匀变速直线运动的推论及推理1

合集下载

匀变速直线运动的公式及推论

匀变速直线运动的公式及推论

匀变速直线运动的公式及推论
位移公式:
在匀变速直线运动中,物体的位移(S)和时间(t)之间的关系可以
用下面的公式表示:
S=V0*t+1/2*a*t^2
其中V0表示物体的初速度,a表示物体的加速度,t表示经过的时间。

速度公式:
在匀变速直线运动中,物体的速度(V)和时间(t)之间的关系可以
用下面的公式表示:
V=V0+a*t
其中V0表示物体的初速度,a表示物体的加速度,t表示经过的时间。

加速度公式:
在匀变速直线运动中,物体的加速度(a)和时间(t)之间的关系可
以用下面的公式表示:
a=(V-V0)/t
其中V表示物体的末速度,V0表示物体的初速度,t表示经过的时间。

推论:
1.若匀变速直线运动中的物体的加速度为常数,则速度的变化率也是
常数。

2.若匀变速直线运动中的物体的加速度为0,则速度保持恒定,即为匀速直线运动。

3.在匀变速直线运动中,物体的速度和加速度可以是正值或负值,取决于其运动的方向。

举例:
假设一个物体从静止开始匀变速直线运动,加速度为1m/s^2,经过3秒后的位移是多少?
根据位移公式,代入已知的初速度、加速度和时间,可以得到:
S=0*3+1/2*1*3^2=0+1/2*1*9=4.5m
因此,经过3秒后,该物体的位移为4.5米。

再举一个例子:
假设一个物体以初速度5m/s,经过2秒后的速度为12m/s,求物体的加速度是多少?
根据加速度公式,代入已知的初速度、末速度和时间,可以得到:a=(12-5)/2=7/2=3.5m/s^2
因此,物体的加速度为3.5m/s^2
总结:。

(完整版)匀变速直线运动的推论及推理

(完整版)匀变速直线运动的推论及推理

罗老师总结匀变速直线运动常用公式 (附匀变速直线运动的推论及推理过程)一、基本公式速度公式 at v v t +=0 当00=v 时,at v t = 位移公式 2021at t v s += 221at s = 二、几个常用的推论1.位移推导公式 2022v v as t -=, t v v s t20+=2.平均速度v 、中间时刻的瞬时速度2/t v 、中间位置的瞬时速度2/s v 为:0/22t t v v xv v t +===, 22202/t s v v v += 3.做匀变速直线运动的物体,在各个连续相等的时间T 内的位移分别是s 1、s 2、s 3…s n ,则Δs =s 2-s 1=s 3-s 2=…=s n -s n-1=aT 2.4.V 0=0的匀加速直线运动中的几个常用的比例公式(1)等分运动时间,以T 为单位时间.①1T 末,2T 末,3T 末…,n T 末的速度之比v 1:v 2:v 3:…:v n =1:2:3…:n②1T 内、2T 内、3T 内…n T 内通过的位移之比s 1:s 2:s 3:…:s n =1:4:9…:n 2③第1个T 内、第2个T 内、第3个T 内…、第n 个T 内通过的位移之比s Ⅰ:s Ⅱ:s Ⅲ:…:s N =1:3:5…:(2n —1)④第1个T 内、第2个T 内、第3个T 内…、第n 个T 内的平均速度之比v Ⅰ:v Ⅱ:v Ⅲ:…:v N =1:3:5…:(2n —1) (2)等分位移,以x 为位移单位. ①通过1x 、2x 、3x …、n x 所需时间之比t 1:t 2:t 3:…:t n =1:3:2…:n②通过第1个x 、第2个x 、第3个x 、…第n 个x 所需时间之比t Ⅰ:t Ⅱ:t Ⅲ:…:t N =1::23:12--…:1--n n③1x 末,2x 末,3x 末…,n x 末的速度之比v 1:v 2:v 3:…:v n =1:3:2…:n对匀变速直线运动公式作进一步的推论,是掌握基础知识、训练思维、提高能力的一个重要途径,掌握运用的这些推论是解决一些特殊问题的重要手段。

匀变速直线运动公式推论推导及规律总结

匀变速直线运动公式推论推导及规律总结

匀变速直线运动公式推论推导及规律总结v = v0 + at位移由速度的定义导出:s = v0t + 1/2at²在匀变速直线运动中,加速度是变化的,因此在不同的时间段内,可以得到不同的位移和速度的关系。

根据运动的规律,我们可以得到几个重要的推论:推论1:t=0时刻的速度为v0,t时刻的速度为v,则平均速度为(v0+v)/2根据速度的定义,可以得到:v = v0 + at从t=0到t时刻的时间段内,速度变化了v-v0,平均速度就是速度变化量的一半。

推论2:匀变速直线运动的位移与时间的关系可以由位移公式得出。

s = v0t + 1/2at²根据位移公式可以看出,位移与时间的平方成正比。

这说明,在匀变速直线运动中,物体的位移与时间的平方呈现出二次增长的规律。

推论3:匀变速直线运动的速度与时间的关系可以由加速度公式得出。

v = v0 + at在匀变速直线运动中,可以通过加速度的大小和方向的不同来改变速度的大小和方向。

加速度的大小和方向会影响速度的改变速率。

推论4:匀变速直线运动中,速度与位移的关系可以由速度公式和位移公式得出。

将速度公式和位移公式联立,并将速度v表示为位移s和时间t的函数,可以得到:v=(2/t)*(s-v0t)从上式中可以看出,速度与位移的关系呈现线性关系。

即速度与位移成正比,并且速度与时间的倒数成正比。

以上是对匀变速直线运动公式进行推论推导的过程,可以得出一些规律总结如下:1.在匀变速直线运动中,速度和位移与时间有关,速度与时间成一次函数关系,位移与时间成二次函数关系。

2.加速度的大小和方向会影响速度的改变速率,从而影响物体的运动轨迹和速度的变化。

3.速度与位移成正比,并且速度与时间的倒数成正比。

因此,在匀变速直线运动中,可以通过速度-时间图和位移-时间图来分析物体的运动情况。

4.在匀变速直线运动中,如果加速度为零,即物体的速度保持不变,则运动成为匀速直线运动;如果加速度为常数,即物体的速度随着时间的推移以恒定的速率加快或减慢,则运动成为等加速度运动。

高一物理匀变速直线运动规律推论

高一物理匀变速直线运动规律推论
2
2
两个连续相等的时间T内的位移之差:
x x2 x1 (v1 v0 )T aT 2
因为T是个恒量,小车加速度也是恒量,因此 △x也是个恒量。 即:只要物体做匀变速直线运动,它在任意两 个连续相等的时间内的位移之差等于一个常数.
匀变速直线运动推论公式:
1、任意两个连续相等时间间隔T内,位移之差 是常数,即△x=x2-x1=aT2。 拓展:△xMN=xM-xN=(M-N)aT2
思考:物体拉动的条件?
(拉力大于最大静摩擦力) 说明:最大静摩擦力大于滑动摩擦力
思考:1只有静止的物体才受到静摩擦力的作用? 2静摩擦力一定是阻力?
二 滑动摩擦力 1定义:两个接触的物体,当一个物体在另一个物 体表面滑动的时候,会受到另一个物体阻碍它滑动 的力
2产生条件:①接触面粗糙②接触并挤压③ 发生相对滑动 3作用点:接触面间
支持力与压力属于弹力
4、绳的弹力:
A A
B
总结:绳的弹力方向总是 沿着绳并指向绳的收缩方向。 绳的弹力处处相等
拉力属于弹力
三、弹力有无判断
方法:撤去支撑物法
FN
假设法+共点力平衡法
FN
F
F
FN FN G FN FN G FNLeabharlann F不平衡G
不平衡
不平衡
四、弹力的大小
弹力的大小与物体 的形变有关,形变越大, 弹力越大,形变消失, 弹力随着消失
探究:探究静摩擦力的变化
器材:木块,砝码一盒,弹簧测力计,木板。
实验结论:静摩擦力随拉力的增大而增大,当拉力 达到某一数值时木块开始移动,拉力突然减小。
补充:静摩擦力是个聪明的力,不但大小随外力而 变化,方向也随外力方向变化而变,且有最大值。 6最大静摩擦力:(在数值上等于物体刚刚开始运动时的拉力) 静摩擦力的范围: 0<F≤Fmax

高一物理匀变速直线运动规律推论

高一物理匀变速直线运动规律推论

v0,从A点开始经两个连续相等的时间T的位移
分别是x1和x2。
由运动学知识:
x1v0T12aT2x2v1T12aT2v10aT
两个连续相等的时间T内的位移之差:
x x2 x1 (v1 v0 )T aT 2
因为T是个恒量,小车加速度也是恒量,因此 △x也是个恒量。
即:只要物体做匀变速直线运动,它在任意两 个连续相等的时间内的位移之差等于一个常数.
a= - 8m/s2 v0=12m/s=43.2km/h
练习3:以10m/s的速度匀速行驶的汽车,刹车 后做匀减速直线运动。若汽车刹车后第2s内的 位移为6.25m(刹车时间超过2s),则刹车后6s 的位移是多大?
解:以汽车初速度方向为正方向
由题可知:x v0t2

1 2
at22

(v0t1

1 2
at12
)
代入数据解得:a=-2.5m/s2
汽车刹车到 则汽车刹车6s内的位移停: 所需时间
t0

0
v0 a

010 2.5
s

4s
x

v0t0

1 2
at02
10 4

1 2
(2.5) 42 m
பைடு நூலகம்
20m
;/ 澳门赌场 ;
来.柏少君嘴角抽抽,关键是为嘛搞成这样?“要不...我叫陆易来看看?亭飞呢?”她不是神医吗?陆羽疲惫地摇摇头,“她睡了.不麻烦易哥,我们没事,只是好久没睡过觉,这几天有事没事别找我...”送走少君,检查一遍猫狗是否健康.当她看见自助喂食机没粮食了赶紧重新装满,一脸歉 意地摸摸活蹦乱跳の几只,然后回房吹头发.精神不济,脑子不好使,吹着吹着她就这么趴在床边睡着了.

匀变速直线运动6个推论推导过程

匀变速直线运动6个推论推导过程

匀变速直线运动6个推论推导过程一、推论一:速度 - 位移公式v^2-v_0^2=2ax1. 推导依据。

- 匀变速直线运动的速度公式v = v_0+at,位移公式x=v_0t+(1)/(2)at^2。

2. 推导过程。

- 由v = v_0+at可得t=frac{v - v_0}{a}。

- 将t=frac{v - v_0}{a}代入位移公式x = v_0t+(1)/(2)at^2中,得到:- x=v_0frac{v - v_0}{a}+(1)/(2)a(frac{v - v_0}{a})^2。

- 展开式子:x=frac{v_0v - v_0^2}{a}+(1)/(2)frac{(v - v_0)^2}{a}。

- 进一步化简:ax=v_0v - v_0^2+(1)/(2)(v^2-2vv_0+v_0^2)。

- ax = v_0v - v_0^2+(1)/(2)v^2-vv_0+(1)/(2)v_0^2。

- 整理可得v^2-v_0^2=2ax。

二、推论二:平均速度公式¯v=frac{v_0+v}{2}(适用于匀变速直线运动)1. 推导依据。

- 位移公式x = v_0t+(1)/(2)at^2,速度公式v = v_0+at,平均速度定义¯v=(x)/(t)。

2. 推导过程。

- 由位移公式x = v_0t+(1)/(2)at^2。

- 又因为v = v_0+at,则t=frac{v - v_0}{a}。

- 将t=frac{v - v_0}{a}代入位移公式得x=v_0frac{v - v_0}{a}+(1)/(2)a(frac{v - v_0}{a})^2。

- 平均速度¯v=(x)/(t),t=frac{v - v_0}{a},则¯v=frac{v_0frac{v -v_0}{a}+(1)/(2)a(frac{v - v_0}{a})^2}{frac{v - v_0}{a}}。

匀变速直线运动公式及推论

匀变速直线运动公式及推论

x1:x2:x3::xn = 1 ::::n … 2 3 …
③第1 个T 内、第2 个T 内、第3 个T 内、… 、第n 个T 内, 位移之比为
xⅠ xⅡ: x Ⅲ: : x n = 1::: : 2 n − 1 ) : … 3 5 … (
④ 从静止开始通过连续相等的位移所用的时间之比为
1: 2 − 1): 3 − ( (
匀 变 速 直 线 运 动 公 式 及 推 论
v = v 0 + at 1 x = v0t + at 2 2 2 v − v 0 = 2 ax v v
t 22Biblioteka v0 + v = = v 2 = v
2 0
x 2
+ v 2
2
三个重要推论
• 推论 :加速度为a的匀变速直线运动在相 推论1:加速度为 的匀变速直线运动在相 邻的等时间T内的位移差都相等 内的位移差都相等, 邻的等时间 内的位移差都相等,即aT2。 • 推论2:某过程中间时刻的瞬时速度大小等 推论 : 于该过程的平均速度大小, 平均速度大小 于该过程的平均速度大小,即 v = v中时 =
2 ): : n − … (
n − 1)
s v 0 + vt = t 2
• 推论三: 推论三:
初速度为零 初速度为零的匀加速直线运动 1T秒末 2T秒末 3T秒末 秒末、 秒末、 秒末、 、nT秒末 秒末, ①1T秒末、2T秒末、3T秒末、…、nT秒末,速度之比 为
v1:v2:v3::vn = 1 2:…:n … :3 :
nT秒内 秒内, ②1T秒内、2T秒内、3T秒内、… 、nT秒内,位移之比 1T秒内、2T秒内、3T秒内、 秒内 秒内 秒内 2 2 2 2 为

匀变速直线运动的重要推论 课件 人教版(2019)高中物理必修第一册

匀变速直线运动的重要推论 课件 人教版(2019)高中物理必修第一册
可得: x1 : x2 : x3 :: xn 12 : (22 12 ) : (32 22 ) :: n2 (n 1)2
1: 3: 5 :: (2n 1)
③第一个T内,第二个T内,第三个T内…的位移比
建立时间坐标轴,把初速度为零的匀变速直线运动按时间T等分,如下图
所示:
x1 x2 x3 x4
aT
2
v0T
3 2
aT
2
x3
v0
3T
1 2
a(3T
)2
v0
2T
1 2
a(2T
)2
v0T
5 2
aT
2
x4
v0
4T
1 2
a(4T
)2
v0
3T
1 2
a(3T
)2
v0T
7 2
aT
2
所以: x2 x1 aT 2 , x3 x2 aT 2 , x4 x3 aT 2, x5 x4 aT 2,
1: 3: 5 :: (2n 1)
④前1个s,前2个s,前3个s,…所用时间的比值:
建立位移坐标轴,把初速度为零的匀变速直线运动按位移s等分,如下图
所示:
v0 0
s
ssss
ss
t1
t2 t3
t4
t 2x
初速度为零的匀加速直线运动的时间公式:
a
可得:t1
2s a
2 2s t2 a
t3
2 3s a
tn
2 ns a
所以: t1 : t2 : t3 :: tn 1: 2 : 3 :: n
⑤第1个s末,第2个s末,第3个s末…的速度之比:
建立位移坐标轴,把初速度为零的匀变速直线运动按位移s等分,如下图

匀变速直线运动规律常见推论及推理过程

匀变速直线运动规律常见推论及推理过程

匀变速直线运动规律常见推论及推理过程本文对匀变速直线运动的常见推论、以及相关推理过程进行归纳总结,结合相关示意图将推理过程详细呈现给读者,适合高一学生学习参考。

匀变速直线运动基本公式如下: at v v +=02021at t v x +=()t v v x +=021ax v v 2202=-常用推论: 一.适用于任意匀变速直线运动的推论1. 某段匀变速直线运动中间时刻瞬时速度与该过程的平均速度相等,且都等于初、末速度和的一半,即:()v v t x v v t +===02212. 任意匀变速直线运动相邻相等时间间隔内的位移之差都相等,都等于2aT ,即:212312aT x x x x x x x n n =-==-=-=∆-拓展结论:x m −x n =(m −n)aT 23. 某段匀变速直线运动中间位置的瞬时速度:22202v v v x +=二. 仅适用于初速度为零的匀加速直线运动的推论1. 从开始运动起,前1个T 末、前2个T 末、前3个T 末……前n 个T 末的瞬时速度之比为:n v v v v n ::3:2:1::::321 =;2. 从开始运动起,前1个T 内、前2个T 内、前3个T 内……前n 个T 内的位移之比为:2222321::3:2:1::::n x x x x n =;3. 从开始运动起,第1个T 内、第2个T 内、第3个T 内……第n 个T 内的位移之比为:x Ⅰ:x Ⅱ:x Ⅲ: … :x N =1:3:5: … : (2n-1);4. 从开始运动起,前1个x 末、前2个x 末、前3个x 末……前n 个x 末的瞬时速度之比为:n v v v v n ::3:2:1::::321 =;5. 从开始运动起,第1个x 内、第2个x 内、第3个x 内……第n 个x 内所用时间之比为)1(::)23(:)12(:1::::321----=n n t t t t n 。

匀变速直线运动推论(用)

匀变速直线运动推论(用)

(变式训练)一物体做匀减速直线运动,3.5秒后停 下来,则第1秒内,第2秒内,第3秒内的位移之比 3:2:1 为_________ 。
巩固练习: 1、一质点做从静止开始做匀加速直线运动,则质点 在第一个2s,第二个2s和第5s内的三段位移之比为 4:12:9 。 ________
2、一颗子弹沿水平方向射来, 恰穿透固定在水平面上
A.3.5 m B.3 m C.2 m D.1 m
例题:一物体做初速为零的匀加速直线运动。 (1)1T末、2T末、3T末……瞬时速度 之比 求:
解:由速度公式
v v0 at at
v1 aT
v2 a 2T
v3 a 3T
v1 : v2 : v3 : : vn 1: 2 : 3 : : n
解法二:逆向思维,用推论.
解法三:逆向思维,看作初速为0的逆过程
解法四:图像法作出质点的速度-来自间图像质点第7s 内的位移大小为阴影部分小三角形面积:
小结: 1.逆向思维在物理解题中很有用.有些物 理问题,若用常规的正向思维方法去思考, 往往不易求解,若采用逆向思维去反面推敲 ,则可使问题得到简明的解答; 2.熟悉推论并能灵活应用它们,即能开拓 解题的思路,又能简化解题过程; 3.图像法解题的特点是直观,有些问题借 助图像只需简单的计算就能求解; 4.一题多解能训练大家的发散思维,对能 力有较高的要求.
三块相同的木板,设子弹穿过木板时的加速度恒定,则 子弹穿过三块木板所用的时间之比为________。
V0 A B C
3.火车紧急刹车后经7s停止,设火车匀减速直线运动, 它在最后1s内的位移是2m,则火车在刹车过程中通过的 位移和开始刹车时的速度各是多少? 答案:98m 28m/s

匀变速直线运动的推论及推理

匀变速直线运动的推论及推理

匀变速直线运动的推论及推理推论1 做匀变速直线运动的物体在中间时刻的即时速度等于这段时间的平均速度,即202t t v v t S v +==推导:设时间为t ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度公式at v v +=0得: ⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22202t a v v t a v v t t t ⇒ 202t t v v v += 推论2 做匀变速直线运动的物体在一段位移的中点的即时速度22202t s v v v +=推导:设位移为S ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度和位移关系公式as v v t 2202+=得:⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22222222022S a v v Sa v v s t s ⇒ 22202t s v v v += 推论3 做匀变速直线运动的物体,如果在连续相等的时间间隔t 内的位移分别为1S 、2S 、 3S ……n S ,加速度为a ,则=-=-=∆2312S S S S S ……21at S S n n =-=-推导:设开始的速度是0v经过第一个时间t 后的速度为at v v +=01,这一段时间内的位移为20121at t v S +=, 经过第二个时间t 后的速度为at v v +=022,这段时间内的位移为202122321at t v at t v S +=+=经过第三个时间t 后的速度为at v v +=023,这段时间内的位移为202232521at t v at t v S +=+=…………………经过第n 个时间t 后的速度为at nv v n +=0,这段时间内的位移为202121221at n t v at t v S n n -+=+=-则=-=-=∆2312S S S S S……21at S S n n =-=-点拨:只要是匀加速或匀减速运动,相邻的连续的相同的时间内的位移之差,是一个与加速度a 与时间“有关的恒量”.这也提供了一种加速度的测量的方法: 即2tSa ∆=,只要测出相邻的相同时间内的位移之差S ∆和t ,就容易测出加速度a 。

匀变速直线运动公式推论推导及规律总结

匀变速直线运动公式推论推导及规律总结

一.基本规律:v =ts 1.基本公式a =t v v t 0- a =tvtv =20t v v + v =t v 21at v v t +=0 at v t =021at t v s +=221at s =t v v s t 20+= t vs t 2=2022v v as t -= 22t v as =注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动。

二.匀变速直线运动的推论及推理对匀变速直线运动公式作进一步的推论,是掌握基础知识、训练思维、提高能力的一个重要途径,掌握运用的这些推论是解决一些特殊问题的重要手段。

推论1 做匀变速直线运动的物体在中间时刻的即时速度等于这段时间的平均速度,即202t t v v t S v +==推导:设时间为t ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度公式at v v +=0得: ⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22202ta v v t a v v t t t ⇒ 202t t v v v +=推论2 做匀变速直线运动的物体在一段位移的中点的即时速度22202t s v v v +=推导:设位移为S ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度和位移关系公式as v v t 2202+=得:⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22222222022S a v v Sa v v s t s ⇒ 22202t s v v v +=推论3 做匀变速直线运动的物体,如果在连续相等的时间间隔t 内的位移分别为1S 、2S 、 3S ……n S ,加速度为a ,则=-=-=∆2312S S S S S……21at S S n n =-=-推导:设开始的速度是0v经过第一个时间t 后的速度为at v v +=01,这一段时间内的位移为20121at t v S +=, 经过第二个时间t 后的速度为at v v +=022,这段时间内的位移为202122321at t v at t v S +=+=经过第三个时间t 后的速度为at v v +=023,这段时间内的位移为202232521at t v at t v S +=+=…………………经过第n 个时间t 后的速度为at nv v n +=0,这段时间内的位移为202121221at n t v at t v S n n -+=+=- 则=-=-=∆2312S S S S S……21at S S n n =-=-点拨:只要是匀加速或匀减速运动,相邻的连续的相同的时间内的位移之差,是一个与加速度a 与时间“有关的恒量”.这也提供了一种加速度的测量的方法:即2tSa ∆=,只要测出相邻的相同时间内的位移之差S ∆和t ,就容易测出加速度a 。

匀变速直线运动的两个推论

匀变速直线运动的两个推论
的物体初速度为12 m/s,在第6 s内的位移比第5
s内的位移多4 m.关于物体运动情况的说法正
确的是( )
A.物体的加速度为4 m/s2
B.物体5 s末的速度是36 m/s C.物体5、6两秒内的位移是72 m D.物体从14 m的A点运动到32 m的B点所用 的时间是1 s
4.一物体以一定的速度行驶,突然开始以4 m/s2的加速度减速,经6s速度减为零,试计 算物体在 (1)减速过程中发生的位移 (2)最后1s内发生的位移
5 m/s,加速度为a=0.5 m/s2,求: (1)物体在3 s内的位移; (2)物体在第3 s内的位移.
2.一个做匀变速直线运动的物体,初速
度为0.5 m/s,在第9 s内的位移比第5 s内
的位移多4 m,求:
(1)物体的加速度;
(2)物体在9 s内通过的位移.
3.(2010年莆田高一检测)做匀变速直线运动
(3)第6 s内的位移.
匀变速直线运动的几个有用推论 1.平均速度:做匀变速直线运动的物体在一段 时间t内的平均速度等于这段时间的中间时刻的瞬 时速度,还等于这段时间初末速度矢量和的一半 .
2.逐差相等:在任意两个连续相等的时间间
隔T内,位移之差是一个常量,即Δ x=xⅡ-xⅠ
=aT2
1.一物体做匀加速直线运动,初速度为v0=
5.在一段平滑的斜冰坡的中部将冰块以 8 m/s
的初速度沿斜坡向上打出,设冰块与冰面间的
摩擦不计,冰块在斜坡上的运动加速度恒为2Βιβλιοθήκη m/s2.求:(设斜坡足够长)
(1)冰块在5 s时的速度;
(2)冰块在10 s时的位移.
6.一小球沿斜面由静止开始匀加速滚下(斜面足够长), 已知小球在第4 s末的速度为4 m/s.求: (1)第6 s末的速度; (2)前6 s内的位移;

高一物理匀变速直线运动规律推论

高一物理匀变速直线运动规律推论

v0

1 at 12 at
2
联立以上两式得 v vt / 2
匀变速直线运动推论公式:
1、任意两个连续相等时间间隔T内,位移之差 是常数,即△x=x2-x1=aT2。
拓展:△xMN=xM-xN=(M-N)aT2
2、在一段时间 内,中间vt/2 时12(v0 v刻) v 的 瞬时速度等于这 段时间内的平均 速度
匀变速直线运动 规律推论
匀变速直线运动规律:
1、速度公式: v=v0+at
2、位移 公式:
x

v0t

1 2
at2Βιβλιοθήκη 3、位移 v2与速度关

v02

2ax
4、平均 速度:
v系 12:(v0

v)

x t
例1、证明:物体做匀变速直线运动,在任意两 个连续相等的时间内的位移之差等于一个常数。
证明:设加速度为a,经过任意一点A的速度为
匀变速直线运动推论公式:
1、任意两个连续相等时间间隔T内,位移之差 是常数,即△x=x2-x1=aT2。
拓展:△xMN=xM-xN=(M-N)aT2
;代妈 代妈

教授的追踪调查结果显示:爱坐前排的学生中,成功的比例高出其他两类学生很多。 最后,教授语重心长地说道:“不是说凡事一定要站在最前面,永远第一,而是说这种积极向上的心态十分重要。在漫长的一生中,你们一定要勇争第一,积极坐在前排呀!” 请以“坐在生活 的前排”为话题写一篇作文。自定立意,自拟题目,自选文体,不少于800字。 [写作提示]“坐在生活的前排”,这是一种积极进取的生活态度,一种积极向上、不甘落后的心态。它是“敢为天下先”,它要求自己尽己所能,去争取尽可能好的成绩,去争取成功,但并不奢望自己

匀变速直线运动规律及推论(精选版)

匀变速直线运动规律及推论(精选版)

v1=x/t1,v2=x/t2.
它们分别等于通过这两段位移所用的时间中点的瞬时速度, 由题意可知 这两个时间中点的间隔为: Δt=(t1+t2)/2.
根据加速度的定义式可知:
2 x(t1 t2 ) a v / t ( v 2 v1 ) / t . (t1 t2 )t1t2
1 1 解析 :由x at 2得 : xⅠ x1 at 2 , xⅡ x 2 x1 2 2 1 1 2 1 1 2 2 2 2 a 3t at 4at , x Ⅲ x 3 x 2 a 6t a 3t 2 2 2 2 27 2 at , 则xⅠ xⅡ x Ⅲ 1 8 27. ∶ ∶ ∶ ∶ 2
例:如图所示,两个光滑的斜面高度相同, 右边由两部分组成且AB+BC=AD,两小 球a、b分别从A点沿两侧斜面由静止滑下, 不计转折处的能量损失,哪一边的小球先 滑到斜面底端.
2 2
3.把物体做初速度为零的匀加速直线运动的总位移分成等 长的三段,按从开始到最后的顺序,经过这三段位移的平均 速度之比为(D )
A.1 3 5 ∶ ∶ C.1 2 3 ∶ ∶
B.1 4 9 ∶ ∶ D.1 ( 2 1) ( 3 2 ) ∶ ∶
解析 :由初速度为零的匀加速直线运动特点, 可知 x x x t∶t 2 t 3 1 ( 2 1) ( 3 2), 则v∶ 2 v3 ∶ ∶ , ∶ ∶ ∶ 1 v∶ 1 t1 t2 t3 即得答案D.
4、利用图像解决问题
• 常利用物体的位移-时间图像和速度-时间图 像,分析物体的运动过程并利用图像求解 问题,根据题意做出图像是关键。
1.做初速度为零的匀加速直线运动的物体,将其运动时间顺次 分成1∶2∶3三段,则每段时间内的位移之比为( C ) A.1∶3∶5 C.1∶8∶27 B.1∶4∶9 D.1∶16∶81
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

匀变速直线运动常用公式(附匀变速直线运动的推论及推理过程)一、 基本公式 速度公式 at v v t +=0 当00=v 时,at v t =位移公式 2021at t v s+= 221at s =二、 几个常用的推论 1.位移推导公式 2022v v ast -=, t v v s t20+=2.平均速度v 、中间时刻的瞬时速度2/t v 、中间位置的瞬时速度2/s v 为:0/22tt v v xv v t +===, 22202/t s v v v +=3.做匀变速直线运动的物体,在各个连续相等的时间T 内的位移分别是s 1、s 2、s 3…s n ,则Δs =s 2-s 1=s 3-s 2=…=s n -s n-1=aT 2.4.V 0=0的匀加速直线运动中的几个常用的比例公式 (1)等分运动时间,以T 为单位时间. ①1T 末,2T 末,3T 末…,n T 末的速度之比v 1:v 2:v 3:…:v n =1:2:3…:n②1T 内、2T 内、3T 内…n T 内通过的位移之比s 1:s 2:s 3:…:s n =1:4:9…:n 2③第1个T 内、第2个T 内、第3个T 内…、第n 个T 内通过的位移之比s Ⅰ:s Ⅱ:s Ⅲ:…:s N =1:3:5…:(2n —1)④第1个T 内、第2个T 内、第3个T 内…、第n 个T 内的平均速度之比v Ⅰ:v Ⅱ:v Ⅲ:…:v N =1:3:5…:(2n —1)(2)等分位移,以x 为位移单位. ①通过1x 、2x 、3x …、n x 所需时间之比t 1:t 2:t 3:…:t n =1:3:2…:n②通过第1个x 、第2个x 、第3个x 、…第n 个x 所需时间之比t Ⅰ:t Ⅱ:t Ⅲ:…:t N =1::23:12--…:1--n n③1x 末,2x 末,3x 末…,n x 末的速度之比v 1:v 2:v 3:…:v n =1:3:2…:n对匀变速直线运动公式作进一步的推论,是掌握基础知识、训练思维、提高能力的一个重要途径,掌握运用的这些推论是解决一些特殊问题的重要手段。

推论1 做匀变速直线运动的物体在中间时刻的即时速度等于这段时间的平均速度,即202t t v v t S v+==推导:设时间为t ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度公式at v v +=0得:⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22202t a v v t a v v t t t ⇒ 202t t v v v += 推论2 做匀变速直线运动的物体在一段位移的中点的即时速度22202t sv v v+=推导:设位移为S ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度和位移关系公式as v v t 2202+=得:⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22222222022S a v v Sa v v s t s ⇒ 22202t s v v v +=推论3 做匀变速直线运动的物体,如果在连续相等的时间间隔t 内的位移分别为1S 、2S 、 3S ……n S ,加速度为a ,则=-=-=∆2312S S S S S……21at S S n n =-=-推导:设开始的速度是0v经过第一个时间t 后的速度为at v v +=01,这一段时间内的位移为20121at t v S +=,经过第二个时间t 后的速度为at v v +=022,这段时间内的位移为202122321at t v at t v S +=+=经过第三个时间t 后的速度为at v v +=023,这段时间内的位移为202232521at t v at t v S +=+=…………………经过第n 个时间t 后的速度为at nv v n +=0,这段时间内的位移为202121221at n t v at t v S n n -+=+=-则=-=-=∆2312S S S S S……21at S S n n =-=-点拨:只要是匀加速或匀减速运动,相邻的连续的相同的时间内的位移之差,是一个与加速度a 与时间“有关的恒量”.这也提供了一种加速度的测量的方法:即2t S a ∆=,只要测出相邻的相同时间内的位移之差S ∆和t ,就容易测出加速度a 。

推论4 初速度为零的匀变速直线运动的位移与所用时间的平方成正比,即t 秒内、2t 秒内、3t 秒内……n t 秒内物体的位移之比1S :2S :3S :… :n S =1 :4 :9… :2n推导:已知初速度00=v ,设加速度为a ,根据位移的公式221at S =在t 秒内、2t 秒内、3t 秒内……n t 秒内物体的位移分别为: 2121at S =、22)2(21t a S =、23)3(21t a S = ……2)(21nt a S n=则代入得 1S :2S :3S :... :n S =1 :4 :9 (2)推论5 初速度为零的匀变速直线运动,从开始运动算起,在连续相等的时间间隔内的位移之比是从1开始的连续奇数比,即1S :2S :3S :… :n S =1 :3 :5…… :(2n-1)推导:连续相同的时间间隔是指运动开始后第1个t 、第2个t 、第3个t ……第n 个t ,设对应的位移分别为、、、321S S S ……n S ,则根据位移公式得第1个t 的位移为2121at S =第2个t 的位移为22222321)2(21at at t a S =-=第3个t 的位移为222325)2(21)3(21at t a t a S =-=……第n 个t 的位移为222212])1[(21)(21at n t n a nt a S n-=--=代入可得: )12(:5:3:1::::321-=n S S S S n推论6 初速度为零的匀变速直线运动,从开始运动算起,物体经过连续相等的位移所用的时间之比为1t :2t :3t ……:n t =1:(12-):(23-)…… :(1--n n )推导:通过连续相同的位移是指运动开始后,第一个位移S 、第二个S 、第三个S ……第n 个S ,设对应所有的时间分别为 321t t t 、、n t , 根据公式221at S=第一段位移所用的时间为aSt 21=第二段位移所用的时间为运动了两段位移的时间减去第一段位移所用的时间aSa S a St 2)12(242-=-=同理可得:运动通过第三段位移所用的时间为 aSa S a St 2)23(463-=-=以此类推得到aSn n a S n a nSt n2)1()1(22--=--=代入可得)1(:)23(:)12(:1::321----=n n t t t t n从以上推导可知解决这些问题主要要理解:连续的时间内、连续相等的时间内、连续相等的位移的含义、要克服存在的思维障碍。

利用匀变速直线运动的推论解题,常可收到化难为易,简捷明快的效果。

讨论:在同一段匀变速直线运动中,对于加速或是减速,2tv 与2sv 有何关系?分析:若物体做匀加速直线运动,如图甲所示,物体由A 到B 历时t ,而经2t 物体的位移不到一半,即经2t,物体在中间位置O 的左侧,所以22st v v <。

若物体做匀减速直线运动,如图乙所示,物体由A 到B 历时t ,而经2t物体的位移已大于整个位移的一半,即达到O 点的右侧,由于是减速,所以22st v v <。

例1 运行着的汽车制动后做匀减速滑行,经3.5秒停止。

试问它在制动开始后的1秒内、2秒内、3秒内通过的位移之比为多少?解析:设汽车从Ο起制动,1秒末到A ,2秒末到B ,3秒末到C ,最后停在D 。

这个运动的逆过程可看初速为零的匀加速运动,加速度的大小不变。

将3.5秒分为7个0.5秒,那么,从D 逆过来在连续7个0.5秒的位移之比为1 :3 :5 :7 :9 :11 :13则S CB :S BA :S AO =8:16:24 所以得到汽车从Ο起在1秒内,2秒内,3秒内位移之比S O A :S O B :S O C = 24 :40 :48 = 3 :5 :6例2 火车从静止起动做匀加速直线运动,站在第1节车厢前端的人看到第2节车厢从他身边通过的时间是5秒,那么第6节车厢从他身边通过的时间是多少?解析:因为每节车厢的长度是相等的,利用从开始运动算起,经过连续相等位移所用的时间之比为1t :2t :3t ……:n t =1:(12-):(23-)…… :(1--n n )得:561262--=t t ⇒ )(58.2512566S t =⨯--=例3做匀变速度直线运动物体从A 点到B 点经过的时间t ,物体在A 、B 两点的速度分别为a v 和b v ,物体通过AB 中点的瞬时速度为1v ,物体在2t时刻的瞬时速度为2v ,则( ) A. 若做匀加速运动,则1v >2v B. 若做匀减速运动,则1v >2v C. 不论匀加速运动还是匀减速运动,则1v >2v D. 不论匀加速运动还是匀减速运动,则2v >1v解析: 根据题意,1v 是时间中点的速度,所以21b a AB v v v v +==;而2v 是位移中点的速度,所以2222ba v v v +=22224)(2222222222222b a b b a a b b a a b a b a v v v v v v v v v v v v v v v +=++≥+++=+=+=1v = 因为b a v v ≠ 所以不论匀加速运动还是匀减速运动,则2v >1v 故选项D 正确。

【模拟试题】1、下列关于平均速度和即时速度的说法中正确的是 A. 做变速运动的物体在相同时间间隔里的平均速度是相同的 B. 即时速度就是运动的物体在一段较短的时间内的平均速度 C. 平均速度就是初末时刻即时速度的平均值D. 某物体在某段时间里的即时速度都为零,则该物体在这段时间内静止 2、下面关于加速度的描述中正确的有A. 加速度描述了物体速度变化的多少B. 加速度在数值上等于单位时间里速度的变化C. 当加速度与位移方向相反时,物体做减速运动D. 当加速度与速度方向相同且又减小时,物体做减速运动3、关于速度与加速度,下列说法中正确的是A. 速度越大,加速度一定越大B. 速度为零,加速度也一定为零C. 加速度为零,速度也一定为零D. 以上说法都不对4、做匀加速直线运动的物体,加速度是2米/秒2,它意味着A. 物体在任一秒末的速度是该秒初的两倍B. 物体在任一秒末的速度比该秒初的速度大2米/秒C. 物体在第一秒末的速度为2米/秒D. 物体任一秒的初速度比前一秒的末速度大2米/秒5、关于匀加速直线运动,下列说法中正确的是A. 速度与运动时间成正比B. 速度的增量与运动时间的平方成正比C. 位移与运动时间的平方成正比D. 在连续相同时间内的位移增量都相同6、对做匀减速运动的物体(无往返),下列说法中正确的是A. 速度和位移都随时间减小B. 速度和位移都随时间增大C. 速度随时间增大,位移随时间减小D. 速度随时间减小,位移随时间增大7、一个做初速度为零的匀加速直线运动的物体,下列说法中正确的是A. 第4秒内的平均速度大于4秒内的平均速度B. 第4秒内的平均速度大于第4秒末的即时速度C. 第4秒内的位移小于头4秒内的位移D. 第3秒末的速度等于第4秒初的速度8、甲、乙两物体沿一直线同向运动,其速度图象如图所示,在 t时刻,下列物理量中相等的是A. 运动时间B. 速度C. 位移D. 加速度9、四个质点做直线运动,它们的速度图象分别如下图所示,下列说法中正确的是A. 四个质点在2秒内速度变化快慢相同B. 在第2秒末,质点(2)离出发点最远C. 在第2秒内,质点(1)(3)做加速运动D. 在第2秒末,质点(2)(3)偏离出发点位移相同10、如果运动的物体的平均速度等于这段时间内初速度和末速度的算术平均值,则该运动一定不是A. 匀速直线运动B. 匀加速直线运动C. 匀减速直线运动D. 加速度减小的运动11、有一个物体开始时静止在O点,先使它向东做匀加速直线运动,经过5秒钟,使它的加速度方向立即改为向西,加速度的大小不改变,再经过5秒钟,又使它加速度方向改为向东,但加速度大小不改变,如此重复共历时20秒,则这段时间内:A. 物体运动方向时而向东时而向西B. 物体最后静止在O点C. 物体运动时快时慢,一直向东运动D. 物体速度一直在增大12、骑自行车的人沿着直线从静止开始运动,运动后,在第1、2、3、4秒内,通过的路程分别为1米、2米、3米、4米。

相关文档
最新文档