3.2.2函数模型的应用实例

合集下载

课件9:3.2.2 函数模型的应用实例

课件9:3.2.2 函数模型的应用实例
的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近
似满足g(t)=80-2t(件),价格近似满足于
1
15 + , (0 ≤ ≤ 10)
2
f(t)=൞
(元).
1
25 − , (10 < ≤ 20)
2
典型例题
类型3 分段函数模型的应用
(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表
10−6
代入得Y=10lg −12
10
=10lg 106=60,即声强级为60分贝.
(2)当Y=0时,即为10lg

10−12
=0,所以
I=10-12 W/m2,
则能听到的最低声强为10-12 W/m2.

10−12
=1,
典型例题
−7
5×10
(3)当声强I=5×10-7W/m2时,声强级Y=10lg −12
所以,商场要获取最大利润的75%,每件标价为250元
或150元.
名师指导
在函数模型中,二次函数模型占有重要的地位,根据实
际问题建立二次函数解析式后,可以利用配方法、判别
式法、换元法、函数的单调性等方法来求函数的最值,
从而解决实际问题中的利润最大、用料最省等问题.
跟踪训练
1.某水厂的蓄水池中有400吨水,每天零点开始由池
即 S=
2
-10x
+1 200x-15 000,30<x≤75.

跟踪训练
因为当0<x≤30时,S=900x-15 000为增函数,
所以x=30时,Smax=12 000;
当30<x≤75时,S=-10x2+1 200x-15 000

3.2.2函数模型应用实例1

3.2.2函数模型应用实例1

h (t )
1
(t 3 5 0 ) 1 0 0
2
,所以当
t 300
8 7 .5
综上,由 1 0 0 8 7 .5 可知, h ( t ) 在 [0, 3 0 0 ] 上可以取得最大值 100,此时 t =50,即二月一日开始的第50天时,上市的西红柿纯收益 最大.
中学数学网(群英 学科)提供
3.2.2 函数模型的应用实例
第一课时
y kx b(k 0) 直 1.一次函数的解析式为__________________ , 其图像是一条 ____线,
当________时,一次函数在 ( ,) 上为增函数,当_______时, 一次函数在 (,) 上为减函数。
2
y ax bx c(a 0) 2.二次函数的解析式为_______________________,
v
90 80 70
60 50 40 30 20 10
1 2 3 4 5
解(1)阴影部分的面积为 50 1 80 1 90 1 75 1 65 1 360
阴影部分的面积表示汽车在这5小时内行驶的路程为360km (2)根据图形可得:
S
第三步:利用数学的方法将得到的常规数学问题(即数学模型) 予以解答,求得结果。 第四步:再转译为具体问题作出解答。
实际问题
抽象概括
数学模型 推理 演算
实际问题 的解
还原说明
数学模型的 解
布置作业 1 . (必做)课本第107页 习题1,2
2.(选做)甲乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查, 提供了两个方面的信息,如下图:
r6≈0.0223, r7≈0.0276, r8≈0.0222, r9≈0.0184. 可得,1951-1959年期间我国人口的平均增长率分为 r ( r1 r2 r9 ) 9 0 .0-1959年期间我国的人口增长模型为 0.0221 t y 55196 e , t N.

3.2.2 函数模型的应用实例

3.2.2 函数模型的应用实例
b≠0 a>0且a≠1,
m≠0
a≠0,n≠1
首页
上一页
下一页
末页
[小试身手]
结束
1.判断(正确的打“√”,错误的打“×”)
(1)在一次函数模型中,系数k的取值会影响函数的性质.
(√ )
(2)在幂函数模型的解析式中,a的正负会影响函数的单调
性.
(√ )
首页
上一页
下一页
末页
结束
2.某自行车存车处在某一天总共存放车辆4 000辆次,存车费
首页
上一页
下一页
末页
结束
分段函数模型
[例2] 某市居民自来水收费标准如下:当每户每月用水 量不超过4吨时,每吨1.80元;当每户每月用水量超过4吨 时,超过部分每吨3.00元.某月甲、乙两户共交水费y元,已 知甲、乙两户该月用水量分别为5x吨、3x吨.
(1)求y关于x的函数; (2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙 两户该月的用水量和水费.
为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普
通自行车存车x辆次,存车费总收入为y元,则y与x的函数
关系式为
()
A.y=0.2x(0≤x≤4 000)
B.y=0.5x(0≤x≤4 000)
C.y=-0.1x+1 200(0≤x≤4 000)
D.y=0.1x+1 200(0≤x≤4 000)
的函数关系式,可得 0=5log210,解得 Q =10,即燕子静止 时的耗氧量是 10 个单位. (2)将 Q =80 代入题中给出的函数关系式,得 v=5log28100= 5log28=15,即当一只燕子的耗氧量是 80 个单位时,它的 飞行速度为 15 m/s.

人教a版必修1学案:3.2.2函数模型的应用实例(含答案)

人教a版必修1学案:3.2.2函数模型的应用实例(含答案)

3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。

课件5:3.2.2 函数模型的应用实例

课件5:3.2.2 函数模型的应用实例
长为 2 的正三角形,记△OAB 位于直线 x=t(t>0)左侧的图形的面积为 f(t),试求函数 f(t)的解 析式.
图 3-2-8
【解】 OB 所在的直线方程为 y= 3x.当 x∈(0,1]时,由 x =t,求得 y= 3t,所以 f(t)= 23t2;
当 t∈(1,2]时,f(t)= 3- 23(2-t)2; 当 t∈(2,+∞)时,f(t)= 3,
23t2,t∈0,1],
∴f(t)=
3- 232-t2,t∈1,2],
3,t∈2,+∞.
指数(对数)型函数建模问题
例 3.大西洋鲑鱼每年都要逆流而上,游回产地产卵.记鲑鱼的 游速为 v(m/s),鲑鱼的耗氧量的单位数为 Q,研究中发现 v 与 log31Q00成正比,且当 Q=900 时,v=1.
24x-9.6 x>34.
(2)由于 y=f(x)在各段区间上均单调递增, 所以当 x∈0,45时,y≤f45<26.40; 当 x∈45,43时,y≤f43<26.40; 当 x∈43,+∞时,令 24x-9.6=26.40, 得 x=1.5.∴甲用户用水量为 5x=7.5(吨), 付费 y1=4×1.80+3.5×3.00=17.70(元). 乙用户用水量为 3x=4.5(吨), 付费 y2=4×1.80+0.5×3.00=8.70(元).
【自主解答】 (1)设 y=kx+b(k≠0), ∵x=8 时,y=400;x=10 时,y=320. ∴430200= =810k+k+b, b, 解之得kb==-72400,, ∴y 关于 x 的函数关系式为 y=-40x+720(x>0). (2)该班学生买饮料每年总费用为 51×120=6 120(元). 当 y=380 时,380=-40x+720,得 x=8.5, 该班学生集体饮用桶装纯净水的每年总费用为 380×8.5+ 228=3 458(元), 所以,饮用桶装纯净水的年总费用少.

3.2.2函数模型应用实例

3.2.2函数模型应用实例

60266
61456
62828
64563
65994
67207
y y0e
n (1)如果以各年人口增长平均值l作为我国这一时期的人口增长 率(精确到0.0001),用马尔萨斯人口增长模型建立我国在 这一时期具体人口增长模型,并检验所得模型与实际人口数 据是否相符;
解:设1951~1959年的人口增长率分别为 r1 ,r 2 ,......,r 9 . 由
y 其中t表示经过的时间,y0表示t=0时的人口数, r表示人口 的年平均增长率。
0
y y0e
n
表3是1950~1959年我国的人口数据资料:
年份
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/ 万人55196 Nhomakorabea56300
57482
58796
3.2.2 函数模型的应用实例
一辆汽车在某段路中的行驶速率与时间的关系 如图1所示,
(1)求图1中阴影部 分的面积,并说明所 求面积的实际含义; (2)假设这辆汽车的 里程表在汽车行行驶 这段路程前的读数为 2004km,试建立行 驶这段路程时汽车里 程表读数s km与时间t h的函数解析式,并作 出相应的图象。
由图4可以看出,所 得模型与 1950~1959年的实 际人口数据基本吻 合.
(2)如果按表3的增长趋势,大约在哪一年我国 的人口达到13亿?
将y=130000代入 y 55196e0.0221t .t N.
由计算可得
t 38.76
所以,如果按表3的增长趋势,那么大约在1950 年后的第39年(即1989年)我国的人口就已达到 13亿.由此可以看到,如果不实行计划生育,而是让 人口自然增长,今天我国将面临难以承受的人口压 力.

3.2.2 函数模型的应用实例训练

3.2.2 函数模型的应用实例训练

3.2.2函数模型的应用实例一、基础达标1.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往,他先前进了a km,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b<a),当他记起诗句“不到长城非好汉”,便调转车头继续前进,则该同学离起点的距离与时间的函数关系图象大致为()答案 C解析由题意可知,s是关于时间t的一次函数,所以其图象特征是直线上升.由于中间休息了一段时间,该段时间的图象应是平行于横轴的一条线段.然后原路返回,图象下降,再调转车头继续前进,则直线一致上升.2.国内快递1 000 g以内的包裹的邮资标准如下表:如果某人在西安要快递800 g的包裹到距西安1 200 km的某地,那么他应付的邮资是() A.5.00元B.6.00元C.7.00元D.8.00元答案 C解析由题意可知,当x=1 200时,y=7.00元.3.某机器总成本y(万元)与产量x(台)之间的函数关系式是y=x2-75x,若每台机器售价为25万元,则该厂获利润最大时应生产的机器台数为() A.30 B.40C.50 D.60答案 C解析 设安排生产x 台,则获得利润 f (x )=25x -y =-x 2+100x =-(x -50)2+2 500.故当x =50台时,获利润最大.4.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,c A ,x ≥A (A ,c 为常数).已知工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是 ( )A .75,25B .75,16C .60,25D .60,16答案 D解析 由题意知,组装第A 件产品所需时间为cA=15,故组装第4件产品所需时间为c 4=30,解得c =60.将c =60代入c A=15,得A =16. 5.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +1102,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有 ( )A .a =45,b =-30B .a =30,b =-45C .a =-30,b =45D .a =-45,b =-30答案 A解析 设生产x 吨产品全部卖出,获利润为y 元,则y =xQ -P =x ⎝⎛⎭⎪⎫a +xb -⎝ ⎛⎭⎪⎫1 000+5x +110x 2 =⎝ ⎛⎭⎪⎫1b -110x 2+(a -5)x -1 000(x >0). 由题意知,当x =150时,y 取最大值,此时Q =40.∴⎩⎨⎧-a -52⎝⎛⎭⎪⎫1b -110=150,a +150b =40,解得⎩⎨⎧a =45,b =-30.6.已测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1,乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则选用________作为拟合模型较好. 答案 甲解析 对于甲:x =3时,y =32+1=10,对于乙:x =3时,y =8,因此用甲作为拟合模型较好.7.武汉市的一家报摊主从报社买进《武汉晚报》的价格是每份0.40元,卖出的价格是每份0.50元,卖不掉的报纸还可以以每份0.08元的价格退回报社.在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,他应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算他一个月最多可赚得多少元? 解 设报摊主每天买进报纸x 份,每月利润为y 元(x 为正整数). 当x ≤250时,y =0.1×30×x =3x . 当250≤x ≤400时,y =0.1×20×x +0.1×10×250-(x -250)×0.32×10 =2x +250-3.2x +800 =1 050-1.2x . 当x ≥400时,y =0.1×20×400+0.1×10×250-(x -400)×0.32×20-(x -250)×0.32×10 =800+250-6.4x +2 560-3.2x +800 =-9.6x +4 410.当x ≤250时,取x =250,y max =3×250=750(元). 当250≤x ≤400时,取x =250,y max =750(元). 当x ≥400时,取x =400,y max =570(元).故他应该每天从报社买进250份报纸,才能使每月所获得的利润最大,最大值为750元.二、能力提升8.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -kt .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( )A .125B .100C .75D .50答案 C解析 由已知,得49a =a ·e -50k ,∴e -k=⎝⎛⎭⎪⎫49150.设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e -kt 1, ∴827=(e -k)t 1=⎝⎛⎭⎪⎫49t 150, ∴t 150=32,t 1=75. 9.“学习曲线”可以用来描述学习某一任务的速度,假设函数t =-144lg ⎝ ⎛⎭⎪⎫1-N 90中,t 表示达到某一英文打字水平所需的学习时间,N 表示每分钟打出的字数.则当N =40时,t =________(已知lg 2≈0.301,lg 3≈0.477). 答案 36.72解析 当N =40时,则t =-144lg ⎝ ⎛⎭⎪⎫1-4090=-144lg 59144(lg 5-2lg 3)=36.72.10.如图所示,某池塘中浮萍蔓延的面积y (m 2)与时间t (月)的关系y =a t ,有以下几种说法:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m2;③浮萍从4 m2蔓延到12 m2需要经过1.5个月;④浮萍每月增加的面积都相等.其中正确的命题序号是________.答案①②解析由图象知,t=2时,y=4,∴a2=4,故a=2,①正确.当t=5时,y=25=32>30,②正确,当y=4时,由4=2t1知t1=2,当y=12时,由12=2t2知t2=log212=2+log23.t2-t1=log23≠1.5,故③错误;浮萍每月增长的面积不相等,实际上增长速度越来越快,④错误.11.在对口扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).根据甲提供的资料有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如下图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额.(2)企业乙只依靠该店,最早可望在几年后脱贫? 解 设该店月利润余额为L ,则由题设得: L =Q (P -14)×100-3 600-2 000.①由销量图易得:Q =⎩⎪⎨⎪⎧-2P +50,14≤P ≤20,-32P +40,20<P ≤26,代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600,14≤P ≤20,(-32P +40)(P -14)×100-5 600,20<P ≤26,(1)当14≤P ≤20时,L max =450(元), 此时P =19.5(元);当20<P ≤26时,L max =1 2503(元),此时P =613(元).故当P =19.5(元)时,月利润余额最大,为450元. (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫. 三、探究与创新12.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12th ,其中T a 表示环境温度,h 称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20 min ,那么降温到35℃时,需要多少时间? 解 由题意知40-24=(88-24)·⎝ ⎛⎭⎪⎫1220h , 即14=⎝ ⎛⎭⎪⎫1220h . 解之,得h =10.故T -24=(88-24)·⎝ ⎛⎭⎪⎫12t 10. 当T =35时,代入上式,得 35-24=(88-24)·⎝ ⎛⎭⎪⎫12t 10, 即⎝⎛⎭⎪⎫12t 10=1164.两边取对数,用计算器求得t ≈25. 因此,约需要25 min ,可降温到35℃.13.(2014·成都高一期末)今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P (单位:mg/L)与过滤时间t (单位:小时)间的关系为P (t )=P 0e -kt (P 0,k 均为非零常数,e 为自然对数的底数),其中P 0为t =0时的污染物数量.若经过5小时过滤后还剩余90%的污染物. (1)求常数k 的值;(2)试计算污染物减少到40%至少需要多少时间(精确到1小时,参考数据:ln 0.2≈-1.61,ln 0.3≈-1.20,ln 0.4≈-0.92,ln 0.5≈-0.69,ln 0.9≈-0.11.) 解 (1)由已知,当t =0时,P =P 0; 当t =5时,P =90%P 0. 于是有90%P 0=P 0e -5t .解得k =-15ln 0.9(或0.022).(2)由(1)得,知P =P 0e ⎝ ⎛⎭⎪⎫15ln 0.9t . 当P =40%P 0时,有0.4P 0=P 0e ⎝ ⎛⎭⎪⎫15t . 解得t =ln 0.415ln 0.9≈-0.9215×(-0.11)=4.600.11≈41.82.故污染物减少到40%至少需要42小时.。

3-2-2 函数模型的应用实例

3-2-2 函数模型的应用实例

探究:已给出函数模型的实际应用题,关键是考虑该题 考查的是何种函数,并要注意定义域,然后结合所给模型, 列出函数关系式,最后结合其实际意义作出解答. 解决此类型函数应用题的基本步骤是:
第三章
3.2
3.2.2
成才之路 ·数学 ·人教A版 · 必修1
第一步,阅读理解,审清题意; 读题要做到逐字逐句,读懂题中的文字叙述,理解叙述 所反映的实际背景.在此基础上,分析出已知是什么,求什 么,从中提炼出相应的数学问题. 第二步,根据所给模型,列出函数关系式; 根据问题已知条件和数量关系,建立函数关系式,在此 基础上将实际问题转化为一个函数问题. 第三步,利用数学的方法将得到的常规函数问题(即数学 模型)予以解答,求得结果;
第三章
3.2
3.2.2
成才之路 ·数学 ·人教A版 · 必修1
如果所建数学模型是函数问题,就成了函数模型,函数 模型是数学模型的一个重要组成,是一类广泛的应用. 总结:实际问题→表示模型→模型的解→实际问题. 问题 2:我们如何来应用函数模型解决实际问题呢?
第三章
3.2
3.2.2
成才之路 ·数学 ·人教A版 · 必修1
第三章
3.2
3.2.2
成才之路 ·数学 ·人教A版 · 必修1
命题方向 2 二次函数模型问题与函数的图象
由函数的图象求出函数解析式,这是最基本的题型. [例 2] 甲、 乙两人连续 6 年对某县农村甲鱼养殖业的规
模(产量)进行调查,提供了两个方面的信息如下图. 甲调查表明:每个甲鱼池平均出产量从第一年 1 万只甲 鱼上升到第 6 年 2 万只.
商店出售茶壶与茶杯,茶壶每个定价 20 元,茶杯每个 5 元,该商店推出两种优惠办法: ①买一个茶壶送一个茶杯, ②按购买总价的 92%付款. 某 顾客购买茶壶 4 个,茶杯若干个(不少于 4 个),若购买茶杯数 x 个,付款为 y(元),试分别建立两种优惠办法中,y 与 x 的函 数关系式,并指出如果该顾客需要购买茶杯 40 个,应选择哪 种优惠办法?

人教A版必修一3.2.2函数模型的应用实例

人教A版必修一3.2.2函数模型的应用实例

类型一:难题,需要55的接受能力以及13 min时间,老师能否及时在学生一直达到 所需接受能力的状态下讲授完这个难题?. 思路点拨:利用所给函数关系式解决有关问题
规律方法:本题是常数函数、一次函数、二次函数混合在一起的分段函数,自变量的取值 不同函数解析式可能不一样,这一点要特别注意.另外,函数的最值也是通过先求每一段 的最值,然后再作比较而求得. 变式训练1-1:某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件.为 了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产 量y与月份数x的关系,模拟函数可以选用二次函数或指数型函数,已知4月份该产品的产 量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
思路点拨:解答本题可首先根据表中数据作出散点图,然后通过观 察图象判断问题所适用的函数模型.
这样,我们得到一个函数模型:y=2.2+1.8x.作出函数图象如图(乙),可以发现,这 个函数模型与已知数据的拟合程度较好,这说明它能较好地反映积雪深度与灌溉面积的关 系. (3)由y=2.2+1.8×25,求得y=47.2,即当积雪深度为25 cm时,可以灌溉土地47.2公顷. 规律方法:对于此类实际应用问题,关键是建立适当的函数关系式,再解决数学问题 ,最后验证并结合问题的实际意义作出回答,这个过程就是先拟合函数再利用函数解题. 函数拟合与预测的一般步骤是:
类型二:自建函数模型解应用题 【例2】 某市原来民用电价为0.52元/kW·h.换装分时电表后,峰时段(早上八点到晚上 九点)的电价为0.55元/kW·h,谷时段(晚上九点到次日早上八点)的电价为0.35元 /kW·h.对于一个平均每月用电量为200 kW·h的家庭,要使节省的电费不少于原来电费的 10%,则这个家庭每月在峰时段的平均用电量至多为多少kW·h?

3.2.2函数模型的应用实例

3.2.2函数模型的应用实例

时间的关系如图所示:
(1)求图中阴影部分的面积,并说明所求面
积的实际含义; v
(2)假设这辆汽车的 90
里程表在汽车行驶 80 70
这段路程前的读数 60 50
为2004 km,试建立
40 30
汽车行驶这段路程时 20 10
汽车里程表读数s km
1 2 3 4 5t
与时间t h的函数解析式,并作出图象.
由y=a(1+r)x 得 y=1131.4 答:5期后本利和是1131.4元。
【总一总★成竹在胸】
解决实际问题的步骤:
实际问题 问 题 解 决
抽象概括
数学模型
数学化
(设、列)

(解)
学 解

推 理 演 算
实际问题 的解
还原说明
符合实际 (答)
数学模型 的解
买进 卖出 退回
数量(份)
30x 20x+10*250
10(x-250)
价格(元)
0.20 0.30 0.08
金额(元)
6x 6x+750 0.8x-200
解: 每月获利润:
y 6x 750 0.8x 200 6x
0.8x 550 (250≤x≤400)
∴x=400份时,y取得最大值870元 答:每天从报社买进400份时,每月获的利润 最大,最大利润为870元.
就可获得最大的利润
解2:设每桶水定价x元时,日均利润为y元,
则日均销售量为 480 40(x 6) 720 40x 桶
y (720 40x)(x 5) 200
40x2 920x 3800
40(x 11.5)2 1490
而 x 5,且720 40 x 0,即5 x 18 当x 11.5时,y 有最大值 只需将销售单价定为11.5元,

3.2.2函数模型的应用实例2

3.2.2函数模型的应用实例2
ab(1 m 1 x m x2) 10 100
7. 依法纳税是每个公民应尽义务. 国家征收个人工薪 所得税是分段计税的. 总收入不超过1600元的免征个 人工薪所得税. 设全月纳税的所得额(指工薪中应纳税 部分)为x, x = 全月总收入-1600. 税率如右:
级别 全月纳税的所得额 不超过500元部分 税率 5%
2 y f (x) 52 ) (0.5 0.25x) (5 5 2 (x 5)
9. 某厂生产某种零件, 每个零件的成本为40元, 出厂 单价定为60元, 该厂为鼓励销售商订购, 决定当一次 订购量超过100个时, 每多订购一个, 订购的全部零件 的出厂单价就降低0.02元, 但实际出厂单价不能低于 51元. (1) 当一次订购量为多少个时,零件的实际出厂单价 60 - 0.02(x-100) = 51 恰降为51元? (2) 设一次订购量为x个, 零件的实际出厂单价为P元, 写出函数P=f(x)的表达式;
y 1 4 4 5 5
x x
4 1 x > 10 10 5
x
11. 某工厂产值连续三年持续增长, 这三年的年增长率 分别为x1, x2, x3, 这三年的年平均增长率为P, 则( ) x1 x2 x3 x1 x2 x3 (B) P (A) P = 3 3 x1 x2 x3 x1 x2 x3 (C) P (D) P与 的大小不定 3 3 该年产值 = 前一年产值 · (1+x%)
(2) 为使公司今年按新价让利后的获利总额不低于5万元, 则该公司在今年至少应销售多少台这种电脑?
y 3000 2880 1 25% n 50000
3. 甲、乙两个粮库要向A、B两地调运大米, 已知甲库 可调出100吨大米, 乙库可调出80吨. A地需70吨, B地 需110吨, 两库到两地的路程及运费如下表:

高中数学人教A版必修1课件:3.2.2函数模型的应用实例

高中数学人教A版必修1课件:3.2.2函数模型的应用实例

设甲项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
(1)写出 y 关于 x 的函数表达式;
(2)求总利润 y 的最大值.
分析:(1)总利润=投资甲项目利润+投资乙项目利润=M+N;(2)
转化为求(1)中函数的最大值.
-12-
3.2.2
题型一
函数模型的应用实例
题型二
题型三
M 目标导航
-3-
3.2.2
函数模型的应用实例
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
名师点拨巧记函数建模过程:
收集数据,画图提出假设;
依托图表,理顺数量关系;
抓住关键,建立函数模型;
精确计算,求解数学问题;
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
题型四
【变式训练 2】 大西洋鲑鱼每年都要逆流而上,游回产地产卵.
记鲑鱼的游速为 v(单位:m/s),鲑鱼的耗氧量的单位数为 Q,研究中发

现 v 与 log3
成正比, 且当Q=900 时,v=1.
100
(1)求出 v 关于 Q 的函数解析式;
米)的关系式为 p=1 000·
7
100

3 000
, 则海拔6 000 米处的大气压强为
百帕.
解析:当 h=6 000 米时,p=1 000·
7
100
6 000
3 000
= 4.9(百帕).
答案:4.9

推荐-高中数学人教A版必修1课件3.2.2函数模型的应用实例

推荐-高中数学人教A版必修1课件3.2.2函数模型的应用实例

当 x>400 时,f(x)=60 000-100x 是减函数.
f(x)<60 000-100×400<25 000(元).
∴当 x=300 时,f(x)的最大值为 25 000 元.
故每月生产 300 台仪器时,利润最大,最大利润为 25 000 元.
探究一
探究二
探究三
思维辨 析
合作学习
反思感悟应用一次函数与二次函数的有关知识,可解决生产、生 活实际中的最大(小)值的问题.解答时需遵循的基本步骤是:(1)反 复阅读理解,认真审清题意;(2)依据数量关系,建立数学模型;(3)利 用数学方法,求解数学问题;(4)检验所得结果,译成实际答案.
合作学习
探究一
探究二
探究三
思维辨 析
解(1)已知仪器的月产量为 x 台,则总成本为 20 000+100x,
从而
f(x)=
-
1 2
������
2
+
300������-20
000,0

������

400,
60 000-100������,������ > 400.
(2)当 0≤x≤400 时,
f(x)=-12(x-300)2+25 000, ∴当 x=300 时,f(x)有最大值 25 000 元;
y=a+bx(a,b 为常数,b≠0).
取其中的两组数据(10.4,21.1),(24.0,45.8),
代入
y=a+bx,得
21.1 45.8
= =
������ ������
+ +
10.4������, 24.0������,

自然状态下的人口增长模型

自然状态下的人口增长模型
6 0 2 6 6 6 8 3 4 7
年份 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
自然状态下的人口增长模型: y=y0ert 其中t表示经过的时间,y0表示t=0时的人口数,r表示人口 的年平均增长率. 下表是1950~1959年我国的人口数据资料: (1)如果以各年人口增长率的平均值作为我国这一时期 的人口增长率(精确到0.0001),用马尔萨斯人口增长模 型建立我国在这一时期的具体人口增长模型,并检验所得 模型与实际人口数据是否相符;
0.0221t rt y 55196 e ,t N. 自然状态下的人口增长模型: y=y0e 1951~1959年的人口增长模型为
. . . . . . . . . . 解:设 1951~1959年的人口增长率分别为r 所以,如果按 ,r ,…,r 55000
1 2 9.
表的增长趋势,大 由55196(1+r1)=56300,可得1951年的人口增长率r10.0200 50000 约在1950年后的39 于是, O 1 1951~1959 2 3 4 年期间,我国人口的年均增长率为 5 6 7 8 9 t 年(即1989年)我 国的人口就已达到 ( 2)如果按表的增长趋势,大约 r=(r +r + …+r ) 9 0.0221 1 2 9 13亿。
销售单价/元 日均销售量/桶 6 480 7 440 8 400 9 360 10 320 11 280 12 240
请根据以上数据作出分析,这个经营部怎样定价 才能获得最大利润? 解:根据上表,销售单价每增加1元,日均销售量就减少40桶。设 在进价基础上增加x元后,日均销售利润为y元,而在此情况下的 日均销售量就为: 480-40(x-1)=520-40x(桶)

高中数学3.2.2.2 指数型、对数型函数模型的应用举例

高中数学3.2.2.2 指数型、对数型函数模型的应用举例

x12 3 4 5 y 3 5 6.99 9.01 11
下列函数模型中,最接近地表示这组数据满足的规律的一个是
()
A.指数函数
B.反比例函数
C.一次函数
D.二次函数
2.(2014·大连高一检测)某工厂今年1月,2月,3月生产某产品 分别为1万件,1.2万件,1.3万件,为了预测以后每个月的产量, 以这三个月的产量为依据,用一个函数模拟该产品的月产量y与 月份数x的关系,模拟函数可选用二次函数或指数型函数y=mnx +p(其中m,n,p为常数).已知4月份该产品的产量为1.37万件,请 问选择以上哪个函数作为模型较好?并说明理由.
11%gx,x 4 000.
如果稿费为4 000元应纳税为448元,现知某人共纳税420元,所
以稿费应在800~4 000元之间,
所以(x-800)×14%=420,所以x=3 800.故选C.
2.(1)当0<x≤10时,
f(x)=-0.1x2+2.6x+43=-0.1(x-13)2+59.9,
【拓展延伸】解答应用问题的程序概括为“四步八字”,即 (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择 模型. (2)建模:将自然语言转化为数学语言,将文字语言转化为符号 语言,利用数学知识,建立相应的数学模型. (3)求模:求解数学模型,得出数学结论. (4)还原:将数学结论还原为实际问题的结论.
【规律总结】数据拟合问题的三种求解策略 (1)直接法:若由题中条件能明显确定需要用的数学模型,或题 中直接给出了需要用的数学模型,则可直接代入表中的数据,问 题即可获解. (2)列式比较法:若题所涉及的是最优化方案问题,则可根据表 格中的数据先列式,然后进行比较.

高中数学 第三章 §3.2.2函数模型的应用实例课件 新人教A版必修1

高中数学 第三章 §3.2.2函数模型的应用实例课件 新人教A版必修1
所以,火车运行总路程 S 与匀速行驶时间 t 之间的关系是 S=13+120t(0≤t≤151). 2 h 内火车行驶的路程 S=13+120×161=233 (km).
第五页,共22页。
小结 在实际问题中,有很多问题的两变量之间的关系是一次 函数模型,其增长特点是直线上升(自变量的系数大于 0)或直 线下降(自变量的系数小于 0),构建一次函数模型,利用一次 函数模型,利用一次函数的图象与单调性求解.
年份
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/万人 55 196 56 300 57 482 58 796 60 266 61 456 62 828 64 563 65 994 67 207
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增
第十一页,共22页。
跟踪训练 2 某游乐场每天的盈利额 y 元 与售出的门票数 x 张之间的关系如图所示, 试问盈利额为 750 元时,当天售出的门票 数为多少? 解 根据题意,每天的盈利额 y 元与售出的门 票数 x 张之间的函数关系是:y=31..7255xx+0≤1 0x0≤0440000<x≤600 . ①当 0≤x≤400 时,由 3.75x=750,得 x=200. ②当 400<x≤600 时,由 1.25x+1 000=750,得 x=- 200(舍去). 综合①和②,盈利额为 750 元时,当天售出的门票数为 200 张. 答 当天售出的门票数为 200 张时盈利额为 750 元.
第十七页,共22页。
当 y=10 时,解得 t≈231. 所以,1881 年世界人口约为 10 年的 2 倍.
(2)由此看出,此模型不太适宜估计跨度时间非常大的人口增长 情况.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.2.2函数模型的应用实例
一、教学目标:
1、能够收集图表数据信息,建立适合函数解决实际问题,体验收集图表数据信息的过程与方法,能建立适合函数解决实际问题
二、教学重难点
1、重点:将收集图表数据信息,建立函数模型解决实际问题。

2、难点:建立起函数模型,并进行模型修正
三、教学过程
(一)复习旧知,揭示课题.
解决实际问题的步骤:
实际问题读懂问题将问题抽象化数学模型解决问题
现实生活中有些实际问题给出了图表数据信息,对这类问题就要求我们能够收集图表数据信息,建立适合的函数模型来解决问题。

请看下面的例子:
(二)实例尝试,探求新知
例1(见P104例5)、某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示:
请根据以上根据作出分析,这个经营部怎样定价才能获得最大利润?
分析:由表中可知,销售单价每增加1元,日均销售量就减少40桶,设在进价的基础上增加x元后,日均销售利润为y元,在此情况下的日均销售量为480-40(x-1)
=520-40x(桶)由于x>0,所且520-40x>0,即0<x<13
于是得:y=(520-40x)x-200=-40x2+520x-200,0<x<13
由二次函数的性质,易知,当x=6.5时,y有最大值。

所以只需将销售单价定为11.5元,就可获得最大的利润。

使它能比较近似地反映这个地区未成年男性体重ykg与身高xcm的函数关系?试写出这个函数模型的解析式。

2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男生的体重是否正常?
先让学生探索以下问题:
1)借助计算器或计算机,根据统计数据,画出它们相应的散点图;
2)观察所作散点图,你认为它与以前所学过的何种函数的图象较为接近?
3)你认为选择何种函数来描述这个地区未成年男性体重ykg与身高xcm的函数关系比较合适?
4)确定函数模型,并对所确定模型进行适当的检验和评价.
5)怎样修正所确定的函数模型,使其拟合程度更好?
解:(1)以身高为横坐标,体重为纵坐标,画出散点图,根据点的分布特征,可考虑用y=a·b x作为刻画这个地区未成年男性体重ykg与身高xcm关系的函数模型。

不妨取其中的两组数据(70,7.90),(160,47.25)代入y =a ·b x
得:
⎪⎩⎪⎨⎧•=•=1607025.479.7b a b a ,用计算器解得:⎩⎨⎧≈≈02.12b a 这样,我们就得到一函数模型:x y 02.12⨯=
将已知数据代入上述函数解析式,或作出函数的图象,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系。

(2)将x =175代入x y 02.12⨯=,得:17502.12⨯=y ≈63.98
(3)由于78÷63.98≈1.22>1.2,所以这个男生偏胖。

总结:课本106页函数是描述客观世界变化规律的重要数学模型,是解决实际问题的重要思想方法. 利用函数思想解决实际问题的基本过程如下:
符合
实际
不符合实际
(三)、练习实践,巩固提高
练习:P106 1、2
(四)、课堂小结
利用函数思想解决实际问题的基本过程。

相关文档
最新文档