上中线AD 的长.【解析】(1)sin sin cos sin B A A B A =+,()0,πA ∈,sin 0A ≠cos 1B B =+,则π1sin 62B ⎛⎫-= ⎪⎝⎭,()0,πB ∈,π3B ∴=;(2)1sin 2S ac B ==8c =,10a ∴=,由余弦定理22212cos 6425404922a AD c ac B ⎛⎫=+-⨯=+-= ⎪⎝⎭,得249AD =,7AD ∴=,12.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )()sin a b B A b c C +-=-.(1)求A ;(2)若2a =,求ABC 面积的最大值.【解析】(1)由正弦定理及()(sin sin )()sin a b B A b c C +-=-, 得()()()b a b a b c c -+=-,即222b c a bc +-=, 由余弦定理,得2221cos 22b c a A bc +-==, ∵0A π<<,可得3A π=.(2)由余弦定理得222222cos a b c bc A b c bc =+-=+-, 因为222b c bc +≥, 所以22a bc bc ≥-,即24bc a ≤=,当且仅当2b c ==时取等号,∵11sin 422ABC S bc A =≤⨯=△ABC13.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,向量()7,1m =,()cos ,1n C =,(),2cos p b B =,且0m n ⋅=.(1)求sin C 的值;(2)若8c =,//m p ,求B 的大小.【解析】(1)因为()7,1m =,()cos ,1n C =,且0m n ⋅=,所以7cos 10C +=,即1cos 7C =-,因为0C π<<,所以sin C ==. (2)因为()7,1m =,(),2cos p b B =,//m p ,所以14cos b B =, 在ABC 中,由正弦定理得sin sin c Bb C=,又8c =,sin C =b B ,14cos B B =,即tan B =0B π<<,所以3B π=.14.已知向量()2sin ,2cos 1m x x =-,()2cos ,1n x =,()f x m n =⋅.(1)求函数()y f x =的最小正周期;(2)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()1f A =,a =ABC 的面积的最大值.【解析】(1)()22sin cos 2cos 1f x m n x x x =⋅=+-,sin 2cos 224x x x π⎛⎫=+=+ ⎪⎝⎭,则其最小正周期22T ππ==; (2)由()214f A A π⎛⎫=+= ⎪⎝⎭,且()0,A π∈,所以4A π=,由余弦定理得2222cos a b c bc A =+-,即(2222b c bc =+≥,所以2bc ≤=b c =时取等号,所以ABC 的面积21sin 244S bc π==≤,15.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A C B A C +=+. (1)求B ;(2)若点M 在AC 上,且满足BM 为ABC ∠的平分线,2,cos BM C ==BC 的长. 【解析】(1)在ABC 中,222sin sin sin sin sin A C B A C +=+,由正弦定理得:222a c b ac +=+.由余弦定理得:2221cos 22a cb B ac +-==. 因为()0,B π∈,所以3B π=.(2)因为()cos 0,C C π=∈,所以sin C = 因为3B π=,BM 为ABC ∠的平分线,所以6MBC π∠=.所以[]sin sin BMC MBC C π∠=-∠-∠()sin MBC C =∠+∠sin cos cos sin MBC C MBC C =∠∠+∠∠12==.在MBC △中,由正弦定理得:sin sin MB BC C BMC =∠=BC = 16.在ABC 中,角A 、B 、C 的对边分别是a 、b 、c,且)cos b c aC C +=+. (1)求角A ;(2)若2a =,ABCb c +的值.【解析】(1)由)cos b c a C C +=+及正弦定理得sin sin sin cos sin B C A C A C +=,又()sin sin sin cos cos sin B A C A C A C =+=+,所以cos sin sin sin A C C A C +=,又sin 0C ≠cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭,可得1sin 62A π⎛⎫-= ⎪⎝⎭, 因为0A π<<,则5666A πππ-<-<,所以,66A ππ-=,因此,3A π=. (2) 解:由余弦定理,得2222cos 3a b c bc π=+-,即()234b c bc +-=,又1sin 2ABC bc S A ==4bc =,所以4b c +=.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin 2sin 2cos 02A A A ++=.(1)求A ;(2)若cos cos 2b C c B +=,求ABC 面积的最大值. 【解析】(1)ABC 中,角A ,B ,C 所对的边分别为a ,b ,c , 且2sin 2sin 2cos 2sin cos sin cos 102AA A A A A A ++=+++=,2(sin cos )(sin cos )0A A A A ∴+++=, 即(sin cos )(sin cos 1)0A A A A +++=, sin cos 1A A +>-,sin cos 0A A ∴+=,所以tan 1A =-, 又()0,A π∈,34A π∴=; (2)ABC 中,由正弦定理可得sin sin a b A B =,sin b B ∴==⋅,同理可得,sin c C =⋅,cos cos 2b C c B +=,∴sin cos sin cos 2B C C B ⋅⋅+⋅⋅=,∴sin()2B C ⋅+=sin 24π⋅=,2a ∴=,由余弦定理可得22424cos 22b c bc A bc bc+--=-=, 当且仅当b c =时,取等号,422bc ∴+,即bcABC ∴面积⋅⋅=≤1sin 2bc A 1=-,所以ABC 1.。
高一下三角恒等变换解三角形数列练习
高一下三角恒等变换、解三角形、数列练习一、选择题 (每小题4分,共48分).1. cos75cos15sin 75sin15︒︒︒︒+的值是( )A. 12B.C.D. 02.已知3sin 5α=,那么α2cos 等于( ) A. 257 B. 257- C. 2524 D. 2524- 3.函数sin cos y x x =的最小正周期为( )A .4πB .2πC .πD .π24.函数()sin f x x x =+的最大值为( )A .1BC .2D .45.在△ABC 中,如果a =2b =, 1c =,那么A 的值是( )A .2πB .3πC .4πD .6π6.在△ABC 中,π3A =,BC =1AC =,那么AB 等于( )A. 1B.C.D. 2 7. 在数列{}n a 中,如果12a =,*11()n n a a n +=-∈N ,那么5a 等于( )A. 4-B. 3-C. 2-D. 1-8.在等差数列{}n a 中,已知12a =,24a =,那么4a 等于( )A .6B .8C .10D .169. 如果等差数列{}n a 的公差为2,且124, , a a a 成等比数列,那么1a 等于( )A. 2B. 1C. 1-D. 2- 10.在等差数列{}n a 中,18a =,50a =,那么4S 等于( )A .44B .40C .20D .-1211.设等比数列{}n a 的前n 项和为n S ,已知12a =,24a =,那么10S 等于( )A .1022+B .922-C .1022-D .1122-12. 设数列{}n a 的前n 项和为n S ,如果15a =-,12n n a a +=+,那么1S ,2S ,3S ,4S 中最小的是( )A. 1SB. 2SC. 3SD. 4S二、填空题 (每空4分,共28分).13.已知tan 2α=2,则tan α的值为___________ ,tan (α+4π)的值为___________.14.在ABC ∆中,45,75AC A C =∠=∠=,则BC 长为 . 15.数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 16.在等差数列{}n a 中,如果24a =,48a =,那么6a =___________.17.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________. 18.已知二次函数2()4f x x x =-+的图象的顶点为C ,与x 轴相交于,A B 两点,那么tan ACB ∠=___________.三、解答题. 本大题共3小题,共24分.19.(本小题满分7分)已知函数x x x f 2cos 2sin 3)(+=,x R Î. (Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求函数)(x f 在区间π[0,]2上的最大值和最小值.20.(本小题满分8分)已知n S 为等差数列{}n a 的前n 项的和, 23513,18.a a a =+= (I )求等差数列{}n a 的通项公式;(II )求数列{}n a 的前n 项和n S 的最大值.21.(本小题满分9分) 在△ABC 中,π6A =,π5π,26B ⎛⎫∈ ⎪⎝⎭,2BC =. (Ⅰ)若2π3B =,求sinC ; (Ⅱ)求证:5π4sin 6AB B ⎛⎫=- ⎪⎝⎭; (Ⅲ)求BA BC ⋅的取值范围.附加题.(本小题满分10分) 已知函数()21x f x x =+,数列{}n a 满足1(1)a f =,1()()n n a f a n *+=∈N . (Ⅰ)求1a ,2a 的值; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)设1n n n b a a +=⋅,求数列{}n b 的前n 项和n S ,并比较n S 与218n n +的大小.。
高一下学期三角恒等变换、解三角形、数列、不等式、直线一天一练(含答案)
数学天天练 使用时间:6月23日姓名:___________班级:___________1.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为A .1B .2C .3D .42.已知变量x ,y 满足约束条件x 2y 1x y 1y 10+≥⎧⎪-≤⎨⎪-≤⎩,则z=x-2y 的最大值为( )A .3-B .1C .3D .0 3.在中,角的对边分别为、、,若,且. (1)求证:成等比数列; (2)若的面积是1,求边的长.数学天天练 使用时间:6月24日姓名:___________班级:___________1.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( ) A .4x 2y 5+= B .4x 2y 5-= C .x 2y 5+= D .x 2y 5-= 2.直线:1l y x =+上的点到圆22:2440C x y x y ++++=上点的最近距离为( ) A 2B .22C 21 D .13.已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列2{}n n a b 的前n 项和*()n N ∈.数学天天练 使用时间:6月25日姓名:___________班级:___________1.已知点(4,9)A ,(6,3)B ,则以线段AB 为直径的圆的标准方程是( ) A .22(5)(6)40x y +++= B .22(5)(6)40x y -+-=C .22(5)(6)10x y +++=D .22(5)(6)10x y -+-=2.圆224x y +=上的点到直线:43120l x y +-=的最小距离是( ) A .25 B .225 C .125 D .245 3.的内角的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B ; (2)若6a c +=,ABC ∆面积为2,求b .数学天天练 使用时间:6月26日姓名:___________班级:___________1.等比数列,33,66x x x ++,…的第四项等于( )A .-24B .0C .12D .242.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c = A .6 B .5C .4D .3 3.已知圆的方程为()2211x y -+=,求:(1)斜率为3且与圆相切的直线方程; (2)过定点()2,3-且与圆相切的直线方程.数学天天练 使用时间:6月27日姓名:___________班级:___________1.平行直线512y 30x ++=与1024y 50x ++=的距离是( )A .213B .113C .126D .5262.已知直线1:210l x my +-=与直线2):(220l m x my --+=平行,则实数m 的值是( )A .32B .32或0C .23D .23或0 3.已知圆以为圆心且经过原点O .(1)若,写出圆的方程; (2)在(1)的条件下,已知点的坐标为,设分别是直线和圆上的动点,求的最小值及此时点的坐标.数学天天练 使用时间:6月28日姓名:___________班级:___________1.已知直线1:l y kx b =+,2:l y bx k =+,则它们的图象可能为( )A .B .C .D .2.已知点(),M a b 在圆22:1O x y +=外,则直线1ax by +=与圆O 的位置关系是( ).A .相切B .相交C .相离D .不确定 3.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3440x y ++=与圆C 相切. (1)求圆C 的标准方程.(2)求直线:210L x y -+=与圆C 相交的弦长.6月23日参考答案1.B2.B3.(1)详见解析;(2).6月24日参考答案1.B2.C3.(Ⅰ)32n a n =-. 2n n b =.(Ⅱ)2(34)216n n +-+.6月25日参考答案1.D2.A3.(1)1517;(2)2. 6月26日参考答案1.A2.A3.(1)31030x y -+-=或31030x y ---=;(2)2x =或4310x y ++=6月27日参考答案1.C2.A3.(1);(2).6月28日参考答案1.C2.B3.(1)22(2)4x y -+=(2255。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
的值为则,,中,已知在c C b a ABC ,12046.1︒===∆
76.A 76.B 28.C 28.D
应等于的规律,,,,,,,,,,观察数列x x 553421853211.2
11.A 12.B 13.C 14.D
的值为,则,中,已知在A c C a ABC 3,606.3=︒==∆
︒45.A ︒135.B ︒︒13545.或C ︒︒12060.或D
的值为,则,中,已知等差数列124115116}{..4a a a a a n ==+
15.A 30.B 31.C 64.D
离为
向,这时船与灯塔的距后,看见灯塔在正西方海里的方向航行方向,后来船沿南偏东偏东某船开始看见灯塔在南906030.5︒︒
海里230.A 海里330.B 海里345.C 海里245.D
的值为,则,中,已知等差数列158431204}{..6a a a a a a n =+=+
26.A 30.B 28.C 36.D
的值为,则且项和是其前为等差数列,已知611tan 3
22,}{..7a S n S a n n π
=
3.A 3
3
.
B 3.±
C 3.-
D 等于时,的面积等于当,中,已知在C ABC B a ABC sin 32,3
24.8∆=
=∆π
147.
A 1414.
B 714.
C 14
21
.D
9.在ABC ∆中,若7,3,8,a b c ===则面积为( )
A 12 B
21
2
.28C D
为取最小值的则使,若项和为的前等差数列n S a a a S n a n n n ,14,5}{..101041=+-=
3.A
4.B
5.C
6.D
则最大角正弦值等于,,中,已知在,14
13
cos 87.11=
==∆C b a ABC 73.
A 732.
B 733.
C 73
4.
D
12.等比数列===302010,10,20,}{M M M M n a n n 则若项乘积记为前
( )
A .1000
B .40
C .
4
25 D .
8
1 13.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰 好3km ,那么x 的值为( ) A .
3 B . 23 C . 23或3
D . 3
14.在等差数列{a n }中,前n 项和为S n ,若S 16—S 5=165,则1698a a a ++的值是( ) A .90
B .90-
C .45
D .45-
15.设数列{}n a 的前n 项和为n S ,令12n
n S S S T n
+++=
L ,称n T 为数列1a ,2a ,……,
n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为
( )
A .2002
B .2004
C .2006
D .2008
二、填空题
20. 已知△ABC 的三边分别是a, b ,c ,且面积S =4
2
22c b a -+,则角C =___ __
21.若a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 成等差数列,则=+y
c
x a
三.解答题
{ } { } -
- - - -
-
- - - - - - - - -
∆ - - - - - - - - - - - - - - = = + + ∆ ∆ = ∆ = ∆ = = + - = = = C ab a x x a a a S S S n a S n n
n sin , 0 2 3c - 3b 3a c; b, a, ABC 19 ABC 3
3 7 R ABC 3 10 S 60 B ABC . 18 ___ 0 7 18 7 , . 17 , 2
4 , 3 . . 16 2 2 2 ABC 7 2 9
5 9
6 3 则 且 的三边分别为 已知 的周长为 ,则 外接圆半径 , = , 中, 在 的两个根,则 是方程 中, 在等比数列 则 若 项和 的前 为等差数列 设 a. A 4. c 2, b sinBsinC C sin B sin A sin ABC . 22 2 2 2 及 求 , 中,若 在 = = + + = ∆
. A , 2 B tan A tan ABC
. 23 的值 求 中,若 在 b
b
c - = ∆
24.(12分)有四个数:前三个成等差数列,后三个成等比数列。
首末两数和为16,中间两数和为12.求这四个数.
25.设{}n a 是公比为正数的等比数列,12a =,324a a =+.
(Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{(21)}n n a +的前n 项和S n .
数学答案
一.选择题
BCAABC 61- 7-15 DDBAC DCCA
二.填空题
16.63. 17. 1 18. 20 19.322
20、450 21、2
三.解答题
24.(12分)有四个数:前三个成等差数列,后三个成等比数列。
首末两数和为16,中间两数和为12.求这四个数.
解:设此四数为:x ,y ,12-y ,16-x 。
所以2y=x+12-y 且(12-y )2
= y (16-x ). ……6分
把x=3y-12代入,得y= 4或9.解得四数为15,9,3,1或0,4,8,16 . …………12分
25. 设{}n a 是公比为正数的等比数列,12a =,324a a =+. (Ⅰ)求{}n a 的通项公式;
.
7 2 . 28 8 16 4 120 cos 2 . 120 , 2
1
2 cos , , sin sin sin sin sin ABC . 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 = = + + = - + = = - = - + =
- = - + + + = + + = ∆
a bc
c b a A bc a c b A bc
a c
b b
c c b a C B C B A 所以 由余弦定理得 所以 所以 即 由正弦定理得 中,若 解:在 ☐ ☐ ☐
✈
60 , 2
1
cos cos sin 2 sin , cos sin 2 ) sin( cos sin 2 cos sin cos sin sin sin sin 2 cos sin cos sin 2 tan tan . 23 = = ∴ = ∴ = + ∴ = + ∴ - = - = A A A
C C A C B A A C A B B A B
B
C A B B A b
b c B A 所以 根据正弦定理,得
解:
(Ⅱ)求数列{(21)}n n a +的前n 项和S n .
解:(I )设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得,…………2分
即2
20q q --=,解得21q q ==-或(舍去),因此 2.q = …………4分 所以{}n a 的通项为1*222().n n n a n N -=⋅=∈ …………6分
(II )23325272(21)2n
n T n =⋅+⋅+⋅+++⋅L …………7分
23123252(21)2(21)2n n n T n n +=
⋅+⋅++-⋅++⋅L …………8分
231322222(21)2n n n T n +-=⋅+++++⋅L ()- …………10分
1114(12)
62(21)2212212n n n n n -++-=+⋅-+=--⋅--() …………12分
∴ 1S 212+2n n n +=
-⋅(). …………14分。